JP2022088579A - 神経組織の製造方法 - Google Patents
神経組織の製造方法 Download PDFInfo
- Publication number
- JP2022088579A JP2022088579A JP2022057270A JP2022057270A JP2022088579A JP 2022088579 A JP2022088579 A JP 2022088579A JP 2022057270 A JP2022057270 A JP 2022057270A JP 2022057270 A JP2022057270 A JP 2022057270A JP 2022088579 A JP2022088579 A JP 2022088579A
- Authority
- JP
- Japan
- Prior art keywords
- cells
- medium
- cell
- culture
- signaling pathway
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/062—Sensory transducers, e.g. photoreceptors; Sensory neurons, e.g. for hearing, taste, smell, pH, touch, temperature, pain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/30—Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/383—Nerve cells, e.g. dendritic cells, Schwann cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3895—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells using specific culture conditions, e.g. stimulating differentiation of stem cells, pulsatile flow conditions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0619—Neurons
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0621—Eye cells, e.g. cornea, iris pigmented cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0623—Stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5014—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/99—Serum-free medium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/15—Transforming growth factor beta (TGF-β)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/155—Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/16—Activin; Inhibin; Mullerian inhibiting substance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/41—Hedgehog proteins; Cyclopamine (inhibitor)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/415—Wnt; Frizzeled
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/70—Enzymes
- C12N2501/72—Transferases [EC 2.]
- C12N2501/727—Kinases (EC 2.7.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/45—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
- C12N2533/52—Fibronectin; Laminin
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Neurology (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Neurosurgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Developmental Biology & Embryology (AREA)
- General Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Ophthalmology & Optometry (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Dermatology (AREA)
- Virology (AREA)
- Hematology (AREA)
- Toxicology (AREA)
- Botany (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
Abstract
Description
伝達経路阻害物質を含む無血清培地中で形成させ、これを基底膜標品の存在下において浮遊培養した後、血清培地中で浮遊培養することにより、多層の網膜組織を得る方法(非特許文献3及び特許文献3)が知られている。また、多能性幹細胞から視床下部組織への分化誘導方法(特許文献4及び非特許文献4)、及び多能性幹細胞から神経前駆細胞への分化誘導方法(非特許文献5及び6)についても報告されている。
これら製造法の出発材料である多能性幹細胞は、特に霊長類多能性幹細胞の場合、フィーダー細胞存在下・未分化維持因子添加条件で未分化維持培養されていた。近年、未分化維持培養の改良が進み、霊長類多能性幹細胞を、フィーダー細胞非存在下(フィーダーフリー)・未分化維持因子添加条件にて培養する手法が報告されている(非特許文献7、8及び9)。当該手法でフィーダーフリー培養された多能性幹細胞を出発材料として、神経系
細胞又は神経組織を安定的に製造する方法が切望されていた。
すなわち、本発明は以下に関する。
(1)多能性幹細胞を、フィーダー細胞非存在下で、1)TGFβファミリーシグナル伝達経
路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質、並びに2)未
分化維持因子を含む培地で培養する第一工程、
(2)第一工程で得られた細胞を浮遊培養し、細胞の凝集体を形成させる第二工程、及び
(3)第二工程で得られた凝集体を、分化誘導因子の存在下もしくは非存在下に浮遊培養
し、神経系細胞もしくは神経組織を含む凝集体を得る第三工程。
[2]第二工程において、第一工程で得られた細胞を分散し、当該分散した細胞を浮遊培
養する、[1]に記載の製造方法。
[3]未分化維持因子が、FGFシグナル伝達経路作用物質である、[1]又は[2]に記載の製造方法。
[4]FGFシグナル伝達経路作用物質が、bFGFである、[3]に記載の製造方法。
[5]第二工程において、細胞を、ソニック・ヘッジホッグシグナル伝達経路作用物質を
含む無血清培地中で浮遊培養することを特徴とする、[1]~[4]のいずれかに記載の製造方法。
[6]第三工程において、凝集体を分化誘導因子の存在下に浮遊培養することを特徴とす
る、[1]~[5]のいずれかに記載の製造方法。
[7]TGFβファミリーシグナル伝達経路阻害物質が、Nodal/Activinシグナル伝達経路阻
害物質、TGFβシグナル伝達経路阻害物質、又はBMPシグナル伝達経路阻害物質である、[1]~[6]のいずれかに記載の製造方法。
[8]TGFβファミリーシグナル伝達経路阻害物質が、Lefty、SB431542、A-83-01又はLDN193189である、[1]~[7]のいずれかに記載の製造方法。
[9]ソニック・ヘッジホッグシグナル伝達経路作用物質がShh、SAG又はPurmorphamineである、[1]~[8]のいずれかに記載の製造方法。
[10]第三工程における分化誘導因子が、BMPシグナル伝達経路作用物質である、[1]~[9]のいずれかに記載の製造方法。
[11]BMPシグナル伝達経路作用物質が、BMP2、BMP4、BMP7及びGDF7からなる群から選ば
れる1以上の蛋白質である、[10]に記載の製造方法。
[12]BMPシグナル伝達経路作用物質が、BMP4である、[10]に記載の製造方法。
[13]第三工程において得られる凝集体が、網膜組織を含む凝集体である、[1]~[12
]のいずれかに記載の製造方法。
[14]第三工程において得られる凝集体が、網膜前駆細胞、神経網膜前駆細胞、視細胞前駆細胞、視細胞、桿体視細胞、錐体視細胞、水平細胞、アマクリン細胞、介在神経細胞、神経節細胞、網膜色素上皮細胞、及び毛様体周縁部細胞からなる群から選択される1又は
複数の細胞を含む凝集体である、[1]~[13]のいずれかに記載の製造方法。
[15]第三工程における分化誘導因子がBMPシグナル伝達経路作用物質であり、且つ第二
工程における培地がソニック・ヘッジホッグシグナル伝達経路作用物質を含む、[13]又は[14]に記載の製造方法。
[16]多能性幹細胞がヒト多能性幹細胞であり、第二工程における培地中のソニック・ヘッジホッグシグナル伝達経路作用物質濃度がSAG10nM~700nMのソニック・ヘッジホッグシ
グナル伝達作用に相当する濃度であり、網膜組織がヒト網膜組織である、[15]に記載の製造方法。
[17]第三工程において、第二工程の開始後1日目から9日目の間にBMPシグナル伝達経路
作用物質が培地に添加される、[15]又は[16]に記載の製造方法。
[18]第三工程において、ソニック・ヘッジホッグシグナル伝達経路作用物質の濃度がSAG700nMのソニック・ヘッジホッグシグナル伝達作用に相当する濃度以下である培地で凝集体を培養する、[13]又は[14]に記載の製造方法。
[19]第三工程における分化誘導因子が、TGFβファミリーシグナル伝達経路阻害物質及
び/又はWntシグナル伝達経路阻害物質である、[1]~[9]のいずれかに記載の製造方法。
[20]TGFβファミリーシグナル伝達経路阻害物質が、Lefty、SB431542、A-83-01又はLDN193189である、[19]に記載の製造方法。
[21]Wntシグナル伝達経路阻害物質が、IWR-1-endoである、[19]又は[20]に記載の
製造方法。
[22]第三工程において得られる凝集体が、大脳組織を含む凝集体である、[1]~[9]又は[19]~[21]のいずれかに記載の製造方法。
[23]第一工程の培養時間が0.5時間~144時間である、[1]~[22]のいずれかに記載の製造方法。
[24]第一工程が接着培養法で行われる、[1]~[23]のいずれかに記載の製造方法。
[25]第三工程において、第二工程開始後3日目から6日目の間に分化誘導剤が培地に添加される、[1]~[24]のいずれかに記載の製造方法。
[26]多能性幹細胞が霊長類多能性幹細胞である、[1]~[15]及び[17]~[25]の
いずれかに記載の製造方法。
[27]多能性幹細胞がヒト多能性幹細胞である、[1]~[26]のいずれかに記載の製造
方法。
[28]多能性幹細胞が人工多能性幹細胞である、[1]~[27]のいずれかに記載の製造
方法。
[29]第二工程において、均一な凝集体を形成する、[1]~[28]のいずれかに記載の
製造方法。
[30]浮遊培養が、基底膜標品非存在下で行われる、[1]~[29]のいずれかに記載の
製造方法。
[31][1]~[30]のいずれかに記載の方法により製造される神経系細胞又は神経組織
を含有してなる、被験物質の毒性・薬効評価用試薬。
[32][1]~[30]のいずれかに記載の方法により製造される神経系細胞または神経組
織に被験物質を接触させ、該物質が該細胞又は該組織に及ぼす影響を検定することを含む、該物質の毒性・薬効評価方法。
[33][1]~[30]のいずれかに記載の方法により製造される神経系細胞又は神経組織
を含有してなる、神経系細胞又は神経組織の障害に基づく疾患の治療薬。
[34]神経系細胞又は神経組織が、網膜前駆細胞、網膜層特異的神経細胞、網膜組織、大脳神経系前駆細胞、大脳層特異的神経細胞、又は大脳組織である、[33]に記載の治療薬。
[35][1]~[30]のいずれかに記載の方法により製造される神経系細胞又は神経組織
の有効量を、移植を必要とする対象に移植することを含む、神経系細胞又は神経組織の障害に基づく疾患の治療方法。
[36]神経系細胞又は神経組織の障害に基づく疾患の治療における使用のための、[1]
~[30]のいずれかに記載の方法により製造される神経系細胞又は神経組織。
[37][1]~[30]のいずれかに記載の方法により製造される神経系細胞又は神経組織
を有効成分として含有する、医薬組成物。
本発明において、「幹細胞」とは、分化能及び分化能を維持した増殖能(特に自己複製能)を有する未分化な細胞を意味する。幹細胞には、分化能力に応じて、多能性幹細胞(pluripotent stem cell)、複能性幹細胞(multipotent stem cell)、単能性幹細胞(unipotent stem cell)等の亜集団が含まれる。多能性幹細胞とは、インビトロにおいて培養することが可能で、かつ、三胚葉(外胚葉、中胚葉、内胚葉)及び/又は胚体外組織に属する細胞系譜すべてに分化しうる能力(分化多能性(pluripotency))を有する幹細胞をいう。複能性幹細胞とは、全ての種類ではないが、複数種の組織や細胞へ分化し得る能力を有する幹細胞を意味する。単能性幹細胞とは、特定の組織や細胞へ分化し得る能力を有する幹細胞を意味する。
)、EG細胞(Embryonic germ cell)、人工多能性幹細胞(iPS細胞:induced pluripotent stem cell)等を挙げることが出来る。間葉系幹細胞(mesenchymal stem cell;MSC)か
ら得られるMuse細胞(Multi-lineage differentiating stress enduring cell)や、生殖細胞(例えば精巣)から作製されたGS細胞も多能性幹細胞に包含される。胚性幹細胞は、1981年に初めて樹立され、1989年以降ノックアウトマウス作製にも応用されている。1998年にはヒト胚性幹細胞が樹立されており、再生医学にも利用されつつある。ES細胞は、内部細胞塊をフィーダー細胞上又はLIFを含む培地中で培養することにより製造することが
出来る。ES細胞の製造方法は、例えば、WO96/22362、WO02/101057、US5,843,780、US6,200,806、US6,280,718等に記載されている。胚性幹細胞は、所定の機関より入手でき、また、市販品を購入することもできる。例えば、ヒト胚性幹細胞であるKhES-1、KhES-2及びKhES-3は、京都大学再生医科学研究所より入手可能である。ヒト胚性幹細胞であるRx::GFP株(KhES-1由来)は国立研究開発法人理化学研究所より入手可能である。いずれもマウス胚性幹細胞である、EB5細胞は国立研究開発法人理化学研究所より、D3株はATCCより、入手可能である。
することが出来る(Cell, 70: 841-847, 1992)。
人工多能性幹細胞は、2006年、山中らによりマウス細胞で樹立された(Cell, 2006, 126(4), pp.663-676)。人工多能性幹細胞は、2007年にヒト線維芽細胞でも樹立され、胚性幹細胞と同様に多能性と自己複製能を有する(Cell, 2007, 131(5), pp.861-872;Science, 2007, 318(5858), pp.1917-1920;Nat. Biotechnol., 2008, 26(1), pp.101-106)。
人工多能性幹細胞として、遺伝子発現による直接初期化で製造する方法以外に、化合物の添加などにより体細胞より人工多能性幹細胞を誘導することもできる(Science, 2013,
341, pp. 651-654)。
また、株化された人工多能性幹細胞を入手する事も可能であり、例えば、京都大学で樹立された201B7細胞、201B7-Ff細胞、253G1細胞、253G4細胞、1201C1細胞、1205D1細胞、1210B2細胞又は、1231A3細胞等のヒト人工多能性細胞株が、京都大学及びiPSアカデミアジャパン株式会社より入手可能である。株化された人工多能性幹細胞として、例えば、京都大学で樹立されたFf-I01細胞及びFf-I14細胞は、京都大学より入手可能である。
腸上皮細胞、平滑筋細胞等が挙げられる。
選別した細胞株の中から目的とする相同組換え体を選択する方法としては、ゲノムDNA
に対するサザンハイブリダイゼーション法やPCR法等があげられる。
(例、マウス、ラット)又は霊長類(例、ヒト、サル)の多能性幹細胞であり、より好ましくはヒト多能性幹細胞、更に好ましくはヒト人工多能性幹細胞(iPS細胞)又はヒト胚
性幹細胞(ES細胞)である。
ことをいう。より詳細には、浮遊培養とは、細胞または細胞の凝集体と培養器材等との間に強固な細胞-基質間結合を作らせない条件での培養をいい、接着培養とは、細胞または
細胞の凝集体と培養器材等との間に強固な細胞-基質間結合を作らせる条件での培養をい
う。
成されていてもその寄与が小さい。一部の態様では、浮遊培養中の細胞の凝集体では、内在の細胞-基質間結合が凝集塊の内部に存在するが、細胞-基質間結合が培養器材等との間にはほとんど形成されないか、あるいは、形成されていてもその寄与が小さい。
いう。より詳細には、細胞と細胞が面接着するとは、ある細胞の表面積のうち別の細胞の表面と接着している割合が、例えば、1%以上、好ましくは3%以上、より好ましくは5%
以上であることをいう。細胞の表面は、膜を染色する試薬(例えばDiI)による染色や、
細胞接着因子(例えば、E-cadherinやN-cadherin)の免疫染色により、観察できる。
地、CMRL 1066培地、Glasgow MEM (GMEM)培地、Improved MEM Zinc Option培地、IMDM培
地、Medium 199培地、Eagle MEM培地、αMEM培地、DMEM培地、F-12培地、DMEM/F12培地、IMDM/F12培地、ハム培地、RPMI 1640培地、Fischer’s培地、又はこれらの混合培地など
、動物細胞の培養に用いることのできる培地を挙げることができる。
ロジー(Life Technologies)社製)を適量(例えば、約0.5%から約30%、好ましくは
約1%から約20%)添加した無血清培地(例えば、F-12培地とIMDM培地の1:1混合液に10
% KSR、Chemically-defined Lipid concentrated、及び450μM 1-モノチオグリセロールを添加した培地)を使用してもよい。また、KSR同等品として特表2001-508302に開示された培地が挙げられる。
の物質Xが添加された培地または外来性の物質Xを含む培地、又は外来性の物質Xの存在下
を意味する。すなわち、当該培地中に存在する細胞または組織が当該物質Xを内在的(endogenous)に発現、分泌もしくは産生する場合、内在的な物質Xは外来性の物質Xとは区別され、外来性の物質Xを含んでいない培地は内在的な物質Xを含んでいても「物質Xを含む培地」の範疇には該当しないと解する。
集合して形成された塊であって、細胞同士が接着している塊をいう。細胞塊、胚様体(Embryoid body)、スフェア(Sphere)、スフェロイド(Spheroid)も細胞の凝集体に包含される。好ましくは、細胞の凝集体において、細胞同士が面接着している。一部の態様において、凝集体の一部分あるいは全部において、細胞同士が細胞-細胞間結合(cell-cell junction)及び/又は細胞接着(cell adhesion)、例えば接着結合(adherence junction)、を形成している場合がある。本発明における「凝集体」として具体的には、上記本発明[1]の第二工程で生成する、浮遊培養開始時に分散していた細胞が形成する凝集体や、上記本発明[1]の第三工程で生成する、多能性幹細胞から分化誘導された神経系細胞を含む凝集体が挙げられるが、「凝集体」には、上記本発明[1]の第二工程開始時(すなわち浮遊培養開始時)に既に形成されていた凝集体も含まれる。第二工程で生成する細胞の凝集体は、「胚様体」(Embryoid body;EB)を包含する。
好ましくは平均値±50%の範囲内、より好ましくは平均値±20%の範囲内であることを意味する。
を形成させ浮遊培養する際に、「一定数の分散した細胞を迅速に凝集」させることで大きさが均一な細胞の凝集体を形成させることをいう。
胞以上100細胞以下、好ましくは50細胞以下)又は単一細胞まで分離させることをいう。
一定数の分散した細胞とは、細胞片又は単一細胞を一定数集めたもののことをいう。
達経路作用物質、ヘパリン、IGFシグナル伝達経路作用物質、血清、又は血清代替物を挙
げることができる。また、分散により誘導される細胞死(特に、ヒト多能性幹細胞の細胞死)を抑制するために、分散の際に、Rho-associated coiled-coilキナーゼ(ROCK)の阻害物質又はMyosinの阻害物質を添加してもよい。ROCK阻害物質としては、Y-27632、Fasudil(HA1077)、H-1152等を挙げることができる。Myosinの阻害物質としてはBlebbistatinを挙げることができる。好ましい細胞保護剤としては、ROCK阻害物質が挙げられる。
ティングにより分散させる方法が挙げられる。
度)、384ウェルプレートが挙げられる。好ましくは、96ウェルプレートが挙げられる。
ウェルの小さなプレートの形状として、ウェルを上から見たときの底面の形状としては、多角形、長方形、楕円、真円が挙げられ、好ましくは真円が挙げられる。ウェルの小さなプレートの形状として、ウェルを横から見たときの底面の形状としては、平底構造でも、外周部が高く内凹部が低くくぼんだ構造でもよい。底面の形状として、例えば、U底、V底、M底が挙げられ、好ましくはU底またはV底、更に好ましくはV底が挙げられる。ウェルの小さなプレートとして、細胞培養皿(例えば、60mm~150mmディッシュ、カルチャーフラスコ)の底面に凹凸、又は、くぼみがあるものを用いてもよい。ウェルの小さなプレートの底面は、細胞非接着性の底面、好ましくは前記細胞非接着性コートした底面を用いるのが好ましい。
細胞以外の細胞を表す。すなわち、神経系前駆細胞、ニューロン(神経細胞)、グリア、神経幹細胞、ニューロン前駆細胞及びグリア前駆細胞等の細胞を含む。神経系細胞には、下述する網膜組織を構成する細胞(網膜細胞)、網膜前駆細胞、網膜層特異的神経細胞、神経網膜細胞、網膜色素上皮細胞も包含される。神経系細胞は、Nestin、TuJ1、PSA-NCAM、N-cadherin等をマーカーとして同定することができる。
な細胞であり、TuJ1、Dcx、HuC/D等の幼若神経細胞マーカー、及び/又は、Map2、NeuN等の成熟神経細胞マーカーの発現を指標に同定することができる。
カーは前駆細胞全般のマーカーであり神経幹細胞特異的なマーカーとは考えられていない。神経幹細胞の数は、ニューロスフェアアッセイやクローナルアッセイ等により評価することができる。
グリア前駆細胞を含む前駆細胞の集合体であり、増殖能とニューロン及びグリア産生能をもつ。神経系前駆細胞はNestin, GLAST, Sox2, Sox1, Musashi, Pax6等をマーカーとして同定することができる。あるいは、神経系細胞のマーカー陽性かつ増殖マーカー(Ki67, pH3, MCM)陽性の細胞を、神経系前駆細胞として同定することもできる。
これらの前駆細胞、または網膜前駆細胞などの細胞が、一種類又は少なくとも複数種類、層状で立体的に配列した組織を意味する。それぞれの細胞がいずれの網膜層を構成する細胞であるかは、公知の方法、例えば細胞マーカーの発現有無若しくはその程度等により確認できる。
ン、グリア細胞(アストロサイトおよびオリゴデンドロサイト)、これらの前駆細胞など)が、一種類又は少なくとも複数種類、層状で立体的に配列した組織を意味する。胎児期の大脳は、前脳又は終脳とも呼ばれる。それぞれの細胞の存在は、公知の方法、例えば細胞マーカーの発現有無若しくはその程度等により確認できる。
本発明における「大脳神経系前駆細胞」は、第一層ニューロン、第二層ニューロン、第三層ニューロン、第四層ニューロン、第五層ニューロン、第六層ニューロン、アストロサイト、及び、オリゴデンドロサイトのうちの少なくとも複数の分化系譜への分化能(多分化能)をもつ複能性幹細胞(複能性神経幹細胞、multi-potent neural stem cell)を含
む。
本発明の製造方法1は、下記工程(1)~(3)を含む、神経系細胞又は神経組織の製造
方法である:
(1)多能性幹細胞を、フィーダー細胞非存在下で、1)TGFβファミリーシグナル伝達経
路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質、並びに2)未
分化維持因子を含む培地で培養する第一工程、
(2)第一工程で得られた細胞を浮遊培養し、細胞の凝集体を形成させる第二工程、及び
(3)第二工程で得られた凝集体を、分化誘導因子の存在下もしくは非存在下に浮遊培養
し、神経系細胞もしくは神経組織を含む凝集体を得る第三工程。
リーシグナル伝達経路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質、並びに2)未分化維持因子を含む培地で培養する。
S細胞)、より好ましくはヒト人工多能性幹細胞又はヒト胚性幹細胞(ES細胞)が挙げら
れる。
周知の方法で実施することができる。多能性幹細胞の維持培養・拡大培養は、接着培養でも浮遊培養でも実施することができるが、好ましくは接着培養で実施される。多能性幹細胞の維持培養・拡大培養は、フィーダー存在下で実施してもよいしフィーダーフリーで実施してもよいが、好ましくはフィーダーフリーで実施される。多能性幹細胞の維持培養及び拡大培養におけるフィーダー細胞非存在下(フィーダーフリー)とは、フィーダー細胞を実質的に含まない(例えば、全細胞数に対するフィーダー細胞数の割合が3%以下の)条件を意味する。好ましくは、フィーダー細胞を含まない条件において、多能性幹細胞の維持培養及び拡大培養が実施される。
胞を実質的に含まない(例えば、全細胞数に対するフィーダー細胞数の割合が3%以下)の条件を意味する。好ましくは、フィーダー細胞を含まない条件において、工程(1)が実
施される。工程(1)において用いられる培地は、フィーダーフリー条件下で、多能性幹
細胞の未分化維持培養を可能にする培地(フィーダーフリー培地)であれば、特に限定されないが、好適には、未分化維持培養を可能にするため、未分化維持因子を含む。
する成分や細胞以外の因子を除去する操作がなされ、天然に存在する状態を脱していることを意味する。従って、「単離されたタンパク質X」には、培養対象の細胞や組織から産
生され細胞や組織及び培地中に含まれている内在性のタンパク質Xは包含されない。「単
離されたタンパク質X」の純度(総タンパク質重量に占めるタンパク質Xの重量の百分率)は、通常70%以上、好ましくは80%以上、より好ましくは90%以上、更に好ましくは99%以上、更に好ましくは100%である。従って、一態様において、本発明は、単離された未
分化維持因子を提供する工程を含む。また、一態様において、工程(1)に用いる培地中
へ、単離された未分化維持因子を外来性(又は外因性)に添加する工程を含む。あるいは、工程(1)に用いる培地に予め未分化維持因子が添加されていてもよい。
の未分化状態を維持可能な濃度であり、当業者であれば、適宜設定することができる。例えば、具体的には、未分化維持因子として、フィーダー細胞非存在下でbFGFを用いる場合、その濃度は、通常4ng~500ng/mL程度、好ましくは10ng~200ng/mL程度、より好ましくは30ng~150ng/mL程度である。
れてもよいが、好ましくは、接着培養により行われる。
ッグシグナル伝達経路作用物質で処理してから、第二工程において浮遊培養に付すことにより、多能性幹細胞の状態が変わり、凝集体の質が向上し、丸く、表面が滑らかで、凝集
体の内部が密な未分化性を維持した細胞凝集体を高効率で製造することができる。
より伝達される、シグナル伝達経路である。
、アプタマー等)、TGFβをコードする遺伝子の発現を抑制する物質(例えばアンチセン
スオリゴヌクレオチド、siRNA等)、TGFβ受容体とTGFβの結合を阻害する物質、TGFβ受容体によるシグナル伝達に起因する生理活性を阻害する物質(例えば、TGFβ受容体の阻
害剤、Smadの阻害剤等)を挙げることができる。TGFβシグナル伝達経路阻害物質として
知られているタンパク質として、Lefty等が挙げられる。TGFβシグナル伝達経路阻害物質として、当業者に周知の化合物を使用することができ、具体的には、SB431542、LY-364947、SB-505124、A-83-01等が挙げられる。ここでSB431542(4-(5-ベンゾール[1,3]ジオキソール-5-イル-4-ピリジン-2-イル-1H-イミダゾール-2-イル)-ベンズアミド)及びA-83-01(3-(6-メチル-2-ピリジニル)-N-フェニル-4-(4-キノリニル)-1H-ピラゾール-1-カルボチオアミド)は、TGFβ受容体(ALK5)及びActivin受容体(ALK4/7)の阻害剤(すなわちTGFβR阻害剤)として公知の化合物である。TGFβシグナル伝達経路阻害物質は、好ましくはSB431542又はA-83-01である。
ナル伝達経路を阻害する物質であれば特に限定は無く、核酸、タンパク質、低分子有機化合物のいずれであってもよい。当該物質として例えば、NodalもしくはActivinに直接作用する物質(例えば抗体、アプタマー等)、NodalもしくはActivinをコードする遺伝子の発現を抑制する物質(例えばアンチセンスオリゴヌクレオチド、siRNA等)、Nodal/Activin受容体とNodal/Activinの結合を阻害する物質、Nodal/Activin受容体によるシグナル伝達に起因する生理活性を阻害する物質を挙げることができる。Nodal/Activinシグナル伝達経路阻害物質として、当業者に周知の化合物を使用することができ、具体的には、SB431542、A-83-01等が挙げられる。また、Nodal/Activinシグナル伝達経路阻害物質として知られているタンパク質(Lefty、Cerberus等)を使用してもよい。Nodal/Activinシグナル伝達経路阻害物質は、好ましくは、SB431542、A-83-01又はLeftyである。
ば、BMPに直接作用する物質(例えば抗体、アプタマー等)、BMPをコードする遺伝子の発現を抑制する物質(例えばアンチセンスオリゴヌクレオチド、siRNA等)、BMP受容体(BMPR)とBMPの結合を阻害する物質、BMP受容体によるシグナル伝達に起因する生理活性を阻害する物質を挙げることができる。BMPRとして、ALK2又はALK3を挙げることができる。BMPシグナル伝達経路阻害物質として、当業者に周知の化合物を使用することができ、具体的には、LDN193189、Dorsomorphin等が挙げられる。ここでLDN193189(4-[6-(4-ピペラジン-1-イルフェニル)ピラゾロ[1,5-a]ピリミジン-3-イル]キノリン)は、公知のBMPR(ALK2/3)阻害剤(以下、BMPR阻害剤)であり、通常は塩酸塩の形態で市販されている。また、BMPシグナル伝達経路阻害物質として知られるタンパク質(Chordin、Noggin等)を使用してもよい。BMPシグナル伝達経路阻害物質は、好ましくはLDN193189である。
用いても良い。組み合わせることにより、凝集体の質を向上する効果が増強されることが期待される。例えば、TGFβシグナル伝達経路阻害物質とBMPシグナル伝達経路阻害物質との組み合わせ、TGFβシグナル伝達経路阻害物質とNodal/Activinシグナル伝達経路阻害物質との組み合わせ、BMPシグナル伝達経路阻害物質とNodal/Activinシグナル伝達経路阻害物質との組み合わせが挙げられるが、好ましくはTGFβシグナル伝達経路阻害物質がBMPシグナル伝達経路阻害物質と組み合わせて用いられる。具体的な好ましい組み合わせとしては、SB431542とLDN193189との組み合わせが挙げられる。
とは、Shhにより媒介されるシグナル伝達を増強し得る物質である。Shhシグナル伝達経路作用物質としては、例えば、Hedgehogファミリーに属する蛋白質(例えば、ShhやIhh)、Shh受容体、Shh受容体アゴニスト、PMA(Purmorphamine; 9-シクロヘキシル-N-[4-(4-モ
ルホリニル)フェニル]-2-(1-ナグタレニルオキシ)-9H-プリン-6-アミン)、又はSAG(Smoothened Agonist; N-メチル-N'-(3-ピリジニルベンジル)-N'-(3-クロロベンゾ[b]チオフェン-2-カルボニル)-1,4-ジアミノシクロヘキサン)等が挙げられる。Shhシグナル伝達経路作用物質は、好ましくはShhタンパク質(Genbankアクセッション番号:NM_000193、NP_000184)、SAG又はPMAである。
質とShhシグナル伝達経路作用物質とを組み合わせて用いる場合、TGFβファミリーシグナル伝達経路阻害物質とShhシグナル伝達経路作用物質の両方を含む培地中で細胞を培養し
てもよいし、TGFβファミリーシグナル伝達経路阻害物質及びShhシグナル伝達経路作用物質のいずれか一方で細胞を処理した後、いずれか一方又は両方で引き続き細胞を処理してもよい。
経路作用物質の濃度は、上述の効果を達成可能な範囲で適宜設定することが可能である。例えば、SB431542は、通常0.1~200μM、好ましくは2~50μMの濃度で使用される。A-83-01は、通常0.05~50μM、好ましくは0.5~5μMの濃度で使用される。LDN193189は、通常1~2000nM、好ましくは10~300 nMの濃度で使用される。Leftyは、通常5~200ng/ml、好ましくは10~50 ng/mlの濃度で使用される。Shhタンパク質は、通常20~1000 ng/ml、好ましくは50~300 ng/mlの濃度で使用される。SAGは、通常、1~2000nM、好ましくは10~700nM、より好ましくは30~600nMの濃度で使用される。PMAは、通常0.002~20μM、好ましくは0.02~2μMの濃度で使用される。一態様において、TGFβファミリーシグナル伝達経路阻害物質は、前記濃度のSB43154と同等のTGFβファミリーシグナル伝達経路阻害活性を有する量で適宜使用することができる。また、一態様において、ソニック・ヘッジホッグシグナル伝達経路作用物質は、前記濃度のSAGと同等のShhシグナル伝達促進活性を有する量で適宜使用することができる。
ナル伝達促進活性は、当業者に周知の方法、例えばGli1遺伝子の発現に着目したレポータージーンアッセイにて決定することができる(Oncogene (2007) 26, 5163-5168)。
が、化学的に未決定な成分の混入を回避する観点から、好ましくは、無血清培地である。
ら、含有成分が化学的に決定された培地であってもよい。
こなわれてもよいが、好ましくは、接着培養により行われる。
して前記フィーダーフリー培地を用いるとよい。フィーダーフリー培地として、Essential 8、S-medium、StemPro、hESF9、mTeSR1、mTeSR2、TeSR-E8、又はStemFit等が挙げられ、好ましくはEssential8又はStemFitが用いられる。
ダー細胞に代わる足場を多能性幹細胞に提供するため、適切なマトリクスを足場として用いてもよい。足場であるマトリクスにより、表面をコーティングした細胞容器中で、多能性幹細胞を接着培養する。
種類のアイソフォームを有する。α鎖(α1~α5)、β鎖(β1~β4)およびγ鎖(γ1
~γ3)のそれぞれの数字を組み合わせて、ラミニンの名称が定められている。例えばα5鎖、β1鎖、γ1鎖の組合せによるラミニンをラミニン511という。本発明においては、好
ましくはラミニン511が用いられる(Nat Biotechnol 28, 611-615 (2010))。
ーゼで消化して得られたフラグメントの中で、強い細胞接着活性をもつフラグメントとして同定されたものである(EMBO J., 3:1463-1468, 1984、J. Cell Biol., 105:589-598, 1987)。本発明においては、好ましくはラミニン511のE8フラグメントが用いられる(Nat
Commun 3, 1236 (2012)、Scientific Reports 4, 3549 (2014))。本発明に用いられる
ラミニンE8フラグメントは、ラミニンのエラスターゼ消化産物であることを要するものではなく、組換え体であってもよい。未同定成分の混入を回避する観点から、本発明においては、好ましくは、組換え体のラミニン断片が用いられる。ラミニン511のE8フラグメン
トは市販されており、例えばニッピ株式会社等から購入可能である。
(Life Technologies社製)、基底膜成分として公知の細胞外マトリックス分子(例えば
、ラミニン、IV型コラーゲン、ヘパラン硫酸プロテオグリカン、エンタクチンなど)を含むものが挙げられる。
ては、単離されたラミニン511又はラミニン511のE8フラグメント(更に好ましくは、ラミニン511のE8フラグメント)により、表面をコーティングした細胞容器中で、多能性幹細
胞を接着培養する。
である。工程(1)における多能性幹細胞の培養時間は、好ましくは1時間以上、2時間以
上、6時間以上、12時間以上、18時間以上、又は24時間以上である。工程(1)における多能性幹細胞の培養時間は、好ましくは96時間以内、又は72時間以内である。一態様において、工程(1)における多能性幹細胞の培養時間の範囲は、好ましくは2~96時間、より好ましくは6~48時間、更に好ましくは12~48時間、より更に好ましくは18~28時間(例、24時間)である。即ち、工程(2)開始の0.5~144時間(好ましくは、18~28時間)前に
第一工程を開始し、工程(1)を完了した後引き続き工程(2)が行われる。更なる態様において、工程(1)における多能性幹細胞の培養時間の範囲は、好ましくは18~144時間、24~144時間、24~96時間、又は24~72時間である。TGFβファミリーシグナル伝達経路阻害物質及びShhシグナル伝達経路作用物質のいずれか一方で細胞を処理した後、他方で引
き続き細胞を処理する場合、それぞれの処理時間が、上述の培養時間の範囲内となるようにすることができる。
非存在下で、bFGFを含有する無血清培地中で、接着培養する。当該接着培養は、好ましくは、ラミニン511、ラミニン511のE8フラグメント又はビトロネクチンで表面をコーティングした細胞容器中で実施される。当該接着培養は、好ましくは、フィーダーフリー培地としてEssential 8、TeSR培地、mTeSR培地、mTeSR-E8培地、又はStemFit培地、更に好まし
くはEssential 8又はStemFit培地を用いて実施される。
非存在下で、bFGFを含有する無血清培地中で、浮遊培養する。当該浮遊培養では、ヒト多能性幹細胞は、ヒト多能性幹細胞の凝集体を形成してもよい。
(好ましくは、網膜組織、網膜細胞、網膜前駆細胞、又は網膜層特異的神経細胞)へ分化する能力を有する幹細胞である。一態様において、工程(1)により得られる細胞は、少
なくとも神経系細胞や神経組織(好ましくは、網膜組織、網膜細胞、網膜前駆細胞、又は網膜層特異的神経細胞)へ分化する能力を有する、Oct3/4陽性の幹細胞である。
下で、TGFβファミリーシグナル伝達経路阻害物質及び/又はソニック・ヘッジホッグシ
グナル伝達経路作用物質、並びにbFGFを含有する無血清培地で、接着培養する。
害物質は、好ましくはTGFβシグナル伝達経路阻害物質(例、SB431542 、A-83-01、Lefty)、Nodal/Activinシグナル伝達経路阻害物質(例、Lefty 、SB431542 、A-83-01)、BMPシグナル伝達経路阻害物質(例、LDN193189、Chordin、Noggin)、又はこの組み合わせ(例、SB431542及びLDN193189)である。TGFβファミリーシグナル伝達経路阻害物質は、更に好ましくはLefty、SB431542、A-83-01、又はLDN193189、又はこの組み合わせ(例、SB431542及びLDN193189)である。ソニック・ヘッジホッグシグナル伝達経路作用物質は、好ましくはShhタンパク質、SAG又はPurmorphamine(PMA)、より好ましくはSAGである。TGFβファミリーシグナル伝達経路阻害物質(例、Lefty、SB431542、A-83-01、LDN193189)とソニック・ヘッジホッグシグナル伝達経路作用物質(例、Shhタンパク質、SAG、PMA)とを組み合わせて用いてもよい。培養時間は、0.5~144時間(好ましくは、18~144時間、24~144時間、24~96時間、又は24~72時間(例えば、18~28時間))である。
含む培地中で、維持培養しておき、この培養中へTGFβファミリーシグナル伝達経路阻害
物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質を添加し、培養を継続することにより実施される。
含む無血清培地中で維持培養する。当該維持培養は、好ましくは接着培養により行われる。当該接着培養は、好ましくは、ビトロネクチン、ラミニン511又はラミニン511のE8フラグメントで表面をコーティングした細胞容器中で実施される。そして、この培養中へTGFβファミリーシグナル伝達経路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質を添加し、培養を継続する。TGFβファミリーシグナル伝達経路阻害物質は、好ましくはTGFβシグナル伝達経路阻害物質(例、SB431542、A-83-01、Lefty)、Nodal/Activinシグナル伝達経路阻害物質(例、SB431542、A-83-01、Lefty)、BMPシグナル伝達経路阻害物質(例、LDN193189)、又はこの組み合わせ(例、SB431542及びLDN193189)である。TGFβファミリーシグナル伝達経路阻害物質は、更に好ましくはLefty、SB431542、A-83-01、又はLDN193189、又はこの組み合わせ(例、SB431542及びLDN193189)である。ソニック・ヘッジホッグシグナル伝達経路作用物質は、好ましくはShhタンパク質、SAG又はPMAである。TGFβファミリーシグナル伝達経路阻害物質(例、Lefty、SB431542、A-83-01、LDN193189)とソニック・ヘッジホッグシグナル伝達経路作用物質(例、Shhタンパク質、SAG、PMA)とを組み合わせて用いてもよい。添加後、0.5~144時間(好ましくは、18~144時間、24~144時間、24~96時間、又は24~72時間(例えば、18~28時間))培養を継続する。
る工程(2)について説明する。
特に限定されない。工程(2)において用いられる培地は血清含有培地又は無血清培地で
あり得る。化学的に未決定な成分の混入を回避する観点から、本発明においては、無血清培地が好適に用いられる。例えば、BMPシグナル伝達経路作用物質及びWntシグナル伝達経路阻害物質がいずれも添加されていない無血清培地を使用することができる。調製の煩雑さを回避するには、例えば、市販のKSR等の血清代替物を適量添加した無血清培地(例え
ば、IMDMとF-12の1:1の混合液に10% KSR、450μM 1-モノチオグリセロール及び1 x Chemically Defined Lipid Concentrateが添加された培地、又は、GMEMに5%~20%KSR、NEAA、ピルビン酸、2-メルカプトエタノールが添加された培地)を使用することが好ましい。無血清培地へのKSRの添加量としては、例えばヒト多能性幹細胞の場合は、通常約1%から約30%であり、好ましくは約2%から約20%である。
れた細胞を調製する。分散操作により得られた「分散された細胞」とは、例えば7割以上
が単一細胞であり2~50細胞の塊が3割以下存在する状態が挙げられる。分散された細胞として、好ましくは、8割以上が単一細胞であり、2~50細胞の塊が2割以下存在する状態が
挙げられる。分散された細胞とは、細胞同士の接着(例えば面接着)がほとんどなくなった状態があげられる。一部の態様において、分散された細胞とは、細胞―細胞間結合(例えば、接着結合)がほとんどなくなった状態が挙げられる。
、細胞保護剤処理を含んでよい。これらの処理を組み合わせて行ってもよい。好ましくは
、細胞保護剤処理と同時に、細胞分散液処理を行い、次いで機械的分散処理をするとよい。
パリン、IGFシグナル伝達経路作用物質、血清、又は血清代替物を挙げることができる。
また、分散により誘導される多能性幹細胞(特に、ヒト多能性幹細胞)の細胞死を抑制するための細胞保護剤として、Rho-associated coiled-coilキナーゼ(ROCK)の阻害剤又はMyosinの阻害剤を添加してもよい。分散により誘導される多能性幹細胞(特に、ヒト多能性幹細胞)の細胞死を抑制し、細胞を保護するために、Rho-associated coiled-coilキナーゼ(ROCK)の阻害剤又はMyosinの阻害剤を第二工程培養開始時から添加してもよい。ROCK阻害剤としては、Y-27632、Fasudil(HA1077)、H-1152等を挙げることができる。Myosinの阻害剤としてはBlebbistatinを挙げることができる。
アミン四酢酸等のキレート剤のいずれかを含む溶液を挙げることができる。市販の細胞分散液、例えば、TrypLE Select (Life Technologies社製)やTrypLE Express (Life Technologies社製)を用いることもできる。
ると凝集塊ごとの大きさにばらつきが生じる。そこで、例えば、96穴マイクロプレートのようなマルチウェルプレート(U底、V底)の各ウェルに一定数の分散された幹細胞を入れて、これを静置培養すると、細胞が迅速に凝集することにより、各ウェルにおいて1個の
凝集体が形成される。この凝集体を複数のウェルから回収することにより、均一な凝集体の集団を得ることができる。
うに適宜設定することができる。例えば96穴マイクロウェルプレートを用いてヒト細胞(例、工程(1)においてヒトiPS細胞から得られた細胞)を浮遊培養する場合、1ウェルあたり約1 x 103から約1 x 105細胞、好ましくは約3 x 103から約5 x 104細胞、より好ましくは約4 x 103から約2 x 104細胞、更に好ましくは、約4 x 103から約1.6 x 104細胞、
より更に好ましくは約8 x 103から約1.2 x 104細胞となるように調製した液をウェルに
添加し、プレートを静置して凝集体を形成させる。
培地を加える操作(培地添加操作)、元ある培地を半量程度(元ある培地の体積量の30~
90%程度、例えば40~60%程度)捨てて新しい培地を半量程度(元ある培地の体積量の30~90%、例えば40~60%程度)加える操作(半量培地交換操作)、元ある培地を全量程度(元ある培地の体積量の90%以上)捨てて新しい培地を全量程度(元ある培地の体積量の90%以上)加える操作(全量培地交換操作)が挙げられる。
には、好ましくは約72時間以内、より好ましくは約48時間以内である。この凝集体形成までの時間は、細胞を凝集させる用具や、遠心分離条件などを調整することにより適宜調節することが可能である。
る浮遊培養の時間は、通常12時間~6日間、好ましくは12時間~48時間程度である。
ナル伝達経路作用物質を含む。工程(1)において、多能性幹細胞をTGFβファミリーシグナル伝達経路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質で処理し、第二工程において、第一工程で得られた細胞を、ソニック・ヘッジホッグシグナル伝達経路作用物質を含む培地(好適には無血清培地)中で浮遊培養に付して凝集体を形成
させることにより、凝集体の質が、更に向上し、丸く、表面が滑らかで、形が崩れていない、凝集体の内部が密な、未分化性を維持した細胞の凝集体を高効率で形成できる。
凝集体を形成する。ソニック・ヘッジホッグシグナル伝達経路作用物質は、好ましくは、浮遊培養開始時から培地に含まれる。培地には、ROCK阻害剤(例、Y-27632)を添加して
もよい。培養時間は12時間~6日間、好ましくは12時間~48時間である。形成される凝集
体は、好ましくは均一な凝集体である。
た細胞)を回収し、これを、単一細胞、又はこれに近い状態にまで、ソニック・ヘッジホッグシグナル伝達経路作用物質(例、SAG、PMA、Shhタンパク質)を含む無血清培地中に分散し、浮遊培養に付す。該無血清培地は、ROCK阻害物質(例、Y-27632)を含んでいても良い。ヒト多能性幹細胞(例、ヒトiPS細胞)の懸濁液を、上述の培養器中に播き、分散させた多能性幹細胞を、培養器に対して、非接着性の条件下で培養することにより、複数の多能性幹細胞を集合させて凝集体を形成する。培養時間は12時間~6日間、好ましくは12時間~48時間である。形成される凝集体は、好ましくは均一な凝集体である。
経路作用物質(例、SAG、PMA、Shhタンパク質)を含む培地で工程(1)において得られた細胞の浮遊培養が実施される。ここで好ましくは、TGFβシグナル伝達経路阻害物質とし
てSB431542又はA-83-01を使用することができる。
伝達経路作用物質(例、SAG、PMA、Shhタンパク質)を含まない培地で工程(1)において得られた細胞の浮遊培養が実施される。ここで好ましくは、BMPシグナル伝達経路阻害物
質としてLDN193189を使用することができる。
)をTGFβファミリーシグナル伝達経路阻害物質(例えば、TGFβシグナル伝達経路阻害物質(例、Lefty、SB431542、A-83-01)、Nodal/Activinシグナル伝達経路阻害物質(例、Lefty、SB431542、A-83-01)、BMPシグナル伝達経路阻害物質(例、LDN193189)、又はこ
の組み合わせ(例、SB431542及びLDN193189)等);ソニック・ヘッジホッグシグナル伝
達経路作用物質(例、Shhタンパク質、SAG、PMA);又はTGFβファミリーシグナル伝達経路阻害物質(例、Lefty、SB431542、A-83-01、LDN193189)とソニック・ヘッジホッグシ
グナル伝達経路作用物質(例、Shhタンパク質、SAG、PMA)との組み合わせで処理し、か
つ、工程(2)において、ソニック・ヘッジホッグシグナル伝達経路作用物質(例、SAG、PMA、Shhタンパク質)を含む培地で工程(1)において得られた細胞の浮遊培養が実施さ
れる。
達経路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質で処理しない場合よりも、高い品質を有している。具体的には、丸く、表面が滑らかで、凝集体の内部が密であり、形が崩れていない凝集体の割合に富んだ、凝集体の集団を得ることが出来る。一態様において、第二工程開始から6日目に無作為的に凝集体(例えば、100個以上)を選出した際に、崩れていない凝集体の割合及び/又は嚢胞化していない凝集体の割合の和が、例えば70%以上、好ましくは80%以上である。
一態様において、工程(2)で得られる凝集体は、神経系細胞や神経組織(好ましくは、
網膜組織、網膜細胞、網膜前駆細胞、又は網膜層特異的神経細胞)へ分化する能力を有する。
は、網膜組織、網膜細胞、網膜前駆細胞、又は網膜層特異的神経細胞)へ分化する能力を有する幹細胞(好ましくは、少なくとも神経系細胞や神経組織(好ましくは、網膜組織、網膜細胞、網膜前駆細胞、又は網膜層特異的神経細胞)へ分化する能力を有する、Oct3/4陽性の幹細胞)を工程(2)で用いることにより、少なくとも神経系細胞や神経組織(好
ましくは、網膜組織、網膜細胞、網膜前駆細胞、又は網膜層特異的神経細胞)へ分化する能力を有する幹細胞(好ましくはOct3/4陽性幹細胞)を含む凝集体を得ることができる。工程(2)で得られる凝集体は、当該凝集体を、適切な分化条件下で培養することにより
、種々の分化細胞や分化組織を高い効率で誘導することが出来る。
培地を加える操作(培地添加操作)、元ある培地を半量程度(元ある培地の体積量の30~90%程度、例えば40~60%程度)捨てて新しい培地を半量程度(元ある培地の体積量の30~90%程度、例えば40~60%程度)加える操作(半量培地交換操作)、元ある培地を全量程度(元ある培地の体積量の90%以上)捨てて新しい培地を全量程度(元ある培地の体積量の90%以上)加える操作(全量培地交換操作)が挙げられる。
る工程(3)について説明する。
しては、多くの方法が報告されている。例えばWO2005/123902、WO2009/148170、WO2008/035110、WO2011/055855、Cell Stem Cell, 3, 519-32 (2008)、Nature, 472, 51-56 (2011)、Cell Stem Cell, 10(6), 771-775 (2012)、Nature Biotechnology, 27(3), 275-80 (2009)、Proc Natl Acad Sci USA, 110(50), 20284-9 (2013)等に記載された方法が知られているが、これらに限定されない。このような種々の神経系細胞または神経組織の誘導方法を、工程(2)で得られた凝集体に適用し、工程(2)で得られた凝集体を、適切な神経分化誘導条件下で培養することにより、神経系細胞もしくは神経組織を含む凝集体を製造することが出来る。
ましくは存在下)に浮遊培養し、神経系細胞もしくは神経組織を含む凝集体を得る。
された無血清培地又は血清培地(好ましくは無血清培地)である。かかる培地には、基底膜標品を添加してもよく、しなくてもよい。基底膜標品としては、上述のものを使用することができる。基底膜標品を添加する場合の濃度は、例えば、Matrigelを用いる場合、体積濃度で0.1~10%、より好ましくは0.5%から2%である。化学的に未同定な物質の混入を回避する観点からは基底膜標品を添加しない。
量添加した無血清培地(例えば、IMDMとF-12の1:1の混合液に10%KSR、450μM 1-モノチオグリセロール及び1 x Chemically Defined Lipid Concentrateが添加された培地、又は、GMEMに5%~20%KSR、NEAA、ピルビン酸、2-メルカプトエタノールが添加された培地)を使用することが好ましい。無血清培地へのKSRの添加量としては、例えばヒトES細胞の場合は、通常約1%から約20%であり、好ましくは約2%から約20%である。
培地をそのまま工程(3)に用いる場合、分化誘導因子を培地中に添加すればよい。
培地を加える操作(培地添加操作)、元ある培地を半量程度(元ある培地の体積量の40~80%程度)捨てて新しい培地を半量程度(元ある培地の体積量の40~80%)加える操作(半量培地交換操作)、元ある培地を全量程度(元ある培地の体積量の90%以上)捨てて新しい培地を全量程度(元ある培地の体積量の90%以上)加える操作(全量培地交換操作)が挙げられる。
く、浮遊培養開始後数日以内(例えば、15日以内又は18日以内)に培地に添加してもよい。好ましくは、分化誘導因子は、浮遊培養開始後1日目から18日目までの間又は1日目から15日目までの間、より好ましくは1日目から9日目までの間、更に好ましくは3日目から8日目までの間又は2日目から9日目までの間、より更に好ましくは、3日目から6日目までの間に培地に添加する。
培地を用いて培地交換を行ってよい。一態様において、凝集体の神経系細胞への分化誘導が開始された後、分化誘導因子を含まない無血清培地又は血清培地による培地交換により、培地中の分化誘導因子濃度を、2~4日につき、40~60%減の割合で、徐々に又は段階的に低下させる。
即ち、第二工程で得られた凝集体を、BMPシグナル伝達経路作用物質の存在下に浮遊培養
し、神経系細胞もしくは神経組織を含む凝集体を得る。
等のBMP蛋白、GDF7等のGDF蛋白、抗BMP受容体抗体、又は、BMP部分ペプチドなどが挙げられる。BMP2蛋白、BMP4蛋白及びBMP7蛋白は例えばR&D Systemsから、GDF7蛋白は例えば和光純薬から入手可能である。
凝集体の神経系細胞への分化を誘導可能な濃度であればよい。例えばヒトBMP4の場合は、約0.01nMから約1μM、好ましくは約0.1nMから約100nM、より好ましくは約1nMから約10nM、更に好ましくは約1.5nM(55 ng/mL)の濃度となるように培地に添加する。
化(自発分化)を誘導することが出来る。例えば、BMPシグナル伝達経路作用物質(例、BMP4)及びソニック・ヘッジホッグシグナル伝達経路作用物質(例、SAG、PMA)を実質的
に含まない(即ち、全く含有しないか、含有するとしても生理活性発現濃度を下回る)無血清培地又は血清培地(好ましくは、無血清培地)中で、工程(2)で得られた凝集体を
浮遊培養することによっても、神経系細胞又は神経組織を含む凝集体を得ることができる。
とF-12の1:1の混合液に10%KSR、450μM 1-モノチオグリセロール及び1 x Chemically Defined Lipid Concentrateが添加された培地)を使用することが好ましい。無血清培地へのKSRの添加量としては、例えばヒトES細胞の場合は、通常約1%から約20%であり、好ましくは約2%から約20%である。
される。
構造が含まれ、当該上皮構造中に神経組織及び/又は神経系細胞が含まれる。神経上皮構造は凝集体の表面を覆うように存在するが、一部凝集体の内部にも形成される。工程(2
)で得られる凝集体を用いることにより、神経上皮構造を含む凝集体を高い効率で誘導することが出来る。神経上皮構造は、神経系マーカー遺伝子(例、Nestin, TuJ1、PSA-NCAM)陽性の上皮構造として特定することが出来る。そして、当該神経上皮構造を神経組織として得ることが出来る。一態様において、凝集体中に神経上皮構造が形成されるまで、工程(3)の培養が実施される。工程(3)の実施態様の一つとして、工程(2)で形成された凝集体を、神経上皮構造が出現し始めるまでの間、神経分化誘導条件下(例、神経分化誘導に必要な濃度の分化誘導因子を含む無血清培地又は血清培地中)で浮遊培養し、神経上皮構造を含む凝集体を得る工程、を挙げることができる。
培地でもよい。
、神経系細胞に分化するまで浮遊培養してもよい。浮遊培養に用いる培地は、特に限定されないが、工程(3)で用いる培地でもよい。
本発明の製造方法2は、下記工程(1)~(3)を含む、網膜組織の製造方法である:
(1)多能性幹細胞を、フィーダー細胞非存在下で、1)TGFβファミリーシグナル伝達経
路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質、並びに2)未
分化維持因子を含む培地で培養する第一工程、
(2)第一工程で得られた細胞を浮遊培養し、細胞の凝集体を形成させる第二工程、及び
(3)第二工程で得られた凝集体を、BMPシグナル伝達経路作用物質の存在下に浮遊培養し、網膜組織を含む凝集体を得る第三工程。
前駆細胞、又は網膜層特異的神経細胞へ分化する能力を有する幹細胞を含む。一態様において、工程(1)により得られる細胞は、少なくとも網膜組織、網膜細胞、網膜前駆細胞
、又は網膜層特異的神経細胞へ分化する能力を有する、Oct3/4陽性の幹細胞を含む。一態様として、工程(1)により得られる細胞は、Oct3/4陽性の幹細胞を60%以上、例えば90
%以上含む。
ク質、SAG又はPMAである。培地中のソニック・ヘッジホッグシグナル伝達経路作用物質の
濃度は、上述の効果を達成可能な範囲で適宜設定することが可能である。SAGは、通常、1~2000nM、好ましくは10nM~700nM、より好ましくは30~600nMの濃度で使用される。PMA
は通常0.002~20μM、好ましくは0.02~2μMの濃度で使用される。Shhタンパク質は通常20~1000 ng/ml、好ましくは50~300 ng/mlの濃度で使用される。Shhタンパク質、SAG、PMA以外のソニック・ヘッジホッグシグナル伝達経路作用物質を用いる場合には、上記SAGの濃度と同等のソニック・ヘッジホッグシグナル伝達促進活性を示す濃度で用いられることが望ましい。
間中変動させてもよい。例えば、工程(2)の開始時において、ソニック・ヘッジホッグ
シグナル伝達経路作用物質を上記範囲とし、2~4日間につき、40~60%減の割合で、徐々に又は段階的に該濃度を低下させてもよい。
れた細胞)を回収し、これを、単一細胞、又はこれに近い状態にまで分散し、ソニック・ヘッジホッグシグナル伝達経路作用物質(例、SAG、PMA)を含む無血清培地中で浮遊培養に付す。該無血清培地は、ROCK阻害剤(例、Y-27632)を含んでいても良い。ヒト幹細胞
(例、ヒトiPS細胞に由来する幹細胞)の懸濁液を、上述の培養器中に播き、分散させた
細胞を、培養器に対して、非接着性の条件下で培養することにより、複数の細胞を集合させて凝集体を形成する。培養時間は12時間~6日間(好ましくは12時間~48時間)である
。形成される凝集体は、好ましくは均一な凝集体である。
達経路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質で処理しない場合よりも、高い品質を有している。具体的には、丸く、表面が滑らかで、凝集体の内部が密であり、形が崩れていない凝集体の割合に富んだ、凝集体の集団を得ることが出来る。一態様において、第二工程開始から6日目に無作為的に凝集体(例えば、100個以上)を選出した際に、嚢胞化していない凝集体の割合が、例えば70%以上、好ましくは80%以上である。
を含む凝集体を高効率で製造することが出来る。
胞、又は網膜層特異的神経細胞へ分化する能力を有する幹細胞(好ましくは、少なくとも網膜組織、網膜細胞、網膜前駆細胞、又は網膜層特異的神経細胞へ分化する能力を有する、Oct3/4陽性の幹細胞)を工程(2)で用いることにより、少なくとも網膜組織、網膜細胞、網膜前駆細胞、又は網膜層特異的神経細胞へ分化する能力を有する幹細胞(例えば、Oct3/4陽性の幹細胞)を含む凝集体を得ることができる。
量添加した無血清培地(例えば、IMDMとF-12の1:1の混合液に10% KSR、450μM 1-モノ
チオグリセロール及び1 x Chemically Defined Lipid Concentrateが添加された培地)を使用することが好ましい。無血清培地へのKSRの添加量としては、例えばヒト多能性幹細
胞(例、iPS細胞)の場合は、通常約1%から約20%であり、好ましくは約2%から約20%
である。
細胞への分化を誘導可能な濃度であればよい。例えばヒトBMP4の場合は、約0.01nMから
約1μM、好ましくは約0.1nMから約100nM、より好ましくは約1nMから約10nM、更に好ましくは約1.5nM(55ng/mL)の濃度となるように培地に添加する。BMP4以外のBMPシグナル
伝達経路作用物質を用いる場合には、上記BMP4の濃度と同等のBMPシグナル伝達促進活性
を示す濃度で用いられることが望ましい。
好ましくは2~8日目、更に好ましくは3もしくは4日目に、培地の一部又は全部をBMP4を含む培地に交換し、BMP4の終濃度を約1~10nMに調製し、BMP4の存在下で例えば1~12日、好ましくは、2~9日、更に好ましくは2~5日間培養することができる。ここにおいて、BMP4の濃度を同一濃度を維持すべく、1もしくは2回程度培地の一部又は全部をBMP4を含む培地に交換することができる。又は前述のとおり、BMP4の濃度を段階的に減じることもできる。
の分化誘導が開始された後は、BMPシグナル伝達経路作用物質を培地に添加する必要は無
く、BMPシグナル伝達経路作用物質を含まない無血清培地又は血清培地を用いて培地交換
を行ってよい。一態様において、網膜細胞への分化誘導が開始された後、BMPシグナル伝
達経路作用物質を含まない無血清培地又は血清培地による培地交換により、培地中のBMP
シグナル伝達経路作用物質濃度を、2~4日につき、40~60%減の割合で、徐々に又は段階的に低下させる。網膜細胞への分化誘導が開始された細胞は、例えば、当該細胞における網膜前駆細胞マーカー遺伝子(例、Rx遺伝子(別名Rax)、Pax6遺伝子、Chx10遺伝子)の発現を検出することにより確認することができる。GFP等の蛍光レポータータンパク質遺
伝子がRx遺伝子座へノックインされた多能性幹細胞を用いて工程(2)により形成された
凝集体を、網膜細胞への分化誘導に必要な濃度のBMPシグナル伝達経路作用物質の存在下
に浮遊培養し、発現した蛍光レポータータンパク質から発せられる蛍光を検出することにより、網膜細胞への分化誘導が開始された時期を確認することもできる。工程(3)の実
施態様の一つとして、工程(2)で形成された凝集体を、網膜前駆細胞マーカー遺伝子(
例、Rx遺伝子、Pax6遺伝子、Chx10遺伝子)を発現する細胞が出現し始めるまでの間、網
膜細胞への分化誘導に必要な濃度のBMPシグナル伝達経路作用物質を含む無血清培地又は
血清培地中で浮遊培養し、網膜前駆細胞を含む凝集体を得る工程、を挙げることができる。
培地を加える操作(培地添加操作)、元ある培地を半量程度(元ある培地の体積量の40~80%程度)捨てて新しい培地を半量程度(元ある培地の体積量の40~80%)加える操作(半量培地交換操作)、元ある培地を全量程度(元ある培地の体積量の90%以上)捨てて新しい培地を全量程度(元ある培地の体積量の90%以上)加える操作(全量培地交換操作)が挙げられる。
(半量培地交換操作、半量培地交換)を行ってもよい。
ット、マルチチャネルマイクロピペット、連続分注器、などが挙げられる。例えば、培養容器として96ウェルプレートを用いる場合、マルチチャネルマイクロピペットを使ってもよい。
ついては、前記濃度のSAGと同等以下のShhシグナル伝達促進活性を示す濃度)の場合、培地交換を行う必要はなく、工程(2)で用いた培地に分化誘導因子(例、BMP4)を添加す
ればよい。一方、Shhシグナル伝達経路作用物質の濃度が比較的高濃度(例えば、SAGについては700nM超、又は1000nM以上、他のShhシグナル伝達経路作用物質については、前記濃度のSAGと同等のShhシグナル伝達促進活性を示す濃度)の場合には、分化誘導因子添加時に残存するShhシグナル伝達経路作用物質の影響を抑制するために、分化誘導因子(例、BMP4)を含む新鮮な培地に交換することが望ましい。
い培地も含まれる。「Shhシグナル伝達経路作用物質が添加されていない」培地には、Shhシグナル伝達経路作用物質が実質的に添加されていない培地、例えば、網膜前駆細胞及び網膜組織への選択的分化に不利な影響を与える程度の濃度のShhシグナル伝達経路作用物
質が添加されていない培地も含まれる。
分化が誘導され、網膜前駆細胞を含む凝集体を得ることが出来る。本発明は、このような網膜前駆細胞を含む凝集体の製造方法をも提供する。網膜前駆細胞を含む凝集体が得られたことは、例えば、網膜前駆細胞のマーカーであるRx、PAX6又はChx10を発現する細胞が
凝集体に含まれていることを検出することにより確認することができる。工程(3)の実
施態様の一つとして、工程(2)で形成された凝集体を、Rx遺伝子を発現する細胞が出現
し始めるまでの間、網膜細胞への分化誘導に必要な濃度のBMPシグナル伝達経路作用物質
を含む無血清培地又は血清培地中で浮遊培養し、網膜前駆細胞を含む凝集体を得る工程、を挙げることができる。一態様において、凝集体に含まれる細胞の20%以上(好ましくは、30%以上、40%以上、50%以上、60%以上)が、Rxを発現する状態となるまで、工程(3)の培養が実施される。
、ヒト多能性幹細胞(例、ヒトiPS細胞)を、フィーダー細胞非存在下で、TGFβシグナル伝達経路阻害物質(例えばSB431542、A-83-01)並びにbFGFを含有する無血清培地で、接
着培養し、工程(2)にて、細胞をソニック・ヘッジホッグシグナル伝達経路作用物質(
例えばSAG、PMA、Shhタンパク質)を含有する無血清培地で浮遊培養し、工程(3)にて、凝集体をBMPシグナル伝達経路作用物質(例えばBMP4)を含有する無血清培地で浮遊培養
する。
)にて、ヒト多能性幹細胞(例、ヒトiPS細胞)を、フィーダー細胞非存在下で、BMPシグナル伝達経路阻害物質(例、LDN193189)及びbFGFを含有する無血清培地で、接着培養し
、工程(2)にて、細胞をソニック・ヘッジホッグシグナル伝達経路作用物質(例えばSAG、PMA)を含有しない又は含有する無血清培地で浮遊培養し、工程(3)にて、凝集体をBMPシグナル伝達経路作用物質(例えばBMP4)を含有する無血清培地で浮遊培養する。
、ヒト多能性幹細胞(例、ヒトiPS細胞)を、フィーダー細胞非存在下で、ソニック・ヘ
ッジホッグシグナル伝達経路作用物質(例えばSAG、PMA)並びにbFGFを含有する無血清培地で、好ましくは1日間以上6日以下、さらに好ましくは2日~4日間、接着培養し、工程(2)にて、細胞をソニック・ヘッジホッグシグナル伝達経路作用物質(例えばSAG、PMA)を含有する無血清培地で浮遊培養し、工程(3)にて、凝集体をBMPシグナル伝達経路作用物質(例えばBMP4)を含有する無血清培地で浮遊培養する。
、ヒト多能性幹細胞(例、ヒトiPS細胞)を、フィーダー細胞非存在下で、
TGFβファミリーシグナル伝達経路阻害物質(例えば、TGFβシグナル伝達経路阻害物質(例、Lefty 、SB431542、A-83-01)、Nodal/Activinシグナル伝達経路阻害物質(例、Lefty、SB431542、A-83-01)、BMPシグナル伝達経路阻害物質(例、LDN193189)、又はこの組み合わせ(例、SB431542及びLDN193189)等);
ソニック・ヘッジホッグシグナル伝達経路作用物質(例、Shhタンパク質、SAG、PMA);
又は
TGFβファミリーシグナル伝達経路阻害物質(例、Lefty、SB431542、A-83-01、LDN193189)とソニック・ヘッジホッグシグナル伝達経路作用物質(例、Shhタンパク質、SAG、PMA)との組み合わせ;並びに
bFGFを含有する無血清培地で、接着培養し、
工程(2)にて、工程(1)で得られた細胞を、ソニック・ヘッジホッグシグナル伝達経路作用物質(例、SAG、PMA、Shhタンパク質)を含む無血清培地中で浮遊培養し、細胞の凝
集体を形成させ、
工程(3)にて、凝集体をBMPシグナル伝達経路作用物質(例えばBMP4)を含有する無血清培地で浮遊培養し、網膜前駆細胞、網膜細胞又は網膜組織を含む凝集体を得る。
工程(2)の培地は、好ましくは、ROCK阻害物質(例、Y-27632)を含む。
を適量添加した無血清培地(例えば、IMDMとF-12の1:1の混合液に10%KSR、450μM 1-モノチオグリセロール及び1 x Chemically Defined Lipid Concentrateを添加した培地)等を挙げることができる。
胞によって異なるが、例えば約7日間から約200日間である。
実質的に含まない。網膜組織を含み頭部非神経外胚葉を実質的に含まない凝集体では、例えば、上述の凝集体凍結切片の免疫染色像において、Rx陽性の組織が観察され、その外側にRx陰性の組織が観察されない。
な濃度のBMPシグナル伝達経路作用物質を含む無血清培地又は血清培地中で浮遊培養し、
網膜前駆細胞を含む凝集体を得て、該網膜前駆細胞を含む凝集体を網膜組織が形成されるまで、引き続き無血清培地又は血清培地中で浮遊培養し、網膜組織を含む凝集体を得る工程、を挙げることができる。網膜前駆細胞を含む凝集体を網膜組織が形成されるまで、引き続き無血清培地又は血清培地中で浮遊培養する際、BMPシグナル伝達経路作用物質を含
まない無血清培地又は血清培地による培地交換により、網膜前駆細胞を誘導するために培地中に含まれていたBMPシグナル伝達経路作用物質濃度を、2~4日につき、40~60%減の
割合で、徐々に又は段階的に低下させてもよい。一態様において、凝集体に含まれる細胞の20%以上(好ましくは、30%以上、40%以上、50%以上、60%以上)が、Chx10を発現
する状態となるまで、網膜前駆細胞を含む凝集体の浮遊培養が実施される。
)で得られた凝集体を、上記方法により浮遊培養した凝集体を、接着培養に付し、接着凝集体を形成させてもよい。該接着凝集体を、Rx遺伝子及び/又はChx10遺伝子を発現する
細胞が出現し始めるまでの間、網膜細胞への分化誘導に必要な濃度のBMPシグナル伝達経
路作用物質を含む無血清培地又は血清培地中で接着培養し、網膜前駆細胞を含む凝集体を得る。該網膜前駆細胞を含む凝集体を網膜組織が形成されるまで、引き続き無血清培地又は血清培地中で接着培養し、網膜組織を含む凝集体を得る。一態様において、細胞の10%以上(好ましくは、20%以上、30%以上、40%以上、50%以上)が、Chx10を発現する状
態となるまで、網膜前駆細胞を含む凝集体の接着培養が実施される。
本発明の製造方法2により得られる網膜組織には、網膜層のそれぞれに特異的なニューロ
ン(神経細胞)が含まれることから、視細胞、水平細胞、双極細胞、アマクリン細胞、網膜神経節細胞または、これらの前駆細胞など網膜組織を構成する細胞を入手することも可能である。得られた網膜組織から入手した細胞がいずれの細胞であるかは、自体公知の方法、例えば細胞マーカーの発現により確認できる。
びOtx1遺伝子(陽性)及びZic1(陽性)を挙げることができる。
に限り、培養する。
培養する際、該培地に含められるWntシグナル伝達経路作用物質としては、Wntにより媒介されるシグナル伝達を増強し得るものである限り特に限定されない。具体的なWntシグナ
ル伝達経路作用物質としては、例えば、Wntファミリーに属するタンパク質(例えば、Wnt1、Wnt3a、Wnt7a)、Wnt受容体、Wnt受容体アゴニスト、GSK3β阻害剤(例えば、6-Bromoindirubin-3'-oxime(BIO)、CHIR99021、Kenpaullone)等を挙げることができる。
μMから約100μMの範囲を挙げることができる。好ましくは、例えば、約1μMから約30μMの範囲を挙げることができる。より好ましくは、例えば、3μM前後の濃度を挙げることができる。
する際、該培地に含められるFGFシグナル伝達経路阻害物質としては、FGFにより媒介されるシグナル伝達を阻害できるものである限り特に限定されない。FGFシグナル伝達経路阻
害物質としては、例えば、FGF受容体、FGF受容体阻害剤(例えば、SU-5402、AZD4547、BGJ398)、MAPキナーゼカスケード阻害物質(例えば、MEK阻害剤、MAPK阻害剤、ERK阻害剤
)、PI3キナーゼ阻害剤、Akt阻害剤などが挙げられる。
手法又は生化学的手法を用いて測定すればよい。具体的には例えば、前記「網膜組織を含む細胞凝集体」の凍結切片をRPE65タンパク質に対する抗体を用いて免疫染色する方法を
用いてRPE65遺伝子の発現有無又はその程度を調べることができる。
集体の培養開始時よりも減少し、30%から0%の範囲内になるまでの期間を挙げることができる。「RPE65遺伝子を発現する細胞が出現していない細胞凝集体」としては、前記網膜
組織におけるChx10陽性細胞の存在割合が30%から0%の範囲内である細胞凝集体を挙げる
ことができる。
シグナル伝達経路作用物質及び/又はFGFシグナル伝達経路阻害物質の種類、無血清培地
又は血清培地の種類、他培養条件等に応じて変化するが、例えば、14日間以内を挙げることができる。より具体的には、無血清培地(例えば、基礎培地にN2が添加された無血清培地)が用いられる場合、前記期間として、好ましくは、例えば、10日間以内を挙げることができ、より好ましくは、例えば、3日間から6日間を挙げることができる。血清培地(例えば、基礎培地に牛胎児血清が添加された血清培地)が用いられる場合、前記期間として、好ましくは、例えば、12日間以内を挙げることができ、より好ましくは、例えば、6日間から9日間を挙げることができる。
清培地又は血清培地中で培養する。
や化学物質等を添加してもよい。既知の増殖因子としては、EGF、FGF、IGF、insulin等を挙げることができる。増殖を促進する添加剤として、N2 supplement(Life Technologies社製)、B27 supplement(Life Technologies社製)、KSR(Life Technologies社製)等
を挙げることができる。増殖を促進する化学物質としては、レチノイド類(例えば、レチノイン酸)、タウリンを挙げることができる。
前記細胞凝集体の培養開始時よりも増加し、30%以上になるまで行う培養時間を挙げるこ
とができる。
日数は無血清培地又は血清培地の種類、他培養条件等に応じて変化するが、例えば、100
日間以内を挙げることができる。前記培養日数として、好ましくは、例えば、20日間から70日間を挙げることができ、より好ましくは、例えば、30日間から60日間を挙げることができる。
して、毛様体周縁部様構造体の存在を確認することができる。
つ、好ましくは複数、より好ましくは全ての細胞を含む、成熟した網膜組織、及び前記細胞を製造することができる。
工程(D)により網膜色素上皮シートを製造できる。
ーカー(RPE65(成熟した網膜色素上皮細胞)、Mitf(幼若な又は成熟した網膜色素上皮
細胞)など)の発現や、メラニン顆粒の存在、多角形の特徴的な細胞形態などにより確認できる。
に牛胎児血清が添加された血清培地を挙げることができる。
(D)について説明する。
ような培地を挙げることができる。調製の煩雑さ回避するには、市販のKSR等の血清代替
物を適量添加した無血清培地(例えば、DMEM/F-12とNeurobasalの1:1混合液に1/2 x N2
サプリメント、1/2 x B27サプリメント及び100μM 2-メルカプトエタノールが添加された培地)を使用することが好ましい。無血清培地へのKSRの添加量としては、例えばヒトiPS細胞由来細胞の場合は、通常約1%から約20%であり、好ましくは約2%から約20%である。
養することが好ましい。
れる1以上の物質を更に含む無血清培地又は血清培地中で細胞を培養することがより好ま
しい。
容体、Activin受容体アゴニストが挙げられる。
Activinシグナル伝達経路作用物質は、工程(D)の開始から例えば18日以内、好ましくは6日目に添加する。
ましい。工程(D)における培養器材の処理に用いられる培養基質としては、凝集体由来
細胞の接着培養と網膜色素上皮シートの形成を可能とする細胞培養基質が挙げられる。
本発明の製造方法3は、下記工程(1)~(3)を含む、大脳組織の製造方法である:
(1)多能性幹細胞を、フィーダー細胞非存在下で、1)TGFβファミリーシグナル伝達経
路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質、並びに2)未
分化維持因子を含む培地で培養する第一工程、
(2)第一工程で得られた細胞を浮遊培養し、細胞の凝集体を形成させる第二工程、及び
(3)第二工程で得られた凝集体を、TGFβファミリーシグナル伝達経路阻害物質及び/又はWntシグナル伝達経路阻害物質の存在下に浮遊培養し、大脳組織を含む凝集体を得る第
三工程。
ファミリーシグナル伝達経路阻害物質又はWntシグナル伝達経路阻害物質を単独で培地に
添加してもよいが、両者を組み合わせる方が好ましい。
る方が好ましい。
ましくは、無血清培地)である。
量添加した無血清培地(例えば、GMEM培地に20% KSR、0.1mM 2-メルカプトエタノール、非必須アミノ酸、1mMピルビン酸)を使用することが好ましい。無血清培地へのKSRの添加量は、例えばヒト多能性幹細胞(例、iPS細胞)の場合は、通常約1%から約30%であり、好ましくは約2%から約20%である。
、アプタマー等)、TGFβをコードする遺伝子の発現を抑制する物質(例えばアンチセン
スオリゴヌクレオチド、siRNA等)、TGFβ受容体とTGFβの結合を阻害する物質、TGFβ受容体によるシグナル伝達に起因する生理活性を阻害する物質(例えば、TGFβ受容体の阻
害剤、Smadの阻害剤等)を挙げることができる。TGFβシグナル伝達経路阻害物質として
知られているタンパク質として、Lefty等が挙げられる。TGFβシグナル伝達経路阻害物質として、当業者に周知の化合物を使用することができ、具体的には、SB431542、LY-364947、SB-505、A-83-01等が挙げられる。ここでSB431542(4-(5-ベンゾール[1,3]ジオキソール-5-イル-4-ピリジン-2-イル-1H-イミダゾール-2-イル)-ベンズアミド)及びA-83-01(3-(6-メチル-2-ピリジニル)-N-フェニル-4-(4-キノリニル)-1H-ピラゾール-1-カルボチオアミド)]は、TGFβ受容体(ALK5)及びActivin受容体(ALK4/7)の阻害剤(すなわちTGFβR阻害剤)として公知の化合物であり、TGFβシグナル伝達経路阻害物質は、好ましくはSB431542又はA-83-01である。
ナル伝達経路を阻害する物質であれば特に限定は無く、核酸、タンパク質、低分子有機化合物のいずれであってもよい。当該物質として例えば、NodalもしくはActivinに直接作用する物質(例えば抗体、アプタマー等)、NodalもしくはActivinをコードする遺伝子の発現を抑制する物質(例えばアンチセンスオリゴヌクレオチド、siRNA等)、Nodal/Activin受容体とNodal/Activinの結合を阻害する物質、Nodal/Activin受容体によるシグナル伝達に起因する生理活性を阻害する物質を挙げることができる。Nodal/Activinシグナル伝達経路阻害物質として、当業者に周知の化合物を使用することができ、具体的には、SB431542、A-83-01等が挙げられる。また、Nodal/Activinシグナル伝達経路阻害物質として知られているタンパク質(Lefty、Cerberus等)を使用してもよい。
ば、BMPに直接作用する物質(例えば抗体、アプタマー等)、BMPをコードする遺伝子の発現を抑制する物質(例えばアンチセンスオリゴヌクレオチド、siRNA等)、BMP受容体(BMPR)とBMPの結合を阻害する物質、BMP受容体によるシグナル伝達に起因する生理活性を阻害する物質を挙げることができる。BMPRとして、ALK2又はALK3を挙げることができる。BMPシグナル伝達経路阻害物質として、当業者に周知の化合物を使用することができ、具体的には、LDN193189、Dorsomorphin等が挙げられる。ここでLDN193189(4-[6-(4-ピペラジン-1-イルフェニル)ピラゾロ[1,5-a]ピリミジン-3-イル]キノリン)は、公知のBMPR(ALK2/3)阻害剤であり、通常は塩酸塩の形態で市販されている。また、BMPシグナル伝達経路阻害物質として知られるタンパク質(Chordin、Noggin等)を使用してもよい。BMPシグナル伝達経路阻害物質は、好ましくはLDN193189である。
びLRP5/6(low-density lipoprotein receptor-related protein 5/6)のヘテロ二量体として存在するWnt受容体を介して伝達される。Wntシグナル伝達経路阻害物質としては、例えば、Wnt又はWnt受容体に直接作用する物質(抗Wnt抗体、抗Wnt受容体抗体等)、Wnt又
はWnt受容体をコードする遺伝子の発現を抑制する物質(例えばアンチセンスオリゴヌク
レオチド、siRNA等)、Wnt受容体とWntの結合を阻害する物質(可溶型Wnt受容体、ドミナントネガティブWnt受容体等、Wntアンタゴニスト、Dkk1、Cerberus蛋白等)、Wnt受容体
によるシグナル伝達に起因する生理活性を阻害する物質[CKI-7(N-(2-アミノエチル)-5-
クロロイソキノリン-8-スルホンアミド)、D4476(4-[4-(2,3-ジヒドロ-1,4-ベンゾジオキシン-6-イル)-5-(2-ピリジニル)-1H-イミダゾール-2-イル]ベンズアミド)、IWR-1-endo(IWR1e) (4-[(3aR,4S,7R,7aS)-1,3,3a,4,7,7a-ヘキサヒドロ-1,3-ジオキソ-4,7-メタノ-2H-イソインドール-2-イル]-N-8-キノリニル-ベンズアミド)、並びに、IWP-2(N-(6-メチル-2-ベンゾチアゾリル)-2-[(3,4,6,7-テトラヒドロ-4-オキソ-3-フェニルチエノ[3,2-d]ピリミジン-2-イル)チオ]アセタミド)等の低分子化合物等]等が挙げられるが、これらに限定されない。CKI-7、D4476、IWR-1-endo (IWR1e)、IWP-2等は公知のWntシグナル伝達経路阻害物質であり、市販品等を適宜入手可能である。Wntシグナル伝達経路阻害物質として好ましくはIWR1eが挙げられる。
細胞への分化を誘導可能な濃度であればよい。例えばIWR-1-endoの場合は、約0.1μMから約100μM、好ましくは約約0.3μMから約30μM、より好ましくは約1μMから約10μM、更に好ましくは約3μMの濃度となるように培地に添加する。IWR-1-endo以外のWntシグナル伝
達経路阻害物質を用いる場合には、上記IWR1eの濃度と同等のWntシグナル伝達経路阻害活性を示す濃度で用いられることが望ましい。
培地を加える操作(培地添加操作)、元ある培地を半量程度(元ある培地の体積量の40~80%程度)捨てて新しい培地を半量程度(元ある培地の体積量の40~80%)加える操作(半量培地交換操作)、元ある培地を全量程度(元ある培地の体積量の90%以上)捨てて新しい培地を全量程度(元ある培地の体積量の90%以上)加える操作(全量培地交換操作)等により培地交換を実施することができる。
る操作(半量培地交換操作、半量培地交換)を行ってもよい。
胞への分化が誘導され、大脳神経系前駆細胞を含む凝集体を得ることが出来る。本発明は、このような大脳神経系前駆細胞を含む凝集体の製造方法をも提供する。大脳神経系前駆細胞を含む凝集体が得られたことは、例えば、大脳神経系前駆細胞のマーカーであるFoxG1、Lhx2、PAX6、Emx2等を発現する細胞が凝集体に含まれていることを検出することにより確認することができる。工程(3)の実施態様の一つとして、工程(2)で形成された凝集体を、FoxG1遺伝子を発現する細胞が出現し始めるまでの間、無血清培地又は血清培地中で浮遊培養する工程、を挙げることができる。一態様において、凝集体に含まれる細胞の20%以上(好ましくは、30%以上、40%以上、50%以上、60%以上)が、FoxG1を発現する状態となるまで、工程(3)の培養が実施される。
、ヒト多能性幹細胞(例、ヒトiPS細胞)を、フィーダー細胞非存在下で、TGFβシグナル伝達経路阻害物質(例えばSB431542)及びbFGFを含有する無血清培地中で、接着培養し、工程(2)にて、工程(1)で得られた細胞を無血清培地中で浮遊培養し、工程(3)にて
、工程(2)で得られた凝集体をWntシグナル伝達経路阻害物質(IWR-1-endo)及びTGFβ
シグナル伝達経路阻害物質(例えばSB431542)を含有する無血清培地で浮遊培養する。
)にて、ヒト多能性幹細胞(例、ヒトiPS細胞)を、フィーダー細胞非存在下で、BMPシグナル伝達経路阻害物質(例、LDN193189)及びbFGFを含有する無血清培地中で、接着培養
し、工程(2)にて、工程(1)で得られた細胞を無血清培地中で浮遊培養し、工程(3)
にて、工程(2)で得られた凝集体をWntシグナル伝達経路阻害物質(IWR-1-endo)及びTGFβシグナル伝達経路阻害物質(例えばSB431542)を含有する無血清培地で浮遊培養する。
、ヒト多能性幹細胞(例、ヒトiPS細胞)を、フィーダー細胞非存在下で、
TGFβファミリーシグナル伝達経路阻害物質(例えば、TGFβシグナル伝達経路阻害物質(例、SB431542、A-83-01)、Nodal/Activinシグナル伝達経路阻害物質(例、Lefty)、BMPシグナル伝達経路阻害物質(例、LDN193189)、又はこの組み合わせ(例、SB431542及びLDN193189)等);
ソニック・ヘッジホッグシグナル伝達経路作用物質(例、Shhタンパク質、SAG、PMA);
又は
TGFβファミリーシグナル伝達経路阻害物質(例、Lefty、SB431542、A-83-01、LDN193189
)とソニック・ヘッジホッグシグナル伝達経路作用物質(例、Shhタンパク質、SAG、PMA
)との組み合わせ;並びに
bFGF、を含有する無血清培地で、接着培養し、
工程(2)にて、工程(1)で得られた細胞を、
TGFβファミリーシグナル伝達経路阻害物質(例えば、TGFβシグナル伝達経路阻害物質(例、SB431542、A-83-01)、Nodal/Activinシグナル伝達経路阻害物質(例、Lefty)、BMPシグナル伝達経路阻害物質(例、LDN193189)、又はこの組み合わせ(例、SB431542及びLDN193189)等);及び
Wntシグナル伝達経路阻害物質(IWR-1-endo)、を含む無血清培地中で浮遊培養し、細胞
の凝集体を形成させ、
工程(3)にて、工程(2)で得られた凝集体を
TGFβファミリーシグナル伝達経路阻害物質(例えば、TGFβシグナル伝達経路阻害物質(例、SB431542、A-83-01)、Nodal/Activinシグナル伝達経路阻害物質(例、Lefty)、BMPシグナル伝達経路阻害物質(例、LDN193189)、又はこの組み合わせ(例、SB431542及びLDN193189)等);及び
Wntシグナル伝達経路阻害物質(IWR-1-endo)、を含む無血清培地中で浮遊培養し、大脳
神経系前駆細胞、大脳細胞又は大脳組織を含む凝集体を得る。
工程(2)の培地は、好ましくは、ROCK阻害物質(例、Y-27632)を含む。
TGFβファミリーシグナル伝達経路阻害物質(例えば、TGFβシグナル伝達経路阻害物質(例、SB431542、A-83-01)、Nodal/Activinシグナル伝達経路阻害物質(例、Lefty);
Wntシグナル伝達経路阻害物質(IWR-1-endo);及び
ROCK阻害物質(例、Y-27632)、を含む無血清培地中で浮遊培養し、細胞の凝集体を形成
させ、
工程(3)にて、工程(2)で得られた凝集体を
TGFβシグナル伝達経路阻害物質(例、SB431542、A-83-01)又はNodal/Activinシグナル
伝達経路阻害物質(例、Lefty);及び
Wntシグナル伝達経路阻害物質(IWR-1-endo)、を含む無血清培地中で浮遊培養し、大脳
神経系前駆細胞、大脳細胞又は大脳組織を含む凝集体を得る。
ラホルムアルデヒド溶液等の固定液を用いて固定し、凍結切片を作製した後、層構造を有する大脳組織が形成されていることを免疫染色法などにより確認すればよい。大脳組織は、各層を構成する大脳神経系前駆細胞、脳室体前駆細胞、大脳層構造特異的神経細胞がそれぞれ異なるため、これらの細胞に発現している上述のマーカーに対する抗体を用いて、免疫染色法により、層構造が形成されていることを確認することができる。一態様において、大脳組織はFoxG1陽性の神経上皮構造である。
発現する細胞が出現し始めるまでの間、大脳細胞への分化誘導に必要な濃度のTGFβシグ
ナル伝達経路阻害物質及び/又はWntシグナル伝達経路阻害物質を含む無血清培地又は血
清培地中で浮遊培養し、大脳神経系前駆細胞を含む凝集体を得て、該大脳神経系前駆細胞を含む凝集体を大脳組織が形成されるまで、引き続き無血清培地又は血清培地中で浮遊培養し、大脳組織を含む凝集体を得る工程、を挙げることができる。一態様において、凝集体に含まれる細胞の20%以上(好ましくは、30%以上、40%以上、50%以上、60%以上)が、FoxG1を発現する状態となるまで、大脳神経系前駆細胞を含む凝集体の浮遊培養が実
施される。
)で得られた凝集体を、上記方法により浮遊培養した凝集体を、接着培養に付し、接着凝集体を形成させてもよい。該接着凝集体を、FoxG1遺伝子を発現する細胞が出現し始める
までの間、大脳細胞への分化誘導に必要な濃度のTGFβシグナル伝達経路阻害物質及び/
又はWntシグナル伝達経路阻害物質を含む無血清培地又は血清培地中で接着培養し、大脳
神経系前駆細胞を含む凝集体を得る。該大脳神経系前駆細胞を含む凝集体を大脳組織が形成されるまで、引き続き無血清培地又は血清培地中で接着培養し、大脳組織を含む凝集体を得る。一態様において、細胞の10%以上(好ましくは、20%以上、30%以上、40%以上、50%以上)が、FoxG1を発現する状態となるまで、大脳神経系前駆細胞を含む凝集体の接着培養が実施される。
本発明の製造方法3により得られる大脳組織には、大脳層のそれぞれに特異的なニューロ
ン(神経細胞)が含まれることから、層構造特異的神経細胞または、これらの前駆細胞など大脳組織を構成する細胞を入手することも可能である。得られた大脳組織から入手した細胞がいずれの細胞であるかは、自体公知の方法、例えば細胞マーカーの発現により確認できる。
本発明の製造方法1、2又は3により製造された、神経組織又は神経系細胞(例、網膜組
織、網膜前駆細胞、網膜層特異的神経細胞、大脳組織、大脳神経系前駆細胞、大脳層特異的神経細胞)は、神経組織又は神経系細胞の障害に基づく疾患の治療薬のスクリーニング
や、毒性評価における、疾患研究材料、創薬材料として有用であるので、被験物質の毒性・薬効評価用試薬とすることができる。例えば、神経組織(例、網膜組織、大脳組織)の障害に基づく疾患、特に遺伝性の障害に基づく疾患のヒト患者から、iPS細胞を作製し、このiPS細胞を用いて本発明の方法により、神経組織又は神経系細胞(例、網膜組織、網膜前駆細胞、網膜層特異的神経細胞、大脳組織、大脳神経系前駆細胞、大脳層特異的神経細胞)を製造する。神経組織又は神経系細胞は、その患者が患っている疾患の原因となる神経組織の障害をインビトロで再現し得る。そこで、本発明は、本発明の製造方法1、2又は3により製造される神経組織又は神経系細胞(例、網膜組織、網膜前駆細胞、網膜層特異的神経細胞、大脳組織、大脳神経系前駆細胞、大脳層特異的神経細胞)に被験物質を接触させ、該物質が該細胞又は該組織に及ぼす影響を検定することを含む、該物質の毒性・薬効評価方法を提供する。
害)を有する神経組織又は神経系細胞(例、網膜組織、網膜前駆細胞、網膜層特異的神経細胞、大脳組織、大脳神経系前駆細胞、大脳層特異的神経細胞)を、被検物質の存在下又は非存在下(ネガティブコントロール)で培養する。そして、被検物質で処理した神経組織又は神経系細胞における障害の程度を、ネガティブコントロールと比較する。その結果、その障害の程度を軽減した被検物質を、当該障害に基づく疾患の治療薬の候補物質として、選択することができる。例えば、本発明の製造方法で製造した神経系細胞の生理活性(例えば、生存促進又は成熟化)をより向上させる被験物質を、医薬品の候補物質として探索することができる。あるいは、神経疾患等の特定の障害を呈する遺伝子変異を有する体細胞から人工多能性幹細胞を調製し、当該細胞を本発明の製造方法で分化誘導させて製造した神経系細胞に被験物質を添加し、前記障害を呈するか否かを指標として当該障害の治療薬・予防薬として有効な被験物質の候補を探索することができる。
系細胞(例、網膜組織、網膜前駆細胞、網膜層特異的神経細胞、大脳組織、大脳神経系前駆細胞、大脳層特異的神経細胞)を、被検物質の存在下又は非存在下(ネガティブコントロール)で培養する。そして、被検物質で処理した神経組織又は神経系細胞における毒性の程度を、ネガティブコントロールと比較する。その結果、ネガティブコントロールと比較して、毒性を示した被検物質を、神経組織又は神経系細胞(例、網膜組織、網膜前駆細胞、網膜層特異的神経細胞)に対する毒性を有する物質として判定することが出来る。
(工程1)本発明の製造方法1、2又は3により製造された神経組織又は神経系細胞を、生存可能な培養条件で、一定時間、被検物質の存在下で培養した後、細胞の傷害の程度を測定する工程、
(工程2)本発明の製造方法1、2又は3により製造された神経組織又は神経系細胞を、生存可能な培養条件で、一定時間、被検物質の非存在下又はポジティブコントロールの存在下で培養した後、細胞の傷害の程度を測定する工程、
(工程3)(工程1)及び(工程2)において測定した結果の差異に基づき、工程1における被検物質が有する毒性を評価する工程。
ここで、「被検物質の非存在下」とは、被検物質の代わりに培養液、被検物質を溶解している溶媒のみを添加することを包含する。また、「ポジティブコントロール」とは、毒性を有する既知化合物を意味する。細胞の傷害の程度を測定する方法としては、生存する細胞数を計測する方法、例えば細胞内ATP量を測定する方法、又は、細胞染色(例えば細
胞核染色)と形態観察により生細胞数を計測する方法等が挙げられる。
が大きい場合に当該被検物質が毒性を有すると判断できる。また、工程1の測定値と工程2におけるポジティブコントロールの測定値を比較し、工程1の細胞の傷害の程度が同等以
上の場合に当該被検物質が毒性を有すると判断できる。
本発明は、本発明の製造方法1、2又は3により製造される神経組織又は神経系細胞(例
、網膜組織、網膜前駆細胞、網膜層特異的神経細胞、大脳組織、大脳神経系前駆細胞、大脳層特異的神経細胞)の有効量を含む医薬組成物を提供する。
胞(例、網膜組織、網膜前駆細胞、網膜層特異的神経細胞、大脳組織、大脳神経系前駆細胞、大脳層特異的神経細胞)の有効量、及び医薬として許容される担体を含む。
を、適切な生理的な水性溶媒で懸濁することにより、懸濁液として製造することができる。必要であれば、凍結保存剤を添加して、凍結保存し、使用時に解凍し、緩衝液で洗浄し、移植医療に用いても良い。
うことにより、シート状の細胞に成形し、シート剤とすることもできる。
本発明の製造方法1、2又は3により製造される神経組織又は神経系細胞(例、網膜組織
、網膜前駆細胞、網膜層特異的神経細胞、大脳組織、大脳神経系前駆細胞、大脳層特異的神経細胞)は、当該神経組織又は神経系細胞の障害に基づく疾患の移植医療に有用である。そこで、本発明は、本発明の製造方法1、2又は3により製造される神経組織又は神経系細胞(例、網膜組織、網膜前駆細胞、網膜層特異的神経細胞、大脳組織、大脳神経系前駆細胞、大脳層特異的神経細胞)を含む、当該神経組織又は神経系細胞の障害に基づく疾患の治療薬を提供する。当該神経組織又は神経系細胞の障害に基づく疾患の治療薬として、或いは、当該神経組織の損傷状態において、該当する損傷部位を補充するために、本発明の製造方法1、2又は3により製造された神経組織又は神経系細胞(例、網膜組織、網膜前駆細胞、網膜層特異的神経細胞、大脳組織、大脳神経系前駆細胞、大脳層特異的神経細胞)を用いることが出来る。移植を必要とする、神経組織又は神経系細胞の障害に基づく疾患、又は神経組織の損傷状態の患者に、本発明の製造方法1、2又は3により製造された神経組織又は神経系細胞を移植し、当該神経系細胞や、障害を受けた神経組織自体を補充することにより、神経組織又は神経系細胞の障害に基づく疾患、又は神経組織の損傷状態を治療することが出来る。例えば、神経組織又は神経関連細胞の障害に基づく疾患としては、例えば、神経変性疾患(例えば、脳虚血障害、脳梗塞、パーキンソン氏病、脊髄損傷、脳血管障害・脳/脊髄外傷性障害(例、脳梗塞、頭部外傷・脳挫傷(TBI)・脊髄損傷多系統萎縮症)、典型的な神経変性疾患(筋萎縮性側索硬化症(ALS)、パーキンソン氏病(PD)、パーキンソン症候群 、アルツハイマー型痴呆 、 進行性核上性麻痺(PSP)、ハンチントン病 、多系統萎縮症(MSA)、脊髄小脳変性症(SCD))、脱髄疾患・神経筋疾患(多発性硬化症(MS)、急性散在性脳脊髄炎(ADEM) 、炎症性広汎性硬化症(Schilder病)、亜急性硬化症全脳炎、進行性多巣性白質脳症、低酸素脳症、橋中心髄鞘破壊症、Binswanger病、ギラン・バレー症候群、フィッシャー症候群、慢性炎症性脱髄性多発根神経炎、脊髄空洞症、脊髄小脳変性症、黒質線条体変性症(SND)、オリーブ橋小脳萎縮症(OPCA)、シャイ・ドレーガー症候群(Shy-Drager症候群))、眼科疾患(黄斑変性症、加齢黄斑変性、網膜色素変性、白内障、緑内障、角膜疾患、網膜症)、難治性てんかん、進行性核上性麻痺、脊髄空洞症、脊髄性筋萎縮症(SMA)、球脊髄性筋萎縮症(SBMA)、原発性側索硬化症(PLS)、進行性核上性麻痺(PSP)、大脳皮質基底核変性症(CBD)、ハンチントン病(HD)、有棘赤血球舞踏病、脊髄空洞症、前頭側頭葉変性症、Charcot-Marie-Tooth disease病、ジストニア、Pantothenate kinase-associated neurodegeneration、家族性認知症、パーキンソン症候群、老人性失認症、痙性対麻痺、レビー小体型認知症等が挙げられる。例えば、大脳組織又は大脳関連細胞の障害に基づく疾患としては、例えば、神経変性疾患(例えば、脳虚血障害、脳梗塞、運動ニューロン病、ALS、アルツハイマー病、ポリグルタミン病、大脳皮質基底核変性症)が挙げられる。網膜組織又は網膜関連細胞の障害に基づく疾患としては、例えば、網膜変性症、網膜色素変性症、加齢黄斑変性症、有機水銀中毒、クロロキン網膜症、緑内障、糖尿病性網膜症、新生児網膜症、などが挙げられる。さらに、神経組織の損傷状態としては、神経組織摘出後の患者、神経組織内腫瘍への放射線照射後の患者、外傷が挙げられる。
ヒトiPS細胞(1231A3株、京都大学より入手)を、「Scientific Reports, 4, 3594 (2014)」に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStemFit培地(AK03、味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
株)を、PBSにて洗浄後、TrypLE Select(Life Technologies社製)を用いて単一細胞へ
分散した。その後、前記単一細胞へ分散されたヒトiPS細胞を、Laminin511-E8にてコートしたプラスチック培養ディッシュに播種し、Y27632(ROCK阻害物質、10 μM)存在下、StemFit培地にてフィーダーフリー培養した。前記プラスチック培養ディッシュとして、6ウェルプレート(イワキ社製、細胞培養用、培養面積9.4 cm2)を用いた場合、前記単一細胞へ分散されたヒトiPS細胞の播種細胞数は6 x 103とした。播種した1日後に、Y27632を含まないStemFit培地に交換した。以降、1日~2日に一回Y27632を含まないStemFit培地にて培地交換した。その後、播種した6日後に、サブコンフレント(培養面積の6割が細胞に覆われる程度)になるまで培養した。
レントになったヒトiPS細胞(1231A3株)を、PBSにて洗浄後、TrypLE Select(Life Technologies社製)を用いて単一細胞に分散した。その後、前記単一細胞に分散されたヒトiPS細胞を、Laminin511-E8にてコートしたプラスチック培養ディッシュ(イワキ社製)に播種し、Y27632(ROCK阻害物質、10 μM)存在下、StemFit培地にてフィーダーフリー培養した。前記プラスチック培養ディッシュとして、6ウェルプレート(イワキ社製、培養面積9.4 cm2)を用いた場合、前記単一分散されたヒトiPS細胞の播種細胞数は6 x 103とした。前記プラスチック培養ディッシュとして、60mmディッシュ(イワキ社製、細胞培養用、培養面積21 cm2)を用いた場合、前記単一分散されたヒトiPS細胞の播種細胞数は13 x 103とした。播種した1日後に、Y27632を含まないStemFit培地に交換した。以降、1日~2日に一回Y27632を含まないStemFit培地にて培地交換した。その後、播種した5日後、即ちサブコンフレント1日前(培養面積の5割が細胞に覆われる程度)まで培養した。ここで、播種した後6日間培養した場合であっても、同様の結果を与えた。前記フィーダーフリー培養したサブコンフレント1日前のヒトiPS細胞を、SB431542 (TGFβR阻害剤(TGFβRi)、5μM)の存在下(工程1:Precondition処理、図1 “Precondition TGFβRi 24 hr”)、あるいは非存在下(工程1:Precondition処理しない、図1 “Control”)で、1日間フィーダーフリー培養した。培養した細胞を、倒立顕微鏡(キーエンス)を用いて明視野観察を行った。その結果、フィーダーフリー培養中にTGFβR阻害剤(SB431542)処理してもヒトiPS細胞の形態に大きな影響は与えないことが分かった(図1)。
実施例1記載の方法にて、ヒトiPS細胞(1231A3株)をStemFit培地を用いて、サブコン
フレント1日前までフィーダーフリー培養した。当該サブコンフレント1日前のヒトiPS細
胞を、SB431542(TGFβR阻害剤、5μM)、LDN193189(BMPR阻害剤、100 nM)、SAG(Shh
作用物質、300 nM)、又はTGFβR阻害剤及びBMPR阻害剤(SB431542を5μM、及び、LDN193189を100 nM)の存在下(工程1:Precondition処理)あるいは非存在下(工程1:Preconditionしない)で、1日間フィーダーフリー培養した。得られた細胞をそれぞれ4%パラホルムアルデヒドで固定し、多能性幹細胞マーカーの1つであるOct3/4の免疫染色を行った。得られた免疫染色した細胞を、倒立型蛍光顕微鏡(BIOREVO, キーエンス社)を用いて明視野観察及び蛍光像の観察を行った。免疫染色解析において、前記マーカーが陽性であるかどうか判定する際、バックグラウンドと比較して、輝度値が2倍以上高ければ陽性とした。その結果、いずれの化合物でPrecondition処理した細胞も、Preconditionしていない細胞と同様に、Oct3/4陽性であることがわかった(図2)。すなわち、これらの条件でPreconditionした細胞は、多能性様状態を維持していたことがわかった。
実施例1記載の方法にて、ヒトiPS細胞(1231A3株)をStemFit培地を用いて、サブコン
フレント1日前までフィーダーフリー培養した。当該サブコンフレント1日前のヒトiPS細
胞を、SB431542 (TGFβR阻害剤、5μM)の存在下(工程1、Precondition: TGFβRi処理
)あるいは非存在下(工程1:Preconditionしない)で、1日間フィーダーフリー培養した。
、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友ベー
クライト社製)の1ウェルあたり1.2 x 104細胞になるように100μlの無血清培地に浮遊
させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地
とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。浮遊培養開始時(浮遊培養
開始後0日目、工程2開始)に、前記無血清培地にY27632(終濃度20μM)を添加した。浮
遊培養開始後2日目までに、Preconditionした条件でも、していない条件でも、細胞凝集
体が形成された(工程2終了、工程3開始)。浮遊培養開始後3日目に、Y27632を含まない
無血清培地を50μl加えた。
)を用いて、明視野観察を行った(図3)。その結果、TGFβR阻害剤(SB431542)の存在下
でPrecondition処理を行った細胞は(図3B)、Precondition処理を行わなかった細胞と比べ(図3A)、細胞凝集体の形状が良いことが分かった。
態が良好(図3C黒棒、丸く表面が滑らかで中が密)、形態が中程度(図3灰棒、丸いが嚢
胞化しつつある)、形態が悪い(図3C白棒、丸くなく、崩壊)と区別し定量した。その結果、Precondition処理を行わなかった条件では、形態が悪い細胞凝集体が90%程度、形態が中程度の細胞凝集体が10%程度、形態が良好の細胞凝集体が0%程度であることが分か
った(図3C “Control”、左から1番目の棒グラフ)。それに比べて、Precondition処理
を行った条件では、形態が悪い細胞凝集体が0%程度、形態が中程度の細胞凝集体が0%程度、形態が良好の細胞凝集体が100%程度であることが分かった(図3C “Precondition (TGFβRi)”、左から3番目の棒グラフ)。すなわち、工程1でTGFβR阻害剤(SB431542, 5
μM)を用いてPrecondition処理すると、工程2及び3での細胞凝集体の形態が良くなるこ
とがわかった。
実施例1記載の方法にて、ヒトiPS細胞(1231A3株)をStemFit培地を用いて、サブコン
フレント1日前までフィーダーフリー培養した。当該サブコンフレント1日前のヒトiPS細
胞を、SB431542(TGFβR阻害剤、5μM)の存在下(工程1、Precondition: TGFβRi処理)あるいは非存在下(工程1:Preconditionしない)で、1日間フィーダーフリー培養した。
理し、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友
ベークライト社製)の1ウェルあたり1.2 x 104細胞になるように100μlの無血清培地に
浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12
培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。浮遊培養開始時(浮遊培養開始後0日目、工程2開始)に、前記無血清培地にY27632(終濃度20μM)及びTGFβR阻害剤(SB431542, 5μM)を添加した。浮遊培養開始後2日目までに、Preconditionした条件でも、していない条件でも、細胞凝集体が形成された(工程2終了、工程3開始)。浮遊培養開始後3日目に、Y27632を含まずTGFβR阻害剤(SB431542 ,5μM)を添加した無血清培地を、50μl加えた。
、形態を観察した。その結果、工程1でPrecondition処理を行わず、工程2でTGFβR阻害剤(SB431542)を添加した条件では、形態が悪い細胞凝集体が30%程度、形態が中程度の細胞凝集体が60%程度、形態が良好の細胞凝集体が10%程度であることが分かった(図3C、‘Control +SB’、左から2番目の棒グラフ)。それに比べて、工程1でPrecondition処理を行い、工程2でTGFβR阻害剤(SB431542)を添加した条件では、形態が悪い細胞凝集体が0%程度、形態が中程度の細胞凝集体が0%程度、形態が良好の細胞凝集体が100%程度であることが分かった(図3C、‘Precondition (TGFβRi) +SB’、左から4番目の棒グラフ)。すなわち、工程2及び工程3にTGFβR阻害剤(SB431542)を添加している条件でも、工程1でTGFβR阻害剤(SB431542 ,5μM)を用いてPrecondition処理すると、工程1でPrecondition処理しない条件と比べて、細胞凝集体の形態が良くなることがわかった。
実施例1記載の方法にて、ヒトiPS細胞(1231A3株)をStemFit培地を用いて、サブコン
フレント1日前までフィーダーフリー培養した。当該サブコンフレント1日前のヒトiPS細
胞を、SB431542(TGFβR阻害剤、5μM)、又はLDN193189(BMPR阻害剤、100 nM)の存在
下(工程1:Precondition処理)あるいは非存在下(工程1:Preconditionしない)で、1
日間フィーダーフリー培養した。
理し、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友
ベークライト社製)の1ウェルあたり1.2 x 104細胞になるように100μlの無血清培地に
浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12
培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。浮遊培養開始時(浮遊培養開始後0日目、工程2開始)に、前記無血清培地にY27632(終濃度20μM)を添加した。浮遊培養開始後2日目までに、Preconditionした条件でも、していない条件でも、細胞凝集体が形成された(工程2終了、工程3開始)。浮遊培養開始後3日目に、Y27632を含まない無血清培地を50μl加えた。浮遊培養開始後6日目以降、2~4日に一回、Y27632を含まない前記無血清培地にて、培地量を5~7割、培地交換した。
ンス)を用いて、明視野観察を行った(図4)。その結果、実施例3と同様に、工程1にてTGFβR阻害剤(SB431542)の存在下でPrecondition処理を行った細胞では(図4B)、未処理
群と比べて(図4A)、工程3での細胞凝集体の形状が良いことが分かった。さらに、工程1にてBMPR阻害剤(SB431542)の存在下でPrecondition処理を行った細胞でも(図4C)、未処理群と比べて(図4A)、工程3での細胞凝集体の形状が良いことが分かった。すなわち、Precondition処理(工程1)にて、TGFβファミリーシグナル伝達経路の阻害物質であるTGFβR阻害剤(SB431542)とBMPR阻害剤(LDN193189)のいずれを用いても、細胞凝集体の形状を良くする効果が得られることが分かった。
、ヒトiPS細胞からの神経組織の形成例
実施例1記載の方法にて、ヒトiPS細胞(1231A3株)をStemFit培地を用いて、サブコン
フレント1日前までフィーダーフリー培養した。当該サブコンフレント1日前のヒトiPS細
胞を、LDN193189(BMPR阻害剤、100 nM)の存在下(工程1:Precondition処理)あるいは非存在下(工程1:Preconditionしない)で、1日間フィーダーフリー培養した。
理し、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友
ベークライト社製)の1ウェルあたり1.2 x 104細胞になるように100μlの無血清培地に
浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12
培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。浮遊培養開始時(浮遊培養開始後0日目、工程2開始)に、前記無血清培地にY27632(終濃度20μM)を添加した。浮遊培養開始後2日目までに、Preconditionした条件でも、していない条件でも、細胞凝集体が形成された(工程2終了、工程3開始)。浮遊培養開始後3日目に、Y27632を含まない無血清培地を50μl加えた。浮遊培養開始後6日目以降、2~4日に一回、Y27632を含まない前記無血清培地にて半量培地交換した。半量培地交換操作としては、培養器中の培地を体積の半分量すなわち75μlを廃棄し、新しい前記無血清培地を75μl加え、培地量は合計150μlとした。
を行わない条件では、工程3にて細胞凝集体が崩壊し、神経組織も全く形成されないこと
がわかった(図5A)。一方、工程1にてBMPR阻害剤(LDN193189)の存在下でPrecondition処理を行った細胞では、工程3での細胞凝集体の形状が良く、神経上皮構造をもつ神経組織
が形成されたことが分かった(図5B)。さらに浮遊培養開始後23日目の細胞を、倒立顕微鏡(キーエンス)を用いて、明視野観察により形態を観察し、「崩壊し、神経組織が3%
以下の細胞凝集体(形態が悪い細胞凝集体)」、「凝集体は残るが、神経組織が10%以下の細胞凝集体(形態が中程度の細胞凝集体)」「凝集体が残り、神経組織が10%以上の細胞凝集体(神経組織を含む細胞凝集体)」をそれぞれ定量した。その結果、工程1にてPreconditionを行なわなかった条件では、形態が悪い細胞凝集体が100%程度、形態が中程度の細胞凝集体が0%程度、神経組織を含む細胞凝集体が0%程度であることが分かった。それに比べて、工程1にてPrecondition処理を行った条件では、形態が悪い細胞凝集体が0%程度、形態が中程度の細胞凝集体が0%程度、神経組織を含む細胞凝集体が100%程度であることが分かった。
培養開始後23日目の細胞凝集体(図5Bの条件)を、4%パラホルムアルデヒドで固定し、凍結切片を作製した。これらの凍結切片に関し、神経組織マーカー(神経系前駆細胞)の1
つであるNestin(抗Nestin抗体、Millipore社、マウス)、神経組織マーカー(ニューロ
ン)の1つであるTuJ1(抗βIII-tubulin抗体、Promega社、マウス)、又は、神経組織マ
ーカーの1つであるPSA-NCAM(抗PSA-NCAM抗体、Millipore社、マウスIgM)について免疫
染色を行った。これらの免疫染色された切片を、倒立型蛍光顕微鏡を用いて観察した。その結果、BMPR阻害剤(LDN193189)にてPreconditionした条件から作製した細胞凝集体では
、全細胞中のNestin陽性細胞の割合が20%程度、全細胞中のTuJ1陽性細胞の割合も70%程度、そしてPSA-NCAM陽性細胞の割合が70%程度であることがわかった(図5C-E)。さらに、連続切片の解析から、倒立顕微鏡での明視野での形態観察にて神経組織と判別できる領域は、Nestin陽性、TuJ1陽性、及びPSA-NCAM陽性であったことが確認できた(図5C-E)。この結果から、フィーダーフリーにて培養したヒトiPS細胞をスタート原料として、工程1にてTGFβファミリーシグナル伝達経路阻害物質を用いてPreconditionすることで、工程3にて効率よく神経組織が製造できることが分かった。
工程3で分化誘導剤としてBMPシグナル伝達経路作用物質を用いた、ヒトiPS細胞からの網
膜組織の形成例
実施例1記載の方法にて、ヒトiPS細胞(1231A3株)をStemFit培地を用いて、サブコン
フレント1日前までフィーダーフリー培養した。当該サブコンフレント1日前のヒトiPS細
胞を、LDN193189(BMPR阻害剤、100 nM)の存在下(工程1:Precondition処理)、1日間
フィーダーフリー培養した。
理し、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友
ベークライト社製)の1ウェルあたり1.2 x 104細胞になるように100μlの無血清培地に
浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12
培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。浮遊培養開始時(浮遊培養開始後0日目、工程2開始)に、前記無血清培地にY27632(終濃度20μM)を添加した。浮遊培養開始後2日目までに、Preconditionした条件で、細胞凝集体が形成された(工程2終了、工程3開始)。浮遊培養開始後3日目に、Y27632を含まない無血清培地を50μl加えた。
い前記無血清培地にて半量培地交換した。浮遊培養開始後23日目に、倒立顕微鏡にて形態を観察したところ、PreconditionしたiPS細胞をスタート原料とした本実施例では、細胞
凝集体が維持され、神経組織が形成されていることがわかった。
体、Takara社、ギニアピッグ)について免疫染色を行った。これらの免疫染色された切片を、倒立型蛍光顕微鏡を用いて観察した。その結果、工程1にてBMPR阻害剤(LDN193189)にてPreconditionし工程3にてBMP4を添加しなかった条件から作製した細胞凝集体では、全
細胞中のRx陽性細胞の割合が10%未満(Rx強陽性(網膜に対応)は3%未満、Rx弱陽性(
網膜以外の神経組織に対応)は7%未満)、かつChx10陽性細胞の割合も3%未満であるこ
とがわかった(図6A,C)。一方、工程1にてBMPR阻害剤(LDN193189)にてPreconditionし工程3にてBMP4を添加した条件から作製した細胞凝集体では、全細胞中のRx陽性細胞の割合
が60%程度、全細胞中のChx10陽性細胞の割合も60%程度であることがわかった(図6B,D
)。さらに、連続切片の解析から、Chx10陽性細胞の割合が高い(95%程度)神経組織に
おいて、Rx も強陽性であることが示唆された(図6B,D)。この結果から、工程1にてPrec
onditionした条件では神経組織が形成され、さらに、工程3にて浮遊培養中に分化誘導物
質としてBMPシグナル伝達経路作用物質を添加することで、フィーダーフリー培養したヒ
トiPS細胞(以下、フィーダーフリーヒトiPS細胞という事もある)から効率よく網膜組織が製造できることが分かった。
実施例1記載の方法にて、ヒトiPS細胞(1231A3株)をStemFit培地を用いて、サブコン
フレント1日前までフィーダーフリー培養した。当該サブコンフレント1日前のヒトiPS細
胞を、SB431542(TGFβR阻害剤、5μM)、LDN193189(BMPR阻害剤、100 nM)又はSAG(Shhシグナル伝達経路作用物質、300 nM)の存在下(Precondition処理)あるいは非存在下(工程1:Preconditionしない)で、1日間フィーダーフリー培養した。
、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友ベー
クライト社製)の1ウェルあたり1.2 x 104細胞になるように100μlの無血清培地に浮遊
させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地
とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
した。条件1(+SAG)として、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)及びSAG(Shhシグナル伝達経路作用物質、300 nM)を添加した(図7B-D,F-H、‘+SAG’)。条件2(-SAG)として、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)を添加し、SAGは添加しなかった(図7A,E、‘-’)。浮遊培養開始後2日目までに、いずれの条件でも細胞凝集体が形成された(工程2終了、工程3開始)。浮遊培養開始後、3日目にY27632及びSAGを含まない無血清培地を50μl加えた。
む培地または含まない培地を用いて、外来性のヒト組み換えBMP4を終濃度1.5 nMで含む培地(図7E-H)、または、BMPシグナル伝達経路作用物質を添加しない培地(図7A-D)にな
るように培地交換した。浮遊培養開始後6日目以降、2~4日に一回、Y27632、SAG、及び、ヒト組み換えBMP4を含まない前記無血清培地にて、半量培地交換した。
形態を、実施例6記載の方法で定量した(図7I)。その結果、工程1にてPreconditionせず工程2にてSAGを添加していない条件では、細胞凝集体が崩壊し、神経組織が形成されないことが分かった(図7A,E)。一方、工程1にてTGFβR阻害剤(SB431542)、BMPR阻害剤(LDN193189)、又はShhシグナル伝達経路作用物質にてPreconditionし、工程2にてShhシグナル伝達経路作用物質を添加した条件では、細胞凝集体が形成され、効率よく神経組織が形成されることがわかった(図7B-D,F-I)。
処理を行ったiPS細胞をスタート原料にして作製した浮遊培養開始後23日目の細胞凝集体
を、4%パラホルムアルデヒドで固定し、凍結切片を作製した。これらの凍結切片に関し、神経組織マーカー(神経系前駆細胞)の1つであるNestin(抗Nestin抗体、Millipore社、マウス)、神経組織マーカー(ニューロン)の1つであるTuJ1(抗βIII-tubulin抗体、Pr
omega社、マウス)、又は、神経組織マーカーの1つであるPSA-NCAM(抗PSA-NCAM抗体、Millipore社、マウスIgM)について免疫染色を行った。これらの免疫染色された切片を、倒立型蛍光顕微鏡を用いて観察した。その結果、TGFβR阻害剤(SB431542)又はBMPR阻害剤(LDN193189)にてPreconditionした条件から作製した細胞凝集体では、全細胞中のNestin陽性細胞の割合が20%程度、全細胞中のTuJ1陽性細胞の割合も70%程度、そしてPSA-NCAM陽性細胞の割合が70%程度であることがわかった(図8A-F)。さらに、連続切片の解析から、明視野像での形態観察にて神経組織と判別できる領域はNestin陽性、TuJ1陽性、及びPSA-NCAM陽性であることが確認できた(図8A-F)。
ナル伝達経路作用物質にてPreconditionし、さらに、工程2にてShhシグナル伝達経路作用物質を添加した条件では、工程3にてBMPシグナル伝達経路作用物質を添加した条件でも添加しなかった条件でも、フィーダーフリーヒトiPS細胞から効率よく神経組織が製造でき
ることが分かった。
グナル伝達経路作用物質を用いて、工程3にて分化誘導剤としてBMPシグナル伝達経路作用物質を用いた、フィーダーフリーヒトiPS細胞からの網膜組織の形成例
実施例8記載の方法で、フィーダーフリー培地としてStemFit培地を用いたヒトiPS細胞
をスタート原料として、工程1でTGFβR阻害物質(SB431542)又はBMPR阻害物質(LDN193189)を用い、工程2でShhシグナル伝達経路作用物質を用い、工程3にてBMPシグナル伝達経路作用物質を添加した条件又は添加しなかった条件にて、細胞凝集体を調製した。これら全ての条件で形成された浮遊培養開始後23日目の細胞凝集体では、神経組織が形成されていた。前記細胞凝集体を、4%パラホルムアルデヒドで固定し、凍結切片を作製した。これらの凍結切片に関し、網膜組織マーカーの1つであるChx10(抗Chx10抗体、Exalpha社, ヒツジ)、又は、網膜組織マーカーの1つであるRx(抗Rx抗体、Takara社、ギニアピッグ)について免疫染色を行い、蛍光顕微鏡にて観察した。その結果、工程1にてTGFβR阻害剤(SB431542)又はBMPR阻害剤(LDN193189)にてPreconditionし、工程2でShhシグナル伝達経路作用物質を添加し、工程3にてBMP4を添加しなかった条件から作製した細胞凝集体では、全細胞中のRx陽性細胞の割合が10%未満(Rx強陽性(網膜に対応)は3%未満、Rx弱陽性(網膜以外の神経組織に対応)は7%未満)、かつChx10陽性細胞の割合も3%未満であることがわかった(図9A,C,E,G)。一方、工程1にてTGFβR阻害剤(SB431542)にてPreconditionし、工程2でShhシグナル伝達経路作用物質を添加し、工程3にてBMP4を添加した条件から作製した細胞凝集体では、全細胞中のRx陽性細胞の割合が80%以上、全細胞中のChx10陽性細胞の割合も70%以上であることがわかった(図9B,F)。また、工程1にてBMPR阻害剤(LDN193189)にてPreconditionし、工程2でShhシグナル伝達経路作用物質を添加し、工程3にてBMP4を添加した条件から作製した細胞凝集体では、全細胞中のRx陽性細胞の割合が50%以上、全細胞中のChx10陽性細胞の割合も40%以上であることがわかった(図9D,H)。さらに、連続切片の解析から、Chx10も陽性細胞の割合が高い(95%以上)の神経組織において、Rx強陽性であることがわかった(図9B,D,F,H)。
ヒトiPS細胞(1231A3株、京都大学より入手)を、「Scientific Reports, 4, 3594 (20
14)」に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはEssential 8培地(Life technologies社製、Nature Methods, 8, 424-429 (2011))、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
れる程度)になったヒトiPS細胞(1231A3株)を、PBSにて洗浄後、TrypLE Select(Life Technologies)を用いて単一細胞に分散した。その後、前記単一細胞に分散されたヒトiPS細胞を、Laminin511-E8にてコートしたプラスチック培養ディッシュ(イワキ社製)に播種し、Y27632(10 μM, ROCK阻害物質)存在下、Essential 8培地にてフィーダーフリー培養した。前記プラスチック培養ディッシュとして、6ウェルプレート(イワキ社製、培養面積9.4 cm2)を用いた場合、前記単一分散されたヒトiPS細胞の播種細胞数は6 x 103とした。播種した1日後に、Y27632を含まないEssential 8培地に交換した。その後、播種した6日後に、サブコンフレント(培養面積の6割が細胞に覆われる程度)になるまで培養した。
を、PBSにて洗浄後、TrypLE Select(Life Technologies)を用いて単一細胞に分散した
。その後、前記単一細胞に分散されたヒトiPS細胞を、Laminin511-E8にてコートしたプラスチック培養ディッシュ(イワキ社製)に播種し、Y27632(10 μM, ROCK経路阻害物質)存在下、Essential 8培地にてフィーダーフリー培養した。前記プラスチック培養ディッ
シュとして、6ウェルプレート(イワキ社製、細胞培養用、培養面積9.4 cm2)を用いた場合、前記単一細胞に分散されたヒトiPS細胞の播種細胞数は6 x 103とした。播種した1日
後に、Y27632を含まないEssential 8培地に交換した。その後、播種した5日後、サブコンフレント1日前(培養面積の5割が細胞に覆われる程度)になるまで培養した。前記フィーダーフリー培養したサブコンフレント1日前のヒトiPS細胞を、SB431542(TGFβR阻害剤、5μM)、LDN193189(BMPR阻害剤、100 nM)、又は、TGFβR及びBMPR2重阻害(SB431542を5μM、及び、LDN193189を100 nM)の存在下(工程1:Precondition)、あるいは非存在下(工程1:Preconditionなし、control)で、1日間フィーダーフリー培養した。培養した
細胞を、倒立顕微鏡(キーエンス)を用いて明視野観察を行ったところ、フィーダーフリー培養中にTGFβファミリーシグナル伝達経路阻害剤にて処理してもヒトiPS細胞の形態に大きな影響は与えないことが分かった。
、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友ベー
クライト社製)の1ウェルあたり1.2 x 104細胞になるように100μlの無血清培地に浮遊
させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地
とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
した。条件1(+SAG)として、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)及びSAG(Shhシグナル伝達経路作用物質、300 nM)を添加した(図10C, F, H, J, L, N “+SAG”)。条件2(-SAG)として、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)を添加し、SAGは添加しなかった(図10A, B, D, E, G, I, K, M “-”)。浮遊培養開始後2日目までに、いずれの条件でも細胞凝集体が形成された(工程2終了、工程3開始)。浮遊培養開始後、3日目にY27632及びSAGを含まない無血清培地を50μl加えた。
む培地または含まない培地を用いて、外来性のヒト組み換えBMP4を終濃度1.5 nMで含む培
地(図10D-F)、または、BMPシグナル伝達経路作用物質を含まない培地(図10K-N)にな
るように培地交換した。浮遊培養開始後6日目以降、2~4日に一回、Y27632、SAG、及び、ヒト組み換えBMP4を含まない前記無血清培地にて、半量培地交換した。
を用いて、明視野観察を行った(図10)。その結果、工程1にてPreconditionせず工程2にてSAGを添加していない条件では、細胞凝集体が崩壊し、神経組織が形成されないことが
分かった(図10A)。そして、工程1にてPreconditionした条件では、工程2にてShhシグナル伝達経路作用物質を添加しなかった条件でも、工程2にてShhシグナル伝達経路作用物質を添加した条件でも、細胞凝集体が形成されることがわかった(図10)。すなわち、フィーダーフリー培地としてEssential 8培地を用いた場合でも、工程1でのTGFβファミリーシグナル伝達経路阻害物質を用いたPrecondition処理により、ヒトiPS細胞から形成される細胞凝集体の形態が良くなることが分かった。
実施例10記載の方法で、フィーダーフリー培養としてEssential 8培地を用いたヒトiPS細胞をスタート原料として、工程1でTGFβR阻害物質(SB431542)を用い、工程2でShhシグ
ナル伝達経路作用物質を用いた細胞凝集体を調製した。浮遊培養開始後18日目の前記細胞凝集体を、4%パラホルムアルデヒドで固定し、凍結切片を作製した。これらの凍結切片に関し、神経組織マーカー(神経系前駆細胞)の1つであるNestin(抗Nestin抗体、Millipore社、マウス)、神経組織マーカー(ニューロン)の1つであるTuJ1(抗βIII-tubulin抗体、Promega社、マウス)、又は、神経組織マーカーの1つであるPSA-NCAM(抗PSA-NCAM抗体、Millipore社、マウスIgM)について免疫染色を行い、蛍光顕微鏡で観察した。その結果、前記細胞凝集体では、全細胞中のNestin陽性細胞の割合が30%程度、全細胞中のTuJ1陽性細胞の割合も70%程度、そしてPSA-NCAM陽性細胞の割合が70%程度であることがわかった(図11)。さらに、連続切片の解析から、明視野像での形態観察にて神経組織と判別できる領域はNestin陽性、TuJ1陽性、及びPSA-NCAM陽性であることが確認できた(図11)。すなわち、工程1にてTGFβR阻害物質にてPreconditionし、工程2にてSAGを添加した条件で作製された細胞凝集体では、神経組織が効率よく形成されることがわかった。
実施例10記載の方法で、フィーダーフリー培養としてEssential 8培地を用いたヒトiPS細胞をスタート原料として、工程1でTGFβR阻害物質(SB431542)を用い、工程2でShhシグ
ナル伝達経路作用物質を用い、工程3にてBMPシグナル伝達経路作用物質を添加した条件又は添加しなかった条件で、細胞凝集体を調製した。浮遊培養開始後18日目の前記細胞凝集体を、それぞれ4%パラホルムアルデヒドで固定し、凍結切片を作製した。これらの凍結切片に関し、網膜組織マーカーの1つであるChx10(抗Chx10抗体、Exalpha社, ヒツジ)、又は、網膜組織マーカーの1つであるRx(抗Rx抗体、Takara社、ギニアピッグ)について免
疫染色を行い、蛍光顕微鏡で観察した。その結果、工程1にてTGFβR阻害剤(SB431542) にてPreconditionし、工程2でShhシグナル伝達経路作用物質を添加し、工程3にてBMP4を添
加しなかった条件から作製した細胞凝集体では、全細胞中のRx陽性細胞の割合が10%未満(Rx強陽性(網膜に対応)は3%未満、Rx弱陽性(網膜以外の神経組織に対応)は7%未満)、かつChx10陽性細胞の割合も3%未満であることがわかった(図12)。一方、工程1にてTGFβR阻害剤(SB431542) にてPreconditionし、工程2でShhシグナル伝達経路作用物質を添加し、工程3にてBMP4を添加した条件から作製した細胞凝集体では、全細胞中のRx強陽性細胞の割合が30%以上、全細胞中のChx10陽性細胞の割合も20%以上であることがわかった(図12)。さらに、連続切片の解析から、Chx10も陽性細胞の割合が高い(95%以上)の神経組織において、Rx強陽性であることがわかった。この結果から、フィーダーフリー培養としてEssential 8培地を用いたヒトiPS細胞をスタート原料として、工程1でTGFβR阻害物質を用い、工程2でShhシグナル伝達経路作用物質を用い、工程3にてBMPシグナル伝達経路作用物質を添加した条件で、網膜組織が製造できることが分かった。
工程3にてBMPシグナル伝達経路作用物質を用いた、網膜組織の形成例
実施例1記載の方法にて、ヒトiPS細胞(1231A3株)をStemFit培地を用いてサブコンフ
レント1日前になるまでフィーダーフリー培養した。当該サブコンフレント1日前のヒトiPS細胞を、SB431542(TGFβR阻害剤、5μM)及びSAG(Shhシグナル伝達経路作用物質、300 nM)の存在下で、1日間フィーダーフリー培養した(工程1、Precondition: TGFβRi+SAG処理)。
、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友ベー
クライト社製)の1ウェルあたり1.2 x 104細胞になるように100μlの無血清培地に浮遊
させ、37℃、5%CO2で浮遊培養した。その際の無血清培地には、F-12培地とIMDM培地の1
:1混合液に10% KSR、450μM 1-モノチオグリセロール、及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。浮遊培養開始時(浮遊培養開始後0日
目、工程2開始)に、前記無血清培地にY27632(終濃度20μM)及びSAG(Shhシグナル伝達経路作用物質、300 nM)を添加した。浮遊培養開始後2日目まで1日間に、細胞凝集体が形成された(工程2終了、工程3開始)。この後、工程3にて、下記条件1~3にて培養した。
分量、すなわち75μlを廃棄し、Y27632、SAG及びBMPシグナル伝達経路作用物質を含まな
い前記無血清培地を75μl加えた)した。
条件2.浮遊培養開始後3日目に、Y27632及びSAGを含まず、ヒト組換えBMP4を終濃度1.5
nMになるような無血清培地を加えた。浮遊培養開始後6日目以降、3日に一回、Y27632、SAG及びBMP作用物質を含まない前記無血清培地にて、半量培地交換(体積の半分量、すな
わち75μlを廃棄し、Y27632、SAG及びBMPシグナル伝達経路作用物質を含まない前記無血
清培地を75μl加えた)した。
条件3.浮遊培養開始後3日目に、Y27632、SAG及びBMPシグナル伝達経路作用物質を含まない無血清培地を50μl加えた。浮遊培養開始後6日目に、Y27632及びSAGを含まず、ヒト
組換えBMP4を終濃度1.5 nMになるような無血清培地を加えた。浮遊培養開始後6日目以降
、3日に一回、Y27632、SAG及びBMP作用物質を含まない前記無血清培地にて、半量培地交
換(体積の半分量、すなわち75μlを廃棄し、Y27632、SAG及びBMPシグナル伝達経路作用
物質を含まない前記無血清培地を75μl加えた)した。
あることがわかった(図13左)。一方、条件2及び条件3の細胞凝集体は、全細胞中のChx1
0陽性細胞の割合が60%以上であることがわかった(図13中、右)。この結果から、工程1でTGFβR阻害物質(SB431542)及びShhシグナル伝達経路作用物質を用い、工程2でShhシグ
ナル伝達経路作用物質を用い、工程3にてBMPシグナル伝達経路作用物質を添加した条件で、網膜組織が製造できることが分かった。
実施例1記載の方法にて、ヒトiPS細胞(1231A3株)をStemFit培地を用いてサブコンフ
レント1日前までフィーダーフリー培養した。当該サブコンフレント1日前のヒトiPS細胞
を、SB431542(TGFβR阻害剤、5μM)及びSAG(Shhシグナル伝達経路作用物質、300 nM)の存在下で、1日間フィーダーフリー培養した(工程1、Precondition: TGFβRi+SAG処理
)。
、さらにピペッティング操作により単一細胞に分散した。その後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住
友ベークライト社製)の1ウェルあたり、以下の4条件、すなわち、0.4 x 104、0.8 x 104、1.2 x 104、又は1.6 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に10%KSR、450μM 1-モノチオグリセロール、及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。浮遊培養開始時(浮遊培養開始後0日目、工程2開始)に、前記無血清培地にY27632(終濃度20μM)及びSAG(Shhシグナル伝達経路作用物質、300 nM)を添加した。浮遊培養開始後2日目まで1日間に、細胞凝集体が形成された(工程2終了、工程3開始)。この後、工程3にて、浮遊培養開始後3日目に、Y27632及びSAGを含まず、ヒト組換えBMP4を終濃度1.5 nMになるように無血清培地を加えた。浮遊培養開始後6日目以降、2~4日に一回、Y27632、SAG及びBMP作用物質を含まない前記無血清培地にて半量培地交換した。
であるChx10(抗Chx10抗体、Exalpha社, ヒツジ)、又は、網膜組織マーカーの1つであるRx(抗Rx抗体、Takara社、ギニアピッグ)について免疫染色を行い、蛍光顕微鏡で観察した。その結果、いずれの播種細胞数(0.4 x 104、0.8 x 104、1.2 x 104、又は1.6 x
104細胞)においても、全細胞中のChx10陽性細胞の割合が20%以上であることがわかっ
た(図14中、右)。特に、播種細胞数が、0.8 x 104、又は、1.2 x 104細胞の条件が、特にChx10陽性細胞の割合が高かった。Rx陽性細胞の割合に関しても、Chx10と同様の結果であった。この結果から、工程2における播種細胞数が0.4 x 104~1.6 x 104細胞の条
件で、網膜組織が製造できることが分かった。
程2にてShhシグナル伝達経路作用物質としてSAGを用いた、フィーダーフリーヒトiPS細胞からの神経組織の形成例
ヒトiPS細胞(1231A3株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
フレント1日前までフィーダーフリー培養した。その後、下記3条件で1日間フィーダーフ
リー培養した。
・条件1.ヒト組み換えLefty-A(Nodal/Activinシグナル伝達経路阻害物質、R&D社製、Lefty-A C-terminus、20μg/ml)
・条件2.ヒト組み換えLefty-A(Nodal/Activinシグナル伝達経路阻害物質、R&D社製 Lefty-A C-terminus, 20μg/ml)及びSAG(Shhシグナル伝達経路作用物質、300 nM)
・条件3.外来性のTGFβファミリーシグナル伝達経路阻害物質及びShhシグナル伝達経路
作用物質非存在下(Preconditionしない条件)
るように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチ
オグリセロール、及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
した。条件1(+SAG)として、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)及びSAG(Shhシグナル伝達経路作用物質、300 nM)を添加した。条件2(-SAG)として、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)を添加し、SAGは添加しなかった。浮遊培養開始後2日目までに、いずれの条件でも細胞凝集体が形成された(工程2終了、工程3開始)。浮遊培養開始後3日目に、外来性のヒト組み換えBMP4の終濃度が1.5 nM(55 ng/ml)になるように、Y27632、SAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。浮遊培養開始後6日目に、Y27632、SAG、及びヒト組み換えBMP4を含まない無血清培地にて、半量培地交換した。その後、2~4日に一回、Y27632、SAG、及びヒト組み換えBMP4を含まない前記無血清培地にて、半量培地交換した。
程2にてSAGを添加していない条件では、細胞凝集体が崩壊し、神経組織が形成されないことが分かった(図15、A)。一方、工程1にてNodal/Activinシグナル伝達経路阻害物質、
又はNodal/Activinシグナル伝達経路阻害物質及びShhシグナル伝達経路作用物質にてPreconditionし、工程2にてShhシグナル伝達経路作用物質を添加した条件、又は添加していない条件において、細胞凝集体が形成され、効率よく神経組織が形成されることがわかった(図15、B,C,D)。
ヒトiPS細胞(1231A3株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
理し、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友
ベークライト社製)の1ウェルあたり1.0 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培
地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、1 x Chemically
defined lipid concentrateを添加した無血清培地を用いた。
した。条件1(+SAG)として、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)及びSAG(Shhシグナル伝達経路作用物質、終濃度30 nM)を添加した。条件2(-SAG)として、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)を添加し、SAGは添加しなかった。浮遊培養開始後2日目までに、いずれの条件でも細胞凝集体が形成された(工程2終了、工程3開始)。浮遊培養開始後3日目に、外来性のヒト組み換えBMP4の終濃度が1.5 nM(55 ng/ml)になるように、Y27632、SAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。浮遊培養開始後6日目に、Y27632、SAG、及び、ヒト組み換えBMP4を含まない無血清培地にて、半量培地交換した。その後、2~4日に一回、Y27632、SAG、及び、ヒト組み換えBMP4を含まない前記無血清培地にて、半量培地交換した。
、Exalpha社製, ヒツジ)について免疫染色を行い、蛍光顕微鏡を用いて観察した。その
結果、工程1にてA83-01でPreconiditionし、工程2にてSAGを添加した場合、全細胞中のChx10陽性細胞の割合が20%程度であることがわかった(図16、C)。
これらの結果から、工程1にてTGFβファミリーシグナル伝達経路阻害物質としてTGFβR阻害剤であるA83-01にてPreconditionし、工程2にてShhシグナル伝達経路作用物質を添加した条件では、網膜組織を製造できることがわかった。
βファミリーシグナル伝達経路阻害物質(A83-01)及びShhシグナル伝達経路作用物質(SAG、Purmorphamine、又はヒト組み換えShhのいずれか)の組み合わせを用い、工程2にてShhシグナル伝達経路作用物質を用いた、フィーダーフリーヒトiPS細胞からの神経組織の形成例
ヒトiPS細胞(1231A3株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
で1日間フィーダーフリー培養した。
・条件1.A83-01(Wako社製、TGFβR阻害剤、0.5μM)
・条件2.A83-01(Wako社製、TGFβR阻害剤、0.5μM)及びSAG(Enzo社製、Shhシグナル
伝達経路作用物質、300 nM)
・条件3.A83-01(Wako社製、TGFβR阻害剤、0.5μM)及びPurmorphamine (Wako社製、 Shhシグナル伝達経路作用物質、0.2μM)
・条件4.A83-01(Wako社製、TGFβR阻害剤、0.5μM)及びヒト組み換えShh(R&D社製、Shhシグナル伝達経路作用物質、50ng/ml)
・条件5.A83-01(Wako社製、TGFβR阻害剤0.5μM)及びヒト組み換えShh(R&D社製、Shh
シグナル伝達経路作用物質、300ng/ml)
・条件6.外来性のTGFβファミリーシグナル伝達経路阻害物質及びShhシグナル伝達経路
作用物質非存在下(Preconditionしない条件)
理し、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友
ベークライト社製)の1ウェルあたり1.0 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培
地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、1 x Chemically
defined lipid concentrateを添加した無血清培地を用いた。
培養した。条件(A)(+SAG)として、浮遊培養開始時に、前記無血清培地にY27632(終濃
度20μM)及びSAG(Shhシグナル伝達経路作用物質、30 nM)を添加した。条件(B)(-SAG
)として、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)を添加し、SAGは添加しなかった。
ng/ml)になるように、Y27632、SAG、Purmorphamine、ヒト組み換えShhを含まず、ヒト
組み換えBMP4(R&D社製)を含む培地を50μl加えた。浮遊培養開始後6日目に、Y27632、SAG、Purmorphamine、ヒト組み換えShh、及びヒト組み換えBMP4を含まない無血清培地にて、半量培地交換した。その後、2~4日に一回、Y27632、SAG、Purmorphamine、ヒト組み換えShh、及びヒト組み換えBMP4を含まない前記無血清培地にて、半量培地交換した。
織が形成されないことが分かった(図17、A)。一方、前記条件1-5として、工程1にてA83-01及びShhシグナル伝達経路作用物質(SAG、PMA、ヒト組み換えShh 50ng/ml、ヒト組み換えShh 300ng/ml)を作用させ、工程2にてSAGを添加した条件(条件(A)(+SAG))では
、細胞凝集体が形成され、効率よく神経組織が形成されることがわかった(図17、B-F)
。
これらの結果から、工程1にて、TGFβファミリーシグナル伝達経路阻害物質(A83-01)、又はTGFβファミリーシグナル伝達経路阻害物質(A83-01)及びShhシグナル伝達経路作用物質(SAG、PMA、ヒト組み換えShhのいずれか)を用いてPreconditionした条件で、フィーダーフリーで培養したヒトiPS細胞から効率よく神経組織が製造できることが分かった。
作用物質を用い、工程2にてShhシグナル伝達経路作用物質(SAG、Purmorphamine、又はヒト組み換えShhのいずれか)を用いた、フィーダーフリーヒトiPS細胞からの網膜組織の形成例
ヒトiPS細胞(1231A3株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友ベー
クライト社製)の1ウェルあたり1.0 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
・条件1.SAG(Enzo社製、Shhシグナル伝達経路作用物質、30 nM)を添加した。
・条件2.Purmorphamine (Wako社製、Shhシグナル伝達経路作用物質、0.2μM)を添加した。
・条件3.ヒト組み換えShh (R&D社製、Shhシグナル伝達経路作用物質、300ng/ml)を添加
した。
・条件4.浮遊培養開始時に外来性のShhシグナル伝達経路作用物質は添加しなかった
ng/ml)になるように、Y27632、SAG、Purmorphamine、ヒト組み換えShhを含まず、ヒト
組み換えBMP4(R&D社製)を含む培地を50μl加えた。浮遊培養開始後6日目に、Y27632、SAG、Purmorphamine、ヒト組み換えShh、ヒト組み換えBMP4を含まない無血清培地にて、半量培地交換した。その後、2~4日に一回、Y27632、SAG、及び、ヒト組み換えBMP4を含まない前記無血清培地にて、半量培地交換した。
加えない条件、又はShhシグナル伝達経路作用物質としてSAG、Purmorphamine(PMA)、又はヒト組み換えShhのいずれかを加えた条件において、細胞凝集体が形成され、効率よく
神経組織が形成されることがわかった(図18、B-E)。
ナル伝達経路作用物質でPreconditionし、浮遊培養開始時にShhシグナル伝達経路作用物
質としてSAG、Purmorphamine、又はヒト組み換えShhのいずれかを加えた条件で、フィー
ダーフリーヒトiPS細胞から効率よく神経組織が製造できることが分かった。
、Exalpha社製, ヒツジ)について免疫染色を行い、蛍光顕微鏡を用いて観察した。その
結果、工程1にてA83-01及びSAGでPreconditionし、工程2にて外来性のShhシグナル伝達
経路作用物質を添加しなかった条件では、全細胞中のChx10陽性細胞の割合は40%程度で
あった(図18、F)。一方、工程1にてA83-01及びSAGでPreconditionし、浮遊培養開始時
にShhシグナル伝達経路作用物質としてSAG、Purmorphamine、又はヒト組み換えShhのいずれかを加えた条件では、全細胞中のChx10陽性細胞の割合は90%程度であることがわかった(図18、G-I)。
ナル伝達経路作用物質でPreconditionし、工程2にてShhシグナル伝達経路作用物質としてSAG、Purmorphamine、又はヒト組み換えShhのいずれかを加えた条件では、フィーダーフ
リーヒトiPS細胞から効率よく網膜組織が製造できることが分かった。
グナル伝達経路作用物質としてPurmorphamineを用い、工程2にてShhシグナル伝達経路作
用物質としてPurmorphamineを用いた、フィーダーフリーヒトiPS細胞からの網膜組織の形成例
ヒトiPS細胞(1231A3株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友ベー
クライト社製)の1ウェルあたり1.0 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
製)を用いて、明視野観察を行った(図19、A-D)。その結果、工程1にてSB431542及びPurmorphamine(0.02μM又は0.2μM)にてPreconditionし、工程2にてPurmorphamine(0.2μM又は2μM)を添加した条件において、いずれのPurmorphamine濃度においても細胞凝集体が形成され、効率よく神経組織が形成されることがわかった(図19、A-D)。
、Exalpha社製、ヒツジ)について免疫染色を行った。これらの免疫染色された切片を、
倒立型蛍光顕微鏡を用いて観察した。その結果、工程1にてSB431542及びPurmorphamine(0.02μM又は0.2μM)にてPreconditionし、工程2にてPurmorphamine(0.2μM又は2μM)を添加した条件において、いずれのPurmorphamine濃度においても全細胞中のChx10陽性細胞の割合が60%程度であることがわかった(図19、E-H)。
路阻害物質とShhシグナル伝達経路作用物質の組み合わせで1、2、又は3日間Preconditionを行った、フィーダーフリーヒトiPS細胞からの神経組織の形成例
ヒトiPS細胞(1231A3株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
・条件1.SAG(Enzo社製、Shhシグナル伝達経路作用物質、300 nM)を48時間
・条件2.SAG(Enzo社製、Shhシグナル伝達経路作用物質、300 nM)を72時間
・条件3.A83-01(Wako社製、TGFβR阻害剤、0.5μM)及びSAG(Enzo社製、Shhシグナル
伝達経路作用物質、300 nM)を24時間
・条件4. A83-01(Wako社製、TGFβR阻害剤、0.5μM)及びSAG(Enzo社製、Shhシグナル伝達経路作用物質、300 nM)を48時間
・条件5.A83-01(Wako社製、TGFβR阻害剤、0.5μM)及びSAG(Enzo社製、Shhシグナル
伝達経路作用物質、300 nM)を72時間
・条件6.外来性のTGFβファミリーシグナル伝達経路阻害物質及びShhシグナル伝達経路
作用物質非存在下(Preconditionしない条件)
、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート、住友ベー
クライト社製)の1ウェルあたり1.0 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
培養した。条件(A)として、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)及びSAG(Shhシグナル伝達経路作用物質、30 nM)を添加した。条件(B)として、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)を添加し、SAGは添加しなかった。浮
遊培養開始後2日目までに、いずれの条件でも細胞凝集体が形成された(工程2終了、工程3開始)。浮遊培養開始後3日目に、外来性のヒト組み換えBMP4の終濃度が1.5 nM(55 ng/ml)になるように、Y27632及びSAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。浮遊培養開始後6日目に、Y27632、SAG、及びヒト組み換えBMP4を含まない無血清培地にて半量培地交換した。その後、2~4日に一回、Y27632、SAG、及びヒト組み換えBMP4を含まない前記無血清培地にて、半量培地交換した。
、効率よく神経組織が形成されることがわかった(図20、B-D)。また、工程1にてA83-01及びSAGにて24、48又は72時間Preconditionし、工程2にてSAGを添加した条件(A)及び添加しなかった条件(B)において、細胞凝集体が形成され、効率よく神経組織が形成されるこ
とがわかった(図20、E-J)。
ヒトiPS細胞(1231A3株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友ベー
クライト社製)の1ウェルあたり1.0 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
培養した。条件(A)として、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)及びSAG(Shhシグナル伝達経路作用物質、30 nM)を添加した。条件(B)として、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)を添加し、SAGは添加しなかった。浮遊培養開始後2日目までに、いずれの条件でも細胞凝集体が形成された(工程2終了、工程3開始)。浮遊培養開始後、3日目にY27632及びSAGを含まない無血清培地を50μl加えた。
最後の24時間はA83-01 とSAGの共存下にて Preconditionした条件において、いずれの条
件でも細胞凝集体が成長し、効率よく神経組織が形成されることがわかった(図21、A-L
)。
にてShhシグナル伝達経路作用物質を用い、工程3にてBMP作用物質を1回もしくは複数回添加するフィーダーフリーヒトiPS細胞からの網膜組織の形成例
ヒトiPS細胞(Ff-I01株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友ベー
クライト社製)の1ウェルあたり1.0 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
遊培養開始後2日目までに、いずれの条件でも細胞凝集体が形成された(工程2終了、工程3開始)。浮遊培養開始後3日目以降、以下の条件1-3の3条件でBMP4を添加した。
・条件1.(+BMP4 1回添加) 浮遊培養3日目に、外来性のヒト組み換えBMP4の終濃度が1.5 nM(55 ng/ml)になるように、Y27632及びSAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。浮遊培養開始6日目以降、Y27632、SAG及びヒト組み換えBMP4を
含まない無血清培地にて、半量培地交換した。
・条件2.(+BMP4 2回添加) 浮遊培養3日目に、外来性のヒト組み換えBMP4の終濃度が1.5 nM(55 ng/ml)になるように、Y27632、SAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。浮遊培養開始6日目に培地を50μl抜き、外来性のヒト組み換えBMP4の終濃度を1.5 nM(55 ng/ml)に維持できるように、Y27632及びSAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。浮遊培養開始9日目以降、Y27632、SAG及びヒト組み換えBMP4を含まない無血清培地にて、半量培地交換した。
・条件3.(+BMP4 3回添加) 浮遊培養3日目に、外来性のヒト組み換えBMP4の終濃度が1.5 nM(55 ng/ml)になるように、Y27632及びSAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。浮遊培養開始6日目及び9日目に培地を50μl抜き、外来性のヒト
組み換えBMP4の終濃度を1.5 nM(55 ng/ml)に維持できるように、Y27632及びSAGを含ま
ず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。浮遊培養開始12日目以降、Y27632、SAG及びヒト組み換えBMP4を含まない無血清培地にて、半量培地交換した。
その後、2~4日に一回、Y27632、SAG及びヒト組み換えBMP4を含まない前記無血清培地に
て、半量培地交換した。
、Exalpha社製, ヒツジ)について免疫染色を行った。これらの免疫染色された切片を、
蛍光顕微鏡を用いて観察した。その結果、BMP4を1回添加した条件では全細胞中のChx10陽性細胞の割合は60%程度、2回又は3回添加した条件では80%程度であることがわかった(図22、D-F)。
にてShhシグナル伝達経路作用物質を用い、工程3にてBMP4を1.5nM又は5nM添加する、フィーダーフリーヒトiPS細胞からの網膜組織の形成例
ヒトiPS細胞(Ff-I01株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03; 味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友ベー
クライト社製)の1ウェルあたり1.0 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
。
又は5 nM(183 ng/ml)になるように、Y27632及びSAGを含まず、ヒト組み換えBMP4(R&D
社製)を含む培地を50μl加えた。浮遊培養開始後6日目に培地を50μl抜き、外来性のヒ
ト組み換えBMP4の終濃度を1.5 nM(55 ng/ml)、又は5 nM(183 ng/ml)に維持できるよ
うにY27632及びSAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。
その後、2~4日に一回、Y27632、SAG及びヒト組み換えBMP4を含まない前記無血清培地に
て、半量培地交換した。
、Exalpha社製, ヒツジ)について免疫染色を行い、蛍光顕微鏡を用いて観察した。その
結果、BMP4を終濃度1.5 nMになるように二回添加した条件では、全細胞中のChx10陽性細
胞の割合が70%程度であることがわかった(図23、C)。また、BMP4を終濃度5nMになるよ
うに二回添加した条件では全細胞中のChx10陽性細胞の割合が80%程度であることがわかった(図23、D)。
、工程2にてShhシグナル伝達経路作用物質を添加し、工程3にてBMP4を1.5nM又は5nMで2回添加した条件(すなわち、BMPシグナル伝達経路作用物質の濃度(1.5nM又は5nM)を6日間
維持する条件)では、効率よく網膜組織が製造できることが分かった。
ル伝達経路作用物質(SAG、30nM、300nM、500nM、又は1000nM)で1日間Preconditionを行い、工程2にてShhシグナル伝達経路作用物質(SAG)を用いた、フィーダーフリーヒトiPS細胞からの神経組織の形成例
ヒトiPS細胞(Ff-I01株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
理し、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友
ベークライト社製)の1ウェルあたり1.0 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培
地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
始後2日目までに、いずれの条件でも細胞凝集体が形成された(工程2終了、工程3開始)
。浮遊培養開始後3日目に、外来性のヒト組み換えBMP4の終濃度が1.5 nM(55 ng/ml)に
なるように、Y27632及びSAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl
加えた。浮遊培養開始後6日目に培地を50μl抜き、外来性のヒト組み換えBMP4の終濃度が1.5 nM(55 ng/ml)に維持できるようにY27632及びSAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。その後、2~4日に一回、Y27632、SAG、ヒト組み換えBMP4を含まない前記無血清培地にて、半量培地交換した。
及びShhシグナル伝達経路作用物質(SAG、30nM~1000nM の濃度範囲)でPreconditionし
た条件では、フィーダーフリーヒトiPS細胞から効率よく神経組織が製造できることが分
かった。
ル伝達経路作用物質(SAG)で1日間Preconditionを行い、工程2にてShhシグナル伝達経路作用物質(SAG)を30nM、300nM、500nM、又は1000nMの濃度で用いた、フィーダーフリー
ヒトiPS細胞からの神経組織の形成例
ヒトiPS細胞(Ff-I01株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
日間フィーダーフリー培養した。
、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友ベー
クライト社製)の1ウェルあたり1.0 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に、10% KSR、450μM 1-モノチオグリセロール、及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
れた(工程2終了、工程3開始)。
ng/ml)になるように、Y27632及びSAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。
から1000nM の濃度範囲で添加すると、フィーダーフリーヒトiPS細胞から効率よく神経組織が製造できることが分かった。
スタート原料として用い、工程1にTGFβファミリーシグナル伝達経路阻害物質を用い、工程3でBMPシグナル伝達経路作用物質を用いた、ヒトiPS細胞から網膜組織の製造例
ヒトiPS細胞(DSPC-3株、大日本住友製薬にて樹立)は、市販されているセンダイウイ
ルスベクター(Oct3/4、Sox2、KLF4、c-Mycの4因子、DNAVEC社(現、ID Pharma社)製サイ
トチューンキット)を用いて、Life Technologies社の公開プロトコル(iPS 2.0 Sendai Reprogramming Kit、Publication Number MAN0009378、Revision 1.0)、及び、京都大学の公開プロトコル(ヒトiPS細胞の樹立・維持培養、CiRA_Ff-iPSC_protocol_JP_v140310
、http://www.cira.kyoto-u.ac.jp/j/research/protocol.html)記載の方法をもとに、StemFit培地 (AK03;味の素社製)、Laminin511-E8(ニッピ社製)を用いて樹立した。
に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
レント1日前までフィーダーフリー培養した。当該サブコンフレント1日前のヒトiPS細胞
を、下記3条件で、1日間フィーダーフリー培養した。
・条件1.SB431542(TGFβR阻害剤、5μM)及びSAG(Shhシグナル伝達経路作用物質、300
nM)(図26、B,C,F,G)
・条件2.LDN193189(BMPシグナル伝達経路阻害物質、100 nM)及びSAG(Shhシグナル伝
達経路作用物質、300 nM)(図26、D,E,H,I)
・条件3.外来性のTGFβファミリーシグナル伝達経路阻害物質及びShhシグナル伝達経路
作用物質非存在下(図26、A)
も90%程度であることがわかった(図26、I)。また、工程1にてLDN193189及びSAGにてPreconditionし、工程2でSAGを添加し、工程3にてBMP4を添加した条件から作製した細胞凝集体では、全細胞中のChx10陽性細胞の割合も60%程度であることがわかった(図26、H)。すなわち、工程1にてBMPR阻害剤(LDN193189)及びShhシグナル伝達経路作用物質にてPreconditionし、工程3にてBMPシグナル伝達経路作用物質を添加した条件では、工程2のShhシグナル伝達経路作用物質を添加した条件でも添加しなかった条件でも、網膜組織を製造できることがわかった。
ル伝達経路作用物質を添加し、工程3でBMPシグナル伝達経路作用物質を添加することで、センダイウイルスにて作製し、フィーダーフリー培養したヒトiPS細胞をスタート原料と
して、網膜組織を製造できることがわかった。
Rx::GFPノックインヒトES細胞(KhES-1株由来;Cell Stem Cell, 2012, 10(6) 771-785)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した(図27、A)。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
レント1日前になるまでフィーダーフリー培養した。サブコンフレント1日前のヒトiPS細
胞を、下記3条件で、1日間フィーダーフリー培養した。
・条件1.SB431542(TGFβR阻害剤、5μM)及びSAG(Shhシグナル伝達経路作用物質、30 nM)(図27、C,E)
・条件2.LDN193189(BMPR阻害剤、100 nM)及びSAG(Shhシグナル伝達経路作用物質、30
nM)(図27、D,F)
・条件3.外来性のTGFβファミリーシグナル伝達経路阻害物質及びShhシグナル伝達経路
作用物質非存在下(図27、B)
社製)を用いて細胞分散液処理し、さらにピペッティング操作により単一細胞に分散した。その後、前記単一細胞に分散されたヒトES細胞を非細胞接着性の96穴培養プレート(スミロン スフェロイド V底プレートPrimeSurface 96V底プレート,住友ベークライト社)の1ウェルあたり1.2 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の、無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に、10% KSR、450μM 1-モノチオグリセロール、及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
開始)に、前記無血清培地にY27632(20μM)を加え、さらに外来性のShhシグナル伝達経路作用物質を加えない条件の無血清培地を用いた。
えBMP4(R&D社製)を含む培地を50μl加えた。浮遊培養開始後6日目に、Y27632、SAG、及びヒト組換えBMP4を含まない無血清培地にて、半量培地交換した。その後、3日に一回、Y27632、SAG、及び、ヒト組換えBMP4を含まない前記無血清培地にて、半量培地交換した。
件(条件3)では、細胞凝集体の神経上皮形成の効率が悪かった(図27、B)。一方、工程1にてSB431542及びSAGの組み合わせ、又は、LDN193189及びSAGの組み合わせにてPreconditionした条件(条件1,2)では細胞凝集体が成長し、神経上皮が形成されていることが分かった(図27、C,D)。すなわち、工程1でのPrecondition操作により、神経上皮の製造効率が良くなることがわかった。
子プロモーター制御下でのGFPの発現を、蛍光顕微鏡(キーエンス社製、BIOREVO)で観察した。その結果、工程1にてSB431542及びSAGの組み合わせ、又は、LDN193189及びSAGの組み合わせにてPreconditionし、工程2にてSAGを添加し、工程3にてBMP4を添加した条件に
て、全細胞中の90%程度がGFP強陽性であることがわかった(図27、E,F)。
ル伝達経路作用物質を添加し、工程3でBMPシグナル伝達経路作用物質を添加することで、フィーダーフリー培養したヒトES細胞をスタート原料として、網膜組織を製造できることがわかった。
ミリーシグナル伝達経路阻害物質を用いて、工程2にShhシグナル伝達経路作用物質を用いて、工程3でBMPシグナル伝達経路作用物質を用いた、ヒトiPS細胞から網膜組織の製造例
実施例1記載の方法にて、ヒトiPS細胞(1231A3株)をStemFit培地を用いて、サブコン
フレント1日前までフィーダーフリー培養した。当該サブコンフレント1日前のヒトiPS細
胞を、TGFβR阻害剤(SB431542、5μM)及びShhシグナル伝達経路作用物質(SAG、300 nM)にて1日間フィーダーフリー培養した(Precondition)。
、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友ベー
クライト社製)の1ウェルあたり1.2 x 104細胞になるように100μlの無血清培地に浮遊
させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地
とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。浮遊培養開始時(浮遊培養
開始後0日目、工程2開始)に、浮遊培養開始時に、前記無血清培地にY27632(終濃度20μM)及びShhシグナル作用物質(SAG、30 nM)を添加した。浮遊培養開始後2日目までに、細胞凝集体が形成された(工程2終了、工程3開始)。
浮遊培養開始後、3日目にY27632及びSAGを含まず、ヒト組み換えBMP4(R&D社製)を含
む前記無血清培地を用いて、外来性のヒト組み換えBMP4を終濃度1.5 nMになるように培地交換した。浮遊培養開始後3日目以降、2~4日に一回、Y27632、SAG、及び、ヒト組み換
えBMP4を含まない前記無血清培地にて、半量培地交換した。浮遊培養開始後17日目には、細胞凝集体が成長し、神経上皮が形成された。
社製)に移し、Wntシグナル伝達経路作用物質(CHIR99021、3μM)及びFGFシグナル伝達
経路阻害物質(SU5402、5μM)を含む無血清培地(DMEM/F12培地に、1% N2 supplementが添加された培地)で、37℃、5%CO2で、3日間すなわち浮遊培養開始後20日目まで培養し
た。この期間、一枚の90 mmの低接着培養皿あたり、50個程度の凝集体を、10 mlの前記CHIR99021及びSU5402を含む無血清培地で浮遊培養した。浮遊培養開始後20日目には、薄い神経上皮が形成され、網膜色素上皮(RPE)様組織が形成された。
クライト社製)にて、Wntシグナル伝達経路作用物質及びFGFシグナル伝達経路阻害物質を含まない血清培地(DMEM/F12培地に、10%牛胎児血清、1% N2 supplement、0.5μM レチノイン酸、及び100μMタウリンが添加された培地)で、37℃、5%CO2、大気圧の酸素濃度(20%程度)で、81日間すなわち浮遊培養開始後101日目まで浮遊培養した。浮遊培養開始以後20日目から101日目までの間、2~4日に一回、前記血清培地にて半量培地交換した。この期間、一枚の90 mmの低接着培養皿あたり、30個程度の凝集体を、15 mlの前記血清培地で浮遊培養した。浮遊培養開始後30日目以降には、神経網膜様組織が存在した。
で固定し、凍結切片を作製した。これらの凍結切片に関し、網膜組織マーカーの1つであ
るRx(抗Rax/Rx抗体、Takara社製、ギニアピッグ)、増殖細胞マーカーの1つであるKi67
(抗Ki67抗体、Leica社製、ウサギ)、神経網膜前駆細胞マーカーの1つであるChx10(抗Chx10抗体、Exalpha社、ヒツジ)、視細胞前駆細胞マーカーの1つであるCrx(抗Crx抗体、Takara社製、ウサギ)、視細胞前駆細胞マーカーの1つであるBlimp1(抗Blimp1抗体、Santa Cruz社製、ラット)、神経節細胞マーカーの1つであるBrn3b(抗Brn3b抗体、Santa Cruz社製、ヤギ)について免疫染色を行い、蛍光顕微鏡(キーエンス社製、BIOREVO)で観察した。
ミリーシグナル伝達経路阻害物質を用いて、工程2にShhシグナル伝達経路作用物質を用いて、工程3でBMPシグナル伝達経路作用物質を用いた、ヒトiPS細胞から網膜組織の製造例
実施例28記載の方法で、フィーダーフリー培地としてStemFit培地を用いたヒトiPS細胞(1231A3株)をスタート原料として、工程1でTGFβR阻害剤(SB431542、5μM)及びShhシグナル伝達経路作用物質(SAG、300 nM)にて1日間Preconditionし、工程2でShhシグナル伝達経路作用物質(SAG、30 nM)を用い、工程3にてBMPシグナル伝達経路作用物質(BMP4、終濃度1.5 nM)を添加した条件にて、細胞凝集体を調製した。浮遊培養開始後18日目には、神経上皮が形成された。
社製)に移し、Wntシグナル伝達経路作用物質(CHIR99021、3μM)及びFGFシグナル伝達
経路阻害物質(SU5402、5μM)を含む無血清培地(DMEM/F12培地に、1% N2 supplementが添加された培地)で、37℃、5%CO2で、5日間すなわち浮遊培養開始後23日目まで培養し
た。この期間、一枚の90 mmの低接着培養皿あたり、50個程度の凝集体を、10 mlの前記CHIR99021及びSU5402を含む無血清培地で浮遊培養した。浮遊培養開始後23日目には、薄
い神経上皮が形成され、網膜色素上皮(RPE)様組織が形成された。
クライト社製)にて、Wntシグナル伝達経路作用物質及びFGFシグナル伝達経路阻害物質を含まない血清培地(DMEM/F12培地に、10%牛胎児血清、1% N2 supplement、0.5μM レチノイン酸、及び100μMタウリンが添加された培地)で、37℃、5%CO2、大気圧の酸素濃度(20%程度)で、浮遊培養開始後130日目まで(107日間)、浮遊培養開始後137日目(114日間)まで、又は、浮遊培養開始後178日目(155日間)まで浮遊培養した。浮遊培養開始以後23日目から浮遊培養終了時までの間、2~4日に一回、前記血清培地にて半量培地交換した。この期間、一枚の90 mmの低接着培養皿あたり、30個程度の凝集体を、15 mlの前記血清培地で浮遊培養した。浮遊培養開始後35日目以降には、神経網膜様組織が存在した。
体をそれぞれ4%パラホルムアルデヒドで固定し、凍結切片を作製した。これらの凍結切片に関し、介在神経マーカー(神経節細胞およびアマクリン細胞)の1つであるCalretinin
(抗Calretinin抗体、Millipore社製、ウサギ)、錐体視細胞マーカーの1つであるS-opsin(抗S-opsin抗体、Millipore社製、ウサギ)、網膜組織マーカーの1つであるRx(抗Rax/Rx抗体、Takara社製、ギニアピッグ)、介在神経マーカー(神経節細胞およびアマクリン細胞)の1つであるPax6(抗Pax6抗体、BD社製、マウス)、視細胞マーカーの1つであるRecoverin(抗Recoverin抗体、Millipore社製、ウサギ)、桿体視細胞マーカーの1つであるRhodopsin(抗Rhodopsin抗体Ret-P1、Sigma社製、マウス)、桿体視細胞前駆細胞マーカーの1つであるNRL(抗NRL抗体、R and D社製、ヤギ)、介在神経マーカー(水平細胞)の1つであるCalbindin(抗Calbindin抗体、Millipore社製、ウサギ)について免疫染色を行い、共焦点レーザー顕微鏡(Zeiss社製、LSM780)で観察した。
割合が90%程度であることがわかった。Rx強陽性の網膜組織のうち、内側に、Calretinin陽性の介在神経細胞が存在していることがわかった(図29、A)。
が90%程度であることがわかった。またRx強陽性の網膜組織のうち、Crx陽性の視細胞前
駆細胞や、Recoverin陽性の視細胞が含まれることがわかった。さらに、このRx強陽性の
網膜組織のうち、S-opsin陽性の錐体視細胞が含まれることがわかった(図29、B)。
が90%程度であることがわかった(図29、C)。連続切片の解析から、Rx強陽性の網膜組
織のうち、内側にPax6陽性の介在神経(アマクリン細胞および神経節細胞)が存在することがわかった(図29、D)。またこのRx強陽性の網膜組織のうち、外側にRecoverin陽性の視細胞、Rhodopsin陽性の桿体視細胞、NRL陽性の桿体視細胞前駆細胞、Calbindin陽性の
水平細胞が含まれることがわかった(図29、E-H)。
ミリーシグナル伝達経路阻害物質を用い、工程2にShhシグナル伝達経路作用物質を用い、工程3でBMPシグナル伝達経路作用物質を用いた、ヒトiPS細胞から網膜組織の製造例
実施例29記載の方法で、フィーダーフリー培地としてStemFit培地を用いたヒトiPS細胞(1231A3株)をスタート原料として、工程1でTGFβR阻害剤(SB431542、5μM)及びShhシグナル伝達経路作用物質(SAG、300 nM)にて1日間Preconditionし、工程2でShhシグナル伝達経路作用物質(SAG、30 nM)を用い、工程3にてBMPシグナル伝達経路作用物質(BMP4、終濃度1.5 nM)を添加した条件にて、細胞凝集体を調製した。浮遊培養開始後18日目には、神経上皮が形成された。
社製)に移し、Wntシグナル伝達経路作用物質(CHIR99021、3μM)及びFGFシグナル伝達
経路阻害物質(SU5402、5μM)を含む無血清培地(DMEM/F12培地に、1% N2 supplementが添加された培地)で、37℃、5%CO2で、5日間すなわち浮遊培養開始後23日目まで培養し
た。この期間、一枚の90 mmの低接着培養皿あたり、50個程度の凝集体を、10 mlの前記CHIR99021及びSU5402を含む無血清培地で浮遊培養した。浮遊培養開始後23日目には、薄
い神経上皮が形成され、網膜色素上皮(RPE)様組織が形成された。
クライト社製)にて、Wntシグナル伝達経路作用物質及びFGFシグナル伝達経路阻害物質を含まない血清培地(DMEM/F12培地に、10%牛胎児血清、1% N2 supplement、0.5μM レチノイン酸、及び100μMタウリンが添加された培地)で、37℃、5%CO2、大気圧の酸素濃度(20%程度)で、浮遊培養開始後63日目まで(41日間)まで浮遊培養した。浮遊培養開始以後23日目から浮遊培養終了時までの間、2~4日に一回、前記血清培地にて半量培地交換した。この期間、一枚の90 mmの低接着培養皿あたり、30個程度の凝集体を、15 mlの前記血清培地で浮遊培養した。浮遊培養開始後35日目以降には、神経網膜様組織が存在した。
った。得られた100個の細胞凝集体を詳しく解析すると、全細胞のうち90%以上が神経網
膜によって構成される細胞凝集体が40個、神経網膜と網膜色素上皮(RPE、色素沈着によ
って判別できた)が共存する複合網膜組織が40個(図30、A)、全細胞のうち90%以上が
網膜色素上皮(RPE、色素沈着によって判別できた)によって構成される細胞凝集体(図30、B)が20個形成されていた。
びFGFシグナル伝達経路阻害物質を含まない血清培地(DMEM/F12培地に、10%牛胎児血清、1% N2 supplement、0.5μM レチノイン酸、及び100μMタウリンが添加された培地)で、
浮遊培養開始後130日目まで(107日間)まで浮遊培養した。これらの細胞凝集体を、4%パラホルムアルデヒドで固定し、凍結切片を作製した。これらの凍結切片に関し、毛様体周縁部(CMZ)マーカーの1つであるSSEA1(抗SSEA1抗体、Millipore社製、マウス)、RPEマーカーの1つであるMitf(抗Mitf抗体、Exalpha社、マウス)、RPE及び毛様体マーカーの1つであるAqp1(抗Aqp1抗体、Millipore社製、ウサギ)について免疫染色を行い、共焦点レーザー顕微鏡(Zeiss社製、LSM780)で観察した。
、Aqp1陽性であることがわかった(図30、E)。これらの結果から、本発明の製造方法に
て作製した網膜組織は、RPEへと分化・成熟化できることがわかった。
ミリーシグナル伝達経路阻害物質を用いた、ヒトiPS細胞から大脳組織の製造例
実施例1記載の方法で、ヒトiPS細胞(1231A3株)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
レント1日前までフィーダーフリー培養した。当該サブコンフレント1日前のヒトiPS細胞
を、下記3条件で、1日間フィーダーフリー培養した。
・条件1.SB431542(TGFβR阻害剤、5μM)及びSAG(Shhシグナル伝達経路作用物質、300
nM)
・条件2.LDN193189(BMPR阻害剤、100 nM)及びSAG(Shhシグナル伝達経路作用物質、300 nM)
・条件3.外来性のTGFβファミリーシグナル伝達経路阻害物質及びShhシグナル伝達経路
作用物質非存在下(Preconditionしない条件)
gies社製)を用いて細胞分散液処理し、さらにピペッティング操作により単一細胞に分散した。その後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレー
ト(スミロン スフェロイド V底プレートPrimeSurface 96V底プレート,住友ベークライ
ト社)の1ウェルあたり0.9 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の、無血清培地(GMEM+KSR)には、GMEM培地(Life Technologies社製)に20% KSR(Life Technologies社製)、0.1mM 2-メルカプトエタノール、1x非必須アミノ酸(Life Technologies社製)、及び1mMピルビン酸(Life Technologies社製)を添加した無血清培地を用いた。
ナル伝達経路阻害物質(IWR-1-endo、3μM)、TGFβR阻害剤(SB431542、5μM)、及びY27632(20μM)を前記無血清培地に加え、さらにSAGを含む条件(A)(Shhシグナル作用物質、100 nM)又は含まない条件(B)にて培養した。浮遊培養開始後2日目に、いずれの条件でも細胞凝集体が形成された。
いて明視野観察を行った。その結果、Preconditionしない条件(条件3)では、細胞凝集
体が成長せず、神経上皮がほとんど形成されなかった(図31、A)。一方、工程1にてSB431542及びSAG、又は、LDN193189及びSAGにてPreconditionした条件(条件1,2)で、工程2にてSAGを加えない条件(B)でも、細胞凝集体が成長し、神経上皮が形成されていることが分かった(図31、B,C)。同様に、一方、工程1にててSB431542及びSAG、又は、LDN193189及びSAGにてPreconditionした条件(条件1,2)で、工程2にてSAGを加えた条件(A)でも、細胞凝集体が成長し、神経上皮が形成されていることが分かった。すなわち、工程1でTGFβファミリーシグナル伝達経路阻害物質及び/又はShhシグナル作用物質を添加すれば、工程2にてShhシグナル作用物質を添加した条件と添加しなかった条件のいずれの条件でも、神経上皮の製造効率が良くなることがわかった。
共染色の解析から、Sox2陽性の神経系前駆細胞の98%程度が、Sox2陽性かつFoxG1陽性の
大脳神経系前駆細胞であることがわかった(図32、B)。また、工程1にて条件2で培養し
た浮遊培養開始後27日目の細胞凝集体でも、条件1と同様に、細胞凝集体の表面にSox2陽
性の神経系前駆細胞が存在し、Sox2陽性の神経系前駆細胞の98%程度が、Sox2陽性かつFoxG1陽性の大脳神経系前駆細胞であることがわかった。
ナル伝達経路作用物質を添加し、工程3でTGFβファミリーシグナル伝達経路阻害物質及びWntシグナル伝達経路阻害物質を添加することで、フィーダーフリー培養したヒトiPS細胞
をスタート原料として、大脳組織を製造できることがわかった。
ミリーシグナル伝達経路阻害物質を用いた、ヒトiPS細胞から大脳組織の製造例
実施例31記載の方法で調製された浮遊培養開始後27日目の細胞凝集体を、90 mmの低接
着培養皿(住友ベークライト社製)に移し、DMEM/F12培地(Life Technologies社製)に
、1% N2 supplement(Life Technologies社製)を加えた無血清培地にて、37℃、5%CO2
で、浮遊培養した。この時、一枚の90 mmの低接着培養皿あたり、30個程度の凝集体を
、10 mlの無血清培地で浮遊培養した。その後、浮遊培養開始後40日目まで、2~4日に一
回、DMEM/F12培地(Life Technologies社製)に1% N2 supplement(Life Technologies社製)を加えた無血清培地にて半量培地交換した。
イト社製)にて、DMEM/F12培地(Life Technologies社製)に10%牛胎児血清、1% N2 supplement、及び0.5μM レチノイン酸を加えた血清培地にて、37℃、5%CO2で、浮遊培養した。この時、一枚の90 mmの低接着培養皿あたり、30個程度の凝集体を、10 mlの無血清培地で浮遊培養した。その後、浮遊培養開始後60日目まで、2~4日に一回、前記血清培地にて半量培地交換した。
経系前駆細胞のマーカーの1つであるPax6(抗Pax6抗体、BD社製、マウス)、大脳の第6層ニューロンのマーカーの1つであるTbr1(抗Tbr1抗体、Abcam社製、ウサギ)、及び、大脳の第5層ニューロンのマーカーの1つであるCtip2(抗Ctip2抗体、Abcam社製、ラット)、
について免疫染色を行い、共焦点レーザー顕微鏡(オリンパス社製)で観察した。
浮遊培養開始後60日目の細胞凝集体では、細胞凝集体の全細胞のうちの40%程度の細胞がFoxG1陽性の大脳の細胞であることがわかった(図32、C)。さらに連続切片の解析から、FoxG1陽性細胞を含む細胞凝集体では、Pax6陽性の背側大脳神経系前駆細胞を全細胞中の30%程度含み(図32、D)、Tbr1陽性の第6層ニューロンを全細胞中の5%程度含み、Ctip2
陽性の第5層ニューロンを15%程度含むことがわかった。
さらに、工程1にて条件1又は条件2で培養し、工程2にてSAGを含む条件(条件(A))
又はSAGを含まない条件(条件(B))のいずれの4条件でも、浮遊培養開始後60日目の細胞凝集体で、FoxG1陽性の大脳の細胞が存在することがわかった。
グナル伝達経路作用物質を添加し、工程3でTGFβファミリーシグナル伝達経路阻害物質及びWntシグナル伝達経路阻害物質を添加することで、フィーダーフリー培養したヒトiPS細胞をスタート原料として、大脳組織、大脳神経系前駆細胞、大脳層特異的なニューロン(例えば、第6層ニューロン、第5層ニューロン)を製造できることがわかった。
ミリーシグナル伝達経路阻害物質を用いた、神経組織の製造例
実施例8記載の方法で、フィーダーフリー培養したサブコンフレント1日前のヒトiPS細
胞(1231A3株)を下記2条件で、1日間フィーダーフリー培養した。
・条件1.SB431542(TGFβR阻害剤、5μM)
・条件2.LDN193189(BMPR阻害剤、100 nM)
・条件3.外来性のTGFβファミリーシグナル伝達経路阻害物質及びShhシグナル伝達経路
作用物質非存在下(Preconditionしない条件)
を用いて細胞分散液処理し、さらにピペッティング操作により単一細胞に分散した。その際の、無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
・条件(A).前記単一細胞に分散されたヒトiPS細胞を非細胞接着性のU底の96穴培養プ
レート(スミロン スフェロイド U底プレートPrimeSurface 96U底プレート,住友ベーク
ライト社)の1ウェルあたり1.2 x 104細胞になるように100μlの前記無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。
・条件(B).前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の60mmの平底の細胞培養皿(浮遊培養用シャーレ,住友ベークライト社)の1培養皿あたり2.4 x 105細胞になるように4mlの前記無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。
開始)に、前記無血清培地にY27632(20μM)を加え、外来性のShhシグナル伝達経路作用物質を加えない条件の無血清培地を用いた。
遊培養開始後2日目に、細胞凝集体が形成された。浮遊培養開始後4日目にY27632及びSAG
を含まない前記無血清培地を加えた。その後、2~4日に一回、Y27632及びSAGを含まない
前記無血清培地にて半量培地交換した。
件(条件3)では、U底プレート(条件A)でも、平底培養皿(条件B)でも、細胞凝集体が成長せず、神経上皮がほとんど形成されなかった(図33、A,F)。一方、工程1にてTGFβR阻害剤(SB431542)、又は、BMPR阻害剤(LDN193189)にてPreconditionした条件(条件1,2)では、U底プレート(条件A)でも、平底培養皿(条件B)でも、細胞凝集体が成長し、神経上皮が形成されていることがわかった(図33、B-E,G-J)。すなわち、工程1でのPrecondition操作により、U底プレート(条件A)でも、平底培養皿(条件B)でも、神経上皮の製造効率が良くなることがわかった。
経路作用物質を添加し、工程3でBMP4を添加する、網膜組織の形成例
ヒトiPS細胞(Ff-I01株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03N; 味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
胞を、SAG(Shhシグナル伝達経路作用物質、300 nM)の存在下で、2日間フィーダーフリ
ー培養した(工程1、Precondition処理)。
、さらにピペッティング操作により単一細胞に分散した後、前記単一細胞に分散されたヒトiPS細胞を非細胞接着性の96穴培養プレート(PrimeSurface 96V底プレート,住友ベー
クライト社製)の1ウェルあたり1.0 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール、及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
始後2日目までに、細胞凝集体が形成された(工程2終了、工程3開始)。
は5nM(183 ng/ml)になるように、Y27632、SAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。浮遊培養開始後6日目に培地を50μl抜き、外来性のヒト組み
換えBMP4の終濃度を1.5 nM(55 ng/ml)又は5nM(183 ng/ml)に維持できるように、Y27632、SAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。その後、2~4日に一回、Y27632、SAG、ヒト組み換えBMP4を含まない前記無血清培地にて、半量培地交換した。
、Exalpha社製, ヒツジ)について免疫染色を行った。これらの免疫染色された切片を、
倒立型蛍光顕微鏡を用いて観察した。その結果、BMP4を終濃度1.5nMになるように二回添
加した条件では、全細胞中のChx10陽性細胞の割合が70%程度であった(図34、C)。また
、BMP4を終濃度5nMになるように二回添加した条件では、全細胞中のChx10陽性細胞の割合が90%程度であった(図34、D)。
胞を、工程1にてShhシグナル伝達経路作用物質(SAG)にて2日間Preconditionし、工程2
にてShhシグナル伝達経路作用物質を添加し、工程3にてBMPシグナル伝達経路作用物質を5nMで2回添加した条件(すなわち、BMPシグナル伝達経路作用物質の濃度を6日間5nMに維持
する条件)で、効率よく網膜組織が製造できることが分かった。
ヒトiPS細胞(Ff-I01株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03N; 味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
・条件1.サブコンフレントの24時間前のヒトiPS細胞を、SAG(Shhシグナル伝達経路
作用物質、300 nM)を添加したStem Fit培地(AK03N)で、24時間、フィーダーフリー
培養した。
・条件2.サブコンフレントの48時間前のヒトiPS細胞を、SAG(Shhシグナル伝達経路
作用物質、300 nM)を添加したStem Fit培地(AK03N)で、48時間、フィーダーフリー
培養した。
・条件3.サブコンフレントの72時間前のヒトiPS細胞を、SAG(Shhシグナル伝達経路
作用物質、300 nM)を添加したStem Fit培地(AK03N)で、72時間、フィーダーフリー
培養した。
・条件4.サブコンフレントの96時間前のヒトiPS細胞を、SAG(Shhシグナル伝達経路
作用物質、300 nM)を添加したStem Fit培地(AK03N)で、96時間、フィーダーフリー
培養した。
遊培養開始後2日目までに、いずれの条件でも細胞凝集体が形成された(工程2終了、工程3開始)。
なるように、Y27632、SAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加
えた。浮遊培養開始後6日目に培地を50μl抜き、外来性のヒト組み換えBMP4の終濃度を1.5 nM(55 ng/ml)に維持できるように、Y27632、SAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加えた。その後、2~4日に一回、Y27632、SAG、ヒト組み換えBMP4を含まない前記無血清培地にて、半量培地交換した。
つであるChx10(抗Chx10抗体、Exalpha社製, ヒツジ)について免疫染色を行い、蛍光顕
微鏡を用いて観察した。その結果、SAGにて24時間Preconditionを行った条件(条件1)
では全細胞中のChx10陽性細胞の割合も10%程度であることがわかった(図35、E)。一方
、SAGにて48,72、又は96時間Preconditionを行った条件(条件2,3,4)では全細胞中
のChx10陽性細胞の割合も80%程度であることがわかった(図35、F-H)。
ヒトiPS細胞(1231A3株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー培養した。フィーダーフリー培地としてはStem Fit培地(AK03;味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)
を用いた。
・条件1.サブコンフレント直前のヒトiPS細胞を、LDN193189(BMPR阻害剤、100 nM)及びSAG(Shhシグナル伝達経路作用物質、300 nM)を添加したStem Fit培地(AK03)で、30分間、フィーダーフリー培養した。
・条件2.サブコンフレント直前のヒトiPS細胞を、LDN193189(BMPR阻害剤、100 nM)及びSAG(Shhシグナル伝達経路作用物質、300 nM)を添加したStem Fit培地(AK03)で、6
時間、フィーダーフリー培養した。
・条件3.サブコンフレント1日前のヒトiPS細胞を、LDN193189(BMPR阻害剤、100 nM)
及びSAG(Shhシグナル伝達経路作用物質、300 nM)を添加したStem Fit培地(AK03)で、24時間、フィーダーフリー培養した。
・条件4.サブコンフレント2日前のヒトiPS細胞を、LDN193189(BMPR阻害剤、100 nM)及びSAG(Shhシグナル伝達経路作用物質、300 nM)を添加したStem Fit培地(AK03)で、48時間、フィーダーフリー培養した。
・条件5.TGFβファミリーシグナル伝達経路阻害物質及び/又はShhシグナル伝達経路作用物質を添加しない条件でフィーダーフリー培養したサブコンフレントのヒトiPS細胞。
プレート,住友ベークライト社製)の1ウェルあたり1.2 x 104細胞になるように100μlの無血清培地に浮遊させ、37℃、5%CO2で浮遊培養した。その際の無血清培地(gfCDM+KSR
)には、F-12培地とIMDM培地の1:1混合液に10% KSR、450μM 1-モノチオグリセロール及び1 x Chemically defined lipid concentrateを添加した無血清培地を用いた。
なるように、Y27632、SAGを含まず、ヒト組み換えBMP4(R&D社製)を含む培地を50μl加
えた。その後、2~4日に一回、Y27632、SAG、ヒト組み換えBMP4を含まない前記無血清培
地にて、半量培地交換操作を行った。
程3にてBMPシグナル作用物質を添加した条件では、フィーダーフリーヒトiPS細胞から効
率よく神経組織が製造できることが分かった。
であるChx10(抗Chx10抗体、Exalpha社製, ヒツジ)について免疫染色を行った。これら
の免疫染色された切片を、倒立型蛍光顕微鏡を用いて観察した。その結果、LDN193189及
びSAGにて、30分、6時間、24時間、48時間のいずれの期間Precondition処理した条件(条件1-4)でも、全細胞中のChx10陽性細胞の割合が80%程度であることがわかった(図36、F-I)。
阻害物質で30分~2日間Preconiditionし、工程3にてBMPシグナル伝達経路作用物質を添加した条件では、フィーダーフリーヒトiPS細胞から効率よく網膜組織が製造できることが
分かった。
ており、その内容は本明細書に全て包含されるものである。
Claims (19)
- 下記工程(1)及び(2)を含む、Oct3/4陽性細胞と、Sox2、Sox1、Nestin及びOtx2からなる群から選択される1以上を発現する細胞とを含む細胞凝集体の製造方法;
(1)多能性幹細胞を、フィーダー細胞非存在下で、1)TGFβファミリーシグナル伝達経路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質、並びに2)未分化維持因子を含む培地で、該多能性幹細胞の多能性様性質が維持される期間、培養する第一工程、
(2)第一工程で得られた多能性幹細胞を分散し、当該分散した細胞を浮遊培養し、細胞凝集体を形成させる第二工程。 - 未分化維持因子が、FGFシグナル伝達経路作用物質である、請求項1に記載の製造方法。
- FGFシグナル伝達経路作用物質が、bFGFである、請求項1又は2に記載の製造方法。
- 第二工程において、浮遊培養が無血清培地中で実施されることを特徴とする、請求項1~3のいずれか1項に記載の製造方法。
- TGFβファミリーシグナル伝達経路阻害物質が、Nodal/Activinシグナル伝達経路阻害物質、TGFβシグナル伝達経路阻害物質、又はBMPシグナル伝達経路阻害物質である、請求項1~4のいずれか1項に記載の製造方法。
- TGFβファミリーシグナル伝達経路阻害物質が、Lefty、SB431542、A-83-01又はLDN193189である、請求項1~5のいずれか1項に記載の製造方法。
- ソニック・ヘッジホッグシグナル伝達経路作用物質がShh、SAG又はPurmorphamineである、請求項1~6のいずれかに記載の製造方法。
- 第一工程の培養時間が0.5時間~144時間である、請求項1~7のいずれか1項に記載の製造方法。
- 第二工程の培養期間が12時間~6日間である、請求項1~8のいずれか1項に記載の製造方法。
- 第一工程が接着培養法で行われる、請求項1~9のいずれか1項に記載の製造方法。
- 多能性幹細胞がヒト多能性幹細胞である、請求項1~10のいずれか1項に記載の製造方法。
- 多能性幹細胞が人工多能性幹細胞である、請求項1~11のいずれか1項に記載の製造方法。
- 該多能性幹細胞の多能性様性質が、該多能性幹細胞においてOct3/4を発現している状態である、請求項1~12のいずれか1項に記載の製造方法。
- 第一工程で得られる細胞が、Oct3/4陽性細胞を60%以上含む、請求項1~13のいずれか1項に記載の製造方法。
- 第二工程において、均一な凝集体を形成する、請求項1~14のいずれか1項に記載の製造方法。
- 請求項1~15のいずれか1項に記載の製造方法により得られた細胞凝集体を、さらに浮遊培養することを含む、神経系細胞及び神経組織の製造方法。
- さらなる浮遊培養が、BMPシグナル伝達経路作用物質、TGFβファミリーシグナル伝達経路阻害物質及びWntシグナル伝達経路阻害物質を含まない培地中で行われる、請求項16に記載の製造方法。
- 神経系細胞及び神経組織が、Sox2及び/又はPax6を発現する細胞を含む、請求項16又は17に記載の製造方法。
- 神経組織が神経上皮構造を含む、請求項16~18のいずれか1項に記載の製造方法。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023198411A JP2024026153A (ja) | 2014-10-24 | 2023-11-22 | 神経組織の製造方法 |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014217867 | 2014-10-24 | ||
| JP2014217867 | 2014-10-24 | ||
| JP2020090967A JP7075556B2 (ja) | 2014-10-24 | 2020-05-25 | 神経組織の製造方法 |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020090967A Division JP7075556B2 (ja) | 2014-10-24 | 2020-05-25 | 神経組織の製造方法 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2023198411A Division JP2024026153A (ja) | 2014-10-24 | 2023-11-22 | 神経組織の製造方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2022088579A true JP2022088579A (ja) | 2022-06-14 |
| JP7397448B2 JP7397448B2 (ja) | 2023-12-13 |
Family
ID=55761015
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2016555414A Active JP6746499B2 (ja) | 2014-10-24 | 2015-10-23 | 神経組織の製造方法 |
| JP2020090967A Active JP7075556B2 (ja) | 2014-10-24 | 2020-05-25 | 神経組織の製造方法 |
| JP2022057270A Active JP7397448B2 (ja) | 2014-10-24 | 2022-03-30 | 神経組織の製造方法 |
| JP2023198411A Pending JP2024026153A (ja) | 2014-10-24 | 2023-11-22 | 神経組織の製造方法 |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2016555414A Active JP6746499B2 (ja) | 2014-10-24 | 2015-10-23 | 神経組織の製造方法 |
| JP2020090967A Active JP7075556B2 (ja) | 2014-10-24 | 2020-05-25 | 神経組織の製造方法 |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2023198411A Pending JP2024026153A (ja) | 2014-10-24 | 2023-11-22 | 神経組織の製造方法 |
Country Status (13)
| Country | Link |
|---|---|
| US (2) | US11214771B2 (ja) |
| EP (1) | EP3211072B8 (ja) |
| JP (4) | JP6746499B2 (ja) |
| KR (1) | KR102500914B1 (ja) |
| CN (2) | CN107109367B (ja) |
| AU (1) | AU2015336453B2 (ja) |
| CA (1) | CA2965248A1 (ja) |
| ES (1) | ES3029257T3 (ja) |
| IL (2) | IL251855B2 (ja) |
| MY (1) | MY191740A (ja) |
| SG (1) | SG11201703305SA (ja) |
| TW (1) | TWI810142B (ja) |
| WO (1) | WO2016063985A1 (ja) |
Families Citing this family (59)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8642334B2 (en) | 2009-02-17 | 2014-02-04 | Memorial Sloan Kettering Cancer Center | Methods of neural conversion of human embryonic stem cells |
| EP2773748B1 (en) | 2011-11-04 | 2019-12-25 | Memorial Sloan Kettering Cancer Center | Midbrain dopamine (da) neurons for engraftment |
| EP2989198A4 (en) | 2013-04-26 | 2016-10-26 | Sloan Kettering Inst Cancer | CORTICAL INTERNETS AND OTHER NEURONAL CELLS MADE BY TARGETED DIFFERENTIATION OF PLURIPOTENTAL AND MULTIPOTENTIAL CELLS |
| EP3211072B8 (en) | 2014-10-24 | 2025-05-21 | RACTHERA Co., Ltd. | Production method for nerve tissue |
| CA2965609A1 (en) | 2014-10-24 | 2016-04-28 | Sumitomo Dainippon Pharma Co., Ltd. | Production method for retinal tissue |
| MY189778A (en) | 2015-09-08 | 2022-03-04 | Healios Kk | Method for producing retinal pigment epithelial cells |
| JP6884354B2 (ja) * | 2015-09-08 | 2021-06-09 | 大日本住友製薬株式会社 | 網膜組織の製造方法 |
| US20190018000A1 (en) | 2016-01-12 | 2019-01-17 | Cedars-Sinai Medical Center | A method of non destructive monitoring of biological processes in microfluidic tissue culture systems |
| AU2017213795A1 (en) | 2016-02-01 | 2018-08-16 | Cedars-Sinai Medical Center | Systems and methods for growth of intestinal cells in microfluidic devices |
| CN107151691B (zh) * | 2016-03-02 | 2020-04-24 | 中国农业科学院北京畜牧兽医研究所 | 一种基于BMP7基因鉴定猪达100kg体重日龄和眼肌面积的方法 |
| JP7011260B2 (ja) | 2016-04-22 | 2022-02-10 | 国立大学法人京都大学 | ドーパミン産生神経前駆細胞の製造方法 |
| EP3447129B1 (en) * | 2016-04-22 | 2022-07-20 | Sumitomo Pharma Co., Ltd. | Method for producing retinal tissue |
| KR102599982B1 (ko) | 2016-11-25 | 2023-11-09 | 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 | 이식용 세포 집단 및 그의 제조 방법 |
| WO2018140647A1 (en) | 2017-01-25 | 2018-08-02 | Cedars-Sinai Medical Center | In vitro induction of mammary-like differentiation from human pluripotent stem cells |
| GB201703058D0 (en) * | 2017-02-24 | 2017-04-12 | Ucl Business Plc | Biomarkers |
| CN110573610B (zh) * | 2017-03-08 | 2025-01-28 | 住友制药株式会社 | 视网膜色素上皮细胞的制备方法 |
| US11767513B2 (en) | 2017-03-14 | 2023-09-26 | Cedars-Sinai Medical Center | Neuromuscular junction |
| WO2018176001A2 (en) | 2017-03-24 | 2018-09-27 | Cedars-Sinai Medical Center | Methods and compositions for production of fallopian tube epithelium |
| CA3064864A1 (en) * | 2017-05-25 | 2018-11-29 | New York Stem Cell Foundation, Inc. | Method and composition for generating basal forebrain cholinergic neurons (bfcns) |
| CN107435050B (zh) * | 2017-06-20 | 2021-02-09 | 向孟清 | 一种将人或动物体细胞诱导为神经干细胞的方法 |
| CA3070212A1 (en) | 2017-07-20 | 2019-01-24 | Riken | Method for preserving neural tissue |
| CA3070215A1 (en) | 2017-07-20 | 2019-01-24 | Riken | Method for maturation of retinal tissue containing continuous epithelium |
| JP7162221B2 (ja) * | 2017-09-08 | 2022-10-28 | 国立研究開発法人理化学研究所 | 網膜組織を含む細胞凝集体及びその製造方法 |
| CN111094548A (zh) * | 2017-09-14 | 2020-05-01 | 国立研究开发法人理化学研究所 | 基于背侧化信号转导物质或腹侧化信号转导物质的增加视锥细胞或视杆细胞的方法 |
| WO2019054514A1 (ja) | 2017-09-14 | 2019-03-21 | 国立研究開発法人理化学研究所 | 網膜組織の製造方法 |
| AU2018371437A1 (en) * | 2017-11-24 | 2020-07-02 | Sumitomo Chemical Company, Limited | Production method for cell mass including neural cells/tissue and non-neural epithelial tissue, and cell mass from same |
| AU2018373588B2 (en) * | 2017-11-24 | 2025-05-08 | Sumitomo Chemical Company, Limited | Method for producing cell mass including pituitary tissue, and cell mass thereof |
| CN108865997B (zh) * | 2017-12-27 | 2022-02-11 | 华南师范大学 | 一种用于体外培养星形胶质细胞的培养基及培养方法 |
| KR102119148B1 (ko) * | 2018-03-08 | 2020-06-04 | 고려대학교 산학협력단 | 신경조직 오가노이드의 제조방법, 이를 이용한 신경조직 형성 억제 물질의 스크리닝 방법 및 운동신경세포의 제조방법 |
| US12161676B2 (en) | 2018-03-23 | 2024-12-10 | Cedars-Sinai Medical Center | Methods of use of islet cells |
| US11981918B2 (en) | 2018-04-06 | 2024-05-14 | Cedars-Sinai Medical Center | Differentiation technique to generate dopaminergic neurons from induced pluripotent stem cells |
| US12241085B2 (en) | 2018-04-06 | 2025-03-04 | Cedars-Sinai Medical Center | Human pluripotent stem cell derived neurodegenerative disease models on a microfluidic chip |
| US20210308188A1 (en) * | 2018-08-24 | 2021-10-07 | Sumitomo Chemical Company, Limited | Cell cluster including olfactory neuron or precursor cell thereof, and method for producing same |
| CN113646422B (zh) | 2018-09-19 | 2025-03-11 | 谱系细胞疗法股份有限公司 | 用于在动态悬浮培养中分化多能干细胞的方法 |
| CN111254118A (zh) * | 2018-11-30 | 2020-06-09 | 中国科学院大连化学物理研究所 | 一种hiPSCs来源的类脑组织产生方法 |
| WO2020138430A1 (ja) | 2018-12-28 | 2020-07-02 | 国立研究開発法人理化学研究所 | 網膜系細胞又は網膜組織の障害を伴う疾患の治療薬 |
| CA3127213A1 (en) * | 2019-01-23 | 2020-07-30 | Asterias Biotherapeutics, Inc. | Dorsally-derived oligodendrocyte progenitor cells from human pluripotent stem cells |
| AU2020234344B2 (en) | 2019-03-13 | 2025-07-03 | Riken | Method for evaluating quality of transplant neural retina, and transplant neural retina sheet |
| CA3137528A1 (en) | 2019-04-26 | 2020-10-29 | Riken | Composite including neural retina, retinal pigment epithelial cells, and hydrogel, and method for producing same |
| GB2584664B (en) * | 2019-06-10 | 2023-05-24 | Newcells Biotech Ltd | Improved retinal organoids and methods of making the same |
| WO2021081229A1 (en) * | 2019-10-22 | 2021-04-29 | Cedars-Sinai Medical Center | Cortical neural progenitor cells from ipscs |
| CN112760286B (zh) * | 2019-11-04 | 2022-12-02 | 北京基石生命科技有限公司 | 一种脑肿瘤实体瘤原代细胞的培养方法 |
| CN112760280A (zh) * | 2019-11-04 | 2021-05-07 | 北京基石生命科技有限公司 | 一种胆囊胆管癌原代细胞的培养方法 |
| CN112760284A (zh) * | 2019-11-04 | 2021-05-07 | 北京基石生命科技有限公司 | 一种用于培养胆囊胆管癌原代细胞的培养基 |
| JP7620293B2 (ja) * | 2019-11-06 | 2025-01-23 | Jsr株式会社 | 脳オルガノイド及びその使用 |
| CN115885037A (zh) * | 2020-06-29 | 2023-03-31 | 广东省奥干诺伊德生物科技有限公司 | 中脑类器官及其高速大规模制造方法、利用它筛选神经毒性物质和筛选多巴胺能神经元相关疾病药物的方法 |
| KR102346243B1 (ko) * | 2020-06-29 | 2022-01-04 | 주식회사 오간팩토리 | 중뇌 오가노이드, 이의 고속 및 대량 제조 방법, 이를 이용한 신경독성물질 스크리닝 방법 및 도파민성 신경세포 관련 질환 치료제 스크리닝 방법 |
| JPWO2022054925A1 (ja) | 2020-09-11 | 2022-03-17 | ||
| WO2022054924A1 (ja) | 2020-09-11 | 2022-03-17 | 大日本住友製薬株式会社 | 移植用組織のための媒体 |
| AU2022294563A1 (en) | 2021-06-17 | 2024-01-18 | Kyoto University | Method for producing cerebral cortical cell preparation derived from human pluripotent stem cells |
| US20230027059A1 (en) * | 2021-07-19 | 2023-01-26 | Trallhead Biosystems Inc. | Methods and compositions for generating human midbrain neural progenitor cells |
| CN113528441B (zh) * | 2021-08-05 | 2022-09-13 | 呈诺再生医学科技(珠海横琴新区)有限公司 | 快速高效的临床级色素上皮细胞诱导方法、试剂盒及应用 |
| CN113564122B (zh) * | 2021-08-05 | 2022-04-08 | 呈诺再生医学科技(珠海横琴新区)有限公司 | 人诱导性多能干细胞向少突胶质细胞分化的方法,试剂盒以及应用 |
| IL312856A (en) | 2021-11-19 | 2024-07-01 | Riken | Production method for sheet-like retinal tissue |
| CN118541117A (zh) | 2022-01-12 | 2024-08-23 | 国立研究开发法人理化学研究所 | 组织移植用树脂制移植头、组织移植用器件、视网膜组织移植方法和视网膜组织移植用套件 |
| KR102637401B1 (ko) * | 2022-09-05 | 2024-02-16 | 주식회사 스마트셀랩 | 레노그라스팀에 의한 줄기세포의 운동신경전구세포로의 유도 및 운동신경세포로의 분화 |
| WO2025084860A1 (ko) * | 2023-10-18 | 2025-04-24 | 고려대학교 산학협력단 | 3차원 신경 세포집합체의 제조방법 및 이에 의해 제조된 세포집합체 |
| CN117448267B (zh) * | 2023-12-22 | 2024-08-02 | 上海元戊医学技术有限公司 | 一种用于骨关节炎药物的间充质干细胞构建方法与应用 |
| CN117551612B (zh) * | 2024-01-12 | 2024-03-08 | 苏州艾凯利元生物科技有限公司 | 一种视网膜类器官及其制备方法和应用 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012507285A (ja) * | 2008-10-31 | 2012-03-29 | シンセス ゲーエムベーハー | 幹細胞を活性化するための方法およびデバイス |
| JP2012070731A (ja) * | 2010-08-31 | 2012-04-12 | Chiba Univ | ヒト多能性幹細胞からの造血幹細胞の効率的な誘導方法 |
| JP2012245007A (ja) * | 2004-06-18 | 2012-12-13 | Institute Of Physical & Chemical Research | 無血清浮遊培養による胚性幹細胞の神経分化誘導法 |
| WO2013065763A1 (ja) * | 2011-10-31 | 2013-05-10 | 独立行政法人理化学研究所 | 幹細胞の培養方法 |
| JP2013099345A (ja) * | 2006-09-22 | 2013-05-23 | Institute Of Physical & Chemical Research | 幹細胞の培地及び培養方法 |
| WO2013077425A1 (ja) * | 2011-11-25 | 2013-05-30 | 住友化学株式会社 | 網膜組織及び網膜関連細胞の製造方法 |
Family Cites Families (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1141058A (zh) | 1993-11-09 | 1997-01-22 | 纽罗斯菲里斯控股有限公司 | 中枢神经系统干细胞的原位修饰和处理 |
| US6878544B2 (en) | 1996-04-19 | 2005-04-12 | Neurotech Sa | Retinal cell lines with extended life-span and their applications |
| US20030180947A1 (en) | 2001-09-21 | 2003-09-25 | J.H. David Wu | Circadian control of stem/progenitor cell self-renewal and differentiation and of clock controlled gene expression |
| US20060003446A1 (en) | 2002-05-17 | 2006-01-05 | Gordon Keller | Mesoderm and definitive endoderm cell populations |
| KR20090096561A (ko) | 2003-02-03 | 2009-09-10 | 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 | Otx2 유전자를 사용한 망막 시각세포의 재생과 신생 |
| DE102004055615A1 (de) | 2004-11-16 | 2006-05-18 | Universitätsklinikum Hamburg-Eppendorf | In vitro aus Knochenmarkstammzellen differenzierte Retina-spezifische Zellen, ihre Herstellung und Verwendung |
| AU2006202209B2 (en) | 2005-05-27 | 2011-04-14 | Lifescan, Inc. | Amniotic fluid derived cells |
| EP1937326B1 (en) | 2005-10-21 | 2018-09-12 | CellResearch Corporation Pte Ltd | Isolation and cultivation of stem/progenitor cells from the amniotic membrane of umbilical cord and uses of cells differentiated therefrom |
| US7541186B2 (en) * | 2006-02-22 | 2009-06-02 | University Of Washington | Method of generating human retinal progenitors from embryonic stem cells |
| JP5441099B2 (ja) | 2007-01-18 | 2014-03-12 | 独立行政法人理化学研究所 | 視細胞への分化誘導方法 |
| CN101688178B (zh) | 2007-04-18 | 2013-12-04 | 哈达锡特医学研究服务及发展有限公司 | 干细胞衍生的视网膜色素上皮细胞 |
| CN101878295A (zh) | 2007-10-12 | 2010-11-03 | 先进细胞技术公司 | 制备rpe细胞和rpe细胞的组合物的改良方法 |
| WO2009148170A1 (ja) | 2008-06-06 | 2009-12-10 | 独立行政法人理化学研究所 | 幹細胞の培養方法 |
| EP3550012A1 (en) | 2008-11-04 | 2019-10-09 | ViaCyte, Inc. | Stem cell aggregate suspension compositions and methods for differentiation thereof |
| US10119120B2 (en) * | 2009-08-12 | 2018-11-06 | Kyoto University | Method for inducing differentiation of pluripotent stem cells into neural precursor cells |
| EP2486126B1 (en) | 2009-10-06 | 2017-12-06 | SNU R & DB Foundation | Method for differentiation into retinal cells from stem cells |
| JP5787370B2 (ja) | 2009-11-05 | 2015-09-30 | 国立研究開発法人理化学研究所 | 幹細胞の分化誘導方法 |
| US9181529B2 (en) | 2010-10-19 | 2015-11-10 | Cellular Dynamics International, Inc. | Titration of differentiation medium components |
| CA2831609C (en) | 2011-03-30 | 2019-06-11 | Cellular Dynamics International, Inc. | Priming of pluripotent stem cells for neural differentiation |
| JP5588951B2 (ja) | 2011-10-28 | 2014-09-10 | 京セラドキュメントソリューションズ株式会社 | 割り込み制御回路 |
| JP5985208B2 (ja) * | 2011-11-25 | 2016-09-06 | 住友化学株式会社 | 網膜組織の製造方法 |
| JP6393614B2 (ja) | 2012-06-08 | 2018-09-19 | 住友化学株式会社 | 毛様体周縁部様構造体の製造方法 |
| EP2961829A4 (en) | 2013-02-27 | 2016-08-17 | Univ California | GENERATION OF THYME PEPPER THERAPEUTIC CELLS IN VITRO |
| US10266807B2 (en) | 2013-04-03 | 2019-04-23 | FUJIFILM Cellular Dynamics, Inc. | Methods and compositions for culturing endoderm progenitor cells in suspension |
| CA2914520A1 (en) | 2013-07-23 | 2015-01-29 | F. Hoffmann-La Roche Ag | Small molecule based conversion of somatic cells into neural crest cells |
| KR102297580B1 (ko) | 2013-08-06 | 2021-09-03 | 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 | 전안부 조직의 제조 방법 |
| US10501724B2 (en) | 2013-08-23 | 2019-12-10 | Sumitomo Chemical Company, Limited | Method for producing retinal tissue and retina-related cells |
| AU2014332857B2 (en) | 2013-10-09 | 2020-05-07 | Healios K.K. | Method for purification of retinal pigment epithelial cells |
| EP3047017B1 (en) | 2013-10-09 | 2025-09-10 | The Regents of the University of California | Methods of mammalian retinal stem cell production and applications |
| WO2015068505A1 (ja) | 2013-11-11 | 2015-05-14 | 住友化学株式会社 | 網膜色素上皮細胞の製造方法 |
| JP6495830B2 (ja) | 2013-12-11 | 2019-04-03 | 住友化学株式会社 | 毛様体周縁部様構造体の製造法 |
| KR102368751B1 (ko) | 2014-01-17 | 2022-03-03 | 스미또모 가가꾸 가부시끼가이샤 | 모양체 주연부 간세포의 제조 방법 |
| JP2017525351A (ja) | 2014-07-30 | 2017-09-07 | イェダ リサーチ アンド ディベロップメント カンパニー リミテッドYeda Research And Development Co.Ltd. | 多能性幹細胞の培養用培地 |
| KR101712556B1 (ko) | 2014-08-27 | 2017-03-08 | 서울대학교산학협력단 | 줄기세포를 망막신경절세포로 분화시키는 방법 |
| CA2960465C (en) | 2014-09-08 | 2024-01-02 | Riken | Method for producing cerebellar progenitor tissue |
| CA2965609A1 (en) | 2014-10-24 | 2016-04-28 | Sumitomo Dainippon Pharma Co., Ltd. | Production method for retinal tissue |
| EP3211072B8 (en) | 2014-10-24 | 2025-05-21 | RACTHERA Co., Ltd. | Production method for nerve tissue |
| MY189778A (en) | 2015-09-08 | 2022-03-04 | Healios Kk | Method for producing retinal pigment epithelial cells |
| EP4001402A1 (en) | 2015-09-08 | 2022-05-25 | FUJIFILM Cellular Dynamics, Inc. | Macs-based purification of stem cell-derived retinal pigment epithelium |
| JP6884354B2 (ja) | 2015-09-08 | 2021-06-09 | 大日本住友製薬株式会社 | 網膜組織の製造方法 |
| EP3447129B1 (en) | 2016-04-22 | 2022-07-20 | Sumitomo Pharma Co., Ltd. | Method for producing retinal tissue |
| CN107326009B (zh) | 2017-05-02 | 2019-03-08 | 深圳百年干细胞技术研究院有限公司 | 使血液单个核细胞逆向分化产生人血源性自体视网膜干细胞的方法、试剂盒及用途 |
| CA3070215A1 (en) | 2017-07-20 | 2019-01-24 | Riken | Method for maturation of retinal tissue containing continuous epithelium |
| JP7162221B2 (ja) | 2017-09-08 | 2022-10-28 | 国立研究開発法人理化学研究所 | 網膜組織を含む細胞凝集体及びその製造方法 |
| WO2019054514A1 (ja) | 2017-09-14 | 2019-03-21 | 国立研究開発法人理化学研究所 | 網膜組織の製造方法 |
| US20210308188A1 (en) | 2018-08-24 | 2021-10-07 | Sumitomo Chemical Company, Limited | Cell cluster including olfactory neuron or precursor cell thereof, and method for producing same |
-
2015
- 2015-10-23 EP EP15852504.8A patent/EP3211072B8/en active Active
- 2015-10-23 KR KR1020177014114A patent/KR102500914B1/ko active Active
- 2015-10-23 JP JP2016555414A patent/JP6746499B2/ja active Active
- 2015-10-23 US US15/521,334 patent/US11214771B2/en active Active
- 2015-10-23 SG SG11201703305SA patent/SG11201703305SA/en unknown
- 2015-10-23 TW TW104134901A patent/TWI810142B/zh active
- 2015-10-23 MY MYPI2017701418A patent/MY191740A/en unknown
- 2015-10-23 CN CN201580071124.1A patent/CN107109367B/zh active Active
- 2015-10-23 CA CA2965248A patent/CA2965248A1/en active Pending
- 2015-10-23 WO PCT/JP2015/080016 patent/WO2016063985A1/ja not_active Application Discontinuation
- 2015-10-23 CN CN202110841033.9A patent/CN113564123B/zh active Active
- 2015-10-23 IL IL251855A patent/IL251855B2/en unknown
- 2015-10-23 AU AU2015336453A patent/AU2015336453B2/en active Active
- 2015-10-23 ES ES15852504T patent/ES3029257T3/es active Active
-
2020
- 2020-05-25 JP JP2020090967A patent/JP7075556B2/ja active Active
-
2021
- 2021-12-22 US US17/559,458 patent/US20220112457A1/en active Pending
-
2022
- 2022-03-30 JP JP2022057270A patent/JP7397448B2/ja active Active
- 2022-04-26 IL IL292509A patent/IL292509A/en unknown
-
2023
- 2023-11-22 JP JP2023198411A patent/JP2024026153A/ja active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012245007A (ja) * | 2004-06-18 | 2012-12-13 | Institute Of Physical & Chemical Research | 無血清浮遊培養による胚性幹細胞の神経分化誘導法 |
| JP2013099345A (ja) * | 2006-09-22 | 2013-05-23 | Institute Of Physical & Chemical Research | 幹細胞の培地及び培養方法 |
| JP2012507285A (ja) * | 2008-10-31 | 2012-03-29 | シンセス ゲーエムベーハー | 幹細胞を活性化するための方法およびデバイス |
| JP2012070731A (ja) * | 2010-08-31 | 2012-04-12 | Chiba Univ | ヒト多能性幹細胞からの造血幹細胞の効率的な誘導方法 |
| WO2013065763A1 (ja) * | 2011-10-31 | 2013-05-10 | 独立行政法人理化学研究所 | 幹細胞の培養方法 |
| WO2013077425A1 (ja) * | 2011-11-25 | 2013-05-30 | 住友化学株式会社 | 網膜組織及び網膜関連細胞の製造方法 |
Non-Patent Citations (4)
| Title |
|---|
| CNS & NEUROLOGICAL DISORDERS - DRUG TARGETS, vol. 10, no. 4, JPN6016001402, 2011, pages 419 - 432, ISSN: 0005077810 * |
| NATURE NEUROSCIENCE, vol. 13, no. 10, JPN6016001406, 2010, pages 1171 - 1180, ISSN: 0005077812 * |
| WIRES DEV BIOL., vol. 2, JPN6016001405, 2013, pages 479 - 498, ISSN: 0005077811 * |
| ブレインサイエンス・レビュー, JPN6016001411, February 2014 (2014-02-01), pages 99 - 112, ISSN: 0005077813 * |
Also Published As
| Publication number | Publication date |
|---|---|
| IL251855A0 (en) | 2017-06-29 |
| US11214771B2 (en) | 2022-01-04 |
| JP7397448B2 (ja) | 2023-12-13 |
| CN107109367B (zh) | 2021-08-10 |
| EP3211072B1 (en) | 2025-04-09 |
| CA2965248A1 (en) | 2016-04-28 |
| US20220112457A1 (en) | 2022-04-14 |
| JPWO2016063985A1 (ja) | 2017-08-03 |
| TWI810142B (zh) | 2023-08-01 |
| CN113564123A (zh) | 2021-10-29 |
| JP2020141698A (ja) | 2020-09-10 |
| MY191740A (en) | 2022-07-13 |
| EP3211072B8 (en) | 2025-05-21 |
| WO2016063985A1 (ja) | 2016-04-28 |
| CN107109367A (zh) | 2017-08-29 |
| IL251855B2 (en) | 2023-09-01 |
| ES3029257T3 (en) | 2025-06-23 |
| EP3211072A1 (en) | 2017-08-30 |
| IL292509A (en) | 2022-06-01 |
| AU2015336453B2 (en) | 2021-05-20 |
| JP2024026153A (ja) | 2024-02-28 |
| JP7075556B2 (ja) | 2022-05-26 |
| EP3211072A4 (en) | 2018-10-10 |
| US20170313976A1 (en) | 2017-11-02 |
| CN113564123B (zh) | 2024-11-15 |
| KR20170072940A (ko) | 2017-06-27 |
| JP6746499B2 (ja) | 2020-08-26 |
| AU2015336453A1 (en) | 2017-05-25 |
| TW201629214A (zh) | 2016-08-16 |
| KR102500914B1 (ko) | 2023-02-17 |
| SG11201703305SA (en) | 2017-05-30 |
| IL251855B1 (en) | 2023-05-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7075556B2 (ja) | 神経組織の製造方法 | |
| JP7088496B2 (ja) | 網膜組織の製造方法 | |
| JP6995314B2 (ja) | 網膜組織の製造法 | |
| JPWO2019054515A1 (ja) | 背側化シグナル伝達物質又は腹側化シグナル伝達物質による錐体視細胞又は桿体視細胞の増加方法 | |
| WO2019103129A1 (ja) | 下垂体組織を含む細胞塊の製造方法及びその細胞塊 | |
| HK40059700A (en) | Production method for nerve tissue | |
| HK1235818B (en) | Production method for nerve tissue | |
| HK1235818A1 (en) | Production method for nerve tissue | |
| HK1235819A1 (en) | Production method for retinal tissue |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220418 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230606 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20230718 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20230718 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230803 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231024 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231122 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7397448 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |