JP2019136714A - Cutting system for deformed steel piece - Google Patents
Cutting system for deformed steel piece Download PDFInfo
- Publication number
- JP2019136714A JP2019136714A JP2018019355A JP2018019355A JP2019136714A JP 2019136714 A JP2019136714 A JP 2019136714A JP 2018019355 A JP2018019355 A JP 2018019355A JP 2018019355 A JP2018019355 A JP 2018019355A JP 2019136714 A JP2019136714 A JP 2019136714A
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- steel slab
- crater
- deformed
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 149
- 239000010959 steel Substances 0.000 title claims abstract description 149
- 239000000446 fuel Substances 0.000 claims description 40
- 238000001514 detection method Methods 0.000 claims description 13
- 238000010586 diagram Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
Landscapes
- Laser Beam Processing (AREA)
- Metal Rolling (AREA)
Abstract
【課題】異形鋼片を自動で切断することができる切断システムを提供する。【解決手段】異形鋼片S1〜5を切断する方向に移動可能であるとともに上下方向にも移動可能な切断火口4と、異形鋼片の厚さを連続的に計測可能な鋼片厚さ計測手段7と、切断火口4の動作を制御する制御手段とを備える。制御手段は、切断火口4を移動させながら異形鋼片を切断するときに鋼片厚さ計測手段7が連続的に計測する異形鋼片の厚さのデータに基づいて、異形鋼片の上面と切断火口4との間の距離が所定範囲内となるように切断火口4の上下方向の位置を連続的に制御するとともに、予め定めた異形鋼片の厚さと切断火口の移動速度との関係に従い当該切断火口の移動速度を連続的に制御する。【選択図】図1PROBLEM TO BE SOLVED: To provide a cutting system capable of automatically cutting a deformed steel piece. SOLUTION: A cutting crater 4 that can move in a direction to cut deformed steel pieces S1 to 5 and also can move in a vertical direction, and a steel piece thickness measurement capable of continuously measuring the thickness of the deformed steel pieces. A means 7 and a control means for controlling the operation of the cutting crater 4 are provided. The control means can be used with the upper surface of the deformed steel piece based on the thickness data of the deformed steel piece continuously measured by the steel piece thickness measuring means 7 when cutting the deformed steel piece while moving the cutting crater 4. The vertical position of the cutting crater 4 is continuously controlled so that the distance between the cutting crater 4 and the cutting crater 4 is within a predetermined range, and the relationship between the thickness of the deformed steel piece and the moving speed of the cutting crater is determined in advance. The moving speed of the cutting crater is continuously controlled. [Selection diagram] Fig. 1
Description
本発明は、切断火口を移動させながら異形鋼片を切断する異形鋼片の切断システムに関する。
なお、「異形鋼片」とは、切断する方向における厚さが一定でない中実の鋼片のことをいう。
The present invention relates to a cutting system for a deformed steel slab that cuts a deformed steel slab while moving a cutting crater.
In addition, the “deformed steel slab” refers to a solid steel slab whose thickness in the cutting direction is not constant.
例えば特許文献1に、切断トーチ(切断火口)を移動させながら被切断物を切断するガス切断装置が開示されている。また、この特許文献1には、切断火口の周囲にトーチ高さセンサリングを設けて常に切断火口と被切断材の距離を測り、切断トーチ上下装置と連動することによって切断火口と被切断材の距離を一定に保つようにすることも開示されている。 For example, Patent Literature 1 discloses a gas cutting device that cuts an object to be cut while moving a cutting torch (cutting crater). Further, in this Patent Document 1, a torch height sensor ring is provided around the cutting crater to always measure the distance between the cutting crater and the material to be cut, and in conjunction with the cutting torch lifting device, the cutting crater and the material to be cut are connected. It is also disclosed to keep the distance constant.
しかし、特許文献1のガス切断装置が切断する被切断物は鋼板等の平板状の鋼片(定形鋼片)であり、この特許文献1のガス切断装置では異形鋼片を自動で切断することは困難である。すなわち、異形鋼片は切断する方向における厚さが一定でないため切断する方向において切断に要するエネルギーが異なることから、単に切断火口と被切断材(異形鋼片)の距離を一定に保つだけでは当該異形鋼片を自動で切断することは困難である。 However, the object to be cut by the gas cutting device of Patent Document 1 is a flat steel piece (standard steel piece) such as a steel plate, and the gas cutting device of Patent Document 1 automatically cuts a deformed steel piece. It is difficult. In other words, since the thickness of the deformed steel slab is not constant in the cutting direction, the energy required for cutting differs in the cutting direction. Therefore, simply keeping the distance between the cutting crater and the material to be cut (deformed steel slab) constant It is difficult to automatically cut a deformed steel piece.
本発明が解決しようとする課題は、異形鋼片を自動で切断することができる切断システムを提供することにある。 The problem to be solved by the present invention is to provide a cutting system capable of automatically cutting a deformed steel slab.
本発明の一観点によれば、切断火口を移動させながら異形鋼片を切断する異形鋼片の切断システムが提供される。この切断システムにおいて切断火口は、異形鋼片を切断する方向に移動可能であるとともに上下方向にも移動可能である。さらにこの切断システムは、異形鋼片の厚さを連続的に計測可能な鋼片厚さ計測手段と、切断火口の動作を制御する制御手段とを備える。そしてこの制御手段は、切断火口を移動させながら異形鋼片を切断するときに鋼片厚さ計測手段が連続的に計測する異形鋼片の厚さのデータに基づいて、異形鋼片の上面と切断火口との間の距離が所定範囲内となるように切断火口の上下方向の位置を連続的に制御するとともに、予め定めた異形鋼片の厚さと切断火口の移動速度との関係に従い当該切断火口の移動速度を連続的に制御する。
このように本発明の切断システムは、異形鋼片の厚さのデータに基づいて、異形鋼片の上面と切断火口との間の距離に加えて切断火口の移動速度を連続的に制御することで、切断する方向において切断に要するエネルギーが異なる異形鋼片についても、これを自動で切断することができる。
According to one aspect of the present invention, there is provided a cutting system for a deformed steel slab that cuts a deformed steel slab while moving a cutting crater. In this cutting system, the cutting crater is movable in the direction of cutting the shaped steel slab and is also movable in the vertical direction. The cutting system further includes a billet thickness measuring means capable of continuously measuring the thickness of the deformed billet and a control means for controlling the operation of the cutting crater. And this control means is based on the thickness data of the deformed steel slab continuously measured by the steel slab thickness measuring means when cutting the deformed steel slab while moving the cutting crater. The vertical position of the cutting crater is continuously controlled so that the distance to the cutting crater is within a predetermined range, and the cutting is performed according to the predetermined thickness of the profile steel slab and the moving speed of the cutting crater. Continuously controls the movement speed of the crater.
Thus, the cutting system of the present invention continuously controls the moving speed of the cutting crater in addition to the distance between the upper surface of the shaped slab and the cutting crater based on the thickness data of the shaped slab. Thus, it is possible to automatically cut the deformed steel pieces having different energy required for cutting in the cutting direction.
本発明の切断システムにおいて制御手段は、切断火口を移動させながら異形鋼片を切断するときに鋼片厚さ計測手段が連続的に計測する異形鋼片の厚さのデータに基づいて、予め定めた異形鋼片の厚さと切断火口への燃料供給量との関係に従い当該切断火口への燃料供給量を連続的に制御することもできる。
これにより、切断時における切断火口への燃料供給量を最適化することができる。
In the cutting system of the present invention, the control means is predetermined based on the data of the thickness of the deformed billet continuously measured by the billet thickness measuring means when cutting the deformed billet while moving the cutting crater. The amount of fuel supplied to the cutting crater can also be controlled continuously according to the relationship between the thickness of the shaped steel slab and the amount of fuel supplied to the cutting crater.
Thereby, the fuel supply amount to the cutting crater at the time of cutting can be optimized.
本発明の切断システムは、異形鋼片の有無を検出する鋼片有無検出手段をさらに備えることができる。この場合制御手段は、鋼片有無検出手段が異形鋼片を検出したら当該異形鋼片の予熱を実施する予熱位置に切断火口を停止させ、さらに、予熱位置において鋼片厚さ計測手段が計測した異形鋼片の厚さのデータに基づいて、異形鋼片の上面と切断火口との間の距離が所定範囲内となるように切断火口の上下方向の位置を設定するとともに、予め定めた異形鋼片の厚さと予熱時間との関係に従い当該異形鋼片の予熱時間を設定することができる。
これにより、異形鋼片の切断前の予熱を、当該異形鋼片の厚さに応じて適切に実施することができる。
The cutting system of the present invention can further include a steel piece presence / absence detecting means for detecting the presence / absence of a deformed steel piece. In this case, the control means stops the cutting crater at the preheating position where preheating of the deformed steel piece is performed when the steel piece presence / absence detecting means detects the deformed steel piece, and the steel piece thickness measuring means measured at the preheating position. Based on the data of the thickness of the deformed steel slab, the vertical position of the cutting crater is set so that the distance between the upper surface of the deformed steel slab and the cutting crater is within a predetermined range, and the predetermined deformed steel The preheating time of the deformed steel piece can be set according to the relationship between the thickness of the piece and the preheating time.
Thereby, preheating before cutting of a deformed steel piece can be appropriately performed according to the thickness of the deformed steel piece.
また制御手段は、予熱位置において鋼片厚さ計測手段が計測した異形鋼片の厚さのデータに基づいて、予め定めた異形鋼片の厚さと切断火口への燃料供給量との関係に従い当該切断火口への燃料供給量を設定することもできる。
これにより、予熱時における切断火口への燃料供給量を最適化することができる。
In addition, the control means, based on the data of the thickness of the deformed billet measured by the billet thickness measuring means at the preheating position, according to the relationship between the predetermined thickness of the deformed billet and the amount of fuel supplied to the cutting crater. The amount of fuel supplied to the cutting crater can also be set.
Thereby, the amount of fuel supplied to the cutting crater during preheating can be optimized.
本発明の切断システムは、異形鋼片の予熱位置の予熱状態を検出する予熱検出手段をさらに備えることができる。この場合制御手段は、予熱検出手段が検出する予熱位置の予熱状態が所定の予熱状態に到達したら切断火口を移動させて当該異形鋼片の切断を開始することができる。
これにより、異形鋼片の予熱をより適切に実施することができる。
The cutting system of the present invention can further include preheating detection means for detecting a preheating state at a preheating position of the profile steel slab. In this case, the control means can start cutting of the deformed steel slab by moving the cutting crater when the preheating state of the preheating position detected by the preheating detection means reaches a predetermined preheating state.
Thereby, preheating of a deformed steel piece can be implemented more appropriately.
本発明の切断システムにおいて制御手段は、鋼片有無検出手段が異形鋼片を検出しなかったら、切断火口への燃料供給量を予め定めた最小量に設定することができる。
これにより、予熱又は切断を行なわないときの切断火口への燃料供給量を最小量とすることができ、燃料消費量を節減できる。
In the cutting system of the present invention, the control means can set the fuel supply amount to the cutting crater to a predetermined minimum amount when the steel piece presence / absence detecting means does not detect the deformed steel piece.
Thereby, the amount of fuel supplied to the cutting crater when preheating or cutting is not performed can be minimized, and fuel consumption can be reduced.
また制御手段は、鋼片有無検出手段が所定距離以上異形鋼片を検出しなかったら切断火口を停止させるとともに、当該切断火口への燃料の供給を停止するようにすることもできる。
これにより、被切断物である異形鋼片がなくなったときに、切断作業を自動で終了させることができる。
Further, the control means can stop the cutting crater and stop the supply of fuel to the cutting crater if the steel piece presence / absence detecting means does not detect a deformed steel slab for a predetermined distance or more.
Thereby, when the deformed steel piece which is a to-be-cut object runs out, cutting work can be ended automatically.
本発明によれば、異形鋼片を自動で切断することができる。 According to the present invention, a deformed steel piece can be automatically cut.
図1に本発明の一実施形態である切断システムを概念的に示している。
この切断システムは台車1に搭載されている。そしてこの台車1には、第1のアーム2と第2のアーム3が設置されており、第1のアーム2に切断火口4と予熱検出手段5が取り付けられ、第2のアーム3に鋼片有無検出手段6と鋼片厚さ計測手段7が取り付けられている。
この台車1はレールRに沿って移動可能であり、このレールRに沿った移動方向が異形鋼片S1〜5を切断する方向となる。また、切断火口4を取り付けている第1のアーム2は台車1に対して昇降可能に取り付けられている。すなわち、切断火口4は異形鋼片S1〜S5を切断する切断方向に移動可能であるとともに上下方向にも移動可能である。
なお、図1には表れていないが、台車1には切断火口4の動作を制御する制御手段も搭載されている。
FIG. 1 conceptually shows a cutting system according to an embodiment of the present invention.
This cutting system is mounted on the carriage 1. The carriage 1 is provided with a first arm 2 and a second arm 3, a cutting crater 4 and a preheating detection means 5 are attached to the first arm 2, and a steel slab is attached to the second arm 3. Presence / absence detecting means 6 and steel piece thickness measuring means 7 are attached.
The carriage 1 is movable along the rail R, and the moving direction along the rail R is a direction for cutting the deformed steel pieces S1 to S5. The first arm 2 to which the cutting crater 4 is attached is attached to the carriage 1 so that it can be raised and lowered. That is, the cutting crater 4 is movable in the cutting direction for cutting the deformed steel pieces S1 to S5 and is also movable in the vertical direction.
Although not shown in FIG. 1, the cart 1 is also equipped with a control means for controlling the operation of the cutting crater 4.
ここで、予熱検出手段5は異形鋼片の予熱位置の予熱状態を検出するものである。この予熱状態は、(a)予熱位置の温度、(b)予熱位置における予め定めた色(典型的には溶融した異形鋼片の色)の面積率、(c)これら(a)及び(b)の組合せなどによって検出することができる。そして、(a)の予熱状態を検出するには例えば赤外線温度計、放射温度計、サーモグラフィなどを用いることができ、(b)の予熱状態を検出するには例えはCCDカメラなどのカラー画像認識手段を用いることができる。
鋼片有無検出手段6は異形鋼片の有無を検出するもので、一般的なファイバーセンサを用いることができる。ただし、異形鋼片の有無を検出できるものであればファイバーセンサ以外のセンサを用いることもできる。
鋼片厚さ計測手段7は異形鋼片の厚さを連続的に計測するもので、例えばレーザーセンサ、超音波センサ等の高さ検出センサを用いることができる。すなわち、高さ検出センサで異形鋼片の上面の高さレベルを検出すれば、異形鋼片が置かれている、既知の床面レベル(FL)との差分を求めることにより、異形鋼片の厚さを連続的に計測することができる。無論、異形鋼片の厚さを連続的に計測可能なものであれば、高さ検出センサ以外のセンサを用いることもできる。
Here, the preheating detection means 5 detects the preheating state of the preheating position of the profile steel slab. This preheating state includes (a) the temperature at the preheating position, (b) the area ratio of a predetermined color (typically the color of the melted deformed billet) at the preheating position, (c) these (a) and (b ) And the like. For example, an infrared thermometer, a radiation thermometer, or a thermography can be used to detect the preheating state in (a), and color image recognition such as a CCD camera can be used to detect the preheating state in (b). Means can be used.
The steel piece presence / absence detecting means 6 detects the presence or absence of a deformed steel piece, and a general fiber sensor can be used. However, a sensor other than a fiber sensor can be used as long as it can detect the presence or absence of a deformed steel piece.
The steel piece thickness measuring means 7 continuously measures the thickness of the deformed steel piece, and for example, a height detection sensor such as a laser sensor or an ultrasonic sensor can be used. That is, if the height detection sensor detects the height level of the upper surface of the deformed billet, the difference between the deformed billet and the known floor surface level (FL) is obtained. Thickness can be measured continuously. Of course, any sensor other than the height detection sensor can be used as long as the thickness of the deformed steel slab can be continuously measured.
図2に図1の切断システムの具体的な実施形態(構成例)を示している。また、図3はその右側面図、図4はその右側面の部分拡大図、図5はその正面図である。なお、図3〜5では、図2の切断システムの構成をわかりやすく示すために、図2の切断システムの構成の一部を省略したり透視したりして示している。以下、これらの図面を参照しつつ、この切断システムの構成、特に切断火口4の移動速度を制御する機構(以下「移動制御機構」という。)と切断火口4の上下方向の位置を制御する機構(以下「上下位置制御機構」という。)について説明する。 FIG. 2 shows a specific embodiment (configuration example) of the cutting system of FIG. 3 is a right side view thereof, FIG. 4 is a partially enlarged view of the right side surface thereof, and FIG. 5 is a front view thereof. In FIGS. 3 to 5, in order to clearly show the configuration of the cutting system of FIG. 2, a part of the configuration of the cutting system of FIG. 2 is omitted or seen through. Hereinafter, with reference to these drawings, the configuration of this cutting system, in particular, a mechanism for controlling the moving speed of the cutting crater 4 (hereinafter referred to as “movement control mechanism”) and a mechanism for controlling the vertical position of the cutting crater 4 will be described. (Hereinafter referred to as “vertical position control mechanism”) will be described.
まず、移動制御機構について説明すると、切断火口4は台車1とともにレールRに沿って異形鋼片の切断方向に移動するから、この切断火口4の移動速度は台車1の移動速度を制御することで制御できる。図4に表れているように台車1は第1のサーボモータ8の駆動により移動する。具体的には第1のサーボモータ8の駆動軸8aにピニオンギヤ9を設け、レールR側にピニオンギヤ9と噛み合うラック10を設けている。これにより、第1のサーボモータ8の駆動軸8a(ピニオンギヤ9)の回転速度を制御することで、台車1の移動速度ひいては切断火口4の移動速度を制御することができる。
なお、図4中、符号11はレールR上を走行する車輪、符号12はガイドレール、符号13aはピニオンギヤ9とラック10の距離を一定に保つためのカムフォロア、符号13bは台車1の転倒を防止するためのカムフォロアである。
First, the movement control mechanism will be described. Since the cutting crater 4 moves together with the carriage 1 along the rail R in the cutting direction of the deformed steel pieces, the movement speed of the cutting crater 4 is controlled by controlling the movement speed of the carriage 1. Can be controlled. As shown in FIG. 4, the carriage 1 is moved by driving the first servo motor 8. Specifically, a pinion gear 9 is provided on the drive shaft 8a of the first servomotor 8, and a rack 10 that meshes with the pinion gear 9 is provided on the rail R side. Thus, by controlling the rotational speed of the drive shaft 8a (pinion gear 9) of the first servomotor 8, the moving speed of the carriage 1 and hence the moving speed of the cutting crater 4 can be controlled.
In FIG. 4, reference numeral 11 denotes a wheel traveling on the rail R, reference numeral 12 denotes a guide rail, reference numeral 13 a denotes a cam follower for keeping the distance between the pinion gear 9 and the rack 10, and reference numeral 13 b prevents the cart 1 from falling. It is a cam follower to do.
次に、上下位置制御機構について説明すると、切断火口4は台車1に設置された第1のアーム2に取り付けられているから、この切断火口4の上下方向に位置は第1のアーム2を台車1に対して昇降させることで制御できる。図2、図3及び図5に表れているように第1のアーム2はベースプレート14に支持されており、このベースプレート14がガイド15に沿って昇降することで昇降する。具体的には第2のサーボモータ16の駆動軸16aに第1のスプロケット17が取り付けられ、台車1に固定された固定プレート18に第2のスプロケット19が取り付けられ、第1のスプロケット17と第2のスプロケット19とにチェーン20が架けわたされている。そして、このチェーン20にベースプレート14がブラケット21を介して連結されている。これにより、第2のサーボモータ16の駆動軸16aを回転させるとチェーン20が回転し、このチェーン20の回転に連動してベースプレート14が昇降する。具体的には、チェーン20が図3において時計回りに回転するとベースプレート14は下降し、チェーン20が図3において反時計回りに回転するとベースプレート14は上昇する。すなわち、第2のサーボモータ16の駆動軸16aの回転方向及び回転量を制御することで、ベースプレート14の昇降を制御することができ、これにより、切断火口4の上下方向の位置を制御することができる。 Next, the vertical position control mechanism will be described. Since the cutting crater 4 is attached to the first arm 2 installed on the carriage 1, the vertical position of the cutting crater 4 is the position of the first arm 2 on the carriage. It can be controlled by raising and lowering 1. As shown in FIGS. 2, 3, and 5, the first arm 2 is supported by the base plate 14, and the base plate 14 moves up and down along the guide 15. Specifically, the first sprocket 17 is attached to the drive shaft 16 a of the second servomotor 16, and the second sprocket 19 is attached to the fixed plate 18 fixed to the carriage 1. A chain 20 is hung on the two sprockets 19. The base plate 14 is connected to the chain 20 via a bracket 21. Accordingly, when the drive shaft 16a of the second servomotor 16 is rotated, the chain 20 rotates, and the base plate 14 moves up and down in conjunction with the rotation of the chain 20. Specifically, when the chain 20 rotates clockwise in FIG. 3, the base plate 14 descends, and when the chain 20 rotates counterclockwise in FIG. 3, the base plate 14 rises. That is, by controlling the rotation direction and the rotation amount of the drive shaft 16a of the second servomotor 16, it is possible to control the elevation of the base plate 14, thereby controlling the vertical position of the cutting crater 4. Can do.
図6に切断火口4の構成例を概念的に示している。この切断火口4は、燃料供給ラインとして可燃ガス供給ラインを1本と酸素供給ラインを2本有し、各供給ラインにはそれぞれバルブV1〜3とフローコントローラF1〜3が設置されている。
これらバルブV1〜3の開閉動作やフローコントローラF1〜3による燃料供給量の設定・制御、さらには上述の移動制御機構及び上下位置制御機構における第1のサーボモータ8及び第2のサーボモータ16を含め、この実施形態の切断システムの動作は制御手段が制御する。以下、この制御手段の制御による、この実施形態の切断システムの動作を説明する。
FIG. 6 conceptually shows a configuration example of the cutting crater 4. The cutting crater 4 has one combustible gas supply line and two oxygen supply lines as fuel supply lines, and valves V1 to V3 and flow controllers F1 to F3 are installed in the supply lines, respectively.
The opening and closing operation of the valves V1 to V3, the setting and control of the fuel supply amount by the flow controllers F1 to F3, and further the first servo motor 8 and the second servo motor 16 in the movement control mechanism and the vertical position control mechanism described above. Including the operation of the cutting system of this embodiment is controlled by the control means. Hereinafter, the operation of the cutting system of this embodiment under the control of this control means will be described.
図7に、この実施形態の切断システムの動作フローを示している。
制御手段はこの切断システムの動作を開始するあたり切断火口4を点火する。具体的に切断火口4を点火するときは、バルブV1とバルブV2を開け点火ノズルにより点火する。
FIG. 7 shows an operation flow of the cutting system of this embodiment.
The control means ignites the cutting crater 4 when starting the operation of the cutting system. Specifically, when the cutting crater 4 is ignited, the valves V1 and V2 are opened and ignited by the ignition nozzle.
切断火口4を点火後、鋼片有無検出手段6が異形鋼片を検出すると制御手段は第1のサーボモータ8を制御することにより、この異形鋼片の予熱を実施する予熱位置に切断火口4を停止させる。この予熱位置とは例えば図1に○印で示しているように異形鋼片の先端隅部である。その後、制御手段はこの予熱位置において鋼片厚さ計測手段が計測した異形鋼片の厚さ(異形鋼片の上面高さレベル)のデータに基づいて、異形鋼片の上面と切断火口4との間の距離が所定範囲内(例えば50±10mm)となるように切断火口4の上下方向の位置(高さ)を設定するとともに、予め定めた異形鋼片の厚さと予熱時間との関係に従いこの異形鋼片の予熱時間を設定し、さらに予め定めた異形鋼片の厚さと切断火口4への燃料供給量との関係に従い切断火口4への燃料供給量を設定する。
なお、切断火口4の上下方向の位置(高さ)の設定は上述の上下位置制御機構により実施する。
また、予熱時間の設定は異形鋼片の厚さと予熱時間との関係を予め定めておき、これを制御手段に記憶させておく。この異形鋼片の厚さと予熱時間との関係とは、概念的には異形鋼片の厚さが厚くなるほど予熱時間を長くするという関係である。また、この予熱時間とは、切断火口4を予熱位置に停止させておく停止時間のことである。
同様に、切断火口4への燃料供給量の設定は異形鋼片の厚さと切断火口への燃料供給量との関係を予め定めておき、これを制御手段に記憶させておく。この異形鋼片の厚さと切断火口への燃料供給量との関係とは、概念的には異形鋼片の厚さが厚くなるほど切断火口への燃料供給量を多くするという関係である。
After the cutting crater 4 is ignited, when the steel piece presence / absence detecting means 6 detects a deformed steel piece, the control means controls the first servo motor 8 so that the cutting crater 4 is placed at a preheating position for preheating the deformed steel piece. Stop. This preheating position is, for example, the tip corner of the deformed steel slab as indicated by a circle in FIG. Thereafter, the control means, based on the data of the thickness of the deformed steel piece (the upper surface height level of the deformed steel piece) measured by the billet thickness measuring means at this preheating position, the upper surface of the deformed steel piece, the cutting crater 4 and The vertical position (height) of the cutting crater 4 is set so that the distance between the two is within a predetermined range (for example, 50 ± 10 mm), and in accordance with the predetermined thickness of the shaped steel slab and the preheating time A preheating time for the shaped steel slab is set, and a fuel supply amount to the cutting crater 4 is set according to a predetermined relationship between the thickness of the shaped steel slab and a fuel supply amount to the cutting crater 4.
The vertical position (height) of the cutting crater 4 is set by the vertical position control mechanism described above.
In setting the preheating time, the relationship between the thickness of the profile steel slab and the preheating time is determined in advance, and this is stored in the control means. The relationship between the thickness of the deformed steel slab and the preheating time is conceptually a relationship in which the preheating time is increased as the thickness of the deformed steel slab increases. Moreover, this preheating time is the stop time which stops the cutting crater 4 in a preheating position.
Similarly, in setting the fuel supply amount to the cutting crater 4, the relationship between the thickness of the profile steel slab and the fuel supply amount to the cutting crater is determined in advance, and this is stored in the control means. The relationship between the thickness of the shaped steel slab and the amount of fuel supplied to the cutting crater is conceptually a relationship in which the amount of fuel supplied to the cutting crater increases as the thickness of the shaped steel slab increases.
この予熱時の切断火口4の状態は、図6においてバルブV1とバルブV2が開、バルブV3が閉の状態(以下「予熱状態」という。)である。制御手段は、この予熱状態で切断火口4を予熱位置に予熱時間停止させて異形鋼片の予熱を実施する。このとき制御手段は上述のとおり切断火口4への燃料供給量を設定するが、具体的にはフローコントローラF1とF2を介して切断火口4への燃料供給量を設定する。
この予熱の間、予熱検出手段5は予熱位置の予熱状態を検出する。そして制御手段は、所定の予熱時間が経過した後に予熱検出手段が検出した予熱位置の予熱状態が所定の予熱状態に到達していたら切断火口4を移動させてこの異形鋼片の切断を開始する。一方、この予熱位置の温度が所定の予熱状態に到達していなかったら所定の予熱状態に到達するまで予熱時間を延長する。
The state of the cutting crater 4 at the time of preheating is a state in which the valve V1 and the valve V2 are open and the valve V3 is closed in FIG. 6 (hereinafter referred to as “preheating state”). In this preheating state, the control means stops the cutting crater 4 at the preheating position and preheats the shaped steel slab by preheating time. At this time, the control means sets the fuel supply amount to the cutting crater 4 as described above. Specifically, the control means sets the fuel supply amount to the cutting crater 4 via the flow controllers F1 and F2.
During this preheating, the preheating detecting means 5 detects the preheating state at the preheating position. The control means moves the cutting crater 4 to start cutting the deformed steel slab when the preheating state at the preheating position detected by the preheating detection means has reached the predetermined preheating state after a predetermined preheating time has elapsed. . On the other hand, if the temperature at the preheating position has not reached the predetermined preheating state, the preheating time is extended until the predetermined heating state is reached.
予熱終了後、制御手段は切断火口4を異形鋼片の切断方向に移動させてこの異形鋼片の切断を実施する。この切断時の切断火口4の状態は、図6において全てのバルブV1〜3が開の状態(以下「切断状態」という。)である。すなわち制御手段は、この切断状態で切断火口4を異形鋼片の切断方向に移動させてこの異形鋼片の切断を実施する。 After the preheating is completed, the control means moves the cutting crater 4 in the cutting direction of the deformed steel slab to cut the deformed steel slab. The state of the cutting crater 4 at the time of cutting is a state where all the valves V1 to V3 are open in FIG. 6 (hereinafter referred to as “cutting state”). That is, the control means moves the cutting crater 4 in the cutting direction of the deformed steel slab in this cutting state to cut the deformed steel slab.
この切断の間、制御手段は、鋼片厚さ計測手段7が連続的に(リアルタイムで常に)計測する異形鋼片の厚さ(異形鋼片の上面高さレベル)のデータに基づいて、異形鋼片の上面と切断火口との間の距離が所定範囲内(例えば50±10mm)となるように切断火口の上下方向の位置(高さ)を連続的に(リアルタイムで常に)制御するとともに、予め定めた異形鋼片の厚さと切断火口の移動速度との関係に従いこの切断火口の移動速度を連続的に(リアルタイムで常に)制御し、さらに予め定めた異形鋼片の厚さと切断火口への燃料供給量との関係に従いこの切断火口への燃料供給量を連続的に(リアルタイムで常に)制御する。
なお、切断火口4の上下方向の位置(高さ)の設定は上述の上下位置制御機構により実施する。
また、切断火口4の移動速度の制御は上述の移動制御機構により実施する。さらに、この移動速度の制御は異形鋼片の厚さと切断火口の移動速度との関係を予め定めておき、これを制御手段に記憶させておく。異形鋼片の厚さと切断火口の移動速度との関係とは、概念的には異形鋼片の厚さが厚くなるほど切断火口の移動速度を遅くするという関係である。
同様に、切断火口4への燃料供給量の制御は異形鋼片の厚さと切断火口への燃料供給量との関係を予め定めておき、これを制御手段に記憶させておく。この異形鋼片の厚さと切断火口への燃料供給量との関係とは、概念的には異形鋼片の厚さが厚くなるほど切断火口への燃料供給量を多くするという関係である。具体的には制御手段はフローコントローラF1〜3を介して切断火口4への燃料供給量を制御する。
During this cutting, the control means determines the profile based on the data of the thickness of the deformed billet (upper surface height level of the deformed billet) continuously (always in real time) measured by the billet thickness measuring means 7. While controlling the vertical position (height) of the cutting crater continuously (always in real time) so that the distance between the upper surface of the steel piece and the cutting crater is within a predetermined range (for example, 50 ± 10 mm), The moving speed of the cutting crater is controlled continuously (always in real time) according to the relationship between the thickness of the deformed steel slab and the moving speed of the cutting crater. The amount of fuel supplied to the cutting crater is continuously controlled (always in real time) according to the relationship with the amount of fuel supplied.
The vertical position (height) of the cutting crater 4 is set by the vertical position control mechanism described above.
The movement speed of the cutting crater 4 is controlled by the above-described movement control mechanism. Further, the control of the moving speed is such that the relationship between the thickness of the profile steel slab and the moving speed of the cutting crater is determined in advance, and this is stored in the control means. The relationship between the thickness of the deformed steel slab and the moving speed of the cutting crater is conceptually a relationship in which the moving speed of the cutting crater is decreased as the thickness of the deformed steel slab increases.
Similarly, in the control of the fuel supply amount to the cutting crater 4, the relationship between the thickness of the deformed steel slab and the fuel supply amount to the cutting crater is determined in advance, and this is stored in the control means. The relationship between the thickness of the shaped steel slab and the amount of fuel supplied to the cutting crater is conceptually a relationship in which the amount of fuel supplied to the cutting crater increases as the thickness of the shaped steel slab increases. Specifically, the control means controls the amount of fuel supplied to the cutting crater 4 via the flow controllers F1 to F3.
この異形鋼片の切断が終了したら鋼片有無検出手段6が異形鋼片を検出しなくなる。鋼片有無検出手段6が異形鋼片を検出しなくなると制御手段は、図6においてバルブV3を閉にして切断火口4を切断状態から予熱状態へ移行させるとともに切断火口4への燃料供給量を予め定めた最小量に設定する。切断火口4はこの予熱状態のままで移動を続けるが、鋼片有無検出手段6が所定距離以上(例えば50mm以上)異形鋼片を検出しなかったら、制御手段は切断火口4の移動を停止させるとともに、図6において全てのバルブV1〜3を閉にし切断火口4への燃料の供給を停止して消火する。一方、鋼片有無検出手段6が所定距離未満(例えば50mm未満)で新たに異形鋼片を検出したら、制御手段はこの異形鋼片について上述の要領で予熱及び切断を実施する。
なお、図7では鋼片有無検出手段6が異形鋼片を検出しない距離を「ブランク距離」と表記している。このブランク距離は、鋼片有無検出手段6からの鋼片有無検出データと、上述の移動速度制御機構における第2のサーボモータ16のエンコーダ値とから求めることができる。
When the cutting of the deformed steel slab is completed, the steel slab presence / absence detecting means 6 does not detect the deformed steel slab. When the slab presence / absence detecting means 6 no longer detects the deformed steel slab, the control means closes the valve V3 in FIG. 6 and shifts the cutting crater 4 from the cut state to the preheated state, and changes the fuel supply amount to the cutting crater 4 Set to a predetermined minimum amount. Although the cutting crater 4 continues to move in this preheated state, the control means stops the movement of the cutting crater 4 if the slab presence / absence detecting means 6 does not detect a deformed steel slab for a predetermined distance or more (for example, 50 mm or more). At the same time, all the valves V1 to V3 are closed in FIG. 6 to stop the supply of fuel to the cutting crater 4 and extinguish the fire. On the other hand, when the steel piece presence / absence detecting means 6 newly detects a deformed steel piece within a predetermined distance (for example, less than 50 mm), the control means preheats and cuts the deformed steel piece as described above.
In FIG. 7, the distance at which the steel piece presence / absence detecting means 6 does not detect the deformed steel piece is indicated as “blank distance”. This blank distance can be obtained from the steel piece presence / absence detection data from the steel piece presence / absence detection means 6 and the encoder value of the second servo motor 16 in the above-described moving speed control mechanism.
以上、この実施形態では、鋼片有無検出手段6を鋼片厚さ計測手段7と別個に設けたが、鋼片有無検出手段6の機能は鋼片厚さ計測手段7で代替可能である。すなわち、鋼片厚さ計測手段7としての高さセンサからのデータに基づき、異形鋼片の有無も検出可能である。このように鋼片有無検出手段6及び鋼片厚さ計測手段7は、例えば高さセンサとして統合することができる。ただし、この高さセンサの機能やデータ処理を簡略化する点からは、鋼片有無検出手段6と鋼片厚さ計測手段7とは、それぞれの機能に特化したものとして別個に設けることが好ましい。
また、この実施形態では切断火口は1個としたが、切断火口は複数個あってもよい。
さらに、この実施形態では切断火口はガス(可燃ガスと酸素)を燃料とするガス切断火口としたが、プラズマ(プラズマ源)を燃料とするプラズマ切断火口、レーザ(レーザ源)を燃料とするレーザ切断火口など、他の燃料を使用する切断火口とすることもできる。すなわち、本発明の切断システムはガス切断システムに限らず、プラズマ切断システム、レーザ切断システムなど、他の切断システムとしても適用できる。
As described above, in this embodiment, the steel piece presence / absence detecting means 6 is provided separately from the steel piece thickness measuring means 7, but the function of the steel piece presence / absence detecting means 6 can be replaced by the steel piece thickness measuring means 7. That is, based on data from a height sensor as the billet thickness measuring means 7, the presence or absence of a deformed billet can be detected. Thus, the steel piece presence / absence detecting means 6 and the steel piece thickness measuring means 7 can be integrated as, for example, a height sensor. However, in terms of simplifying the function and data processing of the height sensor, the steel piece presence / absence detecting means 6 and the steel piece thickness measuring means 7 may be provided separately as specialized for each function. preferable.
In this embodiment, the number of cutting craters is one, but a plurality of cutting craters may be provided.
Further, in this embodiment, the cutting crater is a gas cutting crater that uses gas (combustible gas and oxygen) as fuel, but a plasma cutting crater that uses plasma (plasma source) as fuel, and a laser that uses laser (laser source) as fuel. It can also be a cutting crater that uses other fuel, such as a cutting crater. That is, the cutting system of the present invention is not limited to a gas cutting system, but can be applied to other cutting systems such as a plasma cutting system and a laser cutting system.
1 台車
2 第1のアーム
3 第2のアーム
4 切断火口
5 予熱検出手段
6 鋼片有無検出手段
7 鋼片厚さ計測手段
8 第1のサーボモータ
8a 駆動軸
9 ピニオンギヤ
10 ラック
11 車輪
12 ガイドレール
13a,13b カムフォロア
14 ベースプレート
15 ガイド
16 第2のサーボモータ
16a 駆動軸
17 第1のスプロケット
18 固定プレート
19 第2のスプロケット
20 チェーン
21 ブラケット
S1〜5 異形鋼片
R レール
DESCRIPTION OF SYMBOLS 1 Carriage 2 1st arm 3 2nd arm 4 Cutting crater 5 Preheating detection means 6 Steel piece presence / absence detection means 7 Steel piece thickness measurement means 8 First servomotor 8a Drive shaft 9 Pinion gear 10 Rack 11 Wheel 12 Guide rail 13a, 13b Cam follower 14 Base plate 15 Guide 16 Second servo motor 16a Drive shaft 17 First sprocket 18 Fixed plate 19 Second sprocket 20 Chain 21 Bracket S1-5 Deformed steel piece R rail
Claims (7)
切断火口は、異形鋼片を切断する方向に移動可能であるとともに上下方向にも移動可能であり、
さらに、異形鋼片の厚さを連続的に計測可能な鋼片厚さ計測手段と、切断火口の動作を制御する制御手段とを備え、
前記制御手段は、切断火口を移動させながら異形鋼片を切断するときに前記鋼片厚さ計測手段が連続的に計測する異形鋼片の厚さのデータに基づいて、異形鋼片の上面と切断火口との間の距離が所定範囲内となるように切断火口の上下方向の位置を連続的に制御するとともに、予め定めた異形鋼片の厚さと切断火口の移動速度との関係に従い当該切断火口の移動速度を連続的に制御する、異形鋼片の切断システム。 A deformed billet cutting system for cutting a deformed billet while moving a cutting crater,
The cutting crater can move in the direction of cutting the deformed steel slab and can also move in the vertical direction.
Furthermore, the steel piece thickness measuring means capable of continuously measuring the thickness of the deformed steel slab, and a control means for controlling the operation of the cutting crater,
The control means, based on the data of the thickness of the deformed steel slab continuously measured by the steel slab thickness measuring means when cutting the deformed steel slab while moving the cutting crater, The vertical position of the cutting crater is continuously controlled so that the distance to the cutting crater is within a predetermined range, and the cutting is performed according to the predetermined thickness of the profile steel slab and the moving speed of the cutting crater. Deformed billet cutting system that continuously controls the movement speed of the crater.
前記制御手段は、前記鋼片有無検出手段が異形鋼片を検出したら当該異形鋼片の予熱を実施する予熱位置に切断火口を停止させ、さらに、前記予熱位置において前記鋼片厚さ計測手段が計測した異形鋼片の厚さのデータに基づいて、異形鋼片の上面と切断火口との間の距離が所定範囲内となるように切断火口の上下方向の位置を設定するとともに、予め定めた異形鋼片の厚さと予熱時間との関係に従い当該異形鋼片の予熱時間を設定する、請求項1に記載の異形鋼片の切断システム。 It further comprises a steel piece presence / absence detecting means for detecting the presence or absence of a deformed steel piece,
The control means stops the cutting crater at a preheating position where preheating of the deformed steel slab is performed when the steel slab presence / absence detecting means detects the deformed steel slab, and the steel slab thickness measuring means is further stopped at the preheating position. Based on the measured data of the thickness of the shaped steel slab, the vertical position of the cutting crater is set so that the distance between the upper surface of the shaped steel slab and the cutting crater is within a predetermined range, and is determined in advance. The cutting system for a shaped steel slab according to claim 1, wherein the preheating time for the shaped steel slab is set according to the relationship between the thickness of the shaped steel slab and the preheating time.
前記制御手段は、前記予熱検出手段が検出する前記予熱位置の予熱状態が所定の予熱状態に到達したら切断火口を移動させて当該異形鋼片の切断を開始する、請求項3又は4に記載の異形鋼片の切断システム。 A preheating detecting means for detecting a preheating state of the preheating position of the deformed steel piece;
5. The control unit according to claim 3, wherein when the preheating position detected by the preheating detection unit reaches a predetermined preheating state, the control unit moves the cutting crater and starts cutting the deformed steel slab. Profile billet cutting system.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2018019355A JP7034474B2 (en) | 2018-02-06 | 2018-02-06 | Deformed steel piece cutting system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2018019355A JP7034474B2 (en) | 2018-02-06 | 2018-02-06 | Deformed steel piece cutting system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2019136714A true JP2019136714A (en) | 2019-08-22 |
| JP7034474B2 JP7034474B2 (en) | 2022-03-14 |
Family
ID=67692787
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2018019355A Active JP7034474B2 (en) | 2018-02-06 | 2018-02-06 | Deformed steel piece cutting system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP7034474B2 (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS472931U (en) * | 1971-02-01 | 1972-09-01 | ||
| JPS5045757A (en) * | 1973-08-27 | 1975-04-24 | ||
| JPS52144233U (en) * | 1976-04-28 | 1977-11-01 | ||
| JPH11216561A (en) * | 1998-01-28 | 1999-08-10 | Kawasaki Steel Corp | Cutting method of metal plate |
| US20160018812A1 (en) * | 2013-03-15 | 2016-01-21 | The Esab Group, Inc. | Work piece condition detection using flame electrical characteristics in oxy-fuel thermal processing equipment |
-
2018
- 2018-02-06 JP JP2018019355A patent/JP7034474B2/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS472931U (en) * | 1971-02-01 | 1972-09-01 | ||
| JPS5045757A (en) * | 1973-08-27 | 1975-04-24 | ||
| JPS52144233U (en) * | 1976-04-28 | 1977-11-01 | ||
| JPH11216561A (en) * | 1998-01-28 | 1999-08-10 | Kawasaki Steel Corp | Cutting method of metal plate |
| US20160018812A1 (en) * | 2013-03-15 | 2016-01-21 | The Esab Group, Inc. | Work piece condition detection using flame electrical characteristics in oxy-fuel thermal processing equipment |
Also Published As
| Publication number | Publication date |
|---|---|
| JP7034474B2 (en) | 2022-03-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4858861B2 (en) | Control method and control system for automatic pouring machine | |
| CN113272095B (en) | Method and apparatus for laser cutting sheet metal blanks from continuously conveyed sheet metal strips | |
| JP6289226B2 (en) | Temperature furnace sampling equipment for arc furnace | |
| KR100785285B1 (en) | Coil tip position adjusting device | |
| KR20130110183A (en) | Bevel head attachment for plasma and oxy fuel cutting machines | |
| JP2019136714A (en) | Cutting system for deformed steel piece | |
| JP2008013367A5 (en) | ||
| JP2008212988A (en) | Jet water equipment for slab scarfing equipment | |
| KR101095654B1 (en) | Ring-shaped plate gas cutting device | |
| US3339903A (en) | Automatic torch positioning apparatus | |
| JP2007323111A (en) | Positioning control device | |
| JP6809492B2 (en) | How to cut steel sheet | |
| KR20160019262A (en) | Cutting machine and method for cutting object to be processed | |
| WO2004041476A1 (en) | H beam style auto cutting machine | |
| KR101185201B1 (en) | Slab scarfing apparatus and thereof method | |
| KR101159910B1 (en) | Apparatus for measuring temperature of Rolling Steel | |
| KR101347607B1 (en) | Tap hole opening device of electric furnace | |
| US2935303A (en) | Thermal rock piercing control apparatus | |
| JPH09136183A (en) | Laser processing device and its processing torch | |
| KR101445861B1 (en) | Device control position for cooling chamber of cooling tower | |
| JP7409349B2 (en) | Metal material thermal cutting device, metal material thermal cutting method, and metal material manufacturing method | |
| US9726431B2 (en) | Dental furnace | |
| CN106181040B (en) | A kind of welding method using periphery automatic soldering device | |
| CN214721317U (en) | Cutting gun device of continuous casting flame cutting machine | |
| JPH08197226A (en) | Molten metal holding furnace |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201201 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211110 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211124 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211221 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220208 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220222 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7034474 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |