[go: up one dir, main page]

JP2021090001A - Thermoelectric conversion device, manufacturing method of thermoelectric conversion device, and electric device - Google Patents

Thermoelectric conversion device, manufacturing method of thermoelectric conversion device, and electric device Download PDF

Info

Publication number
JP2021090001A
JP2021090001A JP2019220283A JP2019220283A JP2021090001A JP 2021090001 A JP2021090001 A JP 2021090001A JP 2019220283 A JP2019220283 A JP 2019220283A JP 2019220283 A JP2019220283 A JP 2019220283A JP 2021090001 A JP2021090001 A JP 2021090001A
Authority
JP
Japan
Prior art keywords
conversion device
thermoelectric conversion
thin film
thermoelectric material
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019220283A
Other languages
Japanese (ja)
Inventor
芳明 中村
Yoshiaki Nakamura
芳明 中村
貴史 石部
Takashi Ishibe
貴史 石部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2019220283A priority Critical patent/JP2021090001A/en
Publication of JP2021090001A publication Critical patent/JP2021090001A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

【課題】小型で集積度の高い高効率の熱電変換デバイスを提供する。【解決手段】熱電変換デバイス1は、主面の一方向に向けて凹凸部111が形成された絶縁基板11と、凹凸部111の表面を薄膜の導電材で覆った薄膜部とを備え、凹凸部111は、主面に直交しかつ互いに逆向きの面を持つ、隣同士の1組の側面113と側面114とを有し、薄膜部は、側面113をP型熱電材料及びN型熱電材料の一方からなる熱電材料層23で覆ったものである。【選択図】図1PROBLEM TO BE SOLVED: To provide a high-efficiency thermoelectric conversion device which is compact and has a high degree of integration. SOLUTION: A thermoelectric conversion device 1 includes an insulating substrate 11 in which an uneven portion 111 is formed in one direction of a main surface, and a thin film portion in which the surface of the uneven portion 111 is covered with a thin film conductive material. The portion 111 has a set of adjacent side surfaces 113 and 114 having planes orthogonal to the main surface and opposite to each other, and the thin film portion has side surfaces 113 having a P-type thermoelectric material and an N-type thermoelectric material. It is covered with a thermoelectric material layer 23 composed of one of them. [Selection diagram] Fig. 1

Description

本発明は、環境の温度差を利用して電力を変換生成する熱電変換デバイスの技術に関する。 The present invention relates to a thermoelectric conversion device technique for converting and generating electric power by utilizing the temperature difference in the environment.

センサ社会の到来に伴い、センサと一体型の自立型電源が求められている。今日、環境の温度差や廃熱を再利用するべく、P型、N型熱電材料を組み合わせた熱電素子が自立型電源として期待されているが、これまでは、バルク焼結体が主流であり(特許文献1,2)、小型熱電発電電源の開発は遅れていた。 With the advent of the sensor society, there is a demand for a self-supporting power supply integrated with the sensor. Today, thermoelectric elements that combine P-type and N-type thermoelectric materials are expected as self-sustaining power sources in order to reuse environmental temperature differences and waste heat, but until now, bulk sintered bodies have been the mainstream. (Patent Documents 1 and 2), the development of a small thermoelectric power source has been delayed.

かかる小型化の要請に応えるべく、近年、基板上に形成可能な薄膜を用いた薄膜熱電素子が提案されている(特許文献3)。特許文献3に記載の熱電発電装置は、絶縁基板SOの上面に沿って薄膜のP型熱電変換部、電気伝導部、N型熱電変換部をこの順に左右に配列し、かつ左右の両端に電極を備えると共に、前記電気伝導部の上部に熱伝導部を、さらにその上部で全面に亘る熱浴板が配置された構造を備えている。そして、熱浴板と絶縁基板との間に温度勾配が印加されると、熱が熱伝導部を経由してP型熱電変換部及びN型熱電変換部の内部を互いに左右逆方向に印加され、このようにP型熱電変換部及びN型熱電変換部の左右の配列方向、すなわち長手方向に温度勾配を持たせることで、所定の発電効率を確保可能にしている。 In recent years, in order to meet such a demand for miniaturization, a thin film thermoelectric element using a thin film that can be formed on a substrate has been proposed (Patent Document 3). Thermoelectric generator described in Patent Document 3, P-type thermoelectric conversion portion of the thin film along the upper surface of the insulating substrate S i O 2, electrically conductive portion, arranged the N-type thermoelectric conversion unit to the right and left in this order, and left and right It has a structure in which electrodes are provided at both ends, a heat conductive portion is arranged above the electric conductive portion, and a heat bath plate over the entire surface is arranged above the heat conductive portion. Then, when a temperature gradient is applied between the hot bath plate and the insulating substrate, heat is applied to the insides of the P-type thermoelectric conversion unit and the N-type thermoelectric conversion unit in opposite directions to each other via the heat conductive portion. By providing a temperature gradient in the left-right arrangement direction of the P-type thermoelectric conversion unit and the N-type thermoelectric conversion unit, that is, in the longitudinal direction in this way, it is possible to secure a predetermined power generation efficiency.

特開2007−246294号JP-A-2007-246294 特開2004―253618号Japanese Unexamined Patent Publication No. 2004-253618 特開2018−037542号JP-A-2018-037542

しかしながら、特許文献3に記載の熱電発電装置は、温度勾配の印加方向が絶縁基板の表面方向と一致しているため、高い温度勾配を確保するためのP型熱電変換部及びN型熱電変換部の素子長と、P型熱電変換部及びN型熱電変換部の集積数とがトレードオフの関係となり、効率的すなわち発電電力の増大に一定の限界がある。 However, in the thermoelectric power generation device described in Patent Document 3, since the application direction of the temperature gradient coincides with the surface direction of the insulating substrate, the P-type thermoelectric conversion unit and the N-type thermoelectric conversion unit for ensuring a high temperature gradient There is a trade-off between the element length of the above and the number of integrated P-type thermoelectric conversion units and N-type thermoelectric conversion units, and there is a certain limit to efficiency, that is, an increase in generated power.

本発明は、上記に鑑みてなされたもので、絶縁基板の主面を長尺の凹凸状にして側面を形成し、この側面に熱電材料の薄膜を形成して縦型構造とすることで従来のトレードオフの関係を解消し、小型で集積度の高い高効率の熱電変換デバイス、熱電変換デバイスの製造方法及びセンサ装置を提供するものである。 The present invention has been made in view of the above. The main surface of an insulating substrate is formed into a long uneven shape to form a side surface, and a thin film of a thermoelectric material is formed on the side surface to form a vertical structure. The present invention provides a compact, highly integrated and highly efficient thermoelectric conversion device, a method for manufacturing the thermoelectric conversion device, and a sensor device by eliminating the trade-off relationship between the two.

本発明に係る熱電変換デバイスは、主面の少なくとも一部に一方向に向けて凹凸部が形成された絶縁基板と、前記凹凸部の表面を薄膜の導電材で覆った薄膜部とを備え、前記凹凸部は、前記主面に交差しかつ互いに逆向きの面を持つ、隣同士の1組の第1の側面と第2の側面とを有し、前記薄膜部は、前記第1の側面をP型熱電材料及びN型熱電材料の一方からなる第1の薄膜層で覆ったものである。 The thermoelectric conversion device according to the present invention includes an insulating substrate in which uneven portions are formed in at least a part of the main surface in one direction, and a thin film portion in which the surface of the uneven portions is covered with a thin film conductive material. The uneven portion has a set of adjacent first side surfaces and second side surfaces that intersect the main surface and have surfaces that are opposite to each other, and the thin film portion has the first side surface. Is covered with a first thin film layer composed of one of a P-type thermoelectric material and an N-type thermoelectric material.

本発明によれば、絶縁基板の主面と交差する面をP型熱電材料及びN型熱電材料の一方である第1の薄膜層で被う形態としたので、従来のようなトレードオフの問題はなく、集積数の増大が図れる。また、凹凸部を直列に接続する場合、起電力が重畳されてより高効率の熱電変換デバイスが提供できる。 According to the present invention, the surface intersecting the main surface of the insulating substrate is covered with the first thin film layer, which is one of the P-type thermoelectric material and the N-type thermoelectric material. However, the number of accumulations can be increased. Further, when the uneven portions are connected in series, the electromotive force is superimposed, and a more efficient thermoelectric conversion device can be provided.

また、前記薄膜部は、前記第2の側面を前記P型熱電材料及びN型熱電材料の他方の熱電材料層及び金属層の一方からなる第2の薄膜層で覆ったものである。この構成によれば、1組に側面のうちの第2の側面を熱電材料層とするか金属層とするか選択的に設定できる。 Further, the thin film portion is formed by covering the second side surface with a second thin film layer composed of one of the other thermoelectric material layer and the metal layer of the P-type thermoelectric material and the N-type thermoelectric material. According to this configuration, it is possible to selectively set whether the second side surface of the side surface is a thermoelectric material layer or a metal layer in one set.

また、前記薄膜部は、前記第1、第2の側面の一方をP型熱電材料で、他方をN型熱電材料で覆ったものである。この構成によれば、1組に側面の両方に起電力が生じ、2倍の電力を得ることができ、効率アップが図れる。 Further, the thin film portion is formed by covering one of the first and second side surfaces with a P-type thermoelectric material and the other with an N-type thermoelectric material. According to this configuration, electromotive force is generated on both sides of one set, and double the electric power can be obtained, so that the efficiency can be improved.

また、前記薄膜部は、前記第1の側面及び前記第2の側面の間に介設される、金属層で形成された連結部を有するものである。この構成によれば、連結部を介在させることで、第1、第2の側面の形状の設計の自由度がアップする。 Further, the thin film portion has a connecting portion formed of a metal layer, which is interposed between the first side surface and the second side surface. According to this configuration, the degree of freedom in designing the shapes of the first and second side surfaces is increased by interposing the connecting portion.

また、前記第1、第2の側面は、前記主面に対して直交している。この構成によれば、第1の側面の上下方向の寸法長が最大に設定できるので、温度勾配に対する起電力が最大となる。 Further, the first and second side surfaces are orthogonal to the main surface. According to this configuration, the vertical dimension length of the first side surface can be set to the maximum, so that the electromotive force with respect to the temperature gradient is maximized.

また、本発明は、前記凹凸部の凸部側の前記一方向に対する幅寸法が、数nm〜数百μmである。また、本発明は、前記凹凸部の凹部側の前記一方向に対する幅寸法が、数nm〜数百μmである。また、本発明は、前記第1、第2の側面の高さ寸法が、数十nm〜数mmである。 Further, in the present invention, the width dimension of the convex portion side of the uneven portion with respect to the one direction is several nm to several hundred μm. Further, in the present invention, the width dimension of the concave-convex portion on the concave side in the one direction is several nm to several hundred μm. Further, in the present invention, the height dimension of the first and second side surfaces is several tens of nm to several mm.

また、本発明に係る熱電変換デバイスの製造方法は、前記凹凸部の凹部側の面に粉体状の金属を含む溶液を供給する工程と、供給された前記溶液を蒸発させて金属層を固化形成する工程とを含むものである。本発明によれば、凹凸部の凹部側の面の成膜が容易かつ確実となる。 Further, the method for manufacturing a thermoelectric conversion device according to the present invention includes a step of supplying a solution containing a powdery metal to the concave-convex side surface of the uneven portion, and a step of evaporating the supplied solution to solidify the metal layer. It includes a step of forming. According to the present invention, the film formation on the concave side surface of the uneven portion is easy and reliable.

また、熱電変換デバイスの製造方法は、上方から前記第1の側面に向けて、気化された前記P型熱電材料及びN型熱電材料の一方の蒸着物質を放出して第1の薄層部の成膜を行うものである。本発明によれば、第1の側面と対向する隙間に入り込んで第1の側面の上下方向の全長に亘って蒸着が可能となる。 Further, in the method for manufacturing a thermoelectric conversion device, one of the vaporized vaporized P-type thermoelectric material and N-type thermoelectric material is discharged from above toward the first side surface to form a first thin layer portion. A film is formed. According to the present invention, it is possible to penetrate into the gap facing the first side surface and perform vapor deposition over the entire length of the first side surface in the vertical direction.

本発明に係る電動装置は、基板と、熱電変換デバイスと、電気で動作する電動デバイスとを備え、前記熱電変換デバイスと前記電動デバイスとが電源配線を介して接続されて前記基板に搭載されたものである。本発明によれば、発電機能を備えた熱電変換デバイスと基板で一体的に構成された電動デバイスを備えた電動装置が提供できる。これによれば、通電が不可乃至困難との理由で配置箇所が制限されることが解消され、主にIOTその他の電動装置の配置の選択度が増大する。 The electric device according to the present invention includes a substrate, a thermoelectric conversion device, and an electrically operated electric device, and the thermoelectric conversion device and the electric device are connected via power supply wiring and mounted on the substrate. It is a thing. According to the present invention, it is possible to provide an electric device including a thermoelectric conversion device having a power generation function and an electric device integrally composed of a substrate. According to this, the limitation of the arrangement place is solved because the energization is impossible or difficult, and the selectivity of the arrangement of the IOT and other electric devices is mainly increased.

本発明によれば、小型で集積度の高い高効率の熱電変換デバイスが提供可能となる。 According to the present invention, it is possible to provide a highly efficient thermoelectric conversion device that is compact and has a high degree of integration.

本発明に係る熱電変換デバイスの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the thermoelectric conversion device which concerns on this invention. 図1に示す熱電変換デバイスを流れる電流と温度勾配とを説明する断面図である。It is sectional drawing explaining the current flowing through the thermoelectric conversion device shown in FIG. 1 and the temperature gradient. 図1に示す熱電変換デバイスを構成する絶縁基板の各部の形状及び各部の寸法を説明する断面図である。It is sectional drawing explaining the shape of each part of the insulating substrate which constitutes the thermoelectric conversion device shown in FIG. 1 and the dimension of each part. 図1に示す熱電変換デバイスの製造プロセスの一例を示す工程図で、図4(A)は、形成後の凹凸部111の状態を示す図、図4(B)〜(D)は、凹凸部の各面に対する成膜プロセスを示す図である。FIG. 4A is a process diagram showing an example of a manufacturing process of the thermoelectric conversion device shown in FIG. 1, FIG. 4A is a diagram showing a state of the uneven portion 111 after formation, and FIGS. It is a figure which shows the film formation process for each surface. 側面への成膜方法の一つである分子線蒸着法による斜め蒸着法の原理を示す概略図である。It is a schematic diagram which shows the principle of the oblique vapor deposition method by the molecular beam vapor deposition method which is one of the film formation methods on a side surface. 図6(A)は、図1に示す熱電変換デバイスの斜視図、図6(B)は、図6(A)を基板上に複数搭載配列した第1の態様の熱電変換デバイス、図6(C)は、複数配列するように形成された第2の態様の熱電変換デバイスの斜視図である。6 (A) is a perspective view of the thermoelectric conversion device shown in FIG. 1, and FIG. 6 (B) is a thermoelectric conversion device of the first aspect in which a plurality of FIGS. 6 (A) are mounted and arranged on a substrate. C) is a perspective view of the thermoelectric conversion device of the second aspect formed so as to be arranged in a plurality of arrangements. センサデバイスと熱電変換デバイスとを一体化した、一実施形態を示すセンサ装置の斜視図である。It is a perspective view of the sensor device which shows one Embodiment which integrated the sensor device and the thermoelectric conversion device.

本発明に係る熱電変換デバイス1を、図1〜図3の横断面図、及び図6(A)の斜視図を用いて説明する。熱電変換デバイス1は、図3に示す絶縁基板11を備える。絶縁基板11には、その主面(上面)側に加工が施されて、あるいはリソグラフによるパターニング処理等を経て凹凸部111が形成されている。絶縁基板11は、所定形状、例えば長方形状(図6(A))であってもよい。絶縁基板11の凹凸部111は、本実施形態では、主面の左右方向に横断面矩形状を有して形成され、かつ図6(A)に示すように奥行き方向に長尺に延設された凹状、凸状の形状を有している。 The thermoelectric conversion device 1 according to the present invention will be described with reference to the cross-sectional views of FIGS. 1 to 3 and the perspective view of FIG. 6 (A). The thermoelectric conversion device 1 includes an insulating substrate 11 shown in FIG. The insulating substrate 11 is formed with a concavo-convex portion 111 by processing the main surface (upper surface) side thereof or by performing a patterning process using a lithograph or the like. The insulating substrate 11 may have a predetermined shape, for example, a rectangular shape (FIG. 6 (A)). In the present embodiment, the uneven portion 111 of the insulating substrate 11 is formed to have a rectangular cross section in the left-right direction of the main surface, and is elongated in the depth direction as shown in FIG. 6 (A). It has a concave and convex shape.

凹凸部111は、図3に示すように、絶縁基板11の主面に交差、本実施形態では直交し、かつ互いに逆向きの面を持つ、隣同士の1組の側面113と側面114とを有する。凹凸部111は少なくとも1以上が前記したように主面の左右方向に配列して形成されている。なお、各凹凸部111は、隣同士の1組の側面113と側面114の両端が底部(凹部)側で接続され、あるいは頂部(凸部)側で接続されたりする。底部(凹部)側及び頂部(凸部)側の各面の部分を、それぞれ底部112及び頂部115という。本実施形態では、温度勾配は主面に直交した方向に印加される。 As shown in FIG. 3, the uneven portion 111 intersects the main surface of the insulating substrate 11, and in the present embodiment, a pair of side surfaces 113 and 114 adjacent to each other, which are orthogonal to each other and have surfaces opposite to each other. Have. At least one of the uneven portions 111 is formed so as to be arranged in the left-right direction of the main surface as described above. In addition, each uneven portion 111 may be connected to each other on the bottom (concave) side or the top (convex) side at both ends of a set of adjacent side surfaces 113 and side 114. The portions of the bottom (concave) side and the top (convex) side are referred to as the bottom 112 and the top 115, respectively. In this embodiment, the temperature gradient is applied in a direction orthogonal to the main plane.

絶縁基板11は、固体絶縁体あるいは樹脂製であり、本実施形態では無機固体絶縁体のうちの二酸化ケイ素(SO:シリカ)が用いられている。絶縁基板11は、板状体のシリコンSの主面側に酸化処理を施して形成されたものを含めてもよい。なお、樹脂製の場合には物理的な押し込み(インデンテーション)で凹凸部111を形成してもよい。なお、樹脂製で構成した態様では、弾性変形が可能となる。 The insulating substrate 11 is made of a solid insulator or a resin, and in this embodiment, silicon dioxide ( Si O 2 : silica) among the inorganic solid insulators is used. Insulating substrate 11 may include those formed by performing oxidation treatment on the main surface of the silicon S i of the plate-like body. If it is made of resin, the uneven portion 111 may be formed by physical indentation. In addition, in the aspect made of resin, elastic deformation is possible.

絶縁基板11の凹凸部111は、図4(A)で説明するように、本実施形態ではフォトレジスト及びエッチング処理という公知の手法を施すことで形成される。なお、各図中において、凹凸部111の形状乃至サイズや後述する薄膜の厚さ寸法は、説明の便宜上、適宜誇張して記載されている。 As described with reference to FIG. 4A, the uneven portion 111 of the insulating substrate 11 is formed by applying a known method of photoresist and etching treatment in the present embodiment. In each drawing, the shape and size of the uneven portion 111 and the thickness dimension of the thin film described later are exaggerated as appropriate for convenience of explanation.

本実施形態では、図3に示すように、凹凸部111の形状の寸法のうち、側面113,114の高さ寸法Hは、発電効率(起電力)及び対向する側面113,114の下端までの適正な成膜処理の確保を考慮して、数十nm(ナノメートル)〜数mm(ミリメートル)が採用可能であり、数百nm〜数百μm(マイクロメートル)がより好ましい。頂部115の幅寸法Tは、凹凸部111の集積数を考慮して、数nm〜数百μmが採用可能であり、数nm〜数十μmがより好ましい。底部112の幅寸法Dは、対向する側面113,114の下端までへの適正な成膜処理の確保及び高さ寸法Hを考慮して数nm〜数百μmが採用可能であり、数十nm〜数十μmがより好ましい。 In the present embodiment, as shown in FIG. 3, among the dimensions of the shape of the uneven portion 111, the height dimension H of the side surfaces 113 and 114 extends to the power generation efficiency (electromotive force) and the lower ends of the opposite side surfaces 113 and 114. In consideration of ensuring an appropriate film forming process, several tens of nm (nanometers) to several mm (millimeters) can be adopted, and several hundreds of nm to several hundreds of μm (micrometers) are more preferable. The width dimension T of the top portion 115 can be adopted from several nm to several hundred μm in consideration of the number of integrated uneven portions 111, and more preferably several nm to several tens of μm. The width dimension D of the bottom portion 112 can be several nm to several hundred μm in consideration of ensuring an appropriate film forming process up to the lower ends of the facing side surfaces 113 and 114 and the height dimension H, and is several tens of nm. ~ Several tens of μm is more preferable.

図1,2において、熱電変換デバイス1は、底部112の表面が薄層の金属層22で成膜形成されている。また、側面113,114の一方、本実施形態では側面113は薄層のP型熱電材料又はN型熱電材料の熱電材料層23(第1の薄膜層)で成膜形成されている。このように、主面に直交する面を熱電材料層23の成膜部位とすることで、従来のような主面と平行に熱電材料層を形成する場合に比して、集積密度を稼ぎ、熱電材料層の集積数を増大することが可能となり、より高効率の熱電変換デバイスが製造できる。また、他方の側面114は薄層の金属層24(第2の薄膜層)で成膜形成されている。頂部115の表面は薄層の金属層24で成膜形成されている。各面への成膜処理は、種々の方法が採用可能であるが、本実施形態では、蒸着法を採用している。 In FIGS. 1 and 2, the thermoelectric conversion device 1 is formed by forming a film on the surface of the bottom portion 112 with a thin metal layer 22. Further, on the other hand of the side surfaces 113 and 114, in the present embodiment, the side surface 113 is formed of a thin layer of a P-type thermoelectric material or an N-type thermoelectric material thermoelectric material layer 23 (first thin film layer). In this way, by using the surface orthogonal to the main surface as the film formation site of the thermoelectric material layer 23, the integration density is increased as compared with the case where the thermoelectric material layer is formed parallel to the main surface as in the conventional case. The number of integrated thermoelectric material layers can be increased, and a more efficient thermoelectric conversion device can be manufactured. The other side surface 114 is formed of a thin metal layer 24 (second thin film layer). The surface of the top 115 is formed of a thin metal layer 24 as a film. Various methods can be adopted for the film forming treatment on each surface, but in the present embodiment, the vapor deposition method is adopted.

このように、凹凸部111の底部112から側面113,114を経て頂部115に亘る全域を少なくとも導電材で覆って薄膜部を形成したことで、通電路が構成される。また、主面に直交した側面113に熱電材料層23を成膜形成したことで、絶縁基板11の上下方向に温度勾配が印加されると、熱電材料層23に起電力が発生する。起電力は、熱電材料層23のゼーベック係数と熱電材料層23の両端に印加される温度差ΔTとの積に依存する。また、側面113を上下方向に形成して、その高さ寸法Hが大きくなるように設定したので、温度差ΔTを大きくし、高い起電力を得ることが可能となる。このように構成することで、熱電材料層23に生じた起電力によって通電路を経て図略の外部負荷(センサ等)に、図2の矢印で示す向きの電流を供給したり、電圧を印加したりすることが可能となる。また、負荷が二次電池を含む場合、充電も可能となる。 In this way, a thin film portion is formed by covering at least the entire area from the bottom 112 of the uneven portion 111 to the top 115 through the side surfaces 113 and 114 with a conductive material to form a current-carrying path. Further, since the thermoelectric material layer 23 is formed into a film on the side surface 113 orthogonal to the main surface, an electromotive force is generated in the thermoelectric material layer 23 when a temperature gradient is applied in the vertical direction of the insulating substrate 11. The electromotive force depends on the product of the Seebeck coefficient of the thermoelectric material layer 23 and the temperature difference ΔT applied to both ends of the thermoelectric material layer 23. Further, since the side surface 113 is formed in the vertical direction and the height dimension H is set to be large, the temperature difference ΔT can be increased and a high electromotive force can be obtained. With this configuration, the electromotive force generated in the thermoelectric material layer 23 supplies a current in the direction indicated by the arrow in FIG. 2 or applies a voltage to an external load (sensor, etc.) shown in the figure via an energization path. It becomes possible to do. In addition, when the load includes a secondary battery, charging is also possible.

次に、薄膜用の材料について説明する。まず、絶縁基板11は、後述するように側面113の上下方向に温度勾配が印加される際に、この温度勾配が側面113の上下両端間で可及的に長期に維持されるように、熱伝導率の低い材料で、例えば前記した二酸化ケイ素(SO:シリカ)などの固体絶縁体あるいは樹脂製で形成されることが好ましい。 Next, the material for the thin film will be described. First, the insulating substrate 11 is heated so that when a temperature gradient is applied in the vertical direction of the side surface 113 as described later, the temperature gradient is maintained between the upper and lower ends of the side surface 113 for as long as possible. a low conductivity material, for example the silicon dioxide (S i O 2: silica) is preferably formed of a solid insulator or resin such.

金属層22,24は、電気伝導率の高い材料、かつ熱伝導率が低い材料であることが好ましい。本実施形態では、Au,Al,Ni,Ti,Cr,Co、又は遷移金属シリサイド(CrSi,TiSi,NiSi等)、ITOなどが採用可能である。また、本実施形態では、側面114に対しても、後述するように金属層24と同様の金属で成膜が行われている。各金属層は、熱伝導率の低い材料であることが好ましい。 The metal layers 22 and 24 are preferably materials having high electrical conductivity and low thermal conductivity. In this embodiment, Au, Al, Ni, Ti, Cr, Co, transition metal silicide (CrSi, TiSi, NiSi, etc.), ITO, and the like can be adopted. Further, in the present embodiment, the side surface 114 is also formed of the same metal as the metal layer 24 as described later. Each metal layer is preferably made of a material having a low thermal conductivity.

熱電材料層23は、Si、シリサイド(FeSi,CoSi,CaSi等)、SiGe合金、SiGeSn合金、ZnO,SnO,IGZOなどが採用可能である。さらに、これらの薄膜中に、ナノ構造(CNT、フラーレン、Geナノ粒子、ZnOナノワイヤ、超格子等)を含有させてもよい。また、熱電材料層23は、前記したように温度勾配を維持するために、熱伝導率の低い材料が採用される。 As the thermoelectric material layer 23, Si, VDD (FeSi 2 , CoSi , CaSi 2, etc.), SiGe alloy, SiGeSn alloy, ZnO, SnO 2 , IGZO and the like can be adopted. Furthermore, nanostructures (CNTs, fullerenes, Ge nanoparticles, ZnO nanowires, superlattices, etc.) may be contained in these thin films. Further, as the thermoelectric material layer 23, a material having a low thermal conductivity is adopted in order to maintain the temperature gradient as described above.

図4は、熱電変換デバイス1の製造プロセスの一例を示す工程図である。熱電変換デバイス1の製造には、フォトリソグラフィ又はインクジェット方式、化学蒸着(CVD)が採用可能であるが、本実施形態では、フォトリソグラフィを採用している。まず、図4(A)は、形成後の凹凸部111の状態を示す。凹凸部111は、絶縁基板11の上面の頂部115に対して所定間隔毎にフォトレジストマスキングを施した状態で絶縁基板11の主面側を露光し、エッチング処理を施すことで凹凸形状を形成する。 FIG. 4 is a process diagram showing an example of the manufacturing process of the thermoelectric conversion device 1. Photolithography, an inkjet method, or chemical vapor deposition (CVD) can be adopted for manufacturing the thermoelectric conversion device 1, but in this embodiment, photolithography is adopted. First, FIG. 4A shows the state of the uneven portion 111 after formation. The uneven portion 111 forms a concave-convex shape by exposing the main surface side of the insulating substrate 11 with photoresist masking applied to the top 115 of the upper surface of the insulating substrate 11 at predetermined intervals and performing etching treatment. ..

図4(B)〜(D)は、凹凸部111の各面に対する成膜プロセスを示す図である。ここでは、絶縁基板11の主面側に気化した薄膜物質を蒸着させることで成膜する。本実施形態では、斜め蒸着法(分子線蒸着法MBE: Molecular Beam Epitaxy)を採用する。斜め蒸着法は、真空容器内で薄膜物質を加熱気化し、方向の揃った分子線をターゲット(絶縁基板11の凹凸部111)に向けて放出して、凹凸部111の成膜目標面に蒸着させ、さらに凝固乃至固化(成膜)させるものである。なお、薄層部に対する成膜量は、適宜設定することで制御可能である。 4 (B) to 4 (D) are views showing a film forming process on each surface of the uneven portion 111. Here, a vaporized thin film substance is vapor-deposited on the main surface side of the insulating substrate 11 to form a film. In this embodiment, the oblique vapor deposition method (Molecular Beam Epitaxy (MBE)) is adopted. In the oblique vapor deposition method, a thin film substance is heated and vaporized in a vacuum vessel, molecular beams having a uniform direction are emitted toward a target (concave and convex portions 111 of the insulating substrate 11), and vapor deposition is performed on the film formation target surface of the uneven portion 111. It is then solidified or solidified (deposited). The amount of film formed on the thin layer portion can be controlled by setting it appropriately.

図4(B)は、底部112への成膜プロセスを示す。底部112の面の真上から蒸着物質を気化させて真下に向けて放出することで、金属層22の成膜が行われる。 FIG. 4B shows a film forming process on the bottom 112. The metal layer 22 is formed by vaporizing the vaporized substance from directly above the surface of the bottom 112 and discharging it directly below.

図4(C)は、側面113への成膜プロセスを示す。側面113への成膜プロセスの詳細は、図5に示す。図5は、分子線蒸着法による斜め蒸着法の原理を示す概略図である。蒸着源3を絶縁基板11の上方適所に配置し、蒸着源3で気化された蒸着対象の熱電材料であるP型熱電材料又はN型熱電材料を右上方から左下方に、すなわち絶縁基板11の法線に対してほぼ角度θで放出させて、ターゲットの各側面113に蒸着させるようにしている。なお、絶縁基板11の長さ寸法(図5の左右方向)は、実際にはnmオーダー〜mmオーダーであり、分子線は概ね放出角度θで絶縁基板11全長に亘って放出される。あるいは、必要に応じて、一方側、例えば絶縁基板11を相対移動させるなどして全長に向けて角度θを維持しながら放出する態様も採用可能である。これらの場合、角度θは、幅寸法D及び高さ寸法H(図3参照)に応じて、放出した分子線が寸法Dの隙間に入り込んで側面113の上下方向の全長に亘って蒸着するように設定される。熱電材料は、側面113の他、結果的に頂部115にも蒸着されてしまう(図1参照)が、主面に直交した側面113に蒸着されておれば足り、頂部115への蒸着の有無は問わない。 FIG. 4C shows a film forming process on the side surface 113. Details of the film forming process on the side surface 113 are shown in FIG. FIG. 5 is a schematic view showing the principle of the oblique vapor deposition method by the molecular beam vapor deposition method. The vapor deposition source 3 is placed in an appropriate position above the insulating substrate 11, and the P-type thermoelectric material or the N-type thermoelectric material vaporized by the vapor deposition source 3 to be vapor-deposited is placed from the upper right to the lower left, that is, the insulating substrate 11. It is emitted at an substantially angle θ with respect to the normal line, and is vapor-deposited on each side surface 113 of the target. The length dimension of the insulating substrate 11 (horizontal direction in FIG. 5) is actually on the order of nm to mm, and the molecular beam is emitted over the entire length of the insulating substrate 11 at an emission angle θ. Alternatively, if necessary, a mode in which one side, for example, the insulating substrate 11 is relatively moved to discharge while maintaining the angle θ toward the total length can be adopted. In these cases, the angle θ is such that the emitted molecular beam enters the gap of the dimension D and is deposited over the entire length of the side surface 113 in the vertical direction according to the width dimension D and the height dimension H (see FIG. 3). Is set to. As a result, the thermoelectric material is deposited on the top 115 in addition to the side surface 113 (see FIG. 1), but it is sufficient if the thermoelectric material is deposited on the side surface 113 orthogonal to the main surface. It doesn't matter.

図4(D)は、側面114への成膜プロセスを示す。側面114への成膜プロセスは、図5の左右逆方向から、すなわち主面の法線方向に対して左方の角度θから蒸着物質の分子線を放出させるようにしている。放出される蒸着物質は、図4(B)と同様の金属である。金属層は、側面114の他、結果的に頂部115にも成膜されてしまうが、側面113に蒸着されておれば足り、頂部115への蒸着の有無は問わない。 FIG. 4D shows a film forming process on the side surface 114. The film forming process on the side surface 114 is such that the molecular beam of the vapor-deposited substance is emitted from the opposite direction of FIG. 5, that is, from the angle θ to the left with respect to the normal direction of the main surface. The released vapor film material is the same metal as in FIG. 4 (B). The metal layer is eventually formed on the top 115 in addition to the side surface 114, but it is sufficient that the metal layer is deposited on the side surface 113, regardless of whether or not the metal layer is deposited on the top 115.

以上の製造プロセスを経て、図1に示す熱電変換デバイス1が製作される。熱電変換デバイス1は、凹凸部111の底部112及び頂部115に金属層22,24が形成され、主面に直交する上下方向となる、一対の側面113,114のうち、ここでは、側面113に熱電材料層23が形成され、側面114に金属層24が形成されている。 Through the above manufacturing process, the thermoelectric conversion device 1 shown in FIG. 1 is manufactured. In the thermoelectric conversion device 1, the metal layers 22 and 24 are formed on the bottom 112 and the top 115 of the uneven portion 111, and the metal layers 22 and 24 are formed in the vertical direction orthogonal to the main surface. The thermoelectric material layer 23 is formed, and the metal layer 24 is formed on the side surface 114.

図6は、熱電変換デバイスの各種の態様を示すもので、図6(A)は、図1に示す熱電変換デバイス1の斜視図、図6(B)は、図6(A)を基板上に複数配列して搭載した第1の態様の熱電変換デバイス1A、図6(C)は、複数配列するように形成された第2の態様の熱電変換デバイス1Bの斜視図である。なお、図中では、作図上、凹凸部111の各面112〜115に成膜された薄層部は省略している。 6A and 6B show various aspects of the thermoelectric conversion device, FIG. 6A is a perspective view of the thermoelectric conversion device 1 shown in FIG. 1, and FIG. 6B shows FIG. 6A on a substrate. FIG. 6 (C) of the thermoelectric conversion device 1A of the first aspect mounted in a plurality of arrangements is a perspective view of the thermoelectric conversion device 1B of the second aspect formed so as to be arranged in a plurality of arrangements. In the drawing, the thin layer portions formed on the respective surfaces 112 to 115 of the uneven portion 111 are omitted for drawing purposes.

図6(B)に示す熱電変換デバイス1Aは、1つの基板4上に、図1に示す熱電変換デバイス1が直列にあるいは並列に、乃至直並列に接続されて所要レベルの電流量、電圧、乃至電力を出力可能にしている。基板4のサイズあるいは熱電変換デバイス1の配列ピッチや配置分布などを適宜設定することで、所望レベルの出力が確保可能となる。 In the thermoelectric conversion device 1A shown in FIG. 6B, the thermoelectric conversion device 1 shown in FIG. 1 is connected in series, in parallel, or in series and parallel on one substrate 4, and the required level of current amount, voltage, and Or power can be output. By appropriately setting the size of the substrate 4 or the arrangement pitch and arrangement distribution of the thermoelectric conversion device 1, a desired level of output can be secured.

図6(C)に示す熱電変換デバイス1Bは、図6(B)の基板4に相当するような、あるいは所定サイズの絶縁基板11を用い、この絶縁基板11に熱電変換デバイス1を直接形成し、かつ複数を分散配置したものである。図6(C)では、その内の一つの熱電変換デバイス1bを示している。この熱電変換デバイス1Bは、図6(A)に示す熱電変換デバイス1とは主面に対して凹凸形状の関係が逆になっている形態である。本発明は両方の形態を含む。 The thermoelectric conversion device 1B shown in FIG. 6C uses an insulating substrate 11 having a predetermined size or corresponding to the substrate 4 of FIG. 6B, and the thermoelectric conversion device 1 is directly formed on the insulating substrate 11. , And a plurality of them are distributed. FIG. 6C shows one of the thermoelectric conversion devices 1b. The thermoelectric conversion device 1B has a concave-convex shape opposite to that of the thermoelectric conversion device 1 shown in FIG. 6 (A). The present invention includes both forms.

図7は、センサデバイスと熱電変換デバイスとを一体化した、一実施形態を示すセンサ装置6の斜視図である。センサ装置6は、熱電変換デバイス1と、センサデバイス61と、熱電変換デバイス1及びセンサデバイス61を搭載した基板5とを備えている。熱電変換デバイス1とセンサデバイス61とは、電源配線14で接続され、熱電変換デバイス1で生成された電力がセンサデバイス61に供給可能に構成されている。センサデバイス61は電力を供給されて動作するものであれば、温度センサなどの各種環境センサ、超音波や赤外線等を利用した人体や動物感知、乃至は近距離センサなどの種々のセンサが採用可能である。 FIG. 7 is a perspective view of a sensor device 6 showing an embodiment in which a sensor device and a thermoelectric conversion device are integrated. The sensor device 6 includes a thermoelectric conversion device 1, a sensor device 61, and a substrate 5 on which the thermoelectric conversion device 1 and the sensor device 61 are mounted. The thermoelectric conversion device 1 and the sensor device 61 are connected by a power supply wiring 14, and the electric power generated by the thermoelectric conversion device 1 can be supplied to the sensor device 61. As long as the sensor device 61 operates by being supplied with electric power, various environmental sensors such as a temperature sensor, various sensors such as a human body or animal detection using ultrasonic waves or infrared rays, or a short-range sensor can be adopted. Is.

なお、本発明は、以下の態様を含む。 The present invention includes the following aspects.

(1)金属層22,24の成膜処理は、側面113、114への成膜処理の前後のいずれであってもよい。また、図4に示す製造プロセスによれば、頂部115は、下層の熱電材料と上層の金属材との二層となっているが、図4(C)(D)の一方のプロセス時に、頂部115にマスキング処理を施して斜め蒸着法で成膜処理を施すことで、いずれか一方の一層で成膜することができる。なお、頂部115は熱電材料と金属材のいずれで成膜されても所期の機能を発揮することができる。 (1) The film forming process of the metal layers 22 and 24 may be before or after the film forming process on the side surfaces 113 and 114. Further, according to the manufacturing process shown in FIG. 4, the top 115 has two layers, that is, a thermoelectric material in the lower layer and a metal material in the upper layer. By applying a masking process to 115 and performing a film forming process by an oblique vapor deposition method, a film can be formed with either one layer. It should be noted that the top 115 can exhibit its intended function regardless of whether the film is formed of a thermoelectric material or a metal material.

(2)本実施形態では、側面113をP型かN型の熱電材料層とし、側面114を金属層としたが、用途などに応じて、側面114を熱電材料層としてもよい。この場合、側面113をP型熱電材料層とし、側面114をN型熱電材料層とする態様、あるいはその逆の態様でもよい。このように、互いに逆型の熱電材料を適用して、同方向の温度勾配に対して逆向きの起電力を発生させることで、図2に示す通電路において同方向に電流を流すことが可能となり、かつ電流量も2倍となり、効率アップが図れる。 (2) In the present embodiment, the side surface 113 is a P-type or N-type thermoelectric material layer and the side surface 114 is a metal layer, but the side surface 114 may be a thermoelectric material layer depending on the application and the like. In this case, the side surface 113 may be a P-type thermoelectric material layer, the side surface 114 may be an N-type thermoelectric material layer, or vice versa. In this way, by applying thermoelectric materials of opposite types to each other and generating electromotive force in the opposite direction with respect to the temperature gradient in the same direction, it is possible to pass a current in the same direction in the energization path shown in FIG. And the amount of current is doubled, so efficiency can be improved.

(3)特に底部112への金属層22の形成方法は、リソグラフィ方式に代えて、例えば粉体状の金属物質を含有する溶液を適量だけ供給、例えば滴下して、その状態で自然にあるいは人工的に乾燥させることで含有金属を凝結、固化させて成膜する方法でもよい。この方法では、深い箇所への成膜が容易、確実となる。 (3) In particular, as a method for forming the metal layer 22 on the bottom 112, instead of the lithography method, an appropriate amount of a solution containing, for example, a powdery metal substance is supplied, for example, dropped, and naturally or artificially in that state. A method may also be used in which the contained metal is condensed and solidified by drying to form a film. With this method, film formation in deep places is easy and reliable.

(4)本実施形態では、側面として横断面矩形状を採用したが、横断面半円等の円弧形状、台形、三角形のような縦方向成分を有する各種形状の側面、また平面乃至曲面の側面に熱電材料層を採用してもよい。これらの場合、第1、第2の側面の間に頂部、底部を介在させて、頂部及び底部に金属層を成膜すればよい。あるいは金属層が成膜される頂部及び底部を介在させずに、第1、第2の側面が直接接続されたように、第1の側面の熱電材料と第2の側面の金属層とを繋げて成膜した形態としてもよい。 (4) In the present embodiment, a rectangular cross section is adopted as the side surface, but a side surface having an arc shape such as a semicircle cross section, a side surface having various vertical components such as a trapezoid and a triangle, and a flat or curved side surface. A thermoelectric material layer may be adopted for. In these cases, the top and bottom may be interposed between the first and second side surfaces, and a metal layer may be formed on the top and bottom. Alternatively, the thermoelectric material on the first side surface and the metal layer on the second side surface are connected so that the first and second side surfaces are directly connected without interposing the top and bottom on which the metal layer is formed. It may be in the form of a film formed.

(5)適用対象は、IOT(Internet Of Things)に用いられる各種のセンサデバイスに限られず、小型乃至超小型モータ等の可動部を有する電動アクチュエータ、信号乃至は情報処理用チップ等を含む電動デバイスを含む。センサ装置6は、基板5上に熱電変換デバイス1と電動デバイスとを一体で備えた電動装置として機能する。なお、電動デバイスとしては、電源供給を受けて所期の機能を発揮するデバイスであれば、動的な動作の他、例えば静的な処理動作を有するものを含めてもよい。 (5) The application target is not limited to various sensor devices used in IOT (Internet Of Things), but also electric actuators having moving parts such as small to ultra-small motors, electric devices including signals or information processing chips, etc. including. The sensor device 6 functions as an electric device in which the thermoelectric conversion device 1 and the electric device are integrally provided on the substrate 5. The electric device may include, for example, a device having a static processing operation in addition to the dynamic operation as long as it is a device that receives power supply and exhibits the desired function.

(6)本発明に係る熱電変換デバイスは、用途に応じて、絶縁基板11に透明材を適用することもでき、この場合、太陽光を利用した熱電変換が可能となる。例えば、図6(B)の熱電変換デバイス1Bを窓に張り付けて、屋内外の温度差を利用した適用例が考えられる。また、人体に貼付した熱電変換デバイスから体温を利用して得られる電源を用いて一体的構成のセンサデバイスを動作させる態様でもよい。 (6) In the thermoelectric conversion device according to the present invention, a transparent material can be applied to the insulating substrate 11 depending on the application, and in this case, thermoelectric conversion using sunlight becomes possible. For example, an application example in which the thermoelectric conversion device 1B of FIG. 6B is attached to a window and the temperature difference between indoors and outdoors is used can be considered. Further, the sensor device having an integrated configuration may be operated by using a power source obtained by utilizing the body temperature from the thermoelectric conversion device attached to the human body.

1,1A,1B 熱電変換デバイス
11 絶縁基板
111 凹凸部
112 底部(連結部、凸部)
113 側面(第1の側面)
114 側面(第2の側面)
115 頂部(連結部、凸部)
22,24 金属層(薄膜部、第2の薄膜層)
23 熱電材料層(薄膜部、第1の薄膜層)
3 蒸着源
6 センサ装置(電動装置)
61 センサデバイス
1,1A, 1B Thermoelectric conversion device 11 Insulated substrate 111 Concavo-convex part 112 Bottom part (connecting part, convex part)
113 side surface (first side surface)
114 side surface (second side surface)
115 Top (connecting part, convex part)
22,24 metal layer (thin film part, second thin film layer)
23 Thermoelectric material layer (thin film part, first thin film layer)
3 Thin film deposition source 6 Sensor device (electric device)
61 Sensor device

Claims (11)

主面の少なくとも一部に一方向に向けて凹凸部が形成された絶縁基板と、
前記凹凸部の表面を薄膜の導電材で覆った薄膜部とを備え、
前記凹凸部は、前記主面に交差しかつ互いに逆向きの面を持つ、隣同士の1組の第1の側面と第2の側面とを有し、
前記薄膜部は、前記第1の側面をP型熱電材料及びN型熱電材料の一方からなる第1の薄膜層で覆ったものである熱電変換デバイス。
An insulating substrate in which uneven portions are formed in at least a part of the main surface in one direction,
A thin film portion in which the surface of the uneven portion is covered with a thin film conductive material is provided.
The concavo-convex portion has a pair of adjacent first and second side surfaces that intersect the main surface and have surfaces that are opposite to each other.
The thin film portion is a thermoelectric conversion device in which the first side surface is covered with a first thin film layer made of one of a P-type thermoelectric material and an N-type thermoelectric material.
前記薄膜部は、前記第2の側面を前記P型熱電材料及びN型熱電材料の他方の熱電材料層及び金属層の一方からなる第2の薄膜層で覆ったものである請求項1に記載の熱電変換デバイス。 The first aspect of the thin film portion, wherein the second side surface is covered with a second thin film layer composed of one of the other thermoelectric material layer and the metal layer of the P-type thermoelectric material and the N-type thermoelectric material. Thermoelectric conversion device. 前記薄膜部は、前記第1、第2の側面の一方をP型熱電材料で、他方をN型熱電材料で覆ったものである請求項2に記載の熱電変換デバイス。 The thermoelectric conversion device according to claim 2, wherein the thin film portion is formed by covering one of the first and second side surfaces with a P-type thermoelectric material and the other with an N-type thermoelectric material. 前記薄膜部は、前記第1の側面及び前記第2の側面の間に介設される、金属層で形成された連結部を有する請求項1〜3のいずれかに記載の熱電変換デバイス。 The thermoelectric conversion device according to any one of claims 1 to 3, wherein the thin film portion has a connecting portion formed of a metal layer interposed between the first side surface and the second side surface. 前記第1、第2の側面は、前記主面に対して直交している請求項1〜4のいずれかに記載の熱電変換デバイス。 The thermoelectric conversion device according to any one of claims 1 to 4, wherein the first and second aspects are orthogonal to the main surface. 前記凹凸部の凸部側の前記一方向に対する幅寸法は、数nm〜数百μmである請求項5に記載の熱電変換デバイス。 The thermoelectric conversion device according to claim 5, wherein the width dimension of the convex portion side of the uneven portion in one direction is several nm to several hundred μm. 前記凹凸部の凹部側の前記一方向に対する幅寸法は、数nm〜数百μmである請求項5に記載の熱電変換デバイス。 The thermoelectric conversion device according to claim 5, wherein the width dimension of the concave-convex portion on the concave side in one direction is several nm to several hundred μm. 前記第1、第2の側面の高さ寸法は、数十nm〜数mmである請求項1〜7のいずれかに記載の熱電変換デバイス。 The thermoelectric conversion device according to any one of claims 1 to 7, wherein the height dimension of the first and second side surfaces is several tens of nm to several mm. 請求項4に記載の熱電変換デバイスの製造方法であって、
前記凹凸部の凹部側の面に粉体状の金属を含む溶液を供給する工程と、供給された前記溶液を蒸発させて金属層を固化形成する工程とを含む熱電変換デバイスの製造方法。
The method for manufacturing a thermoelectric conversion device according to claim 4.
A method for manufacturing a thermoelectric conversion device, which comprises a step of supplying a solution containing a powdery metal to a surface of the uneven portion on the concave side, and a step of evaporating the supplied solution to solidify and form a metal layer.
請求項1〜8のいずれかに記載の熱電変換デバイスの製造方法であって、
上方から前記第1の側面に向けて、気化された前記P型熱電材料及びN型熱電材料の一方の蒸着物質を放出して第1の薄層部の成膜を行う熱電変換デバイスの製造方法。
The method for manufacturing a thermoelectric conversion device according to any one of claims 1 to 8.
A method for manufacturing a thermoelectric conversion device in which one of the vaporized P-type thermoelectric material and the N-type thermoelectric material is discharged from above toward the first side surface to form a film on the first thin layer portion. ..
基板と、請求項1〜8のいずれかに記載の熱電変換デバイスと、電気で動作する電動デバイスとを備え、前記熱電変換デバイスと前記電動デバイスとが電源配線を介して接続されて前記基板に搭載された電動装置。 A substrate, the thermoelectric conversion device according to any one of claims 1 to 8, and an electrically operated electric device are provided, and the thermoelectric conversion device and the electric device are connected to the substrate via power supply wiring. On-board electric device.
JP2019220283A 2019-12-05 2019-12-05 Thermoelectric conversion device, manufacturing method of thermoelectric conversion device, and electric device Pending JP2021090001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019220283A JP2021090001A (en) 2019-12-05 2019-12-05 Thermoelectric conversion device, manufacturing method of thermoelectric conversion device, and electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019220283A JP2021090001A (en) 2019-12-05 2019-12-05 Thermoelectric conversion device, manufacturing method of thermoelectric conversion device, and electric device

Publications (1)

Publication Number Publication Date
JP2021090001A true JP2021090001A (en) 2021-06-10

Family

ID=76220452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019220283A Pending JP2021090001A (en) 2019-12-05 2019-12-05 Thermoelectric conversion device, manufacturing method of thermoelectric conversion device, and electric device

Country Status (1)

Country Link
JP (1) JP2021090001A (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430586A (en) * 1990-05-28 1992-02-03 Matsushita Electric Ind Co Ltd Thermoelectric device
JPH04101472A (en) * 1990-08-20 1992-04-02 Matsushita Electric Ind Co Ltd Cooler
JPH10303469A (en) * 1997-04-23 1998-11-13 Sharp Corp Thin-film thermoelectric conversion element, semiconductor device using the same, and printed circuit board using the same
JP2002533715A (en) * 1998-12-29 2002-10-08 オーミック アーベー Method of manufacturing calorimeter-related detector and detector manufactured by the method
JP2004281928A (en) * 2003-03-18 2004-10-07 Yamaha Corp Laminated thermoelectric element and method of manufacturing the same
JP2005353753A (en) * 2004-06-09 2005-12-22 Denso Corp Thermoelectric element
US20060102223A1 (en) * 2004-11-12 2006-05-18 Chen Howard H Integrated thermoelectric cooling devices and methods for fabricating same
JP2006301711A (en) * 2005-04-15 2006-11-02 Ricoh Co Ltd IC card, communication terminal and IC card manufacturing method
JP2017135777A (en) * 2016-01-25 2017-08-03 トヨタ自動車株式会社 Vehicle power generator
JP2017530563A (en) * 2014-09-22 2017-10-12 コンソルツィオ デルタ ティ リサーチ Silicon integrated out-of-plane heat flux thermoelectric generator
JP2017531922A (en) * 2014-10-09 2017-10-26 コンソルツィオ デルタ ティ リサーチ 3D integrated thermoelectric generator operating in an out-of-plane heat flux configuration with internal voids and heat conduction path adjusting vias
JP2017537460A (en) * 2014-10-01 2017-12-14 コンソルツィオ デルタ ティ リサーチ Silicon integrated bi-valve thermoelectric generator with out-of-plane heat flux configuration
JP2018067567A (en) * 2016-10-17 2018-04-26 日本精工株式会社 Thermoelectric transducer and manufacturing method thereof
WO2018078515A1 (en) * 2016-10-28 2018-05-03 Consorzio Delta Ti Research Integrated thermoelectric generator and related method of fabrication
US20190058103A1 (en) * 2016-01-19 2019-02-21 The Regents Of The University Of Michigan Thermoelectric micro-module with high leg density for energy harvesting and cooling applications
JP2019071722A (en) * 2017-10-10 2019-05-09 キヤノン株式会社 Electric apparatus and power supply method therefor

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430586A (en) * 1990-05-28 1992-02-03 Matsushita Electric Ind Co Ltd Thermoelectric device
JPH04101472A (en) * 1990-08-20 1992-04-02 Matsushita Electric Ind Co Ltd Cooler
JPH10303469A (en) * 1997-04-23 1998-11-13 Sharp Corp Thin-film thermoelectric conversion element, semiconductor device using the same, and printed circuit board using the same
JP2002533715A (en) * 1998-12-29 2002-10-08 オーミック アーベー Method of manufacturing calorimeter-related detector and detector manufactured by the method
JP2004281928A (en) * 2003-03-18 2004-10-07 Yamaha Corp Laminated thermoelectric element and method of manufacturing the same
JP2005353753A (en) * 2004-06-09 2005-12-22 Denso Corp Thermoelectric element
US20060102223A1 (en) * 2004-11-12 2006-05-18 Chen Howard H Integrated thermoelectric cooling devices and methods for fabricating same
JP2006301711A (en) * 2005-04-15 2006-11-02 Ricoh Co Ltd IC card, communication terminal and IC card manufacturing method
JP2017530563A (en) * 2014-09-22 2017-10-12 コンソルツィオ デルタ ティ リサーチ Silicon integrated out-of-plane heat flux thermoelectric generator
JP2017537460A (en) * 2014-10-01 2017-12-14 コンソルツィオ デルタ ティ リサーチ Silicon integrated bi-valve thermoelectric generator with out-of-plane heat flux configuration
JP2017531922A (en) * 2014-10-09 2017-10-26 コンソルツィオ デルタ ティ リサーチ 3D integrated thermoelectric generator operating in an out-of-plane heat flux configuration with internal voids and heat conduction path adjusting vias
US20190058103A1 (en) * 2016-01-19 2019-02-21 The Regents Of The University Of Michigan Thermoelectric micro-module with high leg density for energy harvesting and cooling applications
JP2017135777A (en) * 2016-01-25 2017-08-03 トヨタ自動車株式会社 Vehicle power generator
JP2018067567A (en) * 2016-10-17 2018-04-26 日本精工株式会社 Thermoelectric transducer and manufacturing method thereof
WO2018078515A1 (en) * 2016-10-28 2018-05-03 Consorzio Delta Ti Research Integrated thermoelectric generator and related method of fabrication
JP2019071722A (en) * 2017-10-10 2019-05-09 キヤノン株式会社 Electric apparatus and power supply method therefor

Similar Documents

Publication Publication Date Title
US11139423B2 (en) Methods for fabrication, manufacture and production of energy harvesting components and devices
US11362138B2 (en) Devices and systems incorporating energy harvesting components/devices as autonomous energy sources and as energy supplementation, and methods for producing devices and systems incorporating energy harvesting components/devices
US11600657B2 (en) Integrated circuit components incorporating energy harvesting components/devices, and methods for fabrication, manufacture and production of integrated circuit components incorporating energy harvesting components/devices
US10079561B1 (en) Energy harvesting components and devices
EP1885004B1 (en) Apparatus for the conversion of electromagnetic radiation in electric energy and corresponding conversion process
KR102182765B1 (en) Thermoelectric conversion element
JP2019192904A (en) Thermoelectric conversion element, photodetector, image element, and photothermoelectric conversion element
KR20160078445A (en) Pre-equilibrium system and method using solid-state devices as energy converters using nano-engineered porous network materials
TWI353673B (en) Integrated package having solar cell and thermoele
JPWO2017141682A1 (en) Thermo-light conversion element and thermoelectric conversion element
Chun et al. Self-powered temperature-mapping sensors based on thermo-magneto-electric generator
CN111954936B (en) Thermoelectric devices based on nano-phononic metamaterials
WO2010073391A1 (en) Thermoelectric conversion element, method for manufacturing thermoelectric conversion element and electronic device
US20090223548A1 (en) Thermionic/Thermotunneling Thermo-Electrical Converter
JP2021090001A (en) Thermoelectric conversion device, manufacturing method of thermoelectric conversion device, and electric device
JP6766277B1 (en) Catoptric element
JP6505585B2 (en) Thermoelectric conversion element
JP4182719B2 (en) Thermoelectric generator
US20220029082A1 (en) Methods for fabrication, manufacture and production of energy harvesting components and devices
Luo et al. Observation of the Photoenhanced Piezoelectric Effect on (101̅0) Orientated ZnO Single Crystal
JP2001007409A (en) Thermoelectric conversion element
JP6739072B2 (en) Method for producing thermoelectric conversion module
Trung et al. Flexible thermoelectric power generator based on electrochemical deposition process
JPH11354849A (en) Endothermic heating element
SE531725C2 (en) The solid state's cooling or electric power generating device and a production method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240514