[go: up one dir, main page]

JP2020027225A - Optical element, optical device, and method of manufacturing optical element - Google Patents

Optical element, optical device, and method of manufacturing optical element Download PDF

Info

Publication number
JP2020027225A
JP2020027225A JP2018153542A JP2018153542A JP2020027225A JP 2020027225 A JP2020027225 A JP 2020027225A JP 2018153542 A JP2018153542 A JP 2018153542A JP 2018153542 A JP2018153542 A JP 2018153542A JP 2020027225 A JP2020027225 A JP 2020027225A
Authority
JP
Japan
Prior art keywords
resin
effective portion
optically effective
optical element
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018153542A
Other languages
Japanese (ja)
Inventor
窪 和人
Kazuto Kubo
和人 窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018153542A priority Critical patent/JP2020027225A/en
Publication of JP2020027225A publication Critical patent/JP2020027225A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

【課題】使用環境における吸水による光学性能の低下を抑制した光学素子を提供する。【解決手段】第1の基材11と、第1の基材11の上に樹脂12と、樹脂12の上に第2の基材13とを有する光学素子であって、樹脂12は、光学有効部15と光学有効部15の外周に位置する非光学有効部16とを有し、光学有効部15の弾性率に対する非光学有効部16の弾性率の比が、1.01以上1.19以下である。【選択図】図1PROBLEM TO BE SOLVED: To provide an optical element in which deterioration of optical performance due to water absorption in a use environment is suppressed. An optical element having a first base material 11, a resin 12 on the first base material 11, and a second base material 13 on the resin 12, wherein the resin 12 is an optical element. The effective portion 15 and the non-optical effective portion 16 located on the outer circumference of the optical effective portion 15 are provided, and the ratio of the elastic modulus of the non-optical effective portion 16 to the elastic modulus of the optical effective portion 15 is 1.01 or more and 1.19. It is below. [Selection diagram] Figure 1

Description

本発明は、カメラ等の光学機器に使用される光学素子、および光学素子の製造方法に関するものである。   The present invention relates to an optical element used for an optical device such as a camera, and a method for manufacturing the optical element.

カメラやビデオ、またその他の光学機器の光学系には、基材(基板)と、光硬化樹脂または熱硬化性樹脂と、もう1つの基材が光軸方向に順に積層する構造を有する光学素子が広く用いられている。そのような光学素子について様々な製法が提案されているが、例えば特許文献1には、光硬化型接着剤を硬化する際に、基材外周面で光硬化型樹脂剤が垂れるのを防ぐための接着硬化装置が開示されている。特許文献1に記載された接着硬化装置では、2つの基材間に介在した光硬化性樹脂剤に光線を照射する光源を設け、この光線により光硬化型接着剤を硬化して2つの基材を接着する。さらに、光源から少なくとも基材の外周面の外方向へ放射状に拡がる光線を反射し、2つの基材の外周面接合部に照射する反射部材を設けている。これにより、基材外周面で光硬化型樹脂剤が垂れるのを防ぐことが記載されている。   An optical element for a camera, video, or other optical device has an optical element having a structure in which a substrate (substrate), a photocurable resin or a thermosetting resin, and another substrate are sequentially laminated in the optical axis direction. Is widely used. Various production methods have been proposed for such an optical element. For example, Patent Document 1 discloses a method for curing a photocurable adhesive in order to prevent the photocurable resin agent from dripping on the outer peripheral surface of the base material. Is disclosed. In the adhesive curing device described in Patent Document 1, a light source for irradiating a light-curable resin agent interposed between two substrates with a light beam is provided, and the light-curable adhesive is cured by the light beam to form two substrates. Glue. Further, there is provided a reflecting member that reflects a light beam that radially spreads at least outward from the outer peripheral surface of the base material from the light source, and irradiates the outer peripheral surface joint of the two base materials. This describes that the photocurable resin agent is prevented from dripping on the outer peripheral surface of the base material.

特開平5−163037号公報JP-A-5-163037

しかしながら、上記特許文献1に記載のような従来の製造方法で製造された光学素子では、その光学素子を有する光学機器の使用環境において光学性能が低下するという課題があった。   However, in an optical element manufactured by a conventional manufacturing method as described in Patent Document 1, there is a problem that optical performance is deteriorated in an environment in which an optical device having the optical element is used.

具体的には、使用環境において、光学素子が有する樹脂が使用環境の雰囲気の水蒸気を吸水する。樹脂は、吸水することで膨張する。吸水により膨張した樹脂は、樹脂と接する基材を押し上げて変形させる。特に、基材が凹形状を有する場合、凹形状の中央付近は薄く、基材の機械的強度が低い。そのため、樹脂の吸水膨張による、基材の変形が顕著である。さらに、樹脂は、吸水することでその屈折率が変化する。吸水によって屈折率が高くなるか低くなるかは、吸水前の光硬化樹脂の屈折率によって異なるが、一般的に水の屈折率1.33に近づくように屈折率は変化する。   Specifically, in the use environment, the resin of the optical element absorbs water vapor in the atmosphere of the use environment. The resin expands by absorbing water. The resin expanded by water absorption pushes up and deforms the base material in contact with the resin. In particular, when the substrate has a concave shape, the vicinity of the center of the concave shape is thin, and the mechanical strength of the substrate is low. Therefore, the deformation of the base material due to the water absorption expansion of the resin is remarkable. Further, the resin changes its refractive index by absorbing water. Whether the refractive index increases or decreases due to water absorption depends on the refractive index of the photocurable resin before water absorption, but the refractive index generally changes so as to approach the refractive index 1.33 of water.

使用環境における樹脂の吸水は、雰囲気と接する基材の外周から基材中心に向かって不均一に進行する。これにともなって生じる、先に述べた樹脂の膨張による基材の変形および樹脂の屈折率の変化によって、光学素子の光学性能が低下する。   Water absorption of the resin in the use environment proceeds unevenly from the outer periphery of the base material in contact with the atmosphere toward the center of the base material. The optical performance of the optical element is degraded due to the deformation of the base material and the change in the refractive index of the resin caused by the expansion of the resin.

本発明は上記課題に鑑みてなされたものである。すなわち、本発明は、使用環境における吸水による光学性能の低下を抑制した光学素子を提供することを目的とする。   The present invention has been made in view of the above problems. That is, an object of the present invention is to provide an optical element in which a decrease in optical performance due to water absorption in a use environment is suppressed.

本発明の一態様に係る光学素子は、第1の基材と、該第1の基材の上に樹脂と、該樹脂の上に第2の基材とを有する光学素子であって、該樹脂は、光学有効部と該光学有効部の外周に位置する非光学有効部とを有し、該光学有効部の弾性率に対する該非光学有効部の弾性率の比が、1.01以上1.19以下である、ことを特徴とする。   An optical element according to one embodiment of the present invention is an optical element including a first base, a resin on the first base, and a second base on the resin. The resin has an optically effective portion and a non-optically effective portion located on the outer periphery of the optically effective portion, and the ratio of the elastic modulus of the non-optically effective portion to the elasticity of the optically effective portion is 1.01 or more. 19 or less.

また、本発明の別の態様に係る光学機器は、少なくとも1つの光学素子を有する光学機器であって、該光学素子が本発明の一態様に係る光学素子である。   Further, an optical device according to another embodiment of the present invention is an optical device including at least one optical element, and the optical element is an optical element according to one embodiment of the present invention.

さらに、本発明の別の態様に係る光学素子の製造方法は、第1の基材と、未硬化の樹脂と、第2の基材と、をこの順に積層する工程と、該未硬化の樹脂を、光学有効部の弾性率に対する非光学有効部の弾性率の比が、1.01以上1.19以下となるように硬化し、該光学有効部の外周に該非光学有効部を形成する工程と、を有することを特徴とする。   Furthermore, a method for manufacturing an optical element according to another aspect of the present invention includes a step of laminating a first base material, an uncured resin, and a second base material in this order, Is cured so that the ratio of the elastic modulus of the non-optically effective portion to the elastic modulus of the optically effective portion becomes 1.01 or more and 1.19 or less, and the non-optically effective portion is formed on the outer periphery of the optically effective portion. And the following.

本発明の一態様によれば、使用環境における吸水による光学性能の低下を抑制した光学素子が提供される。
また、本発明の別の態様によれば、上記光学素子を有する光学機器が提供される。
さらに、本発明の別の態様によれば、上記光学素子の製造方法が提供される。
According to one embodiment of the present invention, there is provided an optical element in which a decrease in optical performance due to water absorption in a use environment is suppressed.
According to another aspect of the present invention, there is provided an optical apparatus having the above-described optical element.
Further, according to another aspect of the present invention, there is provided a method for manufacturing the optical element.

本発明の一形態に係わる光学素子の上面図と断面図である。1A and 1B are a top view and a cross-sectional view of an optical element according to one embodiment of the present invention. 本発明の一形態に係わる光学素子の製造方法を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining a method for manufacturing an optical element according to one embodiment of the present invention. 本発明の一形態に係わる光学素子の上面図と断面図である。1A and 1B are a top view and a cross-sectional view of an optical element according to one embodiment of the present invention. 本発明の別の態様に係る光学機器の好適な実施形態の一例を示す断面図である。FIG. 11 is a cross-sectional view illustrating an example of a preferred embodiment of an optical device according to another aspect of the present invention.

本発明の一態様に係る光学素子について、図1を参照して説明する。
図1は、本発明の一態様に係る光学素子を説明する上面図と断面図である。
An optical element according to one embodiment of the present invention will be described with reference to FIG.
1A and 1B are a top view and a cross-sectional view illustrating an optical element according to one embodiment of the present invention.

本発明の一態様に係る光学素子10は、第1の基材11と、第1の基材11の上に樹脂12と、樹脂12の上に第2の基材13とを有する。第1の基材11、樹脂12および第2の基材13は光軸Oの方向に順に積層された構造となっている。   The optical element 10 according to one embodiment of the present invention includes a first base 11, a resin 12 on the first base 11, and a second base 13 on the resin 12. The first substrate 11, the resin 12, and the second substrate 13 have a structure in which they are sequentially laminated in the direction of the optical axis O.

第1の基材11および第2の基材13としては、平面や球面、非球面の凹凸形状等、通常の光学機器に用いられる形状を有するものを用いることができる。   As the first base material 11 and the second base material 13, those having a shape used for ordinary optical equipment, such as a flat, spherical, or aspherical uneven shape, can be used.

第1の基材11および第2の基材13は、ガラスや樹脂から構成されており、好ましくはガラスである。また、第1の基材11および第2の基材13の表面には、反射防止膜や樹脂12との密着性を向上させる薄膜等が形成されていても良い。   The first base material 11 and the second base material 13 are made of glass or resin, and are preferably glass. Further, on the surfaces of the first base material 11 and the second base material 13, an antireflection film, a thin film for improving the adhesion to the resin 12, or the like may be formed.

樹脂12は、光硬化性樹脂または熱硬化性樹脂であり、所望の光学特性と良好な成形性が得られるように、適切な屈折率、透過率、粘度、硬化収縮率等の材料特性を有するものを選択して用いることができる。例えば、熱硬化性樹脂としては、エポキシ樹脂等が挙げられ、光硬化性樹脂としては、アクリル樹脂、エポキシ樹脂およびフッ素樹脂等が挙げられる。   The resin 12 is a photocurable resin or a thermosetting resin, and has appropriate material properties such as a refractive index, a transmittance, a viscosity, and a cure shrinkage so that desired optical properties and good moldability are obtained. You can select and use one. For example, the thermosetting resin includes an epoxy resin and the like, and the photocurable resin includes an acrylic resin, an epoxy resin and a fluororesin.

樹脂12は、第1の基材11および第2の基材13が樹脂12と接する面14を、第1の基材11および第2の基材13の径の小さいどちらか一方の基材外周まで覆っている。樹脂12は、光学有効部15と該光学有効部15の外周に位置する非光学有効部16とを有する。非光学有効部16は、光学素子10の外周を取り巻くように環状に構成されている。光学有効部15は、光学素子10を通して利用する光が透過する領域であり、非光学有効部16は光学有効部15の外周から光学素子10を成す第1の基材11または第2の基材13の径の小さいどちらか一方の基材外周までの領域である。   The resin 12 is formed such that the surface 14 where the first base material 11 and the second base material 13 are in contact with the resin 12 is formed on the outer periphery of one of the first base material 11 and the second base material 13 having a smaller diameter. Covering up. The resin 12 has an optically effective portion 15 and a non-optically effective portion 16 located on the outer periphery of the optically effective portion 15. The non-optically effective portion 16 is formed in an annular shape so as to surround the outer periphery of the optical element 10. The optically effective portion 15 is a region through which light used through the optical element 10 is transmitted, and the non-optically effective portion 16 is a first base material 11 or a second base material forming the optical element 10 from the outer periphery of the optically effective portion 15. 13 is a region up to the outer periphery of one of the base materials having a small diameter.

本発明において、光学素子10が有する樹脂12の、非光学有効部16は、光学有効部15よりも高い弾性率を有する。すなわち、樹脂12における、光学有効部15の弾性率に対する非光学有効部16の弾性率の比は、1.01以上1.19以下である。さらに、光学有効部15の弾性率に対する非光学有効部16の弾性率の比は、1.05以上1.19以下であることが好ましい。
本発明において、上記のように非光学有効部16が光学有効部15よりも高い弾性率を有することで、本発明の一態様に係る光学素子10が使用環境における吸水による光学性能の低下を抑制できる理由は、次のように考えられる。
In the present invention, the non-optically effective portion 16 of the resin 12 of the optical element 10 has a higher elastic modulus than the optically effective portion 15. That is, the ratio of the elastic modulus of the non-optically effective portion 16 to the elastic modulus of the optically effective portion 15 in the resin 12 is 1.01 or more and 1.19 or less. Further, the ratio of the elastic modulus of the non-optically effective portion 16 to the elastic modulus of the optically effective portion 15 is preferably 1.05 or more and 1.19 or less.
In the present invention, since the non-optically effective portion 16 has a higher elastic modulus than the optically effective portion 15 as described above, the optical element 10 according to one embodiment of the present invention suppresses a decrease in optical performance due to water absorption in a use environment. The possible reasons are as follows.

光学素子10に用いられる樹脂12は、光または熱を加えることで樹脂12の重合架橋が開始されて、その硬化反応が進行する。硬化反応の進行に伴って樹脂12の形態は液状から固形に変化し、樹脂12の弾性率は硬化反応が進むほど高くなる。一方で、樹脂12は、硬化反応の進行に伴って架橋重合が緻密となり、吸水性が低下する。つまり樹脂12の硬化反応において、弾性率が高くなるほど吸水性が低下する。   By applying light or heat to the resin 12 used for the optical element 10, polymerization and crosslinking of the resin 12 is started, and the curing reaction proceeds. As the curing reaction proceeds, the form of the resin 12 changes from liquid to solid, and the elastic modulus of the resin 12 increases as the curing reaction proceeds. On the other hand, in the resin 12, the cross-linking polymerization becomes dense as the curing reaction proceeds, and the water absorption decreases. That is, in the curing reaction of the resin 12, the higher the elastic modulus, the lower the water absorption.

本発明においては、非光学有効部16は、光学有効部15よりも高い弾性率を有する。すなわち、非光学有効部16は、光学有効部15よりも低い吸水性を有する。非光学有効部16は、光学素子10の外周に環状に構成されているので、その低い吸水性により光学素子10の外周に渡って水の侵入を抑制できる。これにより、樹脂12の吸水に伴う屈折率の変化と、樹脂12の吸水膨張による第1の基材11および第2の基材13の変形が抑制される。   In the present invention, the non-optically effective portion 16 has a higher elastic modulus than the optically effective portion 15. That is, the non-optically effective portion 16 has lower water absorption than the optically effective portion 15. Since the non-optically effective portion 16 is formed in a ring shape on the outer periphery of the optical element 10, it is possible to suppress the invasion of water over the outer periphery of the optical element 10 due to its low water absorption. Thereby, the change in the refractive index due to the water absorption of the resin 12 and the deformation of the first base material 11 and the second base material 13 due to the water absorption expansion of the resin 12 are suppressed.

さらに、光学有効部15へ水が浸入したときには、光学有効部15の吸水膨張による第1の基材11および第2の基材13の変形が、光学素子10の外周に環状に構成されている高い弾性率を有する非光学有効部16によって抑制される。   Furthermore, when water invades the optically effective portion 15, the deformation of the first base material 11 and the second base material 13 due to the water absorption and expansion of the optically effective portion 15 is formed annularly on the outer periphery of the optical element 10. It is suppressed by the non-optically effective portion 16 having a high elastic modulus.

以上により、本発明の一態様に係る光学素子10では、使用環境における吸水による光学性能の低下が抑制されると考えられる。   As described above, in the optical element 10 according to one embodiment of the present invention, it is considered that a decrease in optical performance due to water absorption in a use environment is suppressed.

樹脂12は、硬化反応が十分に進み、完全硬化に至ると、それ以上光または熱を加えても硬化反応が進まなくなり、樹脂12の弾性率も一定値に収束する。樹脂12は、例えば光硬化性樹脂の場合、紫外線の照射によって樹脂12の硬化反応が進む一方で、樹脂12を構成する分子の、結合の切断も同時に生じる。そのため、完全硬化に至るまで大量の紫外線を照射すると、紫外線の照射による樹脂12の劣化が顕著となる。   When the curing reaction of the resin 12 has progressed sufficiently and the resin 12 has been completely cured, the curing reaction does not proceed even if further light or heat is applied, and the elastic modulus of the resin 12 converges to a constant value. When the resin 12 is, for example, a photocurable resin, the curing reaction of the resin 12 proceeds by the irradiation of ultraviolet rays, and at the same time, the bonds of the molecules constituting the resin 12 are broken. Therefore, when a large amount of ultraviolet light is irradiated until complete curing, the deterioration of the resin 12 due to the irradiation of the ultraviolet light becomes remarkable.

樹脂12が紫外線照射により劣化した状態では、分子結合の切断によって樹脂12の緻密な重合架橋構造が壊れているため、樹脂12中への水分子の侵入が容易となる。つまり、樹脂12の硬化反応に伴って弾性率が高くなると、始めは樹脂12の吸水性は低くなるが、完全硬化に近くなると、吸水性は逆に高くなる。   In a state where the resin 12 is deteriorated by the irradiation of the ultraviolet rays, since the dense polymerized cross-linking structure of the resin 12 is broken by breaking the molecular bond, water molecules can easily enter the resin 12. That is, when the elastic modulus increases along with the curing reaction of the resin 12, the water absorption of the resin 12 decreases at first, but when the resin 12 is almost completely cured, the water absorption increases.

本発明においては、樹脂12の完全硬化後の弾性率に対する、樹脂12の非光学有効部16の弾性率の比が、0.95以上0.99以下であり、樹脂12の完全硬化後の弾性率に対する、樹脂12の光学有効部15の弾性率の比が、0.80以上0.94以下であることが好ましい。   In the present invention, the ratio of the modulus of elasticity of the non-optically effective portion 16 of the resin 12 to the modulus of elasticity of the resin 12 after completely cured is 0.95 or more and 0.99 or less, and the elasticity of the resin 12 after completely cured is obtained. The ratio of the elastic modulus of the optically effective portion 15 of the resin 12 to the modulus is preferably 0.80 or more and 0.94 or less.

樹脂12の完全硬化後の弾性率に対する、樹脂12の非光学有効部16の弾性率の比が、0.95以上であることで、雰囲気中の水分の浸入を効果的に抑制することができる。また、樹脂12の完全硬化後の弾性率に対する、樹脂12の非光学有効部16の弾性率の比が、0.99以下であることで、樹脂12の劣化による吸水性の上昇を抑制することができる。   When the ratio of the modulus of elasticity of the non-optically effective portion 16 of the resin 12 to the modulus of elasticity of the resin 12 after being completely cured is 0.95 or more, it is possible to effectively suppress the entry of moisture in the atmosphere. . Further, since the ratio of the elastic modulus of the non-optically effective portion 16 of the resin 12 to the elastic modulus after the resin 12 is completely cured is 0.99 or less, it is possible to suppress an increase in water absorption due to deterioration of the resin 12. Can be.

特には、樹脂12の非光学有効部16の弾性率は、3GPa以上であることが好ましい。樹脂12の弾性率は、その雰囲気温度によっても変化するが、上記の値は雰囲気温度23℃で測定される値である。樹脂12の弾性率は、レオメータやナノインデンターを用いて測定することができる。   In particular, the elastic modulus of the non-optically effective portion 16 of the resin 12 is preferably 3 GPa or more. The elastic modulus of the resin 12 changes depending on the ambient temperature, but the above value is a value measured at an ambient temperature of 23 ° C. The elastic modulus of the resin 12 can be measured using a rheometer or a nano indenter.

本発明においては、樹脂12の光学有効部15の硬化反応率が75%以上94%未満であり、樹脂12の非光学有効部16の硬化反応率が94%以上99%以下であることが好ましい。樹脂12の非光学有効部16の硬化反応率が94%以上であれば、雰囲気中の水分の浸入を効果的に抑制することができ、99%以下であれば樹脂12の劣化による吸水性の上昇を抑制することができる。また、樹脂12の光学有効部15の硬化反応率が75%以上であれば、樹脂のある程度の重合架橋構造が形成されて光学有効部15における吸水膨張を抑制することができる。また、94%未満であればレンズ径方向の吸水膨張の差を緩和して光学素子の局所的な変形を抑制できる。   In the present invention, the curing reaction rate of the optically effective portion 15 of the resin 12 is preferably 75% or more and less than 94%, and the curing reaction rate of the non-optically effective portion 16 of the resin 12 is preferably 94% or more and 99% or less. . When the curing reaction rate of the non-optically effective portion 16 of the resin 12 is 94% or more, the infiltration of moisture in the atmosphere can be effectively suppressed. The rise can be suppressed. In addition, if the curing reaction rate of the optically effective portion 15 of the resin 12 is 75% or more, a certain degree of polymerization cross-linked structure of the resin is formed, and water absorption expansion in the optically effective portion 15 can be suppressed. If it is less than 94%, the difference in water absorption expansion in the lens radial direction can be reduced, and local deformation of the optical element can be suppressed.

さらに、樹脂12は、無機微粒子を含有することが好ましい。無機微粒子を含有することで樹脂12の吸水性が低くなり、本発明の効果を高く得ることができる。また、樹脂12は、無機微粒子を含有することでその弾性率が高くなる。これにより、高い弾性率を有する非光学有効部16による、光学有効部15の吸水膨張に伴う第1の基材11および第2の基材13の変形を抑制する効果を高く得ることができる。   Further, the resin 12 preferably contains inorganic fine particles. By containing the inorganic fine particles, the water absorption of the resin 12 is reduced, and the effect of the present invention can be enhanced. In addition, the elastic modulus of the resin 12 is increased by containing the inorganic fine particles. Thereby, the effect of suppressing the deformation of the first base material 11 and the second base material 13 due to the water absorption and expansion of the optically effective portion 15 by the non-optically effective portion 16 having a high elastic modulus can be obtained.

無機微粒子としては、ZrO、SiO、TiOおよびITO等の無機化合物の微粒子を用いることができる。
樹脂12に含有する無機微粒子の粒径は、5nm以上100nm以下であることが好ましい。無機微粒子の粒径が5nm以上であれば、樹脂中への吸水性を低下させて弾性率を高めることができる。無機微粒子の粒径が100nm以下であれば、透過率が良好な光学素子を製造することができる。無機微粒子の粒径が100nmを超える場合、微粒子からの散乱光が増えて、光学素子の透過率が低下してしまう。また、樹脂12に含有する無機微粒子の重量含有率は、1%以上30%以下であることが好ましい。無機微粒子の重量含有率が1%以上であれば、樹脂中への吸水性を低下させて弾性率を高めることができる。無機微粒子の重量含有率が30%以下であれば、透過率が良好な光学素子を製造することができる。無機微粒子の重量含有率が30%を超える場合、微粒子からの散乱光が増えて、光学素子の透過率が低下してしまう。
As the inorganic fine particles, fine particles of an inorganic compound such as ZrO 2 , SiO 2 , TiO 2 and ITO can be used.
The particle size of the inorganic fine particles contained in the resin 12 is preferably 5 nm or more and 100 nm or less. When the particle size of the inorganic fine particles is 5 nm or more, the elasticity can be increased by reducing the water absorption in the resin. When the particle size of the inorganic fine particles is 100 nm or less, an optical element having good transmittance can be manufactured. When the particle size of the inorganic fine particles exceeds 100 nm, the scattered light from the fine particles increases, and the transmittance of the optical element decreases. The weight content of the inorganic fine particles contained in the resin 12 is preferably 1% or more and 30% or less. When the weight content of the inorganic fine particles is 1% or more, the elasticity can be increased by reducing the water absorption in the resin. When the weight content of the inorganic fine particles is 30% or less, an optical element having good transmittance can be manufactured. If the weight content of the inorganic fine particles exceeds 30%, the scattered light from the fine particles increases, and the transmittance of the optical element decreases.

第1の基材11の、樹脂12と接する面14が凸形状の球面であり、第2の基材13の、樹脂12と接する面14が凹形状の球面である場合を考える。このとき、第1の基材11の凸形状の球面の有する曲率半径の絶対値を|r|、第2の基材13の凹形状の球面の有する曲率半径の絶対値を|r|としたとき、|r|≧|r|であることが好ましい。これにより非光学有効部16の樹脂12の体積を小さくし、非光学有効部16からの吸水を抑制して、吸水膨張に伴う第1の基材11および第2の基材13の変形を抑制することができる。 Consider a case where the surface 14 of the first base material 11 that contacts the resin 12 is a convex spherical surface, and the surface 14 of the second base material 13 that contacts the resin 12 is a concave spherical surface. At this time, the absolute value of the radius of curvature of the convex spherical surface of the first base material 11 is | r 1 |, and the absolute value of the radius of curvature of the concave spherical surface of the second base material 13 is | r 2 | It is preferable that | r 1 | ≧ | r 2 |. Thereby, the volume of the resin 12 of the non-optically effective portion 16 is reduced, water absorption from the non-optically effective portion 16 is suppressed, and deformation of the first base material 11 and the second base material 13 due to water absorption expansion is suppressed. can do.

本発明において、樹脂12の非光学有効部16の領域の大きさは、光学素子10の使用される態様に合わせて適宜設計することができるが、具体的には、樹脂12の非光学有効部16の外周方向の長さは0.5mm以上3.5mm以下であることが好ましい。また、好ましくは第1の基材11および第2の基材13の径の小さいどちらか一方の、光軸Oに垂直な方向の投影形状が円形であり、光学有効部15の外周方向の長さに対する非光学有効部16の外周方向の長さの比が、1/19以上7/50以下である。ここで、光学有効部15の外周方向の長さとは、光学有効部15と非光学有効部16の境界面から光学有効部15の中心までの長さである。また、非光学有効部16の外周方向の長さとは、非光学有効部16の、光学素子10を成す2つの基材の内、径の小さい基材の外周に対応する点から、光学有効部15と非光学有効部16の境界の接線に垂直に引いた線の長さである。   In the present invention, the size of the region of the non-optically effective portion 16 of the resin 12 can be appropriately designed according to the mode in which the optical element 10 is used. It is preferable that the length in the outer peripheral direction of 16 be 0.5 mm or more and 3.5 mm or less. Preferably, one of the smaller diameters of the first base material 11 and the second base material 13 has a circular projected shape in a direction perpendicular to the optical axis O, and has a length in the outer circumferential direction of the optically effective portion 15. The ratio of the length in the outer peripheral direction of the non-optically effective portion 16 to the ratio is not less than 1/19 and not more than 7/50. Here, the length in the outer peripheral direction of the optically effective portion 15 is a length from the boundary surface between the optically effective portion 15 and the non-optically effective portion 16 to the center of the optically effective portion 15. The length of the non-optically effective portion 16 in the outer circumferential direction is defined as a point corresponding to the outer periphery of the smaller diameter substrate of the two substrates forming the optical element 10 of the non-optically effective portion 16. This is the length of a line drawn perpendicular to the tangent at the boundary between 15 and the non-optically effective portion 16.

光学有効部15の外周方向の長さに対する非光学有効部16の外周方向の長さの比が、1/19以上であることで、光学有効部15の吸水膨張に伴う第1の基材11および第2の基材13の変形を抑制する効果を高く得ることができる。また、光学有効部15の外周方向に対する非光学有効部16の外周方向の長さの比が7/50以下であることで、光学素子10のサイズが大きくなりすぎず、また光学有効部15の領域を十分に確保することができる。   When the ratio of the length of the non-optically effective portion 16 in the outer circumferential direction to the length of the optically effective portion 15 in the outer circumferential direction is 1/19 or more, the first base material 11 accompanying the water absorption expansion of the optically effective portion 15 is formed. In addition, the effect of suppressing deformation of the second base material 13 can be enhanced. Further, since the ratio of the length of the non-optically effective portion 16 in the outer circumferential direction to the outer circumferential direction of the optically effective portion 15 is 7/50 or less, the size of the optical element 10 does not become too large. A sufficient area can be secured.

なお、光学素子10は、図3に示すように第1の基材11または第2の基材13の、樹脂12と接する面14の上に、回折格子形成樹脂17を有していてもよい。このとき、回折格子形成樹脂17は、光学有効部15よりも大きい領域を有しても良いが、回折格子形成樹脂17の、非光学有効部16と接する領域は可能な限り小さいことが好ましい。   The optical element 10 may have a diffraction grating forming resin 17 on a surface 14 of the first base material 11 or the second base material 13 which is in contact with the resin 12, as shown in FIG. . At this time, the diffraction grating forming resin 17 may have a region larger than the optically effective portion 15, but it is preferable that the region of the diffraction grating forming resin 17 in contact with the non-optically effective portion 16 is as small as possible.

なお、図1および図3では、光学有効部15と非光学有効部16が同じ樹脂12からなる例を示したが、光学有効部15と非光学有効部16は異なる樹脂で構成されていてもよい。   Although FIGS. 1 and 3 show an example in which the optically effective portion 15 and the non-optically effective portion 16 are made of the same resin 12, the optically effective portion 15 and the non-optically effective portion 16 may be made of different resins. Good.

(光学素子の製造方法)
本発明の別の態様に係る光学素子の製造方法は、第1の基材と、未硬化の樹脂と、第2の基材と、をこの順に積層する工程と、該未硬化の樹脂を、光学有効部の弾性率に対する非光学有効部の弾性率の比が、1.01以上1.19以下となるように硬化し、該光学有効部の外周に該非光学有効部を形成する工程と、を有する。
(Method of manufacturing optical element)
A method of manufacturing an optical element according to another aspect of the present invention includes a step of laminating a first substrate, an uncured resin, and a second substrate in this order, Curing such that the ratio of the elastic modulus of the non-optically effective portion to the elastic modulus of the optically effective portion is 1.01 or more and 1.19 or less, and forming the non-optically effective portion on the outer periphery of the optically effective portion; Having.

以下、本発明の別の態様に係る光学素子の製造方法について、図2を参照して説明する。図2は、本発明の別の態様に係る光学素子の製造方法を説明するための断面図である。   Hereinafter, a method for manufacturing an optical element according to another embodiment of the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional view for explaining a method for manufacturing an optical element according to another embodiment of the present invention.

始めに、図2(a)に示すように、第1の基材11上に、適量の未硬化の樹脂12を乗せる。未硬化の樹脂12は、例えばディスペンサーによって滴下することにより第1の基材11上に乗せることができる。次に、図2(b)に示すように、第2の基材13に対して図2(b)に示す矢印の向きに力をかけ、未硬化の樹脂12を第1の基材11に対して押し付けるようにして、第1の基材11と第2の基材13との間に所望の厚さとなるまで拡げる。このとき、未硬化の樹脂12を同心円状に拡げるため、第1の基材11または第2の基材13を光軸周りに回転させても良い。   First, as shown in FIG. 2A, an appropriate amount of uncured resin 12 is placed on the first base material 11. The uncured resin 12 can be placed on the first base material 11 by, for example, dripping with a dispenser. Next, as shown in FIG. 2B, a force is applied to the second base material 13 in the direction of the arrow shown in FIG. 2B, and the uncured resin 12 is applied to the first base material 11. It spreads between the first base material 11 and the second base material 13 until it reaches a desired thickness. At this time, the first base material 11 or the second base material 13 may be rotated around the optical axis to spread the uncured resin 12 concentrically.

これにより、第1の基材11と、未硬化の樹脂12と、第2の基材13と、をこの順に積層することができる。未硬化の樹脂12は、所望の厚さとなるまで押し広げたときに、第1の基材11および第2の基材13の外周まで拡がるのに十分な量を用いる。   Thereby, the first substrate 11, the uncured resin 12, and the second substrate 13 can be laminated in this order. The uncured resin 12 is used in an amount sufficient to spread to the outer peripheries of the first base material 11 and the second base material 13 when expanded to a desired thickness.

続いて、図2(c)に示すように、未硬化の樹脂12に対して光または熱等のエネルギー18を与え、光学有効部15の弾性率に対する非光学有効部16の弾性率の比が、1.01以上1.19以下となるように未硬化の樹脂12を硬化し、光学有効部の外周に非光学有効部を形成する。   Subsequently, as shown in FIG. 2C, energy 18 such as light or heat is applied to the uncured resin 12 so that the ratio of the elastic modulus of the non-optically effective portion 16 to the elasticity of the optically effective portion 15 is reduced. The uncured resin 12 is cured so as to be 1.01 or more and 1.19 or less, and a non-optically effective portion is formed on the outer periphery of the optically effective portion.

光学有効部15および非光学有効部16の弾性率が上記関係を有するように樹脂12を硬化させる方法としては、例えば、非光学有効部16において光学有効部15と比較してより硬化反応が進むように硬化させる方法が挙げられる。   As a method of curing the resin 12 so that the elastic modulus of the optically effective portion 15 and the elasticity of the non-optically effective portion 16 have the above relationship, for example, the curing reaction proceeds more in the non-optically effective portion 16 than in the optically effective portion 15. As described above.

具体的には、例えば、樹脂12が光硬化性樹脂である場合は、始めに未硬化の樹脂12全体に光を照射して1次硬化させる。続いて、第1の基材11または第2の基材13が光学有効部15と接する部分を遮光板で覆い、非光学有効部16にのみさらに光を照射して樹脂12の非光学有効部16を2次硬化させる方法が挙げられる。なお、光を照射して樹脂12を硬化させる際には、雰囲気を窒素等の不活性ガスで満たす、または真空しても良い。   Specifically, for example, when the resin 12 is a photo-curable resin, first, the entire uncured resin 12 is irradiated with light to be primarily cured. Subsequently, a portion where the first base material 11 or the second base material 13 is in contact with the optically effective portion 15 is covered with a light-shielding plate, and the non-optically effective portion 16 of the resin 12 is further irradiated with light only to the non-optically effective portion 16. 16 is subjected to secondary curing. When the resin 12 is cured by irradiation with light, the atmosphere may be filled with an inert gas such as nitrogen or vacuum.

また、光学有効部15に照射する光の光源と、非光学有効部16に照射する光の光源を別に用意し、樹脂12の光学有効部15と非光学有効部16を独立に硬化させてもよい。各光源の種類、光強度および照射時間等の条件を、光学有効部15と非光学有効部16とで個別に適宜設計することで、非光学有効部16において光学有効部15と比較してより硬化反応が進むように硬化させることができる。   Alternatively, a light source for irradiating the optically effective portion 15 and a light source for irradiating the non-optically effective portion 16 are separately prepared, and the optically effective portion 15 and the non-optically effective portion 16 of the resin 12 are independently cured. Good. By appropriately designing the conditions such as the type of each light source, the light intensity, and the irradiation time individually in the optically effective portion 15 and the non-optically effective portion 16, the non-optically effective portion 16 is compared with the optically effective portion 15. It can be cured so that the curing reaction proceeds.

このとき、例えば、第1の基材11または第2の基材13の光が照射される面のうち、光学有効部15に入射する光が照射される部分と、光学有効部15に照射する光の光源とを含んで遮光部材で覆う。これにより、光学有効部15を非光学有効部16から独立して硬化させることができる。また、遮光部材の外側において非光学有効部16に照射する光の光源を用いて非光学有効部16を、光学有効部15から独立して硬化させることができる。   At this time, for example, of the light-irradiated surface of the first base material 11 or the second base material 13, the part irradiated with the light incident on the optically effective part 15 and the light irradiated on the optically effective part 15 are irradiated. A light source including the light source is covered with a light shielding member. Thereby, the optically effective portion 15 can be cured independently of the non-optically effective portion 16. In addition, the non-optically effective portion 16 can be cured independently of the optically effective portion 15 by using a light source for irradiating the non-optically effective portion 16 outside the light shielding member.

樹脂12が、熱硬化性樹脂である場合は、例えば、始めに樹脂12全体を加熱して1次硬化させる。続いて、基材に当接させて樹脂を加熱するような加熱部材を用い、第1の基材11または第2の基材13の、非光学有効部16と接する部分に、前記加熱部材を当接させ、樹脂12の非光学有効部16のみを加熱硬化させる。これにより、非光学有効部16において光学有効部15と比較してより硬化反応が進むように硬化させることができる。   When the resin 12 is a thermosetting resin, for example, first, the entire resin 12 is first cured by heating. Subsequently, the heating member is used in such a manner that the resin is heated by being brought into contact with the base material, and the heating member is attached to a portion of the first base material 11 or the second base material 13 which is in contact with the non-optically effective portion 16. Then, only the non-optically effective portion 16 of the resin 12 is cured by heating. Thus, the non-optically effective portion 16 can be cured so that the curing reaction proceeds more than the optically effective portion 15.

また、光学有効部15を加熱硬化させるための加熱部材と、非光学有効部16を加熱硬化させるための加熱部材とを個別に用意してもよい。例えば、始めに、光学有効部15を加熱硬化させるための加熱部材と、非光学有効部16を加熱硬化させるための加熱部材との間に断熱材を設ける。次に、非光学有効部16を加熱硬化させるための加熱部材の温度を、光学有効部15を加熱硬化させるための加熱部材の温度よりも高くなるように各加熱部材を加熱する。その後、各加熱部材を第1の基材11または第2の基材13に当接させることで、非光学有効部16において光学有効部15と比較してより硬化反応が進むように硬化させることができる。   Further, a heating member for heating and curing the optically effective portion 15 and a heating member for heating and curing the non-optically effective portion 16 may be separately prepared. For example, first, a heat insulating material is provided between a heating member for heating and curing the optically effective portion 15 and a heating member for heating and curing the non-optically effective portion 16. Next, each heating member is heated so that the temperature of the heating member for heating and curing the non-optically effective portion 16 is higher than the temperature of the heating member for thermally curing the optically effective portion 15. After that, by bringing each heating member into contact with the first base material 11 or the second base material 13, the non-optically effective portion 16 is cured so that the curing reaction proceeds more than the optically effective portion 15. Can be.

(光学機器)
次に本発明の別の態様に係る光学機器について図4を参照して説明する。本発明の別の態様に係る光学機器は、少なくとも1つの光学素子を有する光学機器であって、該光学素子が本発明の一態様に係る光学素子である光学機器である。本発明の別の態様に係る光学機器は、光学素子を有する望遠鏡、双眼鏡、顕微鏡、カメラ、内視鏡等に用いることができる。
(Optical equipment)
Next, an optical apparatus according to another embodiment of the present invention will be described with reference to FIG. An optical device according to another aspect of the present invention is an optical device including at least one optical element, wherein the optical element is the optical element according to one embodiment of the present invention. An optical apparatus according to another embodiment of the present invention can be used for a telescope, binoculars, microscope, camera, endoscope, and the like having an optical element.

図4は、本発明の別の態様に係る光学機器の好適な実施形態の一例を示す断面図である。図4で示す光学機器は、具体的には一眼レフカメラの交換レンズ鏡筒である。   FIG. 4 is a cross-sectional view illustrating an example of a preferred embodiment of an optical apparatus according to another aspect of the present invention. The optical device shown in FIG. 4 is specifically an interchangeable lens barrel of a single-lens reflex camera.

レンズ鏡筒30の光学系は、筐体29の内部において、レンズ21〜28および光学素子20が光軸Oに対して垂直に配列されている。図4の左側がレンズ鏡筒30の表面であり、図4の右側がカメラとの着脱マウント側である。   In the optical system of the lens barrel 30, lenses 21 to 28 and the optical element 20 are arranged perpendicular to the optical axis O inside the housing 29. The left side of FIG. 4 is the surface of the lens barrel 30, and the right side of FIG.

本発明一態様に係る光学素子20を光学系の適切な位置に配置させることにより、高精細で高品位な画像を撮像できるレンズ鏡筒を提供することができる。   By disposing the optical element 20 according to one embodiment of the present invention at an appropriate position in the optical system, a lens barrel capable of capturing a high-definition and high-quality image can be provided.

<光学素子の作製>
(実施例1)
第1の基材11として、直径35mmのガラス製球面レンズ(以下レンズ1という)を用いた。レンズ1の樹脂12と接する面14は凸面で曲率半径130.0mmである。また、第2の基材13として、直径35mmのガラス製球面レンズ(以下レンズ2という)を用いた。レンズ2の樹脂12と接する面14は凹面で曲率半径130.0mmである。
<Preparation of optical element>
(Example 1)
As the first substrate 11, a glass spherical lens having a diameter of 35 mm (hereinafter, referred to as lens 1) was used. The surface 14 of the lens 1 which is in contact with the resin 12 is convex and has a radius of curvature of 130.0 mm. In addition, as the second base material 13, a glass spherical lens having a diameter of 35 mm (hereinafter, referred to as lens 2) was used. The surface 14 of the lens 2 that contacts the resin 12 is concave and has a radius of curvature of 130.0 mm.

樹脂12としては、無色透明な硫黄含有アクリル樹脂(UV1000、三菱化学株式会社製)から成る光硬化性樹脂(以下光硬化性樹脂1という)を用いた。   As the resin 12, a photocurable resin (hereinafter, referred to as photocurable resin 1) made of a colorless and transparent sulfur-containing acrylic resin (UV1000, manufactured by Mitsubishi Chemical Corporation) was used.

始めに、レンズ1およびレンズ2の、光硬化性樹脂1と接する面14に、光硬化性樹脂1との密着を強くするためのシランカップリング処理をおこなった。具体的には、溶媒で数%に希釈したシランカップリング剤をレンズ1およびレンズ2の面14にスプレーで塗布して、これを100℃のオーブンで1時間乾燥させて、面14上にカップリング層を形成した。
続いて、レンズ1上に、ディスペンサーを用い、未硬化の光硬化性樹脂1を120mg滴下した。その後、レンズ2を未硬化の光硬化性樹脂1に押し当て、レンズ1とレンズ2の間に、光軸上での厚さが0.1mm、光学素子外周での厚さが0.08mmとなるように拡げた。
First, the surface 14 of the lens 1 and the lens 2 which is in contact with the photocurable resin 1 was subjected to a silane coupling treatment for strengthening the adhesion to the photocurable resin 1. Specifically, a silane coupling agent diluted to a few percent with a solvent is applied to the surface 14 of the lens 1 and the lens 2 by spraying, and this is dried in an oven at 100 ° C. for 1 hour. A ring layer was formed.
Subsequently, 120 mg of the uncured photocurable resin 1 was dropped on the lens 1 using a dispenser. Then, the lens 2 is pressed against the uncured photo-curable resin 1, and the thickness between the lens 1 and the lens 2 is 0.1 mm on the optical axis and 0.08 mm on the outer periphery of the optical element. Expanded to become.

次に、紫外線照射ランプを用い、レンズ2を通して光強度20mW/cmの紫外光を光硬化性樹脂1全体に600秒間照射した。続いて、紫外線照射ランプと光学有効部15の間に遮蔽板を配置し、レンズ2を通して光強度20mW/cmの紫外光を非光学有効部16に対して1200秒間照射した。なお、光硬化性樹脂1の非光学有効部16の径方向の長さは、2mmとした。 Then, using an ultraviolet irradiation lamp, the ultraviolet light of the light intensity 20 mW / cm 2 was irradiated for 600 seconds to the entire photo-curable resin 1 through the lens 2. Subsequently, a shielding plate was disposed between the ultraviolet irradiation lamp and the optically effective portion 15, and the non-optically effective portion 16 was irradiated with ultraviolet light having a light intensity of 20 mW / cm 2 through the lens 2 for 1200 seconds. The length in the radial direction of the non-optically effective portion 16 of the photocurable resin 1 was 2 mm.

さらに、光硬化性樹脂1の硬化反応による残留応力を低減するために、60℃の雰囲気中に10時間放置し、実施例1に係る光学素子1を作製した。   Further, in order to reduce the residual stress due to the curing reaction of the photocurable resin 1, the optical element 1 according to Example 1 was manufactured by being left in an atmosphere at 60 ° C. for 10 hours.

(実施例2)
第1の基材11として、直径57mmのガラス製球面レンズ(以下レンズ3という)を用いた。レンズ3の樹脂12と接する面14は凸面で曲率半径40.6mmである。また、第2の基材13として、直径63mmのガラス製球面レンズ(以下レンズ4という)を用いた。レンズ4の樹脂12と接する面14は凹面で曲率半径40.65mmである。
(Example 2)
As the first substrate 11, a glass spherical lens having a diameter of 57 mm (hereinafter referred to as lens 3) was used. The surface 14 of the lens 3 which is in contact with the resin 12 is convex and has a radius of curvature of 40.6 mm. Further, a glass spherical lens having a diameter of 63 mm (hereinafter, referred to as lens 4) was used as the second base material 13. The surface 14 of the lens 4 that contacts the resin 12 is concave and has a radius of curvature of 40.65 mm.

樹脂12としては、光硬化性樹脂1に粒径が10nm以下のZrO微粒子を20体積%となるように添加して得た光硬化性樹脂2を用いた。回折格子形成樹脂17としては、無色透明な光硬化性のアクリル樹脂(RC−C001、DIC株式会社)を用いた。 As the resin 12, a photo-curable resin 2 obtained by adding ZrO 2 fine particles having a particle size of 10 nm or less to the photo-curable resin 1 so as to be 20% by volume was used. As the diffraction grating forming resin 17, a colorless and transparent photocurable acrylic resin (RC-C001, DIC Corporation) was used.

始めに、実施例1と同様にレンズ3およびレンズ4の、光硬化性樹脂2と接する面14にシランカップリング処理をおこなった。   First, the silane coupling treatment was performed on the surface 14 of the lenses 3 and 4 that was in contact with the photocurable resin 2 in the same manner as in Example 1.

また、回折格子の反転形状を有する金型に未硬化の回折格子形成樹脂17を入れ、さらにレンズ3を回折格子形成樹脂17に金型と反対の側から当接させた。その後、回折格子形成樹脂17に対し、レンズ3を通して紫外線照射ランプにより紫外光を照射して硬化させた後に離型した。この時、回折格子形成樹脂17に対して、光強度20mW/cmの紫外光を300秒間照射した。 Further, the uncured diffraction grating forming resin 17 was put into a mold having an inverted shape of the diffraction grating, and the lens 3 was brought into contact with the diffraction grating forming resin 17 from the side opposite to the mold. Thereafter, the diffraction grating forming resin 17 was irradiated with ultraviolet light from the ultraviolet irradiation lamp through the lens 3 to be cured, and then released. At this time, the diffraction grating forming resin 17 was irradiated with ultraviolet light having a light intensity of 20 mW / cm 2 for 300 seconds.

続いて、レンズ3上で硬化された回折格子形成樹脂17の上に、ディスペンサーを用い、未硬化の光硬化性樹脂2を310mg滴下した。さらに、レンズ4を光硬化性樹脂2に押し当て、レンズ4と、回折格子形成樹脂17またはレンズ3との間に、光軸上での厚さが0.05mm、光学素子外周での厚さが0.05mmとなるように拡げた。   Subsequently, 310 mg of the uncured photocurable resin 2 was dropped on the diffraction grating forming resin 17 cured on the lens 3 using a dispenser. Further, the lens 4 is pressed against the photocurable resin 2, and the thickness on the optical axis is 0.05 mm between the lens 4 and the diffraction grating forming resin 17 or the lens 3, and the thickness around the optical element. Was 0.05 mm.

次に、紫外線照射ランプを用い、レンズ4を通して光硬化性樹脂2全体に光強度32mW/cmの紫外光を1000秒間照射した。続いて、非光学有効部16の形状に合わせて複数の光ファイバーを円環状に並べたライトガイドを用いて、非光学有効部16に対してのみ同時に複数のスポット光を照射した。この時、1スポット光当たり光強度32mW/cmの紫外光を5000秒間照射した。なお、光硬化性樹脂2の非光学有効部16の径方向の長さは、3.5mmとした。 Next, the entire photocurable resin 2 was irradiated with ultraviolet light having a light intensity of 32 mW / cm 2 for 1000 seconds through the lens 4 using an ultraviolet irradiation lamp. Subsequently, using a light guide in which a plurality of optical fibers are arranged in an annular shape according to the shape of the non-optically effective portion 16, a plurality of spot lights are simultaneously irradiated only on the non-optically effective portion 16. At this time, ultraviolet light having a light intensity of 32 mW / cm 2 per spot light was irradiated for 5000 seconds. The length in the radial direction of the non-optically effective portion 16 of the photocurable resin 2 was 3.5 mm.

さらに、光硬化性樹脂2の硬化反応による残留応力を低減するために、60℃の雰囲気中に10時間放置し、実施例2に係る光学素子2を作製した。   Further, in order to reduce the residual stress due to the curing reaction of the photocurable resin 2, the optical element 2 according to Example 2 was manufactured by being left in an atmosphere at 60 ° C. for 10 hours.

(実施例3)
実施例1に係る光学素子1の作製において、以下に示す条件を用いた以外は、実施例1と同様にして実施例3に係る光学素子3を作製した。
(Example 3)
An optical element 3 according to Example 3 was manufactured in the same manner as in Example 1 except that the following conditions were used in manufacturing the optical element 1 according to Example 1.

第1の基材11として、直径20mmのガラス製球面レンズ(以下レンズ5という)を用いた。レンズ5の樹脂12と接する面14は凸面で曲率半径100.0mmである。また、第2の基材13として、直径20mmのガラス製球面レンズ(以下レンズ6という)を用いた。レンズ6の樹脂12と接する面14は凹面で曲率半径34.72mmである。   As the first base material 11, a glass spherical lens having a diameter of 20 mm (hereinafter, referred to as a lens 5) was used. The surface 14 of the lens 5 in contact with the resin 12 is convex and has a radius of curvature of 100.0 mm. Further, as the second base material 13, a glass spherical lens having a diameter of 20 mm (hereinafter referred to as a lens 6) was used. The surface 14 of the lens 6 in contact with the resin 12 is concave and has a radius of curvature of 34.72 mm.

樹脂12としては、無色透明なエポキシ樹脂に粒径が20nm以下のSiO微粒子を5体積%となるように添加して得た光硬化性樹脂3を用いた。 As the resin 12, a photocurable resin 3 obtained by adding 5% by volume of SiO 2 fine particles having a particle diameter of 20 nm or less to a colorless and transparent epoxy resin was used.

光硬化性樹脂3は、光軸上での厚さが1mm、光学素子外周での厚さが0.03mmとなるように、レンズ5とレンズ6との間に押し拡げた。   The photocurable resin 3 was spread between the lens 5 and the lens 6 so that the thickness on the optical axis was 1 mm and the thickness on the outer periphery of the optical element was 0.03 mm.

光硬化性樹脂3の硬化においては、紫外線照射ランプを用い、レンズ5を通して光強度46mW/cmの紫外光を光硬化性樹脂3全体に300秒間照射した。続いて、紫外線照射ランプと光学有効部15の間に遮蔽板を配置し、レンズ5を通して光強度46mW/cmの紫外光を非光学有効部16に対して1200秒間照射した。なお、光硬化性樹脂3の非光学有効部16の径方向の長さは、0.5mmとした。 In curing the photocurable resin 3, the entire photocurable resin 3 was irradiated with ultraviolet light having a light intensity of 46 mW / cm 2 through the lens 5 for 300 seconds using an ultraviolet irradiation lamp. Subsequently, a shielding plate was disposed between the ultraviolet irradiation lamp and the optically effective portion 15, and the non-optically effective portion 16 was irradiated with ultraviolet light having a light intensity of 46 mW / cm 2 through the lens 5 for 1200 seconds. The length in the radial direction of the non-optically effective portion 16 of the photocurable resin 3 was 0.5 mm.

(比較例1、2)
実施例1に係る光学素子1の作製において、光硬化性樹脂1の光硬化の条件を変更した以外は、実施例1と同様にして比較例1に係る比較光学素子1および比較例2に係る比較光学素子2を作製した。
比較例1においては、紫外線照射ランプを用い、レンズ2を通して光強度20mW/cmの紫外光を光硬化性樹脂1全体に1500秒間照射した。続いて、紫外線照射ランプと光学有効部15の間に遮蔽板を配置し、レンズ2を通して光強度20mW/cmの紫外光を非光学有効部16に対して3500秒間照射した。
比較例2においては、紫外線照射ランプを用い、レンズ2を通して光強度20mW/cmの紫外光を光硬化性樹脂1全体に150秒間照射した。続いて、紫外線照射ランプと光学有効部15の間に遮蔽板を配置し、レンズ2を通して光強度20mW/cmの紫外光を非光学有効部16に対して950秒間照射した。
(Comparative Examples 1 and 2)
In the production of the optical element 1 according to the example 1, except that the conditions of the photocuring of the photocurable resin 1 were changed, the comparative optical element 1 according to the comparative example 1 and the comparative example 2 were modified in the same manner as in example 1. Comparative optical element 2 was produced.
In Comparative Example 1, the entire photocurable resin 1 was irradiated with ultraviolet light having a light intensity of 20 mW / cm 2 through the lens 2 for 1500 seconds using an ultraviolet irradiation lamp. Subsequently, a shielding plate was disposed between the ultraviolet irradiation lamp and the optically effective portion 15, and the non-optically effective portion 16 was irradiated with ultraviolet light having a light intensity of 20 mW / cm 2 through the lens 2 for 3500 seconds.
In Comparative Example 2, the entire photocurable resin 1 was irradiated with ultraviolet light having a light intensity of 20 mW / cm 2 through the lens 2 for 150 seconds using an ultraviolet irradiation lamp. Subsequently, a shielding plate was disposed between the ultraviolet irradiation lamp and the optically effective portion 15, and the non-optically effective portion 16 was irradiated with ultraviolet light having a light intensity of 20 mW / cm 2 through the lens 2 for 950 seconds.

(比較例3)
実施例3に係る光学素子3の作製において、光硬化性樹脂3の光硬化の条件を変更した以外は、実施例3と同様にして比較例3に係る比較光学素子3を作製した。
比較例3においては、紫外線照射ランプと非光学有効部16の間に遮蔽板を配置し、レンズ2を通して光強度46mW/cmの紫外光を光学有効部15に対して280秒間照射した。続いて、遮蔽板を取り除いて、レンズ2を通して光強度46mW/cmの紫外光を光硬化性樹脂3全体に20秒間照射した。
(Comparative Example 3)
A comparative optical element 3 according to Comparative Example 3 was produced in the same manner as in Example 3 except that the conditions for photocuring the photocurable resin 3 were changed in the production of the optical element 3 according to Example 3.
In Comparative Example 3, a shielding plate was disposed between the ultraviolet irradiation lamp and the non-optically effective portion 16, and the optically effective portion 15 was irradiated with ultraviolet light having a light intensity of 46 mW / cm 2 through the lens 2 for 280 seconds. Subsequently, the shielding plate was removed, and the entire photocurable resin 3 was irradiated with ultraviolet light having a light intensity of 46 mW / cm 2 through the lens 2 for 20 seconds.

<評価>
実施例1〜3に係る光学素子1〜3および比較例1〜3に係る比較光学素子1〜3について以下の評価をおこなった。
<Evaluation>
The following evaluations were performed on the optical elements 1 to 3 according to Examples 1 to 3 and the comparative optical elements 1 to 3 according to Comparative Examples 1 to 3.

(弾性率)
樹脂12の弾性率について、ナノインデンターを用いて次のようにして測定した。
始めに、光学素子の断面を切り出して研磨加工を施した。続いて、樹脂の被測定面に対して微小ダイヤモンド圧子による深さ5〜20μmの押し込み測定を行い、得られた結果から弾性率を算出した。なお、押し込み測定は、樹脂12の光学有効部15、非光学有効部16および完全硬化させた樹脂12について行った。
また、樹脂12の完全硬化時の弾性率を、次のようにして測定した。弾性率の測定方法は、前記のナノインデンターによる方法に同じであるのでその説明を省略する。光硬化性樹脂の完全硬化時の弾性率を規定するためには、最初に紫外光の照射量に対する弾性率の変化を測定する。具体的に、研磨加工で切り出した光学素子の樹脂12の断面に対して、複数回紫外光を照射して、それぞれの弾性率を測定した。紫外光を照射するほど弾性率は高くなり、一定値に収束していく様子を示す。弾性率の収束値はフィッティング解析によって算出するが、同収束値を完全硬化時の弾性率とした。熱硬化性樹脂の完全硬化時の弾性率を規定するためには、樹脂12に対して熱を与えて、同様にそれぞれの弾性率を測定してその収束値を算出すれば良い。
結果を表1に示す。
(Elastic modulus)
The elastic modulus of the resin 12 was measured using a nano indenter as follows.
First, a cross section of the optical element was cut out and polished. Subsequently, indentation measurement was performed on the surface to be measured of the resin with a fine diamond indenter at a depth of 5 to 20 μm, and the elastic modulus was calculated from the obtained result. The indentation measurement was performed on the optically effective portion 15, the non-optically effective portion 16, and the completely cured resin 12 of the resin 12.
The elastic modulus of the resin 12 at the time of complete curing was measured as follows. The method of measuring the elastic modulus is the same as the method using the nano indenter described above, and therefore the description thereof is omitted. In order to define the elastic modulus of the photocurable resin at the time of complete curing, first, the change in the elastic modulus with respect to the irradiation amount of ultraviolet light is measured. Specifically, the section of the resin 12 of the optical element cut out by polishing was irradiated with ultraviolet light a plurality of times, and the elastic modulus of each was measured. It shows that the elastic modulus increases as the ultraviolet light is irradiated and converges to a constant value. The convergence value of the elastic modulus was calculated by fitting analysis, and the convergence value was used as the elastic modulus at the time of complete curing. In order to define the elastic modulus of the thermosetting resin at the time of complete curing, heat is applied to the resin 12, the respective elastic moduli are similarly measured, and their convergence values may be calculated.
Table 1 shows the results.

(硬化反応率)
樹脂12の光学有効部15および非光学有効部16における硬化反応率について、FT−IR分光計で測定した樹脂のIRスペクトルを解析することで算出した。
具体的に、光硬化性樹脂の硬化反応率を測定するためには、紫外光の照射量に対するIRスペクトルの変化を測定した。研磨加工で切り出した光学素子の樹脂12の断面に対して複数回紫外光を照射して、顕微全反射測定法を用いて光学有効部15表面と非光学有効部16表面のIRスペクトルを測定した。IRスペクトルとしては、硬化反応によって減少するアクリル酸の炭素二重結合部等の反応スペクトルや、硬化反応によっても変化しないカルボニル基等の基準スペクトルを測定対象とした。
紫外光を照射するほど反応スペクトルのピーク面積は減少して一定値に収束していくが、この収束値を完全硬化時の反応スペクトルのピーク面積と規定した。紫外光の照射量ごとの硬化反応率は、照射量ごとの反応スペクトルのピーク面積を基準スペクトルのピーク面積で割った値を用いて算出した。それぞれ算出した値を前記の完全硬化時の値で規格化して、その逆数を計算することで、照射量ごとの硬化反応率を求めることができる。
熱硬化性樹脂の硬化反応率を測定するためには、樹脂12に対して熱を与えて、同様の手順でIRスペクトルの測定と硬化反応率の算出を行えば良い。
結果を表1に示す。
(Curing reaction rate)
The curing reaction rates in the optically effective portion 15 and the non-optically effective portion 16 of the resin 12 were calculated by analyzing an IR spectrum of the resin measured by an FT-IR spectrometer.
Specifically, in order to measure the curing reaction rate of the photocurable resin, a change in the IR spectrum with respect to the irradiation amount of ultraviolet light was measured. The cross section of the resin 12 of the optical element cut out by polishing was irradiated with ultraviolet light a plurality of times, and the IR spectra of the surface of the optically effective portion 15 and the surface of the non-optically effective portion 16 were measured using a micro total reflection measurement method. . As the IR spectrum, a reaction spectrum such as a carbon double bond part of acrylic acid which is reduced by a curing reaction and a reference spectrum such as a carbonyl group which does not change even by the curing reaction were measured.
The peak area of the reaction spectrum decreases with the irradiation of ultraviolet light and converges to a constant value. This convergence value is defined as the peak area of the reaction spectrum at the time of complete curing. The curing reaction rate for each irradiation amount of ultraviolet light was calculated using a value obtained by dividing the peak area of the reaction spectrum for each irradiation amount by the peak area of the reference spectrum. By normalizing the calculated values with the values at the time of complete curing and calculating the reciprocal thereof, the curing reaction rate for each irradiation amount can be obtained.
In order to measure the curing reaction rate of the thermosetting resin, heat may be applied to the resin 12, and the IR spectrum measurement and the curing reaction rate may be calculated in the same procedure.
Table 1 shows the results.

(光学性能)
各実施例および比較例に係る各光学素子の光学性能について、フィゾー干渉計を用いて次のようにして評価した。
(Optical performance)
The optical performance of each optical element according to each example and comparative example was evaluated as follows using a Fizeau interferometer.

始めに、フィゾー干渉計により各光学素子の透過波面を測定した。得られた透過波面をフィッティングして、レンズ中心を通る透過波面の位相断面より、PV値を読み取った。
透過波面のフィッティングでは、コンピュータプログラムを用いて、透過波面の球面成分を除去して平面成分に変換する。透過波面には、光学素子を構成する各材料の屈折率や光学形状などの位相情報が含まれる。その位相情報の断面を解析すれば、吸水による材料の屈折率や形状の変化を評価することができる。とりわけ、位相断面のPV値は、光学素子の吸水膨張による外周の形状反りや屈折率変化を顕著に示すことができる。例えば、光学素子の外周に水が浸入して材料の屈折率が高くなった場合、水が浸入した光学素子外周の位相は水が浸入していない光学素子中心の位相よりも遅くなって測定される。
First, the transmitted wavefront of each optical element was measured by a Fizeau interferometer. The obtained transmitted wavefront was fitted, and the PV value was read from the phase cross section of the transmitted wavefront passing through the center of the lens.
In the fitting of the transmitted wavefront, the spherical component of the transmitted wavefront is removed using a computer program and converted into a plane component. The transmitted wavefront contains phase information such as the refractive index and optical shape of each material constituting the optical element. By analyzing the cross section of the phase information, it is possible to evaluate changes in the refractive index and the shape of the material due to water absorption. In particular, the PV value of the phase cross section can remarkably show the shape warpage of the outer periphery and the change in the refractive index due to water absorption expansion of the optical element. For example, when water enters the outer periphery of the optical element and the refractive index of the material becomes higher, the phase of the outer periphery of the optical element in which water has entered is measured to be later than the phase of the center of the optical element in which water has not entered. You.

続いて、各光学素子を、雰囲気温度60℃湿度90%の高温高湿槽に1000時間投入することで長期使用を模擬した試験を行った。   Subsequently, a test simulating long-term use was performed by putting each optical element into a high-temperature and high-humidity tank at an ambient temperature of 60 ° C. and a humidity of 90% for 1000 hours.

試験後、再度透過波面の測定を行ってPV値を読み取り、試験前後でのPV値の変化を算出した。
結果を表1に示す。
After the test, the transmitted wavefront was measured again to read the PV value, and the change in the PV value before and after the test was calculated.
Table 1 shows the results.

Figure 2020027225
Figure 2020027225

光学性能の評価において、PV値の変化量が大きいほど、樹脂12の吸水による光学性能の低下が大きい。   In the evaluation of the optical performance, the larger the amount of change in the PV value, the greater the decrease in the optical performance due to water absorption of the resin 12.

表1より、実施例1〜3に係る光学素子では、樹脂への吸水による光学性能の低下が抑制されたことがわかる。   Table 1 shows that in the optical elements according to Examples 1 to 3, a decrease in optical performance due to absorption of water into the resin was suppressed.

10 光学素子
11 第1の基材
12 樹脂
13 第2の基材
15 光学有効部
16 非光学有効部
Reference Signs List 10 optical element 11 first base material 12 resin 13 second base material 15 optically effective portion 16 non-optically effective portion

Claims (9)

第1の基材と、該第1の基材の上に樹脂と、該樹脂の上に第2の基材とを有する光学素子であって、
該樹脂は、光学有効部と該光学有効部の外周に位置する非光学有効部とを有し、
該光学有効部の弾性率に対する該非光学有効部の弾性率の比が、1.01以上1.19以下である、
ことを特徴とする光学素子。
A first substrate, a resin on the first substrate, and an optical element having a second substrate on the resin,
The resin has an optically effective portion and a non-optically effective portion located on the outer periphery of the optically effective portion,
A ratio of the elastic modulus of the non-optically effective portion to the elastic modulus of the optically effective portion is 1.01 or more and 1.19 or less;
An optical element, characterized in that:
前記樹脂の完全硬化後の弾性率に対する、前記非光学有効部の弾性率の比が、0.95以上0.99以下であり、
前記樹脂の完全硬化後の弾性率に対する、前記光学有効部の弾性率の比が、0.80以上0.94以下である、
請求項1に記載の光学素子。
The ratio of the modulus of elasticity of the non-optically effective portion to the modulus of elasticity of the resin after complete curing is 0.95 or more and 0.99 or less,
The ratio of the elastic modulus of the optically effective portion to the elastic modulus of the resin after complete curing is 0.80 or more and 0.94 or less.
The optical element according to claim 1.
前記非光学有効部の弾性率が、3GPa以上である、請求項1または2に記載の光学素子。   The optical element according to claim 1, wherein the non-optically effective portion has an elastic modulus of 3 GPa or more. 前記樹脂が、無機微粒子を含有する、請求項1から3のいずれか1項に記載の光学素子。   The optical element according to claim 1, wherein the resin contains inorganic fine particles. 前記第1の基材の、前記樹脂と接する面が凸形状の球面であり、前記第2の基材の、前記樹脂と接する面が凹形状の球面であり、
前記第1の基材の該凸形状の球面の有する曲率半径の絶対値を|r|、前記第2の基材の凹形状の球面の有する曲率半径の絶対値を|r|としたとき、|r|≧|r|である、請求項1から4のいずれか1項に記載の光学素子。
The surface of the first base material that is in contact with the resin is a convex spherical surface, and the surface of the second base material that is in contact with the resin is a concave spherical surface,
The absolute value of the radius of curvature of the convex spherical surface of the first substrate is | r 1 |, and the absolute value of the radius of curvature of the concave spherical surface of the second substrate is | r 2 | 5. The optical element according to claim 1 , wherein | r 1 | ≧ | r 2 |.
前記第1の基材および前記第2の基材の径の小さいどちらか一方の、光軸に垂直な方向の投影形状が円形であり、前記光学有効部の外周方向の長さに対する前記非光学有効部の外周方向の長さの比が、1/19以上7/50以下である、請求項1から5のいずれか1項に記載の光学素子。   One of the smaller diameters of the first base material and the second base material has a circular projected shape in a direction perpendicular to an optical axis, and the non-optical element has a non-optical length with respect to a length in an outer peripheral direction of the optically effective portion. The optical element according to any one of claims 1 to 5, wherein the ratio of the length of the effective portion in the outer peripheral direction is from 1/19 to 7/50. 前記非光学有効部の外周方向の長さが0.5mm以上3.5mm以下である、請求項1から6のいずれか1項に記載の光学素子。   The optical element according to any one of claims 1 to 6, wherein the length of the non-optically effective portion in the outer peripheral direction is 0.5 mm or more and 3.5 mm or less. 少なくとも1つの光学素子を有する光学機器であって、該光学素子が請求項1から7のいずれか1項に記載の光学素子である光学機器。   An optical device having at least one optical element, wherein the optical element is the optical element according to any one of claims 1 to 7. 第1の基材と、未硬化の樹脂と、第2の基材と、をこの順に積層する工程と、
該未硬化の樹脂を、光学有効部の弾性率に対する非光学有効部の弾性率の比が、1.01以上1.19以下となるように硬化し、該光学有効部の外周に該非光学有効部を形成する工程と、
を有することを特徴とする光学素子の製造方法。
Laminating a first substrate, an uncured resin, and a second substrate in this order;
The uncured resin is cured so that the ratio of the elastic modulus of the non-optically effective portion to the elastic modulus of the optically effective portion becomes 1.01 or more and 1.19 or less. Forming a part,
A method for producing an optical element, comprising:
JP2018153542A 2018-08-17 2018-08-17 Optical element, optical device, and method of manufacturing optical element Pending JP2020027225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018153542A JP2020027225A (en) 2018-08-17 2018-08-17 Optical element, optical device, and method of manufacturing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018153542A JP2020027225A (en) 2018-08-17 2018-08-17 Optical element, optical device, and method of manufacturing optical element

Publications (1)

Publication Number Publication Date
JP2020027225A true JP2020027225A (en) 2020-02-20

Family

ID=69620128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018153542A Pending JP2020027225A (en) 2018-08-17 2018-08-17 Optical element, optical device, and method of manufacturing optical element

Country Status (1)

Country Link
JP (1) JP2020027225A (en)

Similar Documents

Publication Publication Date Title
US10852460B2 (en) Diffraction optical element, manufacturing method thereof, and optical apparatus
US4623496A (en) Method of manufacturing an optical element having an aspheric surface
CN100514091C (en) Optical element
JP4467388B2 (en) COMPOUND LENS, COMPOSITE LENS MANUFACTURING METHOD, AND LENS MODULE
US9696469B2 (en) Multilayer diffractive optical element
JP6783829B2 (en) Diffractive optical element and optical equipment using it
US8743460B2 (en) Diffractive optical element and method for manufacturing same
JP2024161182A (en) Optical element manufacturing method, optical element, optical device, and imaging device
JP7204363B2 (en) Diffractive optical element, manufacturing method thereof, and optical apparatus
JP2001249208A (en) Diffraction optical device and method of manufacturing the same
JP7346262B2 (en) Diffractive optical elements, methods of manufacturing diffractive optical elements, optical instruments, and imaging devices
US11614564B2 (en) Optical element, optical apparatus, image pickup apparatus, and method for producing optical element
JP2020027225A (en) Optical element, optical device, and method of manufacturing optical element
JP6823381B2 (en) Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating
US20070007675A1 (en) Method of manufacturing compound optical element and compound optical element module
JP2008139748A (en) Composite optical element, composite optical element manufacturing method, and composite optical element manufacturing apparatus
JP7353962B2 (en) Optical elements, optical instruments and imaging devices
JP2022170558A (en) Optical element, optical equipment, imaging device, and method for manufacturing optical element
JP2022152224A (en) Diffraction optical element, method for manufacturing diffraction optical element, optical instrument, and imaging apparatus
JP7346278B2 (en) Diffractive optical elements, optical instruments and imaging devices
JP2019207326A (en) Diffraction optical element, and optical instrument using the same
JP7451298B2 (en) Diffractive optical elements, optical instruments and imaging devices
JP7433765B2 (en) Optical elements, optical instruments and imaging devices
JP2022115135A (en) POLYMERIZABLE COMPOSITION, OPTICAL ELEMENT AND MANUFACTURING METHOD THEREOF, OPTICAL DEVICE, IMAGING DEVICE
JP2021009199A (en) Diffractive optical element, manufacturing method of diffractive optical element and imaging device