[go: up one dir, main page]

JP2020029990A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2020029990A
JP2020029990A JP2018155619A JP2018155619A JP2020029990A JP 2020029990 A JP2020029990 A JP 2020029990A JP 2018155619 A JP2018155619 A JP 2018155619A JP 2018155619 A JP2018155619 A JP 2018155619A JP 2020029990 A JP2020029990 A JP 2020029990A
Authority
JP
Japan
Prior art keywords
thermo
compressor
temperature
room temperature
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018155619A
Other languages
Japanese (ja)
Inventor
孝二 太田
Koji Ota
孝二 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2018155619A priority Critical patent/JP2020029990A/en
Publication of JP2020029990A publication Critical patent/JP2020029990A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To provide an air conditioner capable of promptly responding to even a case where an air conditioning load in a room is changed while preventing hunting of a room temperature due to frequent occurrence of a thermo-off state.SOLUTION: In an air conditioner, a compressor is thermostatically turned off when a temperature difference between a room temperature and a preset temperature reaches a first threshold value, and after the compressor is thermostatically turned off, when the temperature difference between the room temperature and the preset temperature reaches a second threshold value, the compressor is thermostatically turned on. In the air conditioner, an upper limit value of rotational frequency of the compressor is set when a thermo-off state occurs as rotational frequency regulation control of the compressor after the thermo-off state occurs (S2), and after a first predetermined time elapses after the thermo-off state occurs (Yes in S3), the setting of the upper limit value of the rotational frequency of the compressor is cancelled (S4).SELECTED DRAWING: Figure 3

Description

本発明は、空気調和機に関する。   The present invention relates to an air conditioner.

従来、空気調和機では、室温と設定温度との温度差に応じて圧縮機の回転数を変化させる運転制御が行われている。具体的には、室温と設定温度との温度差が大きい時には圧縮機の回転数を上げ、室温と設定温度との温度差が小さい時には圧縮機の回転数を下げる運転制御が行われる。このような制御は、室温と設定温度との温度差が大きい時は空気調和機の運転能力を上げることで室温を速やかに設定温度に近づけ、室温と設定温度との温度差が小さい時は空気調和機の運転能力を下げることで室温を設定温度付近で維持しようとするものである。   2. Description of the Related Art Conventionally, in an air conditioner, operation control for changing the rotation speed of a compressor according to a temperature difference between a room temperature and a set temperature has been performed. Specifically, operation control is performed to increase the rotation speed of the compressor when the temperature difference between the room temperature and the set temperature is large, and to decrease the rotation speed of the compressor when the temperature difference between the room temperature and the set temperature is small. In such control, when the temperature difference between the room temperature and the set temperature is large, the room temperature is quickly brought close to the set temperature by increasing the operation capability of the air conditioner, and when the temperature difference between the room temperature and the set temperature is small, The aim is to maintain the room temperature near the set temperature by lowering the operation capacity of the harmonic machine.

しかしながら、室温と設定温度との温度差に応じて圧縮機の回転数を変化させる制御のみでは、十分ではない場合がある。すなわち、室温が設定温度に近く、圧縮機の回転数を最も低く下げた場合であっても、空気調和機の能力が高すぎて室温が設定温度を超えて変動し続けてしまうことがある(例えば、冷房運転時に室温が設定温度よりも低い温度で下がり続ける)。   However, control that only changes the rotation speed of the compressor according to the temperature difference between the room temperature and the set temperature may not be sufficient. That is, even when the room temperature is close to the set temperature and the rotational speed of the compressor is reduced to the lowest, the capacity of the air conditioner may be too high and the room temperature may continue to fluctuate beyond the set temperature ( For example, during the cooling operation, the room temperature keeps decreasing at a temperature lower than the set temperature.

このような不具合を避けるための制御としてサーモOFFがある。すなわち、圧縮機の回転数を最も低く下げた状態でも室温が設定温度を超えて変動し続ける場合には、圧縮機の運転を一旦停止(サーモOFF)することが行われる。   Thermo-OFF is a control for avoiding such a problem. That is, when the room temperature continues to fluctuate beyond the set temperature even when the rotation speed of the compressor is lowered to the lowest, the operation of the compressor is temporarily stopped (thermo OFF).

特許文献1には、サーモOFFから圧縮機が再び運転を開始(サーモON)した後、所定の時間が経過するまでは、圧縮機の運転周波数が所定の周波数を超えないように制限を設けることが開示されている。このようなサーモOFF復帰後の圧縮機の運転周波数(回転数)の制限は、サーモOFFが短時間に繰り返し発生して、室温のハンチングが生じることを防止するために行われている。   Patent Literature 1 discloses that a limit is set so that the operating frequency of a compressor does not exceed a predetermined frequency until a predetermined time elapses after the compressor restarts operation from thermo-OFF (thermo-ON). Is disclosed. Such a limitation of the operating frequency (rotation speed) of the compressor after the return from the thermo-OFF is performed in order to prevent the occurrence of hunting at room temperature due to repeated occurrence of the thermo-OFF in a short time.

すなわち、サーモOFFによって圧縮機を一旦停止すると、一定時間(約3分)は圧縮機の信頼性確保のため圧縮機を再起動できない。圧縮機停止中は室温と設定室温との温度差は大きくなっていくため、上記一定時間経過後のサーモON時には温度差に応じた圧縮機の回転数が大きくなりすぎている場合がある。この時に圧縮機の回転数を規制することで、室温の変化スピードを和らげることができ、再びサーモOFFが生じるまでのサーモON時間を長くすることができる。   That is, once the compressor is stopped by the thermo-OFF, the compressor cannot be restarted for a certain period of time (about 3 minutes) to ensure the reliability of the compressor. Since the temperature difference between the room temperature and the set room temperature increases while the compressor is stopped, the rotational speed of the compressor according to the temperature difference may be too high when the thermostat is turned on after the elapse of the predetermined time. At this time, by regulating the number of revolutions of the compressor, the change speed of the room temperature can be reduced, and the thermo-ON time until thermo-OFF occurs again can be lengthened.

特許第04415817号公報Japanese Patent No. 04415817

しかしながら、上記特許文献1の制御では、サーモOFF復帰後の圧縮機の回転数規制中は部屋の空調負荷に応じた運転が行えない。すなわち、圧縮機の回転数規制中は、部屋への人の出入りや窓の開け閉めなどで空調負荷が増加しても、この変化に速やかに対応できなくなるといった課題がある。   However, in the control of Patent Document 1, the operation according to the air conditioning load of the room cannot be performed during the regulation of the number of rotations of the compressor after the return from the thermo-OFF. In other words, there is a problem that during the regulation of the number of rotations of the compressor, even if an air conditioning load increases due to a person entering or exiting the room or opening / closing a window, it is not possible to quickly respond to this change.

特に、断熱性能の良い部屋では、サーモOFF時間が長く、室温と設定温度との温度差も徐々に大きくなっていくため、サーモON時の温度差に応じた回転数も高くなりすぎていることはなく、圧縮機の回転数規制の必要性も低い。この場合、圧縮機の回転数の規制時間が必要以上に長くなってしまい、この間は、空調負荷の変動に対する冷暖房能力の対応が遅くなる。   In particular, in a room with good heat insulation performance, the thermo-OFF time is long and the temperature difference between the room temperature and the set temperature gradually increases, so that the number of revolutions according to the temperature difference when the thermo-ON is too high. There is no need to regulate the number of revolutions of the compressor. In this case, the regulation time of the rotational speed of the compressor becomes longer than necessary, and during this time, the response of the cooling and heating capacity to the fluctuation of the air conditioning load is delayed.

本発明は、上記課題に鑑みてなされたものであり、頻繁なサーモOFFによる室温のハンチングを防ぎながら、部屋の空調負荷が変動した場合にも速やかに対応可能な空気調和機を提供することを目的とする。   The present invention has been made in view of the above problems, and it is an object of the present invention to provide an air conditioner capable of promptly responding to a change in the air conditioning load of a room while preventing room temperature hunting due to frequent thermo-OFF. Aim.

上記の課題を解決するために、本発明の第1の態様である空気調和機は、室温と設定温度との温度差が第1閾値に到達すると圧縮機をサーモOFFし、前記サーモOFF後に室温と設定温度との温度差が第2閾値に到達すると圧縮機をサーモONする空気調和機であって、前記サーモOFFが発生した時点で圧縮機の回転数に上限値を設定し、前記サーモOFFから第1所定時間の経過後に前記上限値の設定を解除することを特徴としている。   In order to solve the above problem, an air conditioner according to a first aspect of the present invention thermostats a compressor when a temperature difference between a room temperature and a set temperature reaches a first threshold value. An air conditioner that turns on the compressor when the temperature difference between the temperature and the set temperature reaches a second threshold value. When the thermo-off occurs, an upper limit value is set for the rotation speed of the compressor, and the thermo-off is set. The setting of the upper limit value is canceled after a lapse of a first predetermined time from.

上記の構成によれば、サーモOFF後の回転数規制制御をサーモOFFから第1所定時間が経過するまで行うことで、サーモON後の回転数規制制御を受ける時間が空気調和機の使用環境に応じて変化し、空気調和機の使用環境に応じた適切な制御が可能となる。例えば、サーモOFF後の室温変動が大きくサーモONまでの時間が短くなるような環境では、サーモON後の回転数規制制御を受ける時間を長くし、室温のハンチング防止を重視した運転を行うことができる。一方で、サーモOFF後の室温変動が小さくサーモONまでの時間が長くなるような環境では、サーモON後の回転数規制制御を受ける時間を短くし、部屋の空調負荷の変動への対応性を高めた運転を行うことができる。   According to the above configuration, by performing the rotation speed regulation control after the thermo-OFF until the first predetermined time elapses from the thermo-off, the time for receiving the rotation speed regulation control after the thermo-ON is reduced depending on the use environment of the air conditioner. Accordingly, appropriate control according to the use environment of the air conditioner can be performed. For example, in an environment where the room temperature fluctuation after the thermo-OFF is large and the time until the thermo-on is short, it is possible to lengthen the time to be subjected to the rotation speed regulation control after the thermo-on, and to perform the operation with an emphasis on preventing hunting at room temperature. it can. On the other hand, in an environment in which the room temperature fluctuation after the thermo-OFF is small and the time until the thermo-on is long, the time to be subjected to the rotation speed regulation control after the thermo-on is shortened, and the response to the fluctuation of the air conditioning load of the room is reduced. Enhanced operation can be performed.

上記の課題を解決するために、本発明の第2の態様である空気調和機は、室温と設定温度との温度差が第1閾値に到達すると圧縮機をサーモOFFし、前記サーモOFF後に室温と設定温度との温度差が第2閾値に到達すると圧縮機をサーモONする空気調和機であって、前記サーモOFFが発生した時点で圧縮機の回転数に上限値を設定し、前記サーモOFF後に室温と設定温度との温度差が前記第2閾値よりも大きい第3閾値以上になると前記上限値の設定を解除することを特徴としている。   In order to solve the above-described problem, an air conditioner according to a second aspect of the present invention thermostats a compressor when a temperature difference between a room temperature and a set temperature reaches a first threshold value. An air conditioner that turns on the compressor when the temperature difference between the temperature and the set temperature reaches a second threshold value. When the thermo-off occurs, an upper limit value is set for the rotation speed of the compressor, and the thermo-off is set. When the temperature difference between the room temperature and the set temperature later becomes equal to or more than a third threshold value larger than the second threshold value, the setting of the upper limit is canceled.

上記の構成によれば、サーモON後に空調負荷の大きな変動が無く、室温と設定温度との温度差が第3閾値を超えない限りは、圧縮機の回転数に上限値を設定することで、室温のハンチング防止を重視した運転を行うことができる。一方で、サーモON後に空調負荷の大きな変動が生じ、室温と設定温度との温度差が第3閾値を超えた場合には、圧縮機の回転数の上限値を解除することで、部屋の空調負荷の変動にも対応できる。   According to the above configuration, as long as there is no large change in the air conditioning load after the thermo-ON and the temperature difference between the room temperature and the set temperature does not exceed the third threshold, the upper limit value is set for the rotation speed of the compressor. It is possible to perform an operation that emphasizes prevention of hunting at room temperature. On the other hand, when a large change in the air-conditioning load occurs after the thermo-ON and the temperature difference between the room temperature and the set temperature exceeds the third threshold, the upper limit value of the number of revolutions of the compressor is released, thereby controlling the air-conditioning of the room. It can respond to load fluctuations.

上記の課題を解決するために、本発明の第3の態様である空気調和機は、室温と設定温度との温度差が第1閾値に到達すると圧縮機をサーモOFFし、前記サーモOFF後に室温と設定温度との温度差が第2閾値に到達すると圧縮機をサーモONする空気調和機であって、前記サーモOFFが発生した時点で圧縮機の回転数に上限値を設定し、前記サーモOFF後に室温と設定温度との温度差が前記第2閾値よりも大きい第3閾値以上になるか、もしくは、前記サーモOFFから第1所定時間の経過後に前記上限値の設定を解除することを特徴としている。   In order to solve the above-mentioned problem, an air conditioner according to a third aspect of the present invention thermostats a compressor when a temperature difference between room temperature and a set temperature reaches a first threshold, and sets the room temperature after the thermostat is turned off. An air conditioner that turns on the compressor when the temperature difference between the temperature and the set temperature reaches a second threshold value. When the thermo-off occurs, an upper limit value is set for the rotation speed of the compressor, and the thermo-off is set. After that, the temperature difference between the room temperature and the set temperature becomes equal to or more than a third threshold value larger than the second threshold value, or the setting of the upper limit value is canceled after a lapse of a first predetermined time from the thermo OFF. I have.

上記の構成によれば、サーモON後に空調負荷の大きな変動が生じ、室温と設定温度との温度差が第3閾値を超えた場合には、圧縮機の回転数の上限値を解除することで、部屋の空調負荷の変動に対応できる。一方で、室温と設定温度との温度差が第3閾値を超えることが無くても、サーモOFFから第1所定時間が経過すれば上限値設定が解除されるため、その後は空調負荷の変動への応答性を向上させることができる。   According to the configuration described above, when a large change in the air conditioning load occurs after the thermo-ON is performed and the temperature difference between the room temperature and the set temperature exceeds the third threshold, the upper limit value of the rotation speed of the compressor is released. It can respond to fluctuations in the air conditioning load in the room. On the other hand, even if the temperature difference between the room temperature and the set temperature does not exceed the third threshold value, the upper limit value setting is released after the first predetermined time has elapsed from the thermo-OFF, so that the air conditioning load may change thereafter. Responsiveness can be improved.

また、上記空気調和機では、前記上限値は、外気温度に応じてその値を変更されるものであり、冷房時には、外気温度が低いほど前記上限値が低い値に設定され、暖房時には、外気温度が高いほど前記上限値が低い値に設定される構成とすることができる。   Further, in the air conditioner, the upper limit value is changed in accordance with the outside air temperature.In cooling, the lower limit is set to a lower value as the outside air temperature is lower. The configuration may be such that the higher the temperature, the lower the upper limit is set.

上記の構成によれば、サーモOFFが発生しやすい状態ほど回転数の上限値が低い値に設定され、圧縮機の回転数規制が強まるため、頻繁なサーモOFFの発生を抑制することができる。また、サーモOFFが発生しにくい状態では、圧縮機の回転数規制が弱められ、空調負荷の変動への応答性を向上させることができる。   According to the above configuration, the upper limit value of the rotation speed is set to a lower value in a state where the thermo-OFF is more likely to occur, and the regulation of the rotation speed of the compressor is strengthened, so that the frequent occurrence of the thermo-off can be suppressed. Further, in a state where thermo-OFF does not easily occur, the regulation of the number of revolutions of the compressor is weakened, and the responsiveness to the fluctuation of the air conditioning load can be improved.

本発明の空気調和機は、頻繁なサーモOFFによる室温のハンチングを防ぎながら、部屋の空調負荷が変動した場合にも速やかに対応可能になるといった効果を奏する。   ADVANTAGE OF THE INVENTION The air conditioner of this invention has the effect of being able to respond promptly even when the air conditioning load of the room fluctuates, while preventing room temperature hunting due to frequent thermo-OFF.

実施の形態1に係る空気調和機の概略構成図である。FIG. 1 is a schematic configuration diagram of an air conditioner according to Embodiment 1. 実施の形態1に係る空気調和機の制御系を示すブロック図である。FIG. 3 is a block diagram showing a control system of the air conditioner according to Embodiment 1. 実施の形態1に係る空気調和機の回転数規制制御を示すフローチャートである。4 is a flowchart illustrating rotation speed regulation control of the air conditioner according to Embodiment 1. 実施の形態2に係る空気調和機の回転数規制制御を示すフローチャートである。9 is a flowchart illustrating rotation speed regulation control of the air conditioner according to Embodiment 2. 実施の形態3に係る空気調和機の回転数規制制御を示すフローチャートである。9 is a flowchart illustrating rotation speed regulation control of the air conditioner according to Embodiment 3.

〔実施の形態1〕
以下、本発明の実施の形態1について、図面を参照して詳細に説明する。図1は、本実施の形態1に係る空気調和機10の概略構成図であり、空気調和機10において適用される冷凍サイクルを示している。
[Embodiment 1]
Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an air conditioner 10 according to Embodiment 1 and shows a refrigeration cycle applied to the air conditioner 10.

空気調和機10は、室内ユニット100および室外ユニット110により構成されている。空気調和機10における冷凍サイクルの経路上には、室内ユニット100側に室内熱交換器101が備えられており、室外ユニット110側に圧縮機111、室外熱交換器112、四方弁113および膨張弁114が備えられている。また、室内ユニット100には、室内熱交換器101で熱交換された空気を室内に送り出すための室内ファン102が備えられており、室外ユニット110には、室外熱交換器112に空気を送るための室外ファン115が備えられている。   The air conditioner 10 includes an indoor unit 100 and an outdoor unit 110. On the path of the refrigeration cycle in the air conditioner 10, an indoor heat exchanger 101 is provided on the indoor unit 100 side, and a compressor 111, an outdoor heat exchanger 112, a four-way valve 113 and an expansion valve are provided on the outdoor unit 110 side. 114 are provided. Further, the indoor unit 100 is provided with an indoor fan 102 for sending out the air heat exchanged by the indoor heat exchanger 101 into the room, and the outdoor unit 110 is for sending air to the outdoor heat exchanger 112. Outdoor fan 115 is provided.

四方弁113は、空気調和機10の暖房/冷房運転に応じて、冷媒の循環の向きを切り替えるものである(図1は暖房運転時の状態を示している)。暖房運転時には、圧縮機111、四方弁113、室内熱交換器101、膨張弁114、室外熱交換器112、四方弁113、圧縮機111の順で冷媒が循環する。すなわち、暖房運転時には、室内熱交換器101が凝縮器、室外熱交換器112が蒸発器として機能する。   The four-way valve 113 switches the direction of circulation of the refrigerant according to the heating / cooling operation of the air conditioner 10 (FIG. 1 shows a state during the heating operation). During the heating operation, the refrigerant circulates in the order of the compressor 111, the four-way valve 113, the indoor heat exchanger 101, the expansion valve 114, the outdoor heat exchanger 112, the four-way valve 113, and the compressor 111. That is, during the heating operation, the indoor heat exchanger 101 functions as a condenser, and the outdoor heat exchanger 112 functions as an evaporator.

一方、冷房運転時には、圧縮機111、四方弁113、室外熱交換器112、膨張弁114、室内熱交換器101、四方弁113、圧縮機111の順で冷媒が循環する。すなわち、冷房運転時には、室外熱交換器112が凝縮器、室内熱交換器101が蒸発器として機能する。   On the other hand, during the cooling operation, the refrigerant circulates in the order of the compressor 111, the four-way valve 113, the outdoor heat exchanger 112, the expansion valve 114, the indoor heat exchanger 101, the four-way valve 113, and the compressor 111. That is, during the cooling operation, the outdoor heat exchanger 112 functions as a condenser, and the indoor heat exchanger 101 functions as an evaporator.

さらに、空気調和機10は、室内熱交換器101付近に室温センサ121を有している。室温センサ121は、室内熱交換器101における吸込空気の温度を室温として検出する。尚、空気調和機10は、室温センサ121以外にも、空気調和機10の制御に用いるための各種センサを有しているが、ここでは後述する外気温センサ122以外のセンサについての図示および説明を省略する。外気温センサ122は、室外熱交換器112付近に配置され、室外熱交換器112における吸込空気の温度を外気温度として検出する。   Further, the air conditioner 10 has a room temperature sensor 121 near the indoor heat exchanger 101. The room temperature sensor 121 detects the temperature of the intake air in the indoor heat exchanger 101 as room temperature. The air conditioner 10 has various sensors for controlling the air conditioner 10 in addition to the room temperature sensor 121. Here, illustration and description of sensors other than the outside air temperature sensor 122 described later are given. Is omitted. The outside air temperature sensor 122 is disposed near the outdoor heat exchanger 112 and detects the temperature of the intake air in the outdoor heat exchanger 112 as the outside air temperature.

図2は、空気調和機10の制御系を示すブロック図である。但し、図2では、室温に基づく圧縮機111の回転数制御に関する構成のみを示している。空気調和機10は、制御部20によって圧縮機111の回転数制御を行っており、制御部20は、主制御部201、タイマー202および温度差−回転数テーブル203を具備している。また、主制御部201は、圧縮機111および室温センサ121とも接続されている。   FIG. 2 is a block diagram illustrating a control system of the air conditioner 10. However, FIG. 2 shows only a configuration related to the control of the rotation speed of the compressor 111 based on the room temperature. The air conditioner 10 controls the rotation speed of the compressor 111 by the control unit 20, and the control unit 20 includes a main control unit 201, a timer 202, and a temperature difference-rotation speed table 203. Further, the main control unit 201 is also connected to the compressor 111 and the room temperature sensor 121.

空気調和機10は、圧縮機111の基本制御として、室温と設定温度との温度差に応じて圧縮機の回転数を変化させる運転制御を行っている。この運転制御では、室温センサ121にて検出される現在の室温が主制御部201に入力され、主制御部201は室温と設定温度との温度差を求める。さらに、主制御部201は、この温度差を温度差−回転数テーブル203への入力パラメータとして圧縮機111の要求回転数を求め、圧縮機111の回転数が要求回転数となるように圧縮機111を制御する。すなわち、温度差−回転数テーブル203には、室温と設定温度との温度差と、圧縮機111の要求回転数とが対応付けて格納されている。   The air conditioner 10 performs, as basic control of the compressor 111, operation control of changing the number of revolutions of the compressor according to a temperature difference between room temperature and a set temperature. In this operation control, the current room temperature detected by the room temperature sensor 121 is input to the main control unit 201, and the main control unit 201 obtains a temperature difference between the room temperature and the set temperature. Further, the main control unit 201 obtains the required rotation speed of the compressor 111 using the temperature difference as an input parameter to the temperature difference-rotation speed table 203, and sets the compressor rotation speed so that the rotation speed of the compressor 111 becomes the required rotation speed. 111 is controlled. That is, the temperature difference-rotation speed table 203 stores the temperature difference between the room temperature and the set temperature in association with the required rotation speed of the compressor 111.

温度差−回転数テーブル203を用いた上記運転制御により、空気調和機10では、室温と設定温度との温度差が大きい時は空気調和機の運転能力を上げることで室温を速やかに設定温度に近づけ、室温と設定温度との温度差が小さい時は空気調和機の運転能力を下げることで室温が設定温度付近で維持される。   With the above operation control using the temperature difference-rotational speed table 203, in the air conditioner 10, when the temperature difference between the room temperature and the set temperature is large, the room temperature is quickly brought to the set temperature by increasing the operation capability of the air conditioner. When the temperature difference between the room temperature and the set temperature is small, the room temperature is maintained near the set temperature by reducing the operation capacity of the air conditioner.

さらに、空気調和機10は、室温が設定温度に近く、圧縮機111の回転数を最も低く下げた場合であっても、空気調和機の能力が高すぎて室温が設定温度を超えて変動し続けてしまう場合には、圧縮機111の運転を一旦停止(サーモOFF)させる制御も行うようになっている。   Further, even when the room temperature is close to the set temperature and the rotation speed of the compressor 111 is reduced to the lowest, the air conditioner 10 has too high capacity of the air conditioner and the room temperature fluctuates beyond the set temperature. When the operation is continued, control for temporarily stopping the operation of the compressor 111 (thermo-OFF) is also performed.

すなわち、空気調和機10は、室温が設定温度を超えて変動し続けるような場合、室温と設定温度との温度差を第1閾値と比較し、該温度差が第1閾値に到達すると圧縮機111を一旦停止(サーモOFF)させる。具体的には、冷房運転時には、室温が設定温度よりも低い温度で下がり続けており、かつ、室温と設定温度との温度差が第1閾値に到達した時点で圧縮機111をサーモOFFさせる。一方、暖房運転時には、室温が設定温度よりも高い温度で上がり続けており、かつ、室温と設定温度との温度差が第1閾値に到達した時点で圧縮機111をサーモOFFさせる。   That is, when the room temperature continues to fluctuate beyond the set temperature, the air conditioner 10 compares the temperature difference between the room temperature and the set temperature with the first threshold, and when the temperature difference reaches the first threshold, the compressor 111 is temporarily stopped (thermo OFF). Specifically, during the cooling operation, the compressor 111 is thermo-off when the room temperature continues to decrease at a temperature lower than the set temperature and the temperature difference between the room temperature and the set temperature reaches the first threshold value. On the other hand, at the time of the heating operation, the room temperature continues to rise at a temperature higher than the set temperature, and when the temperature difference between the room temperature and the set temperature reaches the first threshold value, the compressor 111 is turned off.

圧縮機111のサーモOFF後は、室温が設定温度をサーモOFF時とは逆方向に超えて変動し続けるような場合、室温と設定温度との温度差を第2閾値と比較し、該温度差が第2閾値に到達すると圧縮機111の運転を再開(サーモON)させる。具体的には、冷房運転時には、室温が設定温度よりも高い温度で上がり続けている状態で、かつ、室温と設定温度との温度差が第2閾値に到達すると圧縮機111をサーモONさせる。一方、暖房運転時には、室温が設定温度よりも低い温度で下がり続けている状態で、かつ、室温と設定温度との温度差が第2閾値に到達すると圧縮機111をサーモONさせる。   If the room temperature continues to fluctuate beyond the set temperature in the opposite direction to the temperature after the thermo-off of the compressor 111 after the thermo-off, the temperature difference between the room temperature and the set temperature is compared with a second threshold value, and the temperature difference is determined. Reaches the second threshold, the operation of the compressor 111 is restarted (thermo-ON). Specifically, during the cooling operation, when the room temperature continues to rise at a temperature higher than the set temperature, and when the temperature difference between the room temperature and the set temperature reaches the second threshold, the compressor 111 is thermo-ON. On the other hand, during the heating operation, the compressor 111 is thermo-ON when the room temperature is continuously decreasing at a temperature lower than the set temperature and the temperature difference between the room temperature and the set temperature reaches the second threshold value.

但し、圧縮機111のサーモONに関しては、温度差が第2閾値に到達すると同時に実施されるとは限らない。これは、圧縮機111の運転停止後は、信頼性確保のため一定の運転禁止期間(約3分)が設けられるためである。すなわち、サーモOFFによって圧縮機111の運転が停止された後は、上記運転禁止期間が経過するまで圧縮機111をサーモONすることはできない。このため、圧縮機111のサーモOFF後の運転禁止期間中に、室温と設定温度との温度差が第2閾値に到達した場合は、上記運転禁止期間が経過するのを待って圧縮機111がサーモONされる。この場合は、圧縮機111がサーモONされた時点で、室温と設定温度との温度差が第2閾値を超えてしまっていることもあり得る。   However, the thermo-ON of the compressor 111 is not always performed at the same time when the temperature difference reaches the second threshold. This is because a fixed operation prohibition period (about 3 minutes) is provided after the operation of the compressor 111 is stopped to ensure reliability. That is, after the operation of the compressor 111 is stopped by the thermo-OFF, the compressor 111 cannot be thermo-ON until the operation prohibition period has elapsed. Therefore, when the temperature difference between the room temperature and the set temperature reaches the second threshold during the operation prohibition period after the thermostat of the compressor 111 is turned off, the compressor 111 waits until the operation prohibition period elapses, and The thermo is turned on. In this case, the temperature difference between the room temperature and the set temperature may exceed the second threshold at the time when the compressor 111 is thermo-ON.

続いて、本実施の形態1に係る空気調和機10の特徴である、サーモOFF後の圧縮機111の回転数規制制御について、図3のフローチャートを参照して説明する。   Next, the control of the rotation speed regulation of the compressor 111 after the thermo-OFF, which is a feature of the air conditioner 10 according to Embodiment 1, will be described with reference to the flowchart of FIG.

この回転数規制制御では、圧縮機111のサーモOFFが実施されたか否かが判定され(S1)、サーモOFFが実施された場合には(S1でYES)、サーモOFFの実施と同時に圧縮機111の回転数に上限値が設定される(S2)。この回転数上限値は、サーモOFFから第1所定時間(例えば30分)の間だけ設定されるものである。このため、主制御部201は、タイマー202によってサーモOFFからの経過時間を測定し、サーモOFFから第1所定時間が経過すると(S3でYES)、圧縮機111の回転数の上限値設定を解除する(S4)。   In this rotation speed regulation control, it is determined whether or not the thermo-off of the compressor 111 has been performed (S1). If the thermo-off has been performed (YES in S1), the compressor 111 is simultaneously performed with the thermo-off. An upper limit value is set for the number of rotations (S2). The rotation speed upper limit is set only during a first predetermined time (for example, 30 minutes) after the thermo-OFF. For this reason, the main control unit 201 measures the elapsed time from the thermo-OFF by the timer 202, and when the first predetermined time has elapsed from the thermo-OFF (YES in S3), cancels the setting of the upper limit value of the rotation speed of the compressor 111. (S4).

この回転数規制制御は、圧縮機111のサーモONとは独立して実施されるものである。すなわち、圧縮機111のサーモONは、通常は、サーモOFFから第1所定時間が経過するまでの任意のタイミングで生じることとなる。第1所定時間の経過前にサーモONが生じた場合、サーモON後もしばらくは回転数規制制御が継続されている。この回転数規制制御の継続中は、温度差−回転数テーブル203から求められる要求回転数が回転数規制制御によって設定される上限値を超える場合であっても、圧縮機111はこの上限値にて運転制御されるように回転数が規制される。   This rotation speed regulation control is performed independently of the thermo-ON of the compressor 111. That is, the thermo-ON of the compressor 111 normally occurs at an arbitrary timing from the thermo-OFF until the first predetermined time elapses. When the thermo-ON occurs before the first predetermined time has elapsed, the rotation speed regulation control is continued for a while after the thermo-ON. During the rotation speed regulation control, even if the required rotation speed obtained from the temperature difference-rotation speed table 203 exceeds the upper limit value set by the rotation speed regulation control, the compressor 111 maintains the upper limit value. The rotation speed is regulated so that the operation is controlled.

本実施の形態1に係る空気調和機10では、圧縮機111の回転数規制制御により、サーモON直後の空気調和機10の運転能力が抑えられ、室温の変動(冷房時には室温低下、暖房時には室温上昇)も緩やかとなる。このため、サーモON後に再び短時間でサーモOFFが生じることを回避し、室温のハンチングが生じることを防止でき、ユーザにとっての快適性が向上する。また、短時間にサーモOFFとサーモONとが繰り返される運転は、空気調和機10の消費電力の増大に繋がるため、本実施の形態1に係る空気調和機10は省エネ性にも優れたものとなる。   In the air conditioner 10 according to the first embodiment, the operation capability of the air conditioner 10 immediately after the thermo-ON is suppressed by the rotation speed regulation control of the compressor 111, and the room temperature varies (the room temperature decreases during cooling, the room temperature decreases during heating). Rise) is also moderate. Therefore, it is possible to prevent the thermo-OFF from occurring again in a short time after the thermo-ON, prevent the occurrence of hunting at room temperature, and improve the comfort for the user. In addition, since the operation in which the thermo-OFF and the thermo-ON are repeated in a short time leads to an increase in the power consumption of the air conditioner 10, the air conditioner 10 according to the first embodiment is also excellent in energy saving. Become.

一方で、圧縮機111のサーモOFFから再びサーモONするまでの時間は、空気調和機10の使用環境、特に部屋の断熱性に大きく依存する。例えば、部屋の断熱性が低い場合は、サーモOFF後の室温変動は大きく、サーモONまでの時間も短くなるため、サーモON後の回転数規制制御を受ける時間は長くなる。逆に、部屋の断熱性が高い場合は、サーモOFF後の室温変動は小さく、サーモONまでの時間も長くなるため、サーモON後の回転数規制制御を受ける時間は短くなる。   On the other hand, the time from the thermo-off of the compressor 111 to the thermo-on again depends largely on the use environment of the air conditioner 10, particularly the heat insulation of the room. For example, when the thermal insulation of the room is low, the room temperature fluctuation after the thermo-OFF is large and the time until the thermo-on is short, so that the time under the rotation speed regulation control after the thermo-on is long. Conversely, when the heat insulation of the room is high, the fluctuation in the room temperature after the thermo-OFF is small, and the time until the thermo-on is long, so that the time under the rotational speed regulation control after the thermo-on is short.

このように、本実施の形態1に係る空気調和機10は、サーモOFF後に上述の回転数規制制御を行うことで、サーモON後の回転数規制制御を受ける時間を可変とすることができ、空気調和機10の使用環境に応じた適切な制御が可能となる。具体的には、サーモOFF後の室温変動が大きくサーモONまでの時間が短くなるような環境では、サーモON後の回転数規制制御を受ける時間を長くし、室温のハンチング防止を重視した運転を行うことができる。一方で、サーモOFF後の室温変動が小さくサーモONまでの時間が長くなるような環境では、サーモON後の回転数規制制御を受ける時間を短くし、部屋の空調負荷の変動への対応性を高めた運転を行うことができる。   As described above, the air conditioner 10 according to Embodiment 1 performs the above-described rotation speed regulation control after the thermo-OFF, so that the time during which the rotation speed regulation control after the thermo-ON is received can be made variable. Appropriate control according to the use environment of the air conditioner 10 becomes possible. Specifically, in an environment where the room temperature fluctuation after the thermo-OFF is large and the time until the thermo-on is short, the time for receiving the rotation speed regulation control after the thermo-on is extended, and the operation in which the hunting at the room temperature is emphasized is emphasized. It can be carried out. On the other hand, in an environment in which the room temperature fluctuation after the thermo-OFF is small and the time until the thermo-on is long, the time to be subjected to the rotation speed regulation control after the thermo-on is shortened, and the response to the fluctuation of the air conditioning load of the room is reduced. Enhanced operation can be performed.

〔実施の形態2〕
以下、本発明の実施の形態2について、図面を参照して詳細に説明する。図4は、本実施の形態2に係る空気調和機10の回転数規制制御を示すフローチャートである。
[Embodiment 2]
Hereinafter, a second embodiment of the present invention will be described in detail with reference to the drawings. FIG. 4 is a flowchart showing the rotation speed control of the air conditioner 10 according to Embodiment 2.

この回転数規制制御では、圧縮機111のサーモOFFが実施されたか否かが判定され(S1)、サーモOFFが実施された場合には(S1でYES)、サーモOFFの実施と同時に圧縮機111の回転数に上限値が設定される(S2)。S1およびS2のステップは、実施の形態1における回転数規制制御と同じである。   In this rotation speed regulation control, it is determined whether or not the thermo-off of the compressor 111 has been performed (S1). If the thermo-off has been performed (YES in S1), the compressor 111 is simultaneously performed with the thermo-off. An upper limit value is set for the number of rotations (S2). Steps S1 and S2 are the same as those in the rotation speed regulation control in the first embodiment.

サーモOFF後は、主制御部201は室温と設定温度との温度差を第3閾値と比較し、該温度差が第3閾値以上になると(S3’でYES)、圧縮機111の回転数の上限値設定を解除する(S4)。具体的には、冷房運転時には、室温が設定温度よりも高い温度であり、かつ、室温と設定温度との温度差が第3閾値に到達すると圧縮機111の回転数の上限値設定を解除する。一方、暖房運転時には、室温が設定温度よりも低い温度であり、かつ、室温と設定温度との温度差が第3閾値に到達すると圧縮機111の回転数の上限値設定を解除する。   After the thermo-OFF, the main control unit 201 compares the temperature difference between the room temperature and the set temperature with the third threshold value, and when the temperature difference becomes equal to or more than the third threshold value (YES in S3 ′), the rotation speed of the compressor 111 is reduced. The upper limit value setting is released (S4). Specifically, during the cooling operation, when the room temperature is higher than the set temperature, and the temperature difference between the room temperature and the set temperature reaches the third threshold, the upper limit of the rotation speed of the compressor 111 is released. . On the other hand, at the time of the heating operation, when the room temperature is lower than the set temperature and the temperature difference between the room temperature and the set temperature reaches the third threshold, the upper limit of the rotation speed of the compressor 111 is released.

ここで、第3閾値は、サーモON判定に使用される第2閾値よりも高い値に設定される。すなわち、この回転数規制制御においては、S4で圧縮機111の回転数の上限値設定が解除された時点では、空気調和機10は既にサーモONしている。そして、空気調和機10が既にサーモONしているにも関わらずS3’でのYES判定が生じる場合とは、例えば、部屋への人の出入りや窓の開け閉めなどで空調負荷が大きく変動した場合であると考えられる。   Here, the third threshold is set to a value higher than the second threshold used for the thermo-ON determination. That is, in this rotation speed regulation control, at the time when the upper limit of the rotation speed of the compressor 111 is released in S4, the air conditioner 10 is already thermo-ON. The case where a YES determination is made in S3 ′ even though the air conditioner 10 is already thermo-ON means that the air-conditioning load has fluctuated greatly, for example, when a person enters or exits the room or opens or closes a window. It is considered to be the case.

このように、本実施の形態1に係る空気調和機10は、サーモOFF後に上述の回転数規制制御を行うことで、サーモON後に空調負荷の大きな変動が無く、室温と設定温度との温度差が第3閾値を超えない限りは、圧縮機111の回転数に上限値を設定することで、室温のハンチング防止を重視した運転を行うことができる。一方で、サーモON後に空調負荷の大きな変動が生じ、室温と設定温度との温度差が第3閾値を超えた場合には、圧縮機111の回転数の上限値を解除することで、部屋の空調負荷の変動にも対応できる。   As described above, the air conditioner 10 according to Embodiment 1 performs the above-described rotation speed regulation control after the thermo-OFF, so that there is no large change in the air-conditioning load after the thermo-ON, and the temperature difference between the room temperature and the set temperature. As long as the value does not exceed the third threshold value, by setting an upper limit value for the rotation speed of the compressor 111, it is possible to perform an operation that emphasizes hunting prevention at room temperature. On the other hand, if a large change in the air-conditioning load occurs after the thermo-ON and the temperature difference between the room temperature and the set temperature exceeds the third threshold, the upper limit of the number of revolutions of the compressor 111 is released to cancel the room. It can respond to fluctuations in air conditioning load.

〔実施の形態3〕
以下、本発明の実施の形態3について、図面を参照して詳細に説明する。図5は、本実施の形態3に係る空気調和機10の回転数規制制御を示すフローチャートである。本実施の形態3に係る回転数規制制御は、実施の形態1および2の回転数規制制御を組み合わせたものである。
[Embodiment 3]
Hereinafter, a third embodiment of the present invention will be described in detail with reference to the drawings. FIG. 5 is a flowchart showing the rotation speed regulation control of the air conditioner 10 according to Embodiment 3. The rotation speed regulation control according to the third embodiment is a combination of the rotation speed regulation control of the first and second embodiments.

この回転数規制制御では、圧縮機111のサーモOFFが実施されたか否かが判定され(S1)、サーモOFFが実施された場合には(S1でYES)、サーモOFFの実施と同時に圧縮機111の回転数に上限値が設定される(S2)。S1およびS2のステップは、実施の形態1および2における回転数規制制御と同じである。   In this rotation speed regulation control, it is determined whether or not the thermo-off of the compressor 111 has been performed (S1). If the thermo-off has been performed (YES in S1), the compressor 111 is simultaneously performed with the thermo-off. An upper limit value is set for the number of rotations (S2). Steps S1 and S2 are the same as those in the first embodiment and the second embodiment.

サーモOFF後は、主制御部201は、サーモOFFから第1所定時間が経過したか否かを判定するステップ(S3)と、室温と設定温度との温度差が第3閾値以上となったか否かを判定するステップ(S3’)との両方を行う。そして、S3およびS3’の両方がNO判定の間は圧縮機111の回転数の上限値設定を継続し、S3およびS3’の何れか一方がYES判定となった時に圧縮機111の回転数の上限値設定を解除する(S4)。   After the thermostat is turned off, the main control unit 201 determines whether a first predetermined time has elapsed since the thermostat was turned off (S3), and determines whether the temperature difference between the room temperature and the set temperature is equal to or greater than a third threshold value. (S3 '). Then, while both S3 and S3 'are determined to be NO, the setting of the upper limit of the rotational speed of the compressor 111 is continued, and when one of S3 and S3' is determined to be YES, the rotational speed of the compressor 111 is reduced. The upper limit value setting is released (S4).

このように、本実施の形態3に係る空気調和機10は、実施の形態1および2の回転数規制制御を組み合わせることで両方のメリットを享受できる。まず、サーモON後に空調負荷の大きな変動が生じ、室温と設定温度との温度差が第3閾値を超えた場合には、圧縮機111の回転数の上限値を解除することで、部屋の空調負荷の変動に対応できる。   As described above, the air conditioner 10 according to Embodiment 3 can enjoy both advantages by combining the rotation speed regulation controls of Embodiments 1 and 2. First, when a large change in the air-conditioning load occurs after the thermo-ON and the temperature difference between the room temperature and the set temperature exceeds the third threshold, the upper limit of the number of revolutions of the compressor 111 is released to control the air-conditioning of the room. Can respond to load fluctuations.

但し、サーモON後に空調負荷の変動が生じても、室温と設定温度との温度差が第3閾値を超えるとは限らない。このため、実施の形態2の回転数規制制御のみでは、室温と設定温度との温度差が第3閾値を超えることが無く、圧縮機111の回転数の上限値設定がいつまでも解除されないことも起こり得る。この場合、温度差−回転数テーブル203から圧縮機111の要求回転数を求め、圧縮機111の回転数が要求回転数となるように圧縮機111を制御するといった基本制御に移行できず、空調負荷の変動(温度差が第3閾値を超えない程度の比較的小さな空調負荷の変動)への応答性が低下したままで運転が継続される。   However, even if the air-conditioning load fluctuates after the thermo-ON, the temperature difference between the room temperature and the set temperature does not always exceed the third threshold. Therefore, with only the rotation speed regulation control according to the second embodiment, the temperature difference between the room temperature and the set temperature does not exceed the third threshold value, and the upper limit setting of the rotation speed of the compressor 111 may not be released forever. obtain. In this case, the required rotation speed of the compressor 111 is obtained from the temperature difference-rotation speed table 203, and the control cannot be shifted to the basic control of controlling the compressor 111 so that the rotation speed of the compressor 111 becomes the required rotation speed. The operation is continued while the responsiveness to a load change (a relatively small change in the air conditioning load such that the temperature difference does not exceed the third threshold) is reduced.

本実施の形態3の回転数規制制御では、室温と設定温度との温度差が第3閾値を超えることが無くても、サーモOFFから第1所定時間が経過すれば上限値設定が解除されるため、その後は空調負荷の変動への応答性が向上する。   In the rotation speed regulation control according to the third embodiment, even if the temperature difference between the room temperature and the set temperature does not exceed the third threshold, the upper limit value setting is released after the first predetermined time has elapsed since the thermo-OFF. Therefore, the responsiveness to a change in the air conditioning load is improved thereafter.

〔実施の形態4〕
上記実施の形態1〜3に係る回転数規制制御では、サーモOFFの実施と同時に圧縮機111の回転数に上限値を設定している。本実施の形態4は、この回転数の上限値を外気温度により変更することを特徴とする。
[Embodiment 4]
In the rotation speed regulation control according to the first to third embodiments, an upper limit value is set for the rotation speed of the compressor 111 at the same time as the execution of the thermo-OFF. The fourth embodiment is characterized in that the upper limit of the number of revolutions is changed depending on the outside air temperature.

空気調和機10の暖房/冷房効率は外気温度に大きな影響を受ける。具体的には、冷房時は外気温度が高いほど冷房効率は低下し、暖房時は外気温度が低いほど暖房効率は低下する。このため、冷房時を例にとれば、外気温度が低いほど空気調和機10の運転能力が相対的に高いものとなり、サーモOFFが発生しやすい状態となる。逆に、暖房時では、外気温度が高いほど、サーモOFFが発生しやすい状態となる。   The heating / cooling efficiency of the air conditioner 10 is greatly affected by the outside air temperature. Specifically, during cooling, the cooling efficiency decreases as the outside air temperature increases, and during heating, the heating efficiency decreases as the outside air temperature decreases. Therefore, for example, in the case of cooling, the lower the outside air temperature is, the higher the operation capability of the air conditioner 10 becomes, and the thermo-OFF is more likely to occur. Conversely, at the time of heating, the higher the outside air temperature, the more easily the thermo-OFF is likely to occur.

本実施の形態4に係る回転数規制制御では、冷房時には、外気温度が低いほど回転数の上限値を低い値に設定し、外気温度が高いほど回転数の上限値を高い値に設定する。一方、暖房時には、外気温度が高いほど回転数の上限値を低い値に設定し、外気温度が低いほど回転数の上限値を高い値に設定する。これにより、サーモOFFが発生しやすい状態ほど回転数の上限値が低い値に設定され、圧縮機111の回転数規制が強まるため、頻繁なサーモOFFの発生を抑制することができる。また、サーモOFFが発生しにくい状態では、圧縮機111の回転数規制が弱められ、空調負荷の変動への応答性が向上する。   In the rotation speed regulation control according to Embodiment 4, during cooling, the lower limit of the rotation speed is set to a lower value as the outside air temperature is lower, and the upper limit value of the rotation speed is set to a higher value as the outside air temperature is higher. On the other hand, during heating, the higher the outside air temperature, the lower the upper limit of the number of revolutions is set, and the lower the outside air temperature, the higher the upper limit of the number of revolutions is set. As a result, the upper limit of the number of revolutions is set to a lower value in a state where the thermo-OFF is more likely to occur, and the regulation of the number of revolutions of the compressor 111 is strengthened. Therefore, frequent occurrence of the thermo-off can be suppressed. Further, in a state where the thermo-OFF does not easily occur, the regulation of the rotation speed of the compressor 111 is weakened, and the responsiveness to the fluctuation of the air conditioning load is improved.

尚、本実施の形態4に係る回転数規制制御を行う場合、外気温度は室外ユニット110に備えられる外気温センサ122(図1参照)によって検出され、主制御部201に入力される。   When performing the rotation speed regulation control according to the fourth embodiment, the outside air temperature is detected by an outside air temperature sensor 122 (see FIG. 1) provided in the outdoor unit 110 and input to the main control unit 201.

今回開示した実施形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   The embodiment disclosed this time is an example in all respects, and is not a basis for restrictive interpretation. Therefore, the technical scope of the present invention is not interpreted only by the above-described embodiments, but is defined based on the description of the claims. In addition, all changes within the meaning and scope equivalent to the claims are included.

10 空気調和機
100 室内ユニット
101 室内熱交換器
102 室内ファン
110 室外ユニット
111 圧縮機
112 室外熱交換器
113 四方弁
114 膨張弁
115 室外ファン
121 室温センサ
122 外気温センサ
20 制御部
201 主制御部
202 タイマー
203 温度差−回転数テーブル
Reference Signs List 10 air conditioner 100 indoor unit 101 indoor heat exchanger 102 indoor fan 110 outdoor unit 111 compressor 112 outdoor heat exchanger 113 four-way valve 114 expansion valve 115 outdoor fan 121 room temperature sensor 122 outside air temperature sensor 20 control unit 201 main control unit 202 Timer 203 temperature difference-speed table

Claims (4)

室温と設定温度との温度差が第1閾値に到達すると圧縮機をサーモOFFし、前記サーモOFF後に室温と設定温度との温度差が第2閾値に到達すると圧縮機をサーモONする空気調和機であって、
前記サーモOFFが発生した時点で圧縮機の回転数に上限値を設定し、前記サーモOFFから第1所定時間の経過後に前記上限値の設定を解除することを特徴とする空気調和機。
An air conditioner that turns off the compressor when the temperature difference between room temperature and the set temperature reaches a first threshold, and turns on the compressor when the temperature difference between room temperature and the set temperature reaches a second threshold after the thermo-off. And
An air conditioner wherein an upper limit value is set for the number of revolutions of the compressor when the thermo OFF occurs, and the setting of the upper limit is canceled after a lapse of a first predetermined time from the thermo OFF.
室温と設定温度との温度差が第1閾値に到達すると圧縮機をサーモOFFし、前記サーモOFF後に室温と設定温度との温度差が第2閾値に到達すると圧縮機をサーモONする空気調和機であって、
前記サーモOFFが発生した時点で圧縮機の回転数に上限値を設定し、前記サーモOFF後に室温と設定温度との温度差が前記第2閾値よりも大きい第3閾値以上になると前記上限値の設定を解除することを特徴とする空気調和機。
An air conditioner that turns off the compressor when the temperature difference between room temperature and the set temperature reaches a first threshold, and turns on the compressor when the temperature difference between room temperature and the set temperature reaches a second threshold after the thermo-off. And
An upper limit value is set for the number of revolutions of the compressor at the time when the thermo-OFF occurs. An air conditioner characterized by canceling the setting.
室温と設定温度との温度差が第1閾値に到達すると圧縮機をサーモOFFし、前記サーモOFF後に室温と設定温度との温度差が第2閾値に到達すると圧縮機をサーモONする空気調和機であって、
前記サーモOFFが発生した時点で圧縮機の回転数に上限値を設定し、前記サーモOFF後に室温と設定温度との温度差が前記第2閾値よりも大きい第3閾値以上になるか、もしくは、前記サーモOFFから第1所定時間の経過後に前記上限値の設定を解除することを特徴とする空気調和機。
An air conditioner that turns off the compressor when the temperature difference between room temperature and the set temperature reaches a first threshold, and turns on the compressor when the temperature difference between room temperature and the set temperature reaches a second threshold after the thermo-off. And
An upper limit value is set for the number of revolutions of the compressor at the time when the thermo OFF occurs, and after the thermo OFF, the temperature difference between the room temperature and the set temperature becomes equal to or larger than a third threshold larger than the second threshold, or An air conditioner wherein the setting of the upper limit is canceled after a lapse of a first predetermined time from the thermo OFF.
請求項1から3の何れか1項に記載の空気調和機であって、
前記上限値は、外気温度に応じてその値を変更されるものであり、冷房時には、外気温度が低いほど前記上限値が低い値に設定され、暖房時には、外気温度が高いほど前記上限値が低い値に設定されることを特徴とする空気調和機。
The air conditioner according to any one of claims 1 to 3, wherein
The upper limit, the value is changed according to the outside air temperature, during cooling, the upper limit is set to a lower value as the outside air temperature is lower, and during heating, the upper limit is set as the outside air temperature is higher. An air conditioner characterized by being set to a low value.
JP2018155619A 2018-08-22 2018-08-22 Air conditioner Pending JP2020029990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018155619A JP2020029990A (en) 2018-08-22 2018-08-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018155619A JP2020029990A (en) 2018-08-22 2018-08-22 Air conditioner

Publications (1)

Publication Number Publication Date
JP2020029990A true JP2020029990A (en) 2020-02-27

Family

ID=69624215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018155619A Pending JP2020029990A (en) 2018-08-22 2018-08-22 Air conditioner

Country Status (1)

Country Link
JP (1) JP2020029990A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111895582A (en) * 2020-08-06 2020-11-06 广东Tcl智能暖通设备有限公司 Compressor control method, device and air conditioning system
CN112303840A (en) * 2020-09-17 2021-02-02 珠海格力电器股份有限公司 Air conditioner and air outlet temperature control method thereof
CN112628970A (en) * 2020-12-25 2021-04-09 珠海格力电器股份有限公司 Control method and control device of air conditioner and air conditioning system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111895582A (en) * 2020-08-06 2020-11-06 广东Tcl智能暖通设备有限公司 Compressor control method, device and air conditioning system
CN112303840A (en) * 2020-09-17 2021-02-02 珠海格力电器股份有限公司 Air conditioner and air outlet temperature control method thereof
CN112628970A (en) * 2020-12-25 2021-04-09 珠海格力电器股份有限公司 Control method and control device of air conditioner and air conditioning system

Similar Documents

Publication Publication Date Title
CN104406251B (en) Air conditioner dehumanization method and air conditioner
JP5695861B2 (en) Outside air processing air conditioner and multi air conditioning system using the same
US10712067B2 (en) Air-conditioning apparatus
KR101235546B1 (en) An air conditioner and a control method the same
US10670296B2 (en) System and method of adjusting compressor modulation range based on balance point detection of the conditioned space
JP2020034183A (en) Air conditioner
KR102558826B1 (en) Air conditioner system and control method
JP2009030915A (en) Air conditioner
JP2020029990A (en) Air conditioner
CN110160229A (en) The control method of air conditioner
WO2016016918A1 (en) Air conditioning device
US20120117995A1 (en) Energy Saving Device And Method For Cooling And Heating Apparatus
JP6094561B2 (en) Air conditioner
US20190353383A1 (en) Hvac occupancy dependent dynamic airflow adjustment systems and methods
JP4668769B2 (en) Air conditioner
JP3518350B2 (en) Heat pump heating system
JP2016003787A (en) Air conditioner
JP5538029B2 (en) AIR CONDITIONER AND CONTROL METHOD FOR AIR CONDITIONER
KR20190055954A (en) Air conditioner and method for controlling the same
JP3481076B2 (en) Operation control device for air conditioner
JP2002181367A (en) Control method of air conditioner
JP3526393B2 (en) Air conditioner
KR102437381B1 (en) Air conditioner and Method for controlling it
JPH01277160A (en) Airconditioner
JP7601748B2 (en) Air conditioning control device, air conditioning control system, and air conditioning control method