[go: up one dir, main page]

JP2019191012A - Element analysis method of inorganic sample - Google Patents

Element analysis method of inorganic sample Download PDF

Info

Publication number
JP2019191012A
JP2019191012A JP2018084538A JP2018084538A JP2019191012A JP 2019191012 A JP2019191012 A JP 2019191012A JP 2018084538 A JP2018084538 A JP 2018084538A JP 2018084538 A JP2018084538 A JP 2018084538A JP 2019191012 A JP2019191012 A JP 2019191012A
Authority
JP
Japan
Prior art keywords
residue
solution
inorganic sample
acid
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018084538A
Other languages
Japanese (ja)
Inventor
哲一 木下
Tetsuichi Kinoshita
哲一 木下
琢真 能任
Takuma Noto
琢真 能任
和明 小迫
Kazuaki Kosako
和明 小迫
浅田 素之
Motoyuki Asada
素之 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2018084538A priority Critical patent/JP2019191012A/en
Publication of JP2019191012A publication Critical patent/JP2019191012A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

【課題】ケイ素を含む無機試料中の希土類元素を含む種々の微量元素の含有量を高い精度で分析することが可能な、無機試料の元素分析方法を提供する。【解決手段】ケイ素を含む無機試料と硝酸と過塩素酸とを混合し、前記無機試料の一部を溶解した後、第一の溶液と第一の残渣とに分離する第一工程と、前記第一の残渣とアルカリとを共に加熱した後、冷却して、前記第一の残渣と前記アルカリとの混合物である第二の残渣を得る第二工程と、前記第二の残渣と水とを混合してなる混合液を、第三の溶液と第三の残渣とに分離する第三工程と、前記第三の残渣を酸に溶解して第四の溶液を得る第四工程と、前記第一の溶液と前記第四の溶液に含まれる元素を分析する第五工程と、を含む、無機試料の元素分析方法。【選択図】なしPROBLEM TO BE SOLVED: To provide an elemental analysis method for an inorganic sample, which enables highly accurate analysis of the content of various trace elements including rare earth elements in an inorganic sample containing silicon. SOLUTION: A first step of mixing an inorganic sample containing silicon, nitric acid and perchloric acid, dissolving a part of the inorganic sample, and then separating into a first solution and a first residue; After heating the first residue and the alkali together, cooling the second step of obtaining a second residue that is a mixture of the first residue and the alkali, and the second residue and water A third step of separating the mixed solution obtained by mixing into a third solution and a third residue; a fourth step of dissolving the third residue in an acid to obtain a fourth solution; An elemental analysis method for an inorganic sample, comprising: a first solution; and a fifth step of analyzing an element contained in the fourth solution. [Selection diagram] None

Description

本発明は、ケイ素を含む無機試料の元素分析方法に関する。   The present invention relates to an elemental analysis method for an inorganic sample containing silicon.

従来、原子力発電所などの放射性物質を取り扱う施設においては、十分な強度を有するとともに放射線の遮蔽性に優れることから、構造躯体がコンクリートで構築されている。
放射線に長期間曝されたコンクリートは放射化されるため、施設を解体する際には放射性廃棄物として処分及び管理する必要があり、コンクリートに含まれる元素を分析することが求められる。
2. Description of the Related Art Conventionally, in a facility that handles radioactive substances such as a nuclear power plant, a structural frame is constructed of concrete because it has sufficient strength and excellent radiation shielding properties.
Since concrete exposed to radiation for a long time is activated, it is necessary to dispose and manage it as radioactive waste when dismantling the facility, and it is required to analyze the elements contained in the concrete.

コンクリート等のケイ素を含む無機試料に含まれるppmレベルの微量元素の分析方法として、無機試料を化学的に溶解する前処理を施し、ICP−MSを用いて測定する方法が有効である(例えば、非特許文献1)。しかし、従来の前処理を施した場合、放射化しうるユーロピウム等の希土類元素の検出精度が悪いという問題がある。   As a method for analyzing trace elements at a ppm level contained in an inorganic sample containing silicon such as concrete, a method of performing a pretreatment for chemically dissolving the inorganic sample and measuring using ICP-MS is effective (for example, Non-patent document 1). However, when conventional pretreatment is performed, there is a problem that detection accuracy of rare earth elements such as europium that can be activated is poor.

“誘導結合プラズマ質量分析法による標準岩石試料中微量元素の迅速定量”岡井貴司著、分析化学、Vol.39(1990)No.4、T55‐T59“Rapid determination of trace elements in standard rock samples by inductively coupled plasma mass spectrometry” by Takashi Okai, Analytical Chemistry, Vol. 39 (1990) No. 4, T55-T59

本発明は、上記事情に鑑みてなされたものであり、ケイ素を含む無機試料中の希土類元素を含む種々の微量元素の含有量を高い精度で分析することが可能な、無機試料の元素分析方法を提供する。   The present invention has been made in view of the above circumstances, and an elemental analysis method for an inorganic sample capable of analyzing the contents of various trace elements including rare earth elements in an inorganic sample containing silicon with high accuracy. I will provide a.

本発明者らが従来方法におけるコンクリート等の前処理を検討したところ、コンクリート等に含まれる希土類元素の溶出が不十分であるために、希土類元素の検出精度が悪いことを見出した。すなわち、フッ酸を含む混酸を用いてケイ素を含む無機試料を溶解すると、希土類元素の一部が溶解せず、ICP−MSで検出した値が真の値よりも低くなる問題を見出した。本発明者らは上記問題を解決し、以下で説明する本発明を完成した。   The present inventors examined pretreatment of concrete or the like in the conventional method, and found that the detection accuracy of the rare earth element was poor because the elution of the rare earth element contained in the concrete or the like was insufficient. That is, when an inorganic sample containing silicon was dissolved using a mixed acid containing hydrofluoric acid, a part of the rare earth element was not dissolved, and the value detected by ICP-MS was found to be lower than the true value. The present inventors have solved the above problems and completed the present invention described below.

[1] ケイ素を含む無機試料と硝酸と過塩素酸とを混合し、前記無機試料の一部を溶解した後、第一の溶液と第一の残渣とに分離する第一工程と、前記第一の残渣とアルカリとを共に加熱した後、冷却して、前記第一の残渣と前記アルカリとの混合物である第二の残渣を得る第二工程と、前記第二の残渣と水とを混合してなる混合液を、第三の溶液と第三の残渣とに分離する第三工程と、前記第三の残渣を酸に溶解して第四の溶液を得る第四工程と、前記第一の溶液と前記第四の溶液に含まれる元素を分析する第五工程と、を含む、無機試料の元素分析方法。
[2] 前記無機試料がコンクリート、骨材、及びセメントから選ばれる1種以上である、[1]に記載の無機試料の元素分析方法。
[1] A first step of mixing an inorganic sample containing silicon, nitric acid, and perchloric acid, dissolving a part of the inorganic sample, and then separating it into a first solution and a first residue; The first step and the alkali are heated together and then cooled to obtain a second residue which is a mixture of the first residue and the alkali, and the second residue and water are mixed. A third step of separating the mixed solution into a third solution and a third residue, a fourth step of dissolving the third residue in an acid to obtain a fourth solution, and the first step And a fifth step of analyzing an element contained in the fourth solution. An elemental analysis method of an inorganic sample.
[2] The elemental analysis method of an inorganic sample according to [1], wherein the inorganic sample is one or more selected from concrete, aggregate, and cement.

本発明の元素分析方法によれば、ケイ素を含む無機試料中の希土類元素を含む種々の微量元素の含有量を高い精度で分析することができる。   According to the elemental analysis method of the present invention, the contents of various trace elements including rare earth elements in an inorganic sample containing silicon can be analyzed with high accuracy.

本発明にかかる元素分析方法の一例を示すフローチャートである。It is a flowchart which shows an example of the elemental analysis method concerning this invention. 元素含有量が既知の標準岩石を試料として分析を行った結果の一例である。It is an example of the result of having analyzed using standard rock with known element content as a sample.

本発明の無機試料の元素分析方法の第一実施形態は、ケイ素を含む無機試料と硝酸と過塩素酸とを混合し、前記無機試料の一部を溶解した後、第一の溶液と第一の残渣とに分離する第一工程と、前記第一の残渣とアルカリとを共に加熱した後、冷却して、前記第一の残渣と前記アルカリとの混合物である第二の残渣を得る第二工程と、前記第二の残渣と水とを混合してなる混合液を、第三の溶液と第三の残渣とに分離する第三工程と、前記第三の残渣を酸に溶解して第四の溶液を得る第四工程と、前記第一の溶液と前記第四の溶液に含まれる元素を分析する第五工程と、を含む、無機試料の元素分析方法である。
以下に各工程の詳細を説明するが、これら以外の工程や処理を含んでいてもよい。
In the first embodiment of the elemental analysis method of an inorganic sample of the present invention, an inorganic sample containing silicon, nitric acid and perchloric acid are mixed, and after dissolving a part of the inorganic sample, the first solution and the first A first step of separating the first residue and the alkali, and heating the first residue and the alkali together, followed by cooling to obtain a second residue that is a mixture of the first residue and the alkali A step, a third step of separating the mixture obtained by mixing the second residue and water into a third solution and a third residue, and dissolving the third residue in an acid An elemental analysis method for an inorganic sample, comprising: a fourth step for obtaining a fourth solution; and a fifth step for analyzing an element contained in the first solution and the fourth solution.
Details of each step will be described below, but steps and processes other than these steps may be included.

<第一工程>
ケイ素を含む無機試料(以下、単に無機試料と記すことがある。)と硝酸と過塩素酸とを混合し、前記無機試料の一部を溶解した後、液体成分(第一の溶液)と固形成分(第一の残渣)とに分離する。
後段の処理を円滑に進めるために、無機試料は予め粉砕することが好ましい。
ケイ素を含む無機試料としては、例えば、コンクリート、コンクリート用の骨材、セメント、岩石、砂等が挙げられる。
<First step>
An inorganic sample containing silicon (hereinafter sometimes referred to simply as “inorganic sample”), nitric acid and perchloric acid are mixed to dissolve a part of the inorganic sample, and then the liquid component (first solution) and solid are mixed. Separated into components (first residue).
The inorganic sample is preferably pulverized in advance in order to facilitate subsequent processing.
Examples of the inorganic sample containing silicon include concrete, aggregate for concrete, cement, rock, sand and the like.

無機試料と硝酸と過塩素酸とを混合する順序は特に限定されず、無機試料に対して硝酸と過塩素酸とを順に添加してもよいし、硝酸と過塩素酸とを予め混合した混酸を無機試料に添加してもよい。無機試料に含まれる希土類元素の可溶化を容易にする観点から、混酸を無機試料に添加することが好ましい。   The order of mixing the inorganic sample, nitric acid and perchloric acid is not particularly limited, and nitric acid and perchloric acid may be added to the inorganic sample in order, or a mixed acid in which nitric acid and perchloric acid are mixed in advance. May be added to the inorganic sample. From the viewpoint of facilitating solubilization of the rare earth elements contained in the inorganic sample, it is preferable to add a mixed acid to the inorganic sample.

混合後の硝酸と過塩素酸の混合比として、例えば、硝酸:過塩素酸の質量比は、1000:1〜1:1が好ましく、200:1〜20:1がより好ましく、150:1〜50:1がさらに好ましい。上記範囲の混合比であると、無機試料に含まれる希土類元素をより容易に可溶化することができる。硝酸及び過塩素酸はそれぞれ水溶液として混合される。   As a mixing ratio of nitric acid and perchloric acid after mixing, for example, the mass ratio of nitric acid: perchloric acid is preferably 1000: 1 to 1: 1, more preferably 200: 1 to 20: 1, and 150: 1 to 50: 1 is more preferred. When the mixing ratio is in the above range, the rare earth element contained in the inorganic sample can be solubilized more easily. Nitric acid and perchloric acid are each mixed as an aqueous solution.

混合後の硝酸濃度は、液体成分の総質量に対して、例えば、30〜60質量%が好ましく、50〜60質量%がより好ましく、55〜60質量%がさらに好ましい。
上記範囲の混合比であると、無機試料に含まれる希土類元素をより容易に可溶化することができる。
The nitric acid concentration after mixing is, for example, preferably 30 to 60% by mass, more preferably 50 to 60% by mass, and still more preferably 55 to 60% by mass with respect to the total mass of the liquid component.
When the mixing ratio is in the above range, the rare earth element contained in the inorganic sample can be solubilized more easily.

混合後の過塩素酸濃度は、液体成分の総質量に対して、例えば、0.06〜30質量%が好ましく、0.3〜3質量%がより好ましく、0.4〜1質量%がさらに好ましい。
上記範囲の混合比であると、無機試料に含まれる希土類元素をより容易に可溶化することができる。
The perchloric acid concentration after mixing is preferably, for example, 0.06 to 30% by mass, more preferably 0.3 to 3% by mass, and further 0.4 to 1% by mass with respect to the total mass of the liquid component. preferable.
When the mixing ratio is in the above range, the rare earth element contained in the inorganic sample can be solubilized more easily.

無機試料と硝酸と過塩素酸とを混合する際の混合比として、例えば、固形成分:液体成分の質量比は、1:1〜1:100が好ましく、1:5〜1:50がより好ましく、1:10〜1:40がさらに好ましい。
上記の混合割合であると、無機試料を充分に分解することができる。
As a mixing ratio when mixing the inorganic sample, nitric acid and perchloric acid, for example, the mass ratio of solid component: liquid component is preferably 1: 1 to 1: 100, more preferably 1: 5 to 1:50. 1:10 to 1:40 is more preferable.
An inorganic sample can fully be decomposed | disassembled as it is said mixing ratio.

無機試料と硝酸と過塩素酸とを混合した混合物を、例えば、耐熱性及び耐圧性の容器中で加熱することにより、無機試料の分解を速めることが好ましい。加熱温度としては、例えば、120〜180℃が好ましく、140〜180℃がより好ましく、160〜180℃がさらに好ましい。上記の好適な加熱温度における加熱時間としては、例えば、0.5〜10時間が好ましく、1〜5時間がより好ましく、1〜2時間がさらに好ましい。
上記の温度範囲及び加熱時間であると、無機試料の分解効率を速めつつ、希土類元素を容易に可溶化することができる。なお、希土類元素を液体成分により容易に可溶化する観点から、上記加熱の際に液体成分が蒸発することを抑制することが好ましい。
It is preferable to accelerate the decomposition of the inorganic sample by heating a mixture of the inorganic sample, nitric acid and perchloric acid in, for example, a heat-resistant and pressure-resistant container. As heating temperature, 120-180 degreeC is preferable, for example, 140-180 degreeC is more preferable, and 160-180 degreeC is further more preferable. As heating time in said suitable heating temperature, 0.5 to 10 hours are preferable, for example, 1 to 5 hours are more preferable, and 1-2 hours are further more preferable.
Within the above temperature range and heating time, the rare earth element can be easily solubilized while increasing the decomposition efficiency of the inorganic sample. From the viewpoint of easily solubilizing the rare earth element with the liquid component, it is preferable to suppress evaporation of the liquid component during the heating.

無機試料が分解したことを目視で確認した後、容器中に溶け残った残渣(第一の残渣)と液体成分(第一の溶液)とを分離する。分離方法としては、例えば、遠心分離、濾過処理等が挙げられる。第一の残渣は乾燥した後で第二工程に供することが好ましい。   After visually confirming that the inorganic sample has decomposed, the residue (first residue) remaining in the container and the liquid component (first solution) are separated. Examples of the separation method include centrifugation, filtration treatment, and the like. The first residue is preferably subjected to the second step after drying.

後段の第四工程において、第一の溶液に含まれる元素をICP−MS等の公知方法により分析する。希土類元素のうち、例えばEuは、元の無機試料に含まれる全含有量のうち、1〜70質量%が第一の溶液に可溶化される。   In the 4th process of a back | latter stage, the element contained in a 1st solution is analyzed by well-known methods, such as ICP-MS. Among rare earth elements, for example, Eu is solubilized in the first solution by 1 to 70% by mass of the total content contained in the original inorganic sample.

<第二工程>
第一の残渣とアルカリとを共に加熱した後、冷却して、前記第一の残渣と前記アルカリとの混合物である第二の残渣を得る。
<Second step>
The first residue and the alkali are heated together and then cooled to obtain a second residue that is a mixture of the first residue and the alkali.

第一の残渣とアルカリを同じ容器に入れて加熱する。アルカリは固体でもよいし、アルカリを溶解した水溶液であってもよい。水溶液である場合、加熱の際に水分を蒸発させることが好ましい。加熱により固形のアルカリを溶融させて、第一の残渣と溶融したアルカリを混合することが好ましい。溶融したアルカリは自然に第一の残渣と混合する。
第一の残渣とともに加熱するアルカリは、Li、Na、K等の第一族元素(アルカリ金属)及びMg、Ca等の第二族元素(アルカリ土類金属)から選ばれる1種以上の水酸化物である。ここで選択するアルカリの元素は、元の無機試料に対して添加することになる点に留意する。
酸に不溶のシリカ分やアルミナ分をアルカリ溶融により溶解するため、固体状の水酸化ナトリウム又は水酸化カリウムであることが好ましい。
アルカリの添加量は、元の無機試料の質量の2〜5倍が好ましく、3〜5倍がより好ましく、4〜5倍がさらに好ましい。
上記の濃度範囲であると、第一の残渣を充分に分解することができる。
Heat the first residue and alkali in the same container. The alkali may be a solid or an aqueous solution in which an alkali is dissolved. In the case of an aqueous solution, it is preferable to evaporate water during heating. It is preferable to melt the solid alkali by heating and to mix the first residue and the molten alkali. The molten alkali naturally mixes with the first residue.
The alkali to be heated together with the first residue is one or more kinds of hydroxides selected from a group 1 element (alkali metal) such as Li, Na, and K and a group 2 element (alkaline earth metal) such as Mg and Ca. It is a thing. Note that the alkali element selected here is added to the original inorganic sample.
In order to dissolve the silica and alumina components insoluble in the acid by alkali melting, solid sodium hydroxide or potassium hydroxide is preferable.
The amount of alkali added is preferably 2 to 5 times the mass of the original inorganic sample, more preferably 3 to 5 times, and even more preferably 4 to 5 times.
When the concentration is within the above range, the first residue can be sufficiently decomposed.

第一の残渣とアルカリとを混合した混合物をるつぼに入れ、例えば、電気炉の中で加熱することにより、第一の残渣の分解を速めることが好ましい。加熱温度としては、アルカリを溶融させる観点から、アルカリの融点よりも高いことが好ましい。例えば、400〜600℃が好ましく、450〜550℃がより好ましく、450〜500℃がさらに好ましい。上記の好適な加熱温度における加熱時間としては、例えば、0.5〜10時間が好ましく、1〜5時間がより好ましく、1〜2時間がさらに好ましい。
上記の温度範囲及び加熱時間であると、第一の残渣の分解効率を速めつつ、シリカやアルミナ分を可溶化することができる。
アルカリの溶融後、自然に冷却することにより、第二の残渣(第一の残渣とアルカリとの反応物)が得られる。
It is preferable to expedite the decomposition of the first residue by putting the mixture of the first residue and the alkali in a crucible and heating the mixture in an electric furnace, for example. The heating temperature is preferably higher than the melting point of the alkali from the viewpoint of melting the alkali. For example, 400-600 degreeC is preferable, 450-550 degreeC is more preferable, and 450-500 degreeC is further more preferable. As heating time in said suitable heating temperature, 0.5 to 10 hours are preferable, for example, 1 to 5 hours are more preferable, and 1-2 hours are further more preferable.
In the above temperature range and heating time, silica and alumina can be solubilized while increasing the decomposition efficiency of the first residue.
After melting the alkali, the second residue (reaction product of the first residue and the alkali) is obtained by cooling naturally.

<第三工程>
第二の残渣と水とを混合してなる混合液を、第三の溶液と第三の残渣とに分離する。
第二工程で用いた容器の内壁に第二の残渣がこびりついている場合、この容器ごと水に沈めて加熱することにより、容器内の第二の残渣を内壁から遊離させ、懸濁し、可溶成分を水に溶解させる。加熱温度は水が沸騰する100℃近辺が好ましい。加熱時間は、2〜8時間が好ましく、4〜8時間がより好ましく、6〜8時間がさらに好ましい。第二の残渣を懸濁する水の質量は、第二工程で加えたアルカリの質量に対して、アルカリ:水=1:10〜1:40が好ましく、1:20〜1:40がより好ましく、1:30〜1:40がさらに好ましい。
上記の混合割合であると、アルカリと化学反応したシリカやアルミナ分を十分に溶解し、第二の残渣に含まれる希土類元素を充分に懸濁させ、シリカやアルミナ分と希土類元素とを充分に分離することができる。
30分〜6時間程度で充分に懸濁した後、懸濁液中に溶け残った残渣(第三の残渣)と液体成分(第三の溶液)とを分離する。分離方法としては、例えば、遠心分離、濾過処理等が挙げられる。
<Third step>
A mixed solution obtained by mixing the second residue and water is separated into a third solution and a third residue.
When the second residue is stuck to the inner wall of the container used in the second step, the whole second container is released from the inner wall by immersing it in water and heated, suspended, and soluble. Dissolve the ingredients in water. The heating temperature is preferably around 100 ° C. where water boils. The heating time is preferably 2 to 8 hours, more preferably 4 to 8 hours, and even more preferably 6 to 8 hours. The mass of water in which the second residue is suspended is preferably alkali: water = 1: 10 to 1:40, more preferably 1:20 to 1:40, relative to the mass of alkali added in the second step. 1:30 to 1:40 is more preferable.
When the mixing ratio is as described above, the silica or alumina component chemically reacted with the alkali is sufficiently dissolved, the rare earth element contained in the second residue is sufficiently suspended, and the silica or alumina component and the rare earth element are sufficiently suspended. Can be separated.
After sufficiently suspending in about 30 minutes to 6 hours, the residue (third residue) remaining in the suspension and the liquid component (third solution) are separated. Examples of the separation method include centrifugation, filtration treatment, and the like.

<第四工程>
第三の残渣を酸に溶解して、第四の溶液を得る。
第三の残渣に希土類元素が含まれている場合、第三工程でシリカやアルカリ分が除かれているので、希土類元素は酸に容易に溶解する。
第三の残渣に加える酸としては、例えば、塩酸、硫酸、硝酸等の無機酸が挙げられる。酸として有機酸を用いても構わない。酸は通常水溶液として加えられる。酸を構成する元素は、元の無機試料に対して添加することになる点に留意する。
硝酸を用いる場合、その水溶液の濃度は特に限定されず、例えば20〜40質量%が挙げられる。
塩酸を用いる場合、その水溶液の濃度は特に限定されず、例えば20〜40質量%が挙げられる。
第三の残渣に加える酸の質量は、第三の残渣を溶解できる量であれば特に限定されず、例えば、元の無機試料の質量の100〜1000倍とすることができる。
上記範囲であると、第三の残渣を容易に溶解することができる。
<Fourth process>
The third residue is dissolved in acid to give a fourth solution.
When the third residue contains a rare earth element, since the silica and alkali are removed in the third step, the rare earth element is easily dissolved in the acid.
Examples of the acid added to the third residue include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid. An organic acid may be used as the acid. The acid is usually added as an aqueous solution. Note that the elements making up the acid will be added to the original inorganic sample.
When using nitric acid, the density | concentration of the aqueous solution is not specifically limited, For example, 20-40 mass% is mentioned.
When using hydrochloric acid, the density | concentration of the aqueous solution is not specifically limited, For example, 20-40 mass% is mentioned.
The mass of the acid added to the third residue is not particularly limited as long as it can dissolve the third residue, and can be, for example, 100 to 1000 times the mass of the original inorganic sample.
Within the above range, the third residue can be easily dissolved.

第三の残渣に酸を加えて充分に攪拌する。例えば、常温(15〜25℃)で2〜3時間攪拌すれば充分に可溶化することができる。このように第三の残渣を溶解することにより、第四の溶液が得られる。なお、この段階で不溶成分があるとすれば、酸にもアルカリにも溶解し難い成分であり、ごく限られた元素(例えばAu,Pt等)であると考えられる。   Add acid to the third residue and stir well. For example, if it stirs for 2-3 hours at normal temperature (15-25 degreeC), it can fully solubilize. The fourth solution is obtained by dissolving the third residue in this way. If there is an insoluble component at this stage, it is a component that is difficult to dissolve in both acid and alkali, and is considered to be a very limited element (for example, Au, Pt, etc.).

後段の第五工程において、第四の溶液に含まれる元素をICP−MS等の公知方法により分析する。希土類元素のうち、例えばEuは、元の無機試料に含まれる全含有量のうち、30〜99質量%が第四の溶液に可溶化される。
以上の工程で得た第一の溶液と第四の溶液に、元の無機試料に含まれる希土類元素の85〜100%を抽出することができる。
In the subsequent fifth step, the elements contained in the fourth solution are analyzed by a known method such as ICP-MS. Among the rare earth elements, for example, Eu is 30 to 99% by mass of the total content contained in the original inorganic sample solubilized in the fourth solution.
85 to 100% of the rare earth element contained in the original inorganic sample can be extracted into the first solution and the fourth solution obtained in the above steps.

<第五工程>
第一の溶液及び第四の溶液は、無機試料中に含まれていた希土類元素を含む各種の元素を溶解している。これらの溶液中の元素は、ICP−MSを用いた公知方法により分析することができる。また、ICP−MS測定以外の公知の元素分析方法を適用してもよい。
<Fifth process>
The first solution and the fourth solution dissolve various elements including rare earth elements contained in the inorganic sample. Elements in these solutions can be analyzed by a known method using ICP-MS. Moreover, you may apply well-known elemental analysis methods other than ICP-MS measurement.

<フローチャート>
本実施形態の分析方法のフローチャートを図1に示す。予め粉砕した無機試料を硝酸及び過塩素酸によって分解し、溶解した液体成分(第一の溶液)と不溶成分(第一の残渣)とに分離する。次いで、第一の残渣をアルカリと混合し、加熱することにより、アルカリを溶融させた後、冷却して第二の残渣を得る。続いて、第二の残渣を水に懸濁して、加熱した後、溶解した液体成分(第三の溶液)と不溶成分(第三の残渣)とに分離する。次いで、第三の残渣を酸に溶解して第四の溶液を得る。
以上で得られた第一の溶液及び第四の溶液の体積をそれぞれ蒸留水や硝酸等で調整し、ICP−MS等によって元素の濃度測定を行うことにより、希土類元素を含む種々の元素を定量的に分析することができる。
<Flowchart>
A flow chart of the analysis method of this embodiment is shown in FIG. A previously ground inorganic sample is decomposed with nitric acid and perchloric acid and separated into a dissolved liquid component (first solution) and an insoluble component (first residue). Next, the first residue is mixed with an alkali and heated to melt the alkali, and then cooled to obtain a second residue. Subsequently, the second residue is suspended in water and heated, and then separated into a dissolved liquid component (third solution) and an insoluble component (third residue). The third residue is then dissolved in acid to obtain a fourth solution.
Quantify various elements including rare earth elements by adjusting the volume of the first solution and the fourth solution obtained above with distilled water, nitric acid, etc., and measuring the concentration of elements by ICP-MS, etc. Analysis.

[実施例1]
種々の元素分析方法によって予め元素濃度が分かっている標準岩石JG−3を使用した。粉砕した標準岩石0.5gを、濃硝酸(濃度60質量%)と濃過塩素酸(濃度60質量%)の各水溶液を体積比100:1で混合した混合溶液20ml中に投入した。この標準岩石を含む混合溶液を加圧容器に入れて150℃、1時間の条件で加熱した。冷却後の混合溶液を遠心分離して、上澄み液(第一の溶液)と沈殿(第一の残渣)を得た。第一の溶液を所定の倍率で希釈して、ICP−MSを用いて第一の溶液に含まれる元素を分析した。
乾燥した第一の残渣と、水酸化ナトリウム2g(元の標準岩石0.5gに対して4倍)をるつぼに入れて、電気炉中で450℃、2時間の条件で加熱した。冷却後、るつぼ中で乾固した第二の残渣を、80mlの水に懸濁した後、遠心分離により回収した。得られた第三の残渣を塩酸に溶解後、所定の倍率で希釈して、ICP−MSを用いて第三の溶液に含まれる元素を分析した。
第一の溶液と第三の溶液に含まれる各元素Fe、Co、Cs、Euについて、分析した各元素の量V1と、上記標準岩石に含まれる各元素の公称値V2との比(V1/V2)を算出した。標準岩石の公称値(真の値)と分析値が近いほど、その比は1に近づく。その結果を図2に示す。
[Example 1]
Standard rock JG-3 whose element concentration was previously known by various elemental analysis methods was used. 0.5 g of the pulverized standard rock was put into 20 ml of a mixed solution obtained by mixing each aqueous solution of concentrated nitric acid (concentration 60 mass%) and concentrated perchloric acid (concentration 60 mass%) at a volume ratio of 100: 1. The mixed solution containing the standard rock was placed in a pressure vessel and heated at 150 ° C. for 1 hour. The mixed solution after cooling was centrifuged to obtain a supernatant (first solution) and a precipitate (first residue). The first solution was diluted at a predetermined magnification, and the elements contained in the first solution were analyzed using ICP-MS.
The dried first residue and 2 g of sodium hydroxide (4 times the original standard rock 0.5 g) were put in a crucible and heated in an electric furnace at 450 ° C. for 2 hours. After cooling, the second residue dried to dryness in the crucible was suspended in 80 ml of water and collected by centrifugation. The obtained 3rd residue was melt | dissolved in hydrochloric acid, it diluted by the predetermined magnification, and the element contained in the 3rd solution was analyzed using ICP-MS.
For each element Fe, Co, Cs, and Eu contained in the first solution and the third solution, the ratio (V1 / V1) between the amount V1 of each element analyzed and the nominal value V2 of each element contained in the standard rock. V2) was calculated. The closer the nominal value (true value) of the standard rock is to the analytical value, the closer the ratio is to 1. The result is shown in FIG.

[比較例1]
標準岩石JG−3の粉砕物0.5gを、濃硝酸(濃度60質量%)と濃フッ酸(濃度48質量%)と濃過塩素酸(濃度60質量%)の各水溶液を体積比3:3:1で混合した混合溶液10ml中に投入した。この混合溶液を加圧容器に入れて230℃、1時間の条件で加熱した。冷却後の混合溶液に、ホウ酸と硝酸を質量比1:10で混合した溶液20mlを添加して、80℃、1時間の条件で加温した。冷却して得られた混合溶液の上澄み液を所定の倍率で希釈して、ICP−MSを用いて上澄み液に含まれる元素を分析した。
実施例1と同様に比(V1/V2)を算出した結果を図2に示す。
[Comparative Example 1]
0.5 g of pulverized standard rock JG-3 was added to each aqueous solution of concentrated nitric acid (concentration 60 mass%), concentrated hydrofluoric acid (concentration 48 mass%) and concentrated perchloric acid (concentration 60 mass%) at a volume ratio of 3: It poured into 10 ml of mixed solutions mixed by 3: 1. This mixed solution was put in a pressure vessel and heated at 230 ° C. for 1 hour. 20 ml of a solution in which boric acid and nitric acid were mixed at a mass ratio of 1:10 was added to the mixed solution after cooling, and the mixture was heated at 80 ° C. for 1 hour. The supernatant of the mixed solution obtained by cooling was diluted at a predetermined magnification, and the elements contained in the supernatant were analyzed using ICP-MS.
The result of calculating the ratio (V1 / V2) in the same manner as in Example 1 is shown in FIG.

図2の結果から、Fe、Co、Csについて、実施例1と比較例1はともに良い精度で岩石中の含有量を分析することができた。一方、Euについては、実施例1は良い精度で分析することができたのに対して、比較例1では検出できなかった。
したがって、岩石やコンクリート等に含まれるFe、Co、Cs及びEuを分析する方法として本発明の方法が優れていることが明らかである。本発明によれば、上記の元素に限らず、公称値の±15%の精度で元素分析を行うことができる。
From the results of FIG. 2, for Fe, Co, and Cs, both Example 1 and Comparative Example 1 were able to analyze the content in the rock with good accuracy. On the other hand, with respect to Eu, Example 1 could be analyzed with good accuracy, whereas Comparative Example 1 could not detect it.
Therefore, it is clear that the method of the present invention is excellent as a method for analyzing Fe, Co, Cs and Eu contained in rocks, concrete and the like. According to the present invention, elemental analysis can be performed with an accuracy of ± 15% of the nominal value, not limited to the above elements.

以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、公知の構成の付加、省略、置換、およびその他の変更が可能である。   The configurations and combinations thereof in the embodiments described above are examples, and additions, omissions, substitutions, and other modifications of known configurations can be made without departing from the spirit of the present invention.

本発明は、放射化コンクリートを取り扱う分野に広く適用できる。   The present invention can be widely applied to the field of handling activated concrete.

Claims (2)

ケイ素を含む無機試料と硝酸と過塩素酸とを混合し、前記無機試料の一部を溶解した後、第一の溶液と第一の残渣とに分離する第一工程と、
前記第一の残渣とアルカリとを共に加熱した後、冷却して、前記第一の残渣と前記アルカリとの混合物である第二の残渣を得る第二工程と、
前記第二の残渣と水とを混合してなる混合液を、第三の溶液と第三の残渣とに分離する第三工程と、
前記第三の残渣を酸に溶解して第四の溶液を得る第四工程と、
前記第一の溶液と前記第四の溶液に含まれる元素を分析する第五工程と、
を含む、無機試料の元素分析方法。
A first step of mixing an inorganic sample containing silicon, nitric acid and perchloric acid, dissolving a part of the inorganic sample, and then separating into a first solution and a first residue;
A second step of heating the first residue and the alkali together and then cooling to obtain a second residue that is a mixture of the first residue and the alkali;
A third step of separating the mixture obtained by mixing the second residue and water into a third solution and a third residue;
A fourth step of dissolving the third residue in an acid to obtain a fourth solution;
A fifth step of analyzing elements contained in the first solution and the fourth solution;
A method for elemental analysis of inorganic samples, including
前記無機試料がコンクリート、骨材、及びセメントから選ばれる1種以上である、請求項1に記載の無機試料の元素分析方法。   The elemental analysis method of an inorganic sample according to claim 1, wherein the inorganic sample is one or more selected from concrete, aggregate, and cement.
JP2018084538A 2018-04-25 2018-04-25 Element analysis method of inorganic sample Pending JP2019191012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018084538A JP2019191012A (en) 2018-04-25 2018-04-25 Element analysis method of inorganic sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018084538A JP2019191012A (en) 2018-04-25 2018-04-25 Element analysis method of inorganic sample

Publications (1)

Publication Number Publication Date
JP2019191012A true JP2019191012A (en) 2019-10-31

Family

ID=68391367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018084538A Pending JP2019191012A (en) 2018-04-25 2018-04-25 Element analysis method of inorganic sample

Country Status (1)

Country Link
JP (1) JP2019191012A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114029052A (en) * 2021-12-03 2022-02-11 内蒙古鄂尔多斯电力冶金集团股份有限公司 Regeneration method of mercury-free noble metal catalyst for acetylene hydrochlorination
CN114199978A (en) * 2020-08-26 2022-03-18 中国石油化工股份有限公司 A method for determining the content of metal elements in different occurrence forms in sedimentary rocks
CN116593447A (en) * 2023-06-30 2023-08-15 宁德新能源科技有限公司 Evaluation method for coating effect of alumina on surface of lithium cobaltate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579983A (en) * 1991-09-20 1993-03-30 Sumitomo Electric Ind Ltd Method for analyzing rare earth elements in glass
US20150343411A1 (en) * 2014-05-30 2015-12-03 Battelle Memorial Institute System and process for dissolution of solids
JP2017116467A (en) * 2015-12-25 2017-06-29 清水建設株式会社 Element analysis method of aggregate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579983A (en) * 1991-09-20 1993-03-30 Sumitomo Electric Ind Ltd Method for analyzing rare earth elements in glass
US20150343411A1 (en) * 2014-05-30 2015-12-03 Battelle Memorial Institute System and process for dissolution of solids
JP2017116467A (en) * 2015-12-25 2017-06-29 清水建設株式会社 Element analysis method of aggregate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
木下哲一ほか: "放射化量評価高精度化のための基礎的検討(1)微量元素の分析法とばらつき", 日本原子力学会 2016年秋の大会 講演予稿集, JPN6021033798, 7 September 2016 (2016-09-07), JP, pages 1 - 02, ISSN: 0004582400 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199978A (en) * 2020-08-26 2022-03-18 中国石油化工股份有限公司 A method for determining the content of metal elements in different occurrence forms in sedimentary rocks
CN114029052A (en) * 2021-12-03 2022-02-11 内蒙古鄂尔多斯电力冶金集团股份有限公司 Regeneration method of mercury-free noble metal catalyst for acetylene hydrochlorination
CN114029052B (en) * 2021-12-03 2023-12-05 内蒙古鄂尔多斯电力冶金集团股份有限公司 Regeneration method of mercury-free noble metal catalyst for hydrochlorination of acetylene
CN116593447A (en) * 2023-06-30 2023-08-15 宁德新能源科技有限公司 Evaluation method for coating effect of alumina on surface of lithium cobaltate

Similar Documents

Publication Publication Date Title
Sanchez-Cabeza et al. 210 Pb and 210 Po analysis in sediments and soils by microwave acid digestion
O'Hara et al. Decomposition of diverse solid inorganic matrices with molten ammonium bifluoride salt for constituent elemental analysis
JP5098843B2 (en) Method for determining the solid solution content of the element of interest in a metal sample
JP2019191012A (en) Element analysis method of inorganic sample
CN106092720A (en) A kind of Soil K+adsorption measures the micro-wave digestion pre-treating method of total sodium potassium calcium content
JP2001324427A (en) High-precision analysis method for boron in steel
Reitz et al. Simple, wet oxidation procedure for biological materials
JP2008309767A (en) Method for decomposing solid sample and method for determining quantity of chrome using the same
CN108120711A (en) A kind of method that Holo-Al content in steel is measured using inductively coupled plasma atomic emission spectrometer
CN108051468A (en) X-ray fluorescence spectrum method for simultaneously analyzing fluorite, barite and celestite
Cai et al. Improved alkaline fusion method for B isotope and concentration measurements of silicate materials
Burak et al. Measurement of solubility of metallic lithium dissolved in molten LiCl–Li2O
JP6573117B2 (en) Aggregate elemental analysis method
CN102830074B (en) The quantitative analysis method of scandium in titanium slag chlorination discarded object
JP2008241455A (en) Quantitative determination of amphibole asbestos in vermiculite
JP6222526B2 (en) Method for quantifying AlN contained in Al or Al alloy
CN110530852B (en) Method for analyzing barite by mixed flux decomposition inductively coupled plasma spectrometer
JP2010197183A (en) Analysis method of trace element in alloy
KR101456380B1 (en) Method for pre-treatment of reduction yield analysis
JP2018009981A (en) Method for quantifying amount of silicon in metal material, method for dissolving metal material including silicon component, and metal material dissolution liquid
JP4200107B2 (en) Method for analyzing impurities in silicon
JP2012027006A (en) Method for analyzing concentration of heavy metal ion or rare-earth metal ion
JP2008082975A (en) Separation method for au contained in au containing cyano solution, and quantitative determination method for au contained in au containing cyano solution
Lötter et al. Alternative dissolution of zircon samples and simultaneous analysis of major and trace components
JP6160205B2 (en) Titanate analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301