[go: up one dir, main page]

JP2021083061A - Wireless receiver - Google Patents

Wireless receiver Download PDF

Info

Publication number
JP2021083061A
JP2021083061A JP2019211785A JP2019211785A JP2021083061A JP 2021083061 A JP2021083061 A JP 2021083061A JP 2019211785 A JP2019211785 A JP 2019211785A JP 2019211785 A JP2019211785 A JP 2019211785A JP 2021083061 A JP2021083061 A JP 2021083061A
Authority
JP
Japan
Prior art keywords
signal
phase
received
tap
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019211785A
Other languages
Japanese (ja)
Other versions
JP7486305B2 (en
Inventor
田中 康英
Yasuhide Tanaka
康英 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2019211785A priority Critical patent/JP7486305B2/en
Publication of JP2021083061A publication Critical patent/JP2021083061A/en
Application granted granted Critical
Publication of JP7486305B2 publication Critical patent/JP7486305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Abstract

【課題】ダイバーシチ合成の位相制御を高精度に行うことを可能にする。【解決手段】無線信号に基づいて得られる受信信号に対してタップ係数に基づいてウェイトの乗算処理を施してタップ出力信号を出力するとともに受信信号の受信信号ベクトルを出力するタップ処理部14A,14Bと、タップ出力信号および受信信号ベクトルに基づいてタップ係数を出力する適応処理部15と、タップ出力信号をダイバーシチ合成して合成信号を出力する合成部16と、合成信号が最大電力を有する時の位相の回転量を出力する電力検出部17と、受信信号をダイバーシチ合成して合成受信信号を出力するダイバーシチ合成部20と、合成受信信号に対して復調処理を施す復調部21と、を有し、位相の回転量に基づいて受信信号の位相を回転した上でダイバーシチ合成部20でダイバーシチ合成して合成受信信号を得て該合成受信信号を復調部21で復調する。【選択図】図1PROBLEM TO BE SOLVED: To perform phase control of diversity synthesis with high accuracy. SOLUTION: A tap processing unit 14A, 14B that performs a weight multiplication process on a received signal obtained based on a radio signal based on a tap coefficient to output a tap output signal and output a received signal vector of the received signal. The adaptive processing unit 15 that outputs the tap coefficient based on the tap output signal and the received signal vector, the synthesis unit 16 that diversifies the tap output signal and outputs the composite signal, and when the composite signal has the maximum power. It has a power detection unit 17 that outputs the amount of phase rotation, a diversity synthesis unit 20 that diversifies the received signal and outputs a combined reception signal, and a demodulation unit 21 that performs demographic processing on the combined reception signal. After rotating the phase of the received signal based on the amount of rotation of the phase, the diversity synthesis unit 20 performs diversity synthesis to obtain a composite reception signal, and the synthesis reception signal is demoted by the demodulation unit 21. [Selection diagram] Fig. 1

Description

本発明は、複数のブランチに到来した受信波をスペースダイバーシチ方式に基づいて受信する無線受信装置に関する。 The present invention relates to a wireless receiver that receives received waves arriving at a plurality of branches based on a space diversity method.

マイクロ波無線通信システムのマイクロ波無線受信に関して、電波伝搬で発生するフェージング条件下においても良好な受信信号を得るための工夫として、複数のアンテナを用いたスペースダイバーシチ方式が知られている。ダイバーシチ効果を利用する無線通信技術として、例えば、複数のアンテナで受信した受信信号毎に対応するブランチを設け、当該各ブランチの受信信号を合成することによりスペースダイバーシチを実現する無線受信装置において、各ブランチの受信信号を重み付け係数に基づくウェイト処理によりダイバーシチ合成する際に、ウェイト処理対象とする受信信号の受信信号ベクトルから得られた共分散行列が単位行列となる様な修正行列を生成し、当該修正行列によって受信信号を変換し、当該変換後の受信信号の受信信号ベクトルから得られた共分散行列の最大固有値に対応した固有ベクトルを算出し、当該固有ベクトルを重み付け係数としてダイバーシチ合成を行う、ものが知られている(特許文献1)。 Regarding microwave radio reception of a microwave radio communication system, a space diversity method using a plurality of antennas is known as a device for obtaining a good reception signal even under fading conditions generated by radio wave propagation. As a wireless communication technology that utilizes the diversity effect, for example, in a wireless receiving device that realizes space diversity by providing a corresponding branch for each received signal received by a plurality of antennas and synthesizing the received signals of each branch. When diversifying the received signal of the branch by weight processing based on the weighting coefficient, a correction matrix is generated so that the eigenvalue matrix obtained from the received signal vector of the received signal to be weighted becomes the unit matrix. The received signal is converted by the correction matrix, the eigenvector corresponding to the maximum eigenvalue of the covariance matrix obtained from the received signal vector of the converted received signal is calculated, and the diversity synthesis is performed using the eigenvector as a weighting coefficient. It is known (Patent Document 1).

国際公開WO2013/018716International release WO 2013/018716

ところで、無線トラフィックの増大に伴う周波数利用の高効率化の要求からデジタル無線伝送においては高多値QAM(Quadrature Amplitude Modulation の略)方式による高速伝送の要求が高まっている。一方、受信性能の向上を目的とした従来のスペースダイバーシチ方式(具体的には例えば、最小振幅偏差合成法や同相合成法)を高多値QAM方式に適用した場合、ダイバーシチ合成前の位相制御誤差の影響で、ダイバーシチ合成後の信号を復調する際、性能の劣化を招くことがある。引用文献1に記載の技術は、ダイバーシチ合成前に波形等化を行うことによって合成誤差の影響を軽減することを技術思想としており、各ブランチの受信信号に対して波形等化を行った後にダイバーシチ合成を行うようにしている。すなわち、引用文献1に記載の技術では、ダイバーシチによる受信C/N比(Carrier to Noise ratio:搬送波対雑音比)の改善効果が得られる前の各ブランチの受信信号を使って波形等化を行うため、等化限界は単一のアンテナでの受信と同等であり、受信C/N比の低下に伴う等化性能の劣化は免れることができない、という問題がある。 By the way, due to the demand for higher efficiency of frequency utilization due to the increase in wireless traffic, the demand for high-speed transmission by the high multi-value QAM (Quadrature Amplitude Modulation) method is increasing in digital wireless transmission. On the other hand, when the conventional space diversity method (specifically, for example, the minimum amplitude deviation synthesis method or the in-phase synthesis method) for the purpose of improving the reception performance is applied to the high multi-level QAM method, the phase control error before the diversity synthesis is applied. When demodulating the signal after diversity synthesis, performance may deteriorate due to the influence of. The technique described in Cited Document 1 has a technical idea of reducing the influence of synthesis error by performing waveform equalization before diversity synthesis, and diversity after performing waveform equalization for the received signal of each branch. I try to synthesize. That is, in the technique described in Cited Document 1, waveform equalization is performed using the received signal of each branch before the effect of improving the received C / N ratio (Carrier to Noise ratio) by diversity is obtained. Therefore, the equalization limit is equivalent to reception with a single antenna, and there is a problem that deterioration of equalization performance due to a decrease in the reception C / N ratio cannot be avoided.

そこで本発明は、ダイバーシチ合成の位相制御を高精度に行うことが可能な無線受信装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a wireless receiving device capable of performing phase control of diversity synthesis with high accuracy.

上記課題を解決するために、請求項1に記載の発明は、複数のアンテナの各々に対応する複数のブランチ毎に設けられて、前記アンテナによって受信される無線信号に基づいて得られるベースバンド信号に対してアナログ−デジタル変換処理を施して受信信号を出力するA/D変換器と、前記複数のブランチ毎に設けられて、前記受信信号に対してタップ係数に基づいてウェイトの乗算処理を施してタップ出力信号を出力するとともに前記受信信号の受信信号ベクトルを出力するタップ処理部と、前記複数のブランチそれぞれの前記タップ出力信号および前記受信信号ベクトルに基づいて前記タップ係数を出力する適応処理部と、前記複数のブランチそれぞれの前記タップ出力信号をダイバーシチ合成して合成信号を出力する合成部と、前記合成信号が最大電力を有する時の位相の回転量を出力する電力検出部と、前記複数のブランチそれぞれの前記受信信号をダイバーシチ合成して合成受信信号を出力するダイバーシチ合成部と、前記合成受信信号に対して復調処理を施す復調部と、を有し、前記位相の回転量に基づいて前記受信信号の位相を回転した上で前記ダイバーシチ合成部でダイバーシチ合成して前記合成受信信号を得て該合成受信信号を前記復調部で復調する、ことを特徴とする無線受信装置である。 In order to solve the above problems, the invention according to claim 1 is provided for each of a plurality of branches corresponding to each of the plurality of antennas, and is a baseband signal obtained based on a radio signal received by the antennas. An A / D converter that performs analog-digital conversion processing on the received signal and outputs a received signal, and a weight multiplication process that is provided for each of the plurality of branches and performs weight multiplication processing on the received signal based on the tap coefficient. A tap processing unit that outputs a tap output signal and a reception signal vector of the reception signal, and an adaptive processing unit that outputs the tap coefficient based on the tap output signal and the reception signal vector of each of the plurality of branches. A synthesis unit that diversifies the tap output signals of each of the plurality of branches and outputs a composite signal, and a power detection unit that outputs a phase rotation amount when the composite signal has the maximum power. Each branch of the above branch has a diversity synthesis unit that diversifies and outputs the combined reception signal, and a demodulation unit that performs demographic processing on the combined reception signal, based on the amount of rotation of the phase. The radio receiving device is characterized in that after rotating the phase of the received signal, the diversity synthesis unit performs diversification synthesis to obtain the combined reception signal, and the combined reception signal is demoted by the demodulation unit.

請求項2に記載の発明は、請求項1に記載の無線受信装置において、前記アンテナによって受信される前記無線信号の変調方式が四位相偏移変調である、ことを特徴とする。 The invention according to claim 2 is characterized in that, in the wireless receiving device according to claim 1, the modulation method of the wireless signal received by the antenna is four-phase shift keying.

請求項3に記載の発明は、請求項1または2に記載の無線受信装置において、前記ブランチの数が2つである、ことを特徴とする。 The invention according to claim 3 is characterized in that, in the wireless receiving device according to claim 1 or 2, the number of the branches is two.

請求項1に記載の発明によれば、ダイバーシチ合成による受信C/N比の性能向上効果を得た信号で波形等化をするようにしているので、受信C/N比が低下した環境での等化性能を大幅に改善することができ、高精度なダイバーシチ合成を行うことが可能となり、延いては合成後の信号における高多値復調の劣化の発生を防ぐことが可能となる。請求項1に記載の発明によれば、また、ダイバーシチ合成の位相調整用の電力検出に対して適応等化処理を組み込み、等化後の信号を合成した上で電力検出をするようにしているため、反射波による干渉やアンテナ間の遅延誤差などの影響を排除した高精度な位相制御を行うことが可能となる。請求項1に記載の発明によれば、さらに、電力検出を目的としているため、高精度な等化は必要なく、受信C/N比が低い場合でも安定して動作する等化アルゴリズムを採用することができる。 According to the invention of claim 1, since the waveform is equalized with the signal obtained by the performance improving effect of the received C / N ratio by the diversity synthesis, the waveform is equalized in the environment where the received C / N ratio is lowered. The equalization performance can be significantly improved, highly accurate diversity synthesis can be performed, and it is possible to prevent deterioration of high multi-value demodulation in the signal after synthesis. According to the invention of claim 1, an adaptive equalization process is incorporated in the power detection for phase adjustment of diversity synthesis, and the power is detected after synthesizing the equalized signal. Therefore, it is possible to perform highly accurate phase control by eliminating the influence of interference due to reflected waves and delay error between antennas. According to the invention of claim 1, since the purpose is to detect power, high-precision equalization is not required, and an equalization algorithm that operates stably even when the reception C / N ratio is low is adopted. be able to.

請求項2に記載の発明によれば、四位相偏移変調方式が用いられて行われる無線通信において上記の効果を奏することが可能となる。 According to the second aspect of the present invention, it is possible to achieve the above effect in wireless communication performed by using the four-phase shift keying method.

請求項3に記載の発明によれば、ブランチの数が2つであるダイバーシチ合成において上記の効果を奏することが可能となる。 According to the third aspect of the invention, it is possible to achieve the above-mentioned effect in diversity synthesis in which the number of branches is two.

この発明の実施の形態に係る無線受信装置の概略構成を示す機能ブロック図である。It is a functional block diagram which shows the schematic structure of the wireless receiver device which concerns on embodiment of this invention. 図1に示す無線受信装置の相関検出特性を検証するための回路の概略構成を示す機能ブロック図である。It is a functional block diagram which shows the schematic structure of the circuit for verifying the correlation detection characteristic of the wireless receiver shown in FIG. 図2に示す回路による、図1に示す無線受信装置の相関検出特性を示すグラフである。It is a graph which shows the correlation detection characteristic of the wireless receiver shown in FIG. 1 by the circuit shown in FIG.

以下、この発明を図示の実施の形態に基づいて説明する。なお、以下では、この発明の特徴的な構成について説明し、スペースダイバーシチ方式で通信を行う際の従来と同様の仕組みについては説明を省略する。 Hereinafter, the present invention will be described based on the illustrated embodiment. In the following, the characteristic configuration of the present invention will be described, and the description of the same mechanism as the conventional one when communicating by the space diversity method will be omitted.

図1は、この発明の実施の形態に係る無線受信装置1の概略構成を示す機能ブロック図である。この無線受信装置1は、単一のアンテナが設置された送信側の固定局と複数のアンテナが設置された受信側の固定局との間で無線通信(特に、マイクロ波無線通信)を行うために、受信側の固定局に設けられる機序である。 FIG. 1 is a functional block diagram showing a schematic configuration of a wireless receiver 1 according to an embodiment of the present invention. This wireless receiving device 1 is for performing wireless communication (particularly microwave wireless communication) between a fixed station on the transmitting side in which a single antenna is installed and a fixed station on the receiving side in which a plurality of antennas are installed. In addition, it is a mechanism provided in the fixed station on the receiving side.

この実施の形態に係る無線受信装置1は、2つのアンテナ11A,11Bの各々に対応する2つのブランチ(ここでは、第1ブランチおよび第2ブランチ)毎に設けられて、アンテナ11A,11Bによって受信される無線信号に基づいて得られるベースバンド信号(I,Q)に対してアナログ−デジタル変換処理を施して受信信号(I_1,Q_1 および I_2,Q_2)を出力するA/D変換器13A,13Bと、2つのブランチ毎に設けられて、受信信号(I_1,Q_1 および I_2,Q_2)に対してタップ係数(W_1 および W_2)に基づいてウェイトの乗算処理を施してタップ出力信号(Ti_1,Tq_1 および Ti_2,Tq_2)を出力するとともに受信信号の受信信号ベクトル(V_1 および V_2)を出力するタップ処理部14A,14Bと、2つのブランチそれぞれのタップ出力信号(Ti_1,Tq_1 および Ti_2,Tq_2)および受信信号ベクトル(V_1 および V_2)に基づいてタップ係数(W_1 および W_2)を出力する適応処理部15と、2つのブランチそれぞれのタップ出力信号をダイバーシチ合成して合成信号(Ci,Cq)を出力する合成部16と、合成信号(Ci,Cq)が最大電力を有する時の位相の回転量Δθを出力する電力検出部17と、2つのブランチそれぞれの受信信号(I_1,Q_1 および I_2,Q_2)をダイバーシチ合成して合成受信信号(Ic,Qc)を出力するダイバーシチ合成部20と、合成受信信号(Ic,Qc)に対して復調処理を施す復調部21と、を有し、位相の回転量Δθに基づいて受信信号(I_2,Q_2)の位相を回転した上でダイバーシチ合成部20でダイバーシチ合成して合成受信信号(Ic,Qc)を得て該合成受信信号(Ic,Qc)を復調部21で復調する、ようにしている。 The radio receiving device 1 according to this embodiment is provided for each of two branches (here, the first branch and the second branch) corresponding to each of the two antennas 11A and 11B, and is received by the antennas 11A and 11B. A / D converters 13A, 13B that output received signals (I_1, Q_1 and I_2, Q_2) by performing analog-digital conversion processing on the baseband signals (I, Q) obtained based on the radio signals to be generated. And, it is provided for each of the two branches, and the received signal (I_1, Q_1 and I_2, Q_2) is subjected to weight multiplication processing based on the tap coefficient (W_1 and W_2), and the tap output signal (Ti_1, Tq_1 and) The tap processing units 14A and 14B that output Ti_2, Tq_2) and the received signal vectors (V_1 and V_2) of the received signal, and the tap output signals (Ti_1, Tq_1 and Ti_2, Tq_2) and received signals of the two branches, respectively. An adaptive processing unit 15 that outputs tap coefficients (W_1 and W_2) based on vectors (V_1 and V_2), and a synthesis unit that diversifies the tap output signals of each of the two branches and outputs a composite signal (Ci, Cq). Diversity synthesis of 16 and the power detection unit 17 that outputs the phase rotation amount Δθ when the combined signal (Ci, Cq) has the maximum power, and the received signals (I_1, Q_1 and I_2, Q_2) of each of the two branches. It has a diversity synthesis unit 20 that outputs the composite reception signal (Ic, Qc), and a demodulation unit 21 that performs demographic processing on the composite reception signal (Ic, Qc), and is based on the phase rotation amount Δθ. After rotating the phase of the received signal (I_2, Q_2), the diversity synthesis unit 20 performs diversity synthesis to obtain a composite reception signal (Ic, Qc), and the composite reception signal (Ic, Qc) is demoted by the demodulation unit 21. I am trying to do it.

この実施の形態に係る無線受信装置1は、スペースダイバーシチにおけるブランチとして、2つのアンテナの各々に対応する2つのブランチを有し、各ブランチに対応して混合器、A/D変換器、およびタップ処理部がそれぞれ2個ずつ備えられる。 The wireless receiver 1 according to this embodiment has two branches corresponding to each of the two antennas as branches in the space diversity, and a mixer, an A / D converter, and a tap corresponding to each branch. Two processing units are provided for each.

アンテナ11A,11Bは、送信側の固定局のアンテナ(図示していない)から送信される無線信号を受信し、受信した無線信号に応じた受信波信号を出力する。 The antennas 11A and 11B receive a radio signal transmitted from an antenna (not shown) of a fixed station on the transmitting side, and output a received wave signal corresponding to the received radio signal.

混合器12A,12Bは、アンテナ11A,11Bから出力される受信波信号の入力を受け、受信波信号に対して直交復調処理を施して同相成分のベースバンド信号Iおよび直交成分のベースバンド信号Qを出力する。この実施の形態では、変調方式として、四位相偏移変調(QPSK:Quadrature Phase Shift Keying の略)が用いられる。 The mixers 12A and 12B receive the input of the received wave signal output from the antennas 11A and 11B, perform orthogonal demodulation processing on the received wave signal, and perform orthogonal demodulation processing on the received wave signal to perform the in-phase component baseband signal I and the orthogonal component baseband signal Q. Is output. In this embodiment, four-phase shift keying (QPSK: an abbreviation for Quadrature Phase Sheying) is used as the modulation method.

第1ブランチのA/D変換器13Aは、混合器12Aから出力される同相成分のベースバンド信号Iに対してアナログ−デジタル変換処理を施して受信信号(同相成分I_1)を出力するとともに、直交成分のベースバンド信号Qに対してアナログ−デジタル変換処理を施して受信信号(直交成分Q_1)を出力する。 The A / D converter 13A of the first branch performs analog-digital conversion processing on the baseband signal I of the in-phase component output from the mixer 12A, outputs a received signal (in-phase component I_1), and is orthogonal. The baseband signal Q of the component is subjected to analog-to-digital conversion processing, and the received signal (orthogonal component Q_1) is output.

第2ブランチのA/D変換器13Bは、混合器12Bから出力される同相成分のベースバンド信号Iに対してアナログ−デジタル変換処理を施して受信信号(同相成分I_2)を出力するとともに、直交成分のベースバンド信号Qに対してアナログ−デジタル変換処理を施して受信信号(直交成分Q_2)を出力する。 The A / D converter 13B of the second branch performs analog-digital conversion processing on the baseband signal I of the in-phase component output from the mixer 12B, outputs a received signal (in-phase component I_2), and is orthogonal. The baseband signal Q of the component is subjected to analog-to-digital conversion processing, and the received signal (orthogonal component Q_2) is output.

第1ブランチのタップ処理部14Aは、A/D変換器13Aから出力される受信信号に対して、適応処理部15から出力される第1ブランチ側の信号に対応する重み付け係数(タップ係数やウェイトベクトルなどとも呼ばれる)に基づいてウェイトの乗算処理を施して、同相成分の信号および直交成分の信号を出力する。第1ブランチのタップ処理部14Aは、具体的には、A/D変換器13Aから出力される受信信号(同相成分I_1、直交成分Q_1)に、適応処理部15から出力される重み付け係数W_1を乗算して、タップ出力信号(同相成分Ti_1、直交成分Tq_1)を生成する。 The tap processing unit 14A of the first branch has a weighting coefficient (tap coefficient and weight) corresponding to the signal on the first branch side output from the adaptive processing unit 15 with respect to the received signal output from the A / D converter 13A. Weight multiplication processing is performed based on (also called a vector), and a signal having an in-phase component and a signal having an orthogonal component are output. Specifically, the tap processing unit 14A of the first branch applies the weighting coefficient W_1 output from the adaptive processing unit 15 to the received signals (in-phase component I_1, orthogonal component Q_1) output from the A / D converter 13A. Multiply to generate a tap output signal (in-phase component Ti_1, orthogonal component Tq_1).

そして、第1ブランチのタップ処理部14Aは、生成したタップ出力信号(同相成分Ti_1、直交成分Tq_1)を適応処理部15および合成部16に対して出力する。第1ブランチのタップ処理部14Aは、また、A/D変換器13Aから出力される受信信号(同相成分I_1、直交成分Q_1)を第1ブランチの受信信号ベクトルV_1として適応処理部15に対して供給する。 Then, the tap processing unit 14A of the first branch outputs the generated tap output signals (in-phase component Ti_1, orthogonal component Tq_1) to the adaptive processing unit 15 and the synthesis unit 16. The tap processing unit 14A of the first branch also uses the received signal (in-phase component I_1, orthogonal component Q_1) output from the A / D converter 13A as the received signal vector V_1 of the first branch with respect to the adaptive processing unit 15. Supply.

第2ブランチのタップ処理部14Bは、A/D変換器13Bから出力される受信信号に対して、適応処理部15から出力される第2ブランチ側の信号に対応する重み付け係数(タップ係数やウェイトベクトルなどとも呼ばれる)に基づいてウェイトの乗算処理を施して、同相成分の信号および直交成分の信号を出力する。第2ブランチのタップ処理部14Bは、具体的には、A/D変換器13Bから出力される受信信号(同相成分I_2、直交成分Q_2)に、適応処理部15から出力される重み付け係数W_2を乗算して、タップ出力信号(同相成分Ti_2、直交成分Tq_2)を生成する。 The tap processing unit 14B of the second branch has a weighting coefficient (tap coefficient and weight) corresponding to the signal on the second branch side output from the adaptive processing unit 15 with respect to the received signal output from the A / D converter 13B. Weight multiplication processing is performed based on (also called a vector), and a signal having an in-phase component and a signal having an orthogonal component are output. Specifically, the tap processing unit 14B of the second branch applies the weighting coefficient W_2 output from the adaptive processing unit 15 to the received signals (in-phase component I_2, orthogonal component Q_2) output from the A / D converter 13B. Multiply to generate a tap output signal (in-phase component Ti_2, orthogonal component Tq_2).

そして、第2ブランチのタップ処理部14Bは、生成したタップ出力信号(同相成分Ti_2、直交成分Tq_2)を適応処理部15に対して出力するとともに合成部16へと向けて出力する。第2ブランチのタップ処理部14Bは、また、A/D変換器13Bから出力される受信信号(同相成分I_2、直交成分Q_2)を第2ブランチの受信信号ベクトルV_2として適応処理部15に対して供給する。 Then, the tap processing unit 14B of the second branch outputs the generated tap output signals (in-phase component Ti_2, orthogonal component Tq_2) to the adaptive processing unit 15 and outputs them to the synthesis unit 16. The tap processing unit 14B of the second branch also uses the received signals (in-phase component I_2, orthogonal component Q_2) output from the A / D converter 13B as the received signal vector V_2 of the second branch with respect to the adaptive processing unit 15. Supply.

適応処理部15は、適応等化処理を行ってタップ更新を実行する。適応処理部15は、具体的には、第1ブランチのタップ処理部14Aから出力される第1ブランチの受信信号ベクトルV_1およびタップ出力信号(同相成分Ti_1、直交成分Tq_1)、ならびに、第2ブランチのタップ処理部14Bから出力される第2ブランチの受信信号ベクトルV_2およびタップ出力信号(同相成分Ti_2、直交成分Tq_2)を用いて、第1ブランチ側の信号に対応する重み付け係数W_1および第2ブランチ側の信号に対応する重み付け係数W_2を計算する。 The adaptation processing unit 15 performs adaptation equalization processing and executes tap update. Specifically, the adaptive processing unit 15 includes a reception signal vector V_1 and a tap output signal (in-phase component Ti_1, orthogonal component Tq_1) of the first branch output from the tap processing unit 14A of the first branch, and a second branch. The weighting coefficient W_1 and the second branch corresponding to the signal on the first branch side are used by using the received signal vector V_2 of the second branch and the tap output signal (in-phase component Ti_2, orthogonal component Tq_2) output from the tap processing unit 14B of the above. The weighting coefficient W_2 corresponding to the side signal is calculated.

そして、適応処理部15は、計算した第1ブランチ側の信号に対応する重み付け係数W_1を第1ブランチのタップ処理部14Aに対して出力し、計算した第2ブランチ側の信号に対応する重み付け係数W_2を第2ブランチのタップ処理部14Bに対して出力する。 Then, the adaptive processing unit 15 outputs the calculated weighting coefficient W_1 corresponding to the signal on the first branch side to the tap processing unit 14A of the first branch, and the weighting coefficient corresponding to the calculated signal on the second branch side. W_2 is output to the tap processing unit 14B of the second branch.

合成部16は、第1ブランチ側の系統の信号の同相成分および直交成分と第2ブランチ側の系統の信号の同相成分および直交成分とをダイバーシチ合成して合成信号(同相成分Ci、直交成分Cq)を出力する。合成部16は、2系統の信号系列を並列的に入力させ、所定の合成方式で2系統の信号系列を合成し、合成した1系統の信号系列を出力する。合成部16における合成方式としては、同相合成が用いられる。 The synthesizing unit 16 diversifies the in-phase component and the orthogonal component of the signal of the system on the first branch side and the in-phase component and the orthogonal component of the signal of the system on the second branch side, and synthesizes the synthesized signal (in-phase component Ci, the orthogonal component Cq). ) Is output. The synthesis unit 16 inputs two signal sequences in parallel, synthesizes the two signal sequences by a predetermined synthesis method, and outputs the synthesized signal sequence of one system. In-phase synthesis is used as the synthesis method in the synthesis unit 16.

電力検出部17は、合成部16から出力される合成信号(同相成分Ci、直交成分Cq)の信号レベルに基づいて、前記合成信号が最大電力を有する時の位相の回転量Δθを求める。そして、電力検出部17は、求めた位相の回転量Δθを位相調整部18に対して出力するとともに混合器19に対して出力する。 The power detection unit 17 obtains the phase rotation amount Δθ when the combined signal has the maximum power, based on the signal level of the combined signal (in-phase component Ci, orthogonal component Cq) output from the synthesis unit 16. Then, the power detection unit 17 outputs the obtained phase rotation amount Δθ to the phase adjustment unit 18 and outputs it to the mixer 19.

位相調整部18は、第2ブランチのタップ処理部14Bから出力されるタップ出力信号(同相成分Ti_2、直交成分Tq_2)の位相を、電力検出部17から出力される位相の回転量Δθだけ回転させて位相回転信号(同相成分Ri_2、直交成分Rq_2)を生成して合成部16に対して出力する。つまり、合成部16は、第1ブランチ側の系統の信号として第1ブランチのタップ処理部14Aから出力されるタップ出力信号(同相成分Ti_1、直交成分Tq_1)と、第2ブランチ側の系統の信号として位相調整部18から出力される位相回転信号(同相成分Ri_2、直交成分Rq_2)とをダイバーシチ合成する。 The phase adjusting unit 18 rotates the phase of the tap output signal (in-phase component Ti_2, orthogonal component Tq_2) output from the tap processing unit 14B of the second branch by the amount of rotation Δθ of the phase output from the power detection unit 17. A phase rotation signal (in-phase component Ri_2, orthogonal component Rq_2) is generated and output to the synthesis unit 16. That is, the synthesis unit 16 has a tap output signal (in-phase component Ti_1, orthogonal component Tq_1) output from the tap processing unit 14A of the first branch as a signal of the system on the first branch side, and a signal of the system on the second branch side. The phase rotation signal (in-phase component Ri_2, orthogonal component Rq_2) output from the phase adjusting unit 18 is diversified.

混合器19は、第2ブランチのA/D変換器13Bから出力される受信信号(同相成分I_2、直交成分Q_2)の位相を、電力検出部17から出力される位相の回転量Δθだけ回転させて位相調整信号(同相成分Pi_2、直交成分Pq_2)を生成してダイバーシチ合成部20に対して出力する。なお、図に示す例では第2ブランチ側の系統に対して混合器19が設けられるようにしているが、第1ブランチ側の系統の信号の位相と第2ブランチ側の系統の信号の位相とが相対的に位相の回転量Δθだけ回転するのであれば、図に示す構成には限定されない。 The mixer 19 rotates the phase of the received signal (in-phase component I_2, orthogonal component Q_2) output from the A / D converter 13B of the second branch by the amount of rotation Δθ of the phase output from the power detection unit 17. A phase adjustment signal (in-phase component Pi_2, orthogonal component Pq_2) is generated and output to the diversity synthesis unit 20. In the example shown in the figure, the mixer 19 is provided for the system on the second branch side, but the phase of the signal of the system on the first branch side and the phase of the signal of the system on the second branch side Is not limited to the configuration shown in the figure as long as it rotates by the relative rotation amount Δθ of the phase.

ダイバーシチ合成部20は、第1ブランチのA/D変換器13Aから出力される信号系列である受信信号(同相成分I_1、直交成分Q_1)と第2ブランチ側の系統に設けられている混合器19から出力される信号系列である位相調整信号(同相成分Pi_2、直交成分Pq_2)とをダイバーシチ合成して合成受信信号(同相成分Ic、直交成分Qc)を出力する。ダイバーシチ合成部20は、2系統の信号系列を並列的に入力させ、所定の合成方式で2系統の信号系列を合成し、合成した1系統の信号系列を出力する。ダイバーシチ合成部20における合成方式としては、合成部16における合成方式と同じ合成方式(即ち、同相合成)が用いられる。 The diversity synthesizer 20 includes a received signal (in-phase component I_1, orthogonal component Q_1), which is a signal sequence output from the A / D converter 13A of the first branch, and a mixer 19 provided in the system on the second branch side. The phase adjustment signal (in-phase component Pi_2, orthogonal component Pq_2), which is a signal sequence output from the above, is diversified and the combined reception signal (in-phase component Ic, orthogonal component Qc) is output. The diversity synthesis unit 20 inputs two signal sequences in parallel, synthesizes the two signal sequences by a predetermined synthesis method, and outputs the synthesized signal sequence of one system. As the synthesis method in the diversity synthesis unit 20, the same synthesis method as the synthesis method in the synthesis unit 16 (that is, in-phase synthesis) is used.

復調部21は、ダイバーシチ合成部20から出力される信号系列である合成受信信号(同相成分Ic、直交成分Qc)の入力を受け、合成受信信号(同相成分Ic、直交成分Qc)に対して変調方式として四位相偏移変調(QPSK:Quadrature Phase Shift Keying の略)を用いて復調処理を施して復調結果の信号系列を出力する。 The demodulation unit 21 receives an input of a composite reception signal (in-phase component Ic, orthogonal component Qc), which is a signal series output from the diversity synthesis unit 20, and modulates the composite reception signal (in-phase component Ic, orthogonal component Qc). As a method, demodulation processing is performed using four-phase shift keying (QPSK: an abbreviation for Quadrature Phase Sheying), and the signal sequence of the demodulation result is output.

次に、このような構成の無線受信装置1の作用、動作などについて説明する。 Next, the operation, operation, and the like of the wireless receiving device 1 having such a configuration will be described.

第1ブランチに関する処理として、アンテナ11Aが受信した無線信号に応じた受信波信号を混合器12Aへと出力し、混合器12Aが受信波信号に対して直交復調処理を施して同相成分のベースバンド信号Iおよび直交成分のベースバンド信号QをA/D変換器13Aへと出力し、A/D変換器13Aが前記ベースバンド信号I,Qに対してアナログ−デジタル変換処理を施して受信信号(同相成分I_1、直交成分Q_1)をタップ処理部14Aへと出力する。タップ処理部14Aは、受信信号(同相成分I_1、直交成分Q_1)に対して、適応処理部15から出力される第1ブランチ側の信号に対応する重み付け係数W_1を用いてウェイトの乗算処理を施してタップ出力信号(同相成分Ti_1、直交成分Tq_1)を適応処理部15および合成部16に対して出力する。 As the processing related to the first branch, the received wave signal corresponding to the radio signal received by the antenna 11A is output to the mixer 12A, and the mixer 12A performs orthogonal demodulation processing on the received wave signal to perform the base band of the in-phase component. The signal I and the baseband signal Q of the orthogonal component are output to the A / D converter 13A, and the A / D converter 13A performs analog-digital conversion processing on the baseband signals I and Q to receive the received signal ( The in-phase component I_1 and the orthogonal component Q_1) are output to the tap processing unit 14A. The tap processing unit 14A performs weight multiplication processing on the received signal (in-phase component I_1, orthogonal component Q_1) using the weighting coefficient W_1 corresponding to the signal on the first branch side output from the adaptive processing unit 15. The tap output signal (in-phase component Ti_1, orthogonal component Tq_1) is output to the adaptive processing unit 15 and the synthesis unit 16.

第2ブランチに関する処理として、アンテナ11Bが受信した無線信号に応じた受信波信号を混合器12Bへと出力し、混合器12Bが受信波信号に対して直交復調処理を施して同相成分のベースバンド信号Iおよび直交成分のベースバンド信号QをA/D変換器13Bへと出力し、A/D変換器13Bが前記ベースバンド信号I,Qに対してアナログ−デジタル変換処理を施して受信信号(同相成分I_2、直交成分Q_2)をタップ処理部14Bへと出力する。タップ処理部14Bは、受信信号(同相成分I_2、直交成分Q_2)に対して、適応処理部15から出力される第2ブランチ側の信号に対応する重み付け係数W_2を用いてウェイトの乗算処理を施してタップ出力信号(同相成分Ti_2、直交成分Tq_2)を適応処理部15に対して出力するとともに合成部16へと向けて出力する。 As the processing related to the second branch, the received wave signal corresponding to the radio signal received by the antenna 11B is output to the mixer 12B, and the mixer 12B performs orthogonal demodulation processing on the received wave signal to perform the base band of the in-phase component. The signal I and the baseband signal Q of the orthogonal component are output to the A / D converter 13B, and the A / D converter 13B performs analog-digital conversion processing on the baseband signals I and Q to receive the received signal ( The in-phase component I_2 and the orthogonal component Q_2) are output to the tap processing unit 14B. The tap processing unit 14B performs weight multiplication processing on the received signal (in-phase component I_2, orthogonal component Q_2) using the weighting coefficient W_2 corresponding to the signal on the second branch side output from the adaptive processing unit 15. The tap output signal (in-phase component Ti_2, orthogonal component Tq_2) is output to the adaptive processing unit 15 and output to the synthesis unit 16.

また、第1ブランチのタップ処理部14Aは受信信号(同相成分I_1、直交成分Q_1)を第1ブランチの受信信号ベクトルV_1として適応処理部15に対して供給し、第2ブランチのタップ処理部14Bは受信信号(同相成分I_2、直交成分Q_2)を第2ブランチの受信信号ベクトルV_2として適応処理部15に対して供給する。 Further, the tap processing unit 14A of the first branch supplies the received signal (in-phase component I_1, orthogonal component Q_1) as the received signal vector V_1 of the first branch to the adaptive processing unit 15, and the tap processing unit 14B of the second branch Supply the received signal (in-phase component I_2, orthogonal component Q_2) to the adaptive processing unit 15 as the received signal vector V_2 of the second branch.

次に、適応処理部15は、タップ出力信号(同相成分Ti_1、直交成分Tq_1)および第1ブランチの受信信号ベクトルV_1ならびにタップ出力信号(同相成分Ti_2、直交成分Tq_2)および第2ブランチの受信信号ベクトルV_2を用いて第1ブランチ側の信号に対応する重み付け係数W_1および第2ブランチ側の信号に対応する重み付け係数W_2を計算して、第1ブランチのタップ処理部14Aおよび第2ブランチのタップ処理部14Bに対して出力する。 Next, the adaptive processing unit 15 receives the tap output signal (in-phase component Ti_1, orthogonal component Tq_1), the reception signal vector V_1 of the first branch, the tap output signal (in-phase component Ti_2, the orthogonal component Tq_2), and the reception signal of the second branch. Using the vector V_2, the weighting coefficient W_1 corresponding to the signal on the first branch side and the weighting coefficient W_2 corresponding to the signal on the second branch side are calculated, and the tap processing unit 14A of the first branch and the tap processing of the second branch are performed. Output to unit 14B.

また、合成部16が第1ブランチ側の系統の信号(具体的には、タップ出力信号の同相成分Ti_1および直交成分Tq_1)と第2ブランチ側の系統の信号(具体的には、位相回転信号の同相成分Ri_2および直交成分Rq_2)とをダイバーシチ合成して合成信号(同相成分Ci、直交成分Cq)を電力検出部17へと出力し、電力検出部17が合成信号(同相成分Ci、直交成分Cq)の信号レベルに基づいて前記合成信号が最大電力を有する時の位相の回転量Δθを求めて位相調整部18および混合器19に対して出力し、位相調整部18が第2ブランチのタップ処理部14Bから出力されるタップ出力信号(同相成分Ti_2、直交成分Tq_2)の位相を位相の回転量Δθだけ回転させて位相回転信号(同相成分Ri_2、直交成分Rq_2)を合成部16に対して出力する。 Further, the synthesis unit 16 has a signal of the system on the first branch side (specifically, the in-phase component Ti_1 and the orthogonal component Tq_1 of the tap output signal) and a signal of the system on the second branch side (specifically, the phase rotation signal). The in-phase component Ri_2 and the orthogonal component Rq_2) are diversified and the combined signal (in-phase component Ci, orthogonal component Cq) is output to the power detection unit 17, and the power detection unit 17 outputs the combined signal (in-phase component Ci, orthogonal component). Based on the signal level of Cq), the phase rotation amount Δθ when the combined signal has the maximum power is obtained and output to the phase adjusting unit 18 and the mixer 19, and the phase adjusting unit 18 taps the second branch. The phase of the tap output signal (in-phase component Ti_2, orthogonal component Tq_2) output from the processing unit 14B is rotated by the phase rotation amount Δθ, and the phase rotation signal (in-phase component Ri_2, orthogonal component Rq_2) is transmitted to the synthesis unit 16. Output.

そして、混合器19が受信信号(同相成分I_2、直交成分Q_2)の位相を位相の回転量Δθだけ回転させて位相調整信号(同相成分Pi_2、直交成分Pq_2)をダイバーシチ合成部20に対して出力し、ダイバーシチ合成部20が第1ブランチ側の系統の信号系列である受信信号(同相成分I_1、直交成分Q_1)と第2ブランチ側の系統の信号系列である位相調整信号(同相成分Pi_2、直交成分Pq_2)とをダイバーシチ合成して合成受信信号(同相成分Ic、直交成分Qc)を復調部21に対して出力し、復調部21が合成受信信号(同相成分Ic、直交成分Qc)に対して復調処理を施して復調結果の信号系列を出力する。 Then, the mixer 19 rotates the phase of the received signal (in-phase component I_2, orthogonal component Q_2) by the amount of phase rotation Δθ, and outputs the phase adjustment signal (in-phase component Pi_2, orthogonal component Pq_2) to the diversity synthesizer 20. Then, the diversity synthesizer 20 has a received signal (in-phase component I_1, orthogonal component Q_1) which is a signal sequence of the system on the first branch side and a phase adjustment signal (in-phase component Pi_2, orthogonal) which is a signal sequence of the system on the second branch side. The component Pq_2) is diversified and the combined reception signal (in-phase component Ic, orthogonal component Qc) is output to the demodulation unit 21, and the demodulation unit 21 with respect to the combined reception signal (in-phase component Ic, orthogonal component Qc). The demodulation process is performed and the signal sequence of the demodulation result is output.

この実施の形態に係る無線受信装置1によれば、ダイバーシチ合成による受信C/N比の性能向上効果を得た信号で波形等化をするようにしているので、受信C/N比が低下した環境での等化性能を大幅に改善することができ、高精度なダイバーシチ合成を行うことが可能となり、延いては合成後の信号における高多値復調の劣化の発生を防ぐことが可能となる。この実施の形態に係る無線受信装置1によれば、また、ダイバーシチ合成の位相調整用の電力検出に対して適応等化処理を組み込み、等化後の信号を合成した上で電力検出をするようにしているため、反射波による干渉やアンテナ間の遅延誤差などの影響を排除した高精度な位相制御を行うことが可能となる。この実施の形態に係る無線受信装置1によれば、さらに、電力検出を目的としているため、高精度な等化は必要なく、受信C/N比が低い場合でも安定して動作する等化アルゴリズムを採用することができる。 According to the wireless receiver 1 according to this embodiment, since the waveform is equalized with the signal obtained by the performance improvement effect of the received C / N ratio by the diversity synthesis, the received C / N ratio is lowered. It is possible to significantly improve the equalization performance in the environment, it is possible to perform highly accurate diversity synthesis, and it is possible to prevent the occurrence of deterioration of high multi-value demodulation in the signal after synthesis. .. According to the wireless receiver 1 according to this embodiment, the adaptive equalization process is incorporated into the power detection for phase adjustment of the diversity synthesis, and the power detection is performed after synthesizing the equalized signal. Therefore, it is possible to perform highly accurate phase control by eliminating the influence of interference due to reflected waves and delay error between antennas. According to the wireless receiver 1 according to this embodiment, since the purpose is further to detect power, high-precision equalization is not required, and an equalization algorithm that operates stably even when the reception C / N ratio is low. Can be adopted.

次に、このような構成の無線受信装置1の位相差の検出特性について、図2および図3も用いて検証する。 Next, the phase difference detection characteristics of the wireless receiver 1 having such a configuration will be verified with reference to FIGS. 2 and 3.

図2に示すように、送信側の固定局に設置されている単一のアンテナ2から送信される信号を受信側の固定局に設置されている2つのアンテナ11A,11Bで受信する際に、一方のアンテナ11Aは直接波のみを受信して受信波信号を出力し、他方のアンテナ11Bはフェージングが発生している状況で(即ち、直接波に加えて反射波も受信して)受信波信号を出力している条件で、等化処理の有無による相関検出特性の違いを検証する。 As shown in FIG. 2, when the signal transmitted from the single antenna 2 installed in the fixed station on the transmitting side is received by the two antennas 11A and 11B installed in the fixed station on the receiving side, One antenna 11A receives only the direct wave and outputs the received wave signal, and the other antenna 11B receives the received wave signal in a situation where fading is occurring (that is, it receives the reflected wave in addition to the direct wave). Under the condition that is output, the difference in correlation detection characteristics depending on the presence or absence of equalization processing is verified.

ここでは、下記の仕様・条件を用いて検証を行う。
〈変調方式〉
四位相偏移変調(QPSK)
〈フェージング条件(最小位相推移型)〉
遅延時間 :0.015T
ノッチ深さ :30dB
ノッチ周波数:変調スペクトルセンター周波数
〈等化アルゴリズム〉
Godardの方法(Godardのカルマンアルゴリズム)
Here, verification is performed using the following specifications and conditions.
<Modulation method>
Four Phase Shift Keying (QPSK)
<Fading condition (minimum phase transition type)>
Delay time: 0.015T
Notch depth: 30 dB
Notch frequency: Modulation spectrum center frequency <equalization algorithm>
Godard's method (Goddard's Kalman algorithm)

アンテナ11Aの受信波信号に基づく第1ブランチ側の系統の信号系列とアンテナ11Bの受信波信号に基づく第2ブランチ側の系統の信号系列との間の、第2ブランチ側の系統の信号系列に対して−180°〜180°の範囲で位相を回転させた場合の相関を計算し、これを検出1とする。検出1は、等化処理が無い場合の相関の検出結果である。 In the signal sequence of the system on the second branch side between the signal sequence of the system on the first branch side based on the received wave signal of the antenna 11A and the signal sequence of the system on the second branch side based on the received wave signal of the antenna 11B. On the other hand, the correlation when the phase is rotated in the range of −180 ° to 180 ° is calculated, and this is set as detection 1. Detection 1 is a correlation detection result when there is no equalization process.

一方、アンテナ11Aの受信波信号に基づく第1ブランチ側の系統の信号系列とアンテナ11Bの受信波信号に基づく第2ブランチ側の系統の信号系列とに対して等化処理を施した上で、第1ブランチ側の系統の信号系列と第2ブランチ側の系統の信号系列との間の、第2ブランチ側の系統の信号系列に対して−180°〜180°の範囲で位相を回転させた場合の相関を計算し、これを検出2とする。検出2は、等化処理がある場合の相関の検出結果である。 On the other hand, the signal sequence of the system on the first branch side based on the received wave signal of the antenna 11A and the signal sequence of the system on the second branch side based on the received wave signal of the antenna 11B are equalized and then equalized. The phase was rotated in the range of −180 ° to 180 ° with respect to the signal sequence of the system on the second branch side between the signal sequence of the system on the first branch side and the signal sequence of the system on the second branch side. The correlation between the cases is calculated, and this is designated as detection 2. Detection 2 is a correlation detection result when there is an equalization process.

検出1および検出2について、位相の回転量(つまり、位相差)と相関との間の関係を整理すると図3に示すようになる。図3の縦軸は、第1ブランチ側の系統の信号系列と第2ブランチ側の系統の信号系列との同相成分同士の相間と直交成分同士の相間との平均値を用いている。ここでは、相関をみる一方のデータについて複素共役をとった後に複素乗算して相関値を計算している。この計算によると、相関の高いところで虚数(IMG)成分が0(ゼロ)になる。 Regarding detection 1 and detection 2, the relationship between the amount of phase rotation (that is, the phase difference) and the correlation is as shown in FIG. The vertical axis of FIG. 3 uses the average value between the phases of the in-phase components and the phases of the orthogonal components of the signal sequence of the system on the first branch side and the signal sequence of the system on the second branch side. Here, the correlation value is calculated by complex-multiplying one of the data for which the correlation is to be seen after taking the complex conjugate. According to this calculation, the imaginary number (IMG) component becomes 0 (zero) where the correlation is high.

図3に示す検出1の結果から、フェージングが発生している状況では、等化処理が行われないと、位相差がずれ且つ検出感度が低くなることが確認できる。一方で、検出2の結果から、フェージングが発生している状況でも、等化処理が行われることにより、位相差を検出可能であり且つ検出感度が高いことが確認できる。 From the result of detection 1 shown in FIG. 3, it can be confirmed that in the situation where fading occurs, the phase difference shifts and the detection sensitivity becomes low unless the equalization process is performed. On the other hand, from the result of detection 2, it can be confirmed that the phase difference can be detected and the detection sensitivity is high by performing the equalization process even in the situation where fading is occurring.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。具体的には、この発明の要旨はダイバーシチ合成の位相調整用の電力検出に対して適応等化処理を組み込んで等化後の信号を合成した上で電力検出をすることであり、この要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態ではスペースダイバーシチにおけるブランチとして第1ブランチおよび第2ブランチの2つのブランチを有するようにしているが、ブランチの個数は、2つに限定されるものではなく、2つ以上の任意の数とすることができる。 Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above-described embodiment, and even if there is a design change or the like within a range that does not deviate from the gist of the present invention. Included in the invention. Specifically, the gist of the present invention is to incorporate an adaptive equalization process into the power detection for phase adjustment of diversity synthesis, synthesize the equalized signal, and then perform the power detection. Even if there is a design change within a range that does not deviate, it is included in the present invention. For example, in the above embodiment, the space diversity has two branches, a first branch and a second branch, but the number of branches is not limited to two, but two or more. Can be any number of.

1 無線受信装置
11A アンテナ(第1ブランチ)
11B アンテナ(第2ブランチ)
12A 混合器(第1ブランチ)
12B 混合器(第2ブランチ)
13A A/D変換器(第1ブランチ)
13B A/D変換器(第2ブランチ)
14A タップ処理部(第1ブランチ)
14B タップ処理部(第2ブランチ)
15 適応処理部
16 合成部
17 電力検出部
18 位相調整部
19 混合器
20 ダイバーシチ合成部
21 復調部
1 Wireless receiver 11A antenna (1st branch)
11B antenna (second branch)
12A mixer (1st branch)
12B mixer (second branch)
13A A / D converter (1st branch)
13B A / D converter (second branch)
14A tap processing unit (1st branch)
14B tap processing unit (second branch)
15 Adaptation processing unit 16 Synthesis unit 17 Power detection unit 18 Phase adjustment unit 19 Mixer 20 Diversity synthesis unit 21 Demodulation unit

Claims (3)

複数のアンテナの各々に対応する複数のブランチ毎に設けられて、前記アンテナによって受信される無線信号に基づいて得られるベースバンド信号に対してアナログ−デジタル変換処理を施して受信信号を出力するA/D変換器と、
前記複数のブランチ毎に設けられて、前記受信信号に対してタップ係数に基づいてウェイトの乗算処理を施してタップ出力信号を出力するとともに前記受信信号の受信信号ベクトルを出力するタップ処理部と、
前記複数のブランチそれぞれの前記タップ出力信号および前記受信信号ベクトルに基づいて前記タップ係数を出力する適応処理部と、
前記複数のブランチそれぞれの前記タップ出力信号をダイバーシチ合成して合成信号を出力する合成部と、
前記合成信号が最大電力を有する時の位相の回転量を出力する電力検出部と、
前記複数のブランチそれぞれの前記受信信号をダイバーシチ合成して合成受信信号を出力するダイバーシチ合成部と、
前記合成受信信号に対して復調処理を施す復調部と、を有し、
前記位相の回転量に基づいて前記受信信号の位相を回転した上で前記ダイバーシチ合成部でダイバーシチ合成して前記合成受信信号を得て該合成受信信号を前記復調部で復調する、
ことを特徴とする無線受信装置。
A that is provided for each of a plurality of branches corresponding to each of the plurality of antennas, performs analog-to-digital conversion processing on the baseband signal obtained based on the radio signal received by the antenna, and outputs the received signal. / D converter and
A tap processing unit provided for each of the plurality of branches, which performs weight multiplication processing on the received signal based on the tap coefficient to output a tap output signal and outputs a received signal vector of the received signal.
An adaptive processing unit that outputs the tap coefficient based on the tap output signal and the received signal vector of each of the plurality of branches.
A compositing unit that diversifies the tap output signals of each of the plurality of branches and outputs a composite signal.
A power detector that outputs the amount of phase rotation when the combined signal has the maximum power, and
A diversity synthesizer that diversifies the received signals of each of the plurality of branches and outputs a composite received signal.
It has a demodulation unit that performs demodulation processing on the combined received signal.
After rotating the phase of the received signal based on the amount of rotation of the phase, the diversity synthesis unit performs diversity synthesis to obtain the combined reception signal, and the combined reception signal is demodulated by the demodulation unit.
A wireless receiver characterized by that.
前記アンテナによって受信される前記無線信号の変調方式が四位相偏移変調である、
ことを特徴とする請求項1に記載の無線受信装置。
The modulation method of the radio signal received by the antenna is four-phase shift keying.
The wireless receiving device according to claim 1.
前記ブランチの数が2つである、
ことを特徴とする請求項1または2に記載の無線受信装置。
The number of branches is two,
The wireless receiving device according to claim 1 or 2.
JP2019211785A 2019-11-22 2019-11-22 Wireless receiving device Active JP7486305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019211785A JP7486305B2 (en) 2019-11-22 2019-11-22 Wireless receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019211785A JP7486305B2 (en) 2019-11-22 2019-11-22 Wireless receiving device

Publications (2)

Publication Number Publication Date
JP2021083061A true JP2021083061A (en) 2021-05-27
JP7486305B2 JP7486305B2 (en) 2024-05-17

Family

ID=75966321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019211785A Active JP7486305B2 (en) 2019-11-22 2019-11-22 Wireless receiving device

Country Status (1)

Country Link
JP (1) JP7486305B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169273A (en) * 1991-09-07 1994-06-14 Motorola Ltd Radio receiver, transmitter and repeater for execution of diversity
JP2001177500A (en) * 2000-03-27 2001-06-29 Alps Electric Co Ltd Ofdm receiver
JP2010507935A (en) * 2006-10-19 2010-03-11 マックス リニアー、インコーポレイテッド Low complexity diversity receiver
JP2013031050A (en) * 2011-07-29 2013-02-07 Fujitsu Ltd Receiver
WO2013018716A1 (en) * 2011-07-29 2013-02-07 日本電気株式会社 Wireless receiver, wireless reception method, and wireless system
JP2013115707A (en) * 2011-11-30 2013-06-10 Mitsubishi Electric Corp Radio signal transceiver, receiver, transmitter, and radio communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169273A (en) * 1991-09-07 1994-06-14 Motorola Ltd Radio receiver, transmitter and repeater for execution of diversity
JP2001177500A (en) * 2000-03-27 2001-06-29 Alps Electric Co Ltd Ofdm receiver
JP2010507935A (en) * 2006-10-19 2010-03-11 マックス リニアー、インコーポレイテッド Low complexity diversity receiver
JP2013031050A (en) * 2011-07-29 2013-02-07 Fujitsu Ltd Receiver
WO2013018716A1 (en) * 2011-07-29 2013-02-07 日本電気株式会社 Wireless receiver, wireless reception method, and wireless system
JP2013115707A (en) * 2011-11-30 2013-06-10 Mitsubishi Electric Corp Radio signal transceiver, receiver, transmitter, and radio communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吉田 晴人、高畑 文雄: "TDD-OFDM伝送を対象とした送信SC/受信MRCダイバーシチに関する一検討", 通信ソサイエティ大会講演論文集1, JPN6023021878, 2004, pages 440, ISSN: 0005070223 *

Also Published As

Publication number Publication date
JP7486305B2 (en) 2024-05-17

Similar Documents

Publication Publication Date Title
US5761252A (en) Diversity reception device
US5280637A (en) Phase combining method and apparatus for use in a diversity receiver
US6201955B1 (en) Method and apparatus for receiving a radio frequency signal using a plurality of antennas
JPH10341200A (en) Adaptive array antenna receiver
JP3846546B2 (en) Frequency offset estimator
US8908817B1 (en) Differential phase tracking in the presence of unknown interference
US8050640B2 (en) Diverse antenna system
US7116999B2 (en) Mobile communications receiving apparatus and method
JP4538963B2 (en) OFDM receiver using diversity adaptive array
JP2021083061A (en) Wireless receiver
JP2002026788A (en) Receiver
EP1315313B1 (en) Vectorial combiner for diversity reception in RF transceivers
JP7289600B2 (en) radio receiver
JP6271931B2 (en) Wireless receiver
JP2000031874A (en) Adaptive array diversity receiver
JP2010268396A (en) Diversity receiving apparatus and diversity receiving method
EP2822193B1 (en) Method, apparatus and system for reconstructing three signals transmitted on a MIMO radio link having three transmission antennas for each polarization
JP2002232386A (en) Ofdm receiver using adaptive array
US6901124B1 (en) Diversity receiving apparatus that prevents judgement errors during decoding and a clock generating circuit for a diversity circuit that prevents judgement errors during decoding
JP2004208200A (en) Radio receiving apparatus and antenna verification method
JP4470798B2 (en) Wireless communication apparatus and method
JP2024129343A (en) Diversity receiving device and diversity receiving method
Liang et al. A new channel estimation method for RF beamforming implementable in mobile terminals
JP2001044903A (en) Adaptive antenna device
JP4033736B2 (en) Diversity receiver and receiving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231115

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240507

R150 Certificate of patent or registration of utility model

Ref document number: 7486305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150