JP2022156991A - Ferrite composition, electronic component, and power supply - Google Patents
Ferrite composition, electronic component, and power supply Download PDFInfo
- Publication number
- JP2022156991A JP2022156991A JP2021060964A JP2021060964A JP2022156991A JP 2022156991 A JP2022156991 A JP 2022156991A JP 2021060964 A JP2021060964 A JP 2021060964A JP 2021060964 A JP2021060964 A JP 2021060964A JP 2022156991 A JP2022156991 A JP 2022156991A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- main component
- parts
- subcomponent
- ferrite composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 49
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 47
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 48
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000011787 zinc oxide Substances 0.000 claims abstract description 24
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical group [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims abstract description 23
- 239000010936 titanium Substances 0.000 claims abstract description 16
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 14
- 239000011575 calcium Substances 0.000 claims abstract description 9
- 239000013078 crystal Substances 0.000 claims abstract description 9
- 239000010955 niobium Substances 0.000 claims abstract description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000010941 cobalt Substances 0.000 claims abstract description 6
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000010703 silicon Substances 0.000 claims abstract description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 15
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 9
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 238000010586 diagram Methods 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 46
- 239000000843 powder Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 16
- 239000002245 particle Substances 0.000 description 15
- 238000010304 firing Methods 0.000 description 14
- 239000007858 starting material Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000002131 composite material Substances 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000001354 calcination Methods 0.000 description 6
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 6
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 229910052596 spinel Inorganic materials 0.000 description 4
- 239000011029 spinel Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 235000010216 calcium carbonate Nutrition 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- -1 oxides Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2608—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
- C04B35/2633—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3239—Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Magnetic Ceramics (AREA)
- Dc-Dc Converters (AREA)
- Soft Magnetic Materials (AREA)
Abstract
【課題】コアのサイズまたは形状の違いによる渦電流損失の変化を低減することができるフェライト組成物と、当該フェライト組成物を用いた電子部品と、当該電子部品を用いた電源装置を提供すること。【解決手段】主成分と第1副成分と第2副成分とを有し、主成分は、51.0~53.5モル%の酸化鉄と、7~16.5モル%の酸化亜鉛と、残部である酸化マンガンと、で構成され、主成分100質量部に対して、第1副成分として、コバルトを0.09~0.27質量部、チタンを0.13~0.45質量部、含有しており、主成分100質量部に対して、第2副成分として、ケイ素、ニオブ、バナジウムおよびカルシウムをy質量部、含有しており、平均結晶粒径がxμmであり、yは、0.10~0.32であり、xは、6~18であり、yおよびxは、式(1)および(2)を満たすフェライト組成物。【選択図】なし[Object] To provide a ferrite composition capable of reducing changes in eddy current loss due to differences in core size or shape, an electronic component using the ferrite composition, and a power supply device using the electronic component. . [Solution] The main component has a main component, a first subcomponent, and a second subcomponent, and the main component is 51.0 to 53.5 mol% of iron oxide and 7 to 16.5 mol% of zinc oxide. , the remainder is manganese oxide, and for 100 parts by mass of the main component, the first subcomponent is 0.09 to 0.27 parts by mass of cobalt and 0.13 to 0.45 parts by mass of titanium. , contains y parts by mass of silicon, niobium, vanadium, and calcium as second subcomponents based on 100 parts by mass of the main component, and has an average crystal grain size of x μm, where y is 0.10 to 0.32, x is 6 to 18, and y and x satisfy formulas (1) and (2). [Selection diagram] None
Description
本発明は、フェライト組成物と、当該フェライト組成物を含む電子部品ならびに電源装置に関する。 TECHNICAL FIELD The present invention relates to a ferrite composition, and an electronic component and a power supply device containing the ferrite composition.
近年、電子機器の小型化と高効率化が進み、電源装置などに使用される電子部品にも小型化・高効率化が強く求められている。小型化・高効率化のためコイルやトランスなどの電子部品に用いられるフェライト焼結体には低損失特性が要求される。 In recent years, electronic devices have become smaller and more efficient, and there is a strong demand for smaller and more efficient electronic components used in power supply devices and the like. Low-loss characteristics are required for ferrite sintered bodies used in electronic parts such as coils and transformers for miniaturization and high efficiency.
一般的にフェライト組成物の磁心損失Pcvは、ヒステリシス損失Phv、渦電流損失Pevおよび残留損失Prvからなり、渦電流損失Pevは、コア(磁心)のサイズまたは形状により大きく変化する。これまでの技術では、コアのサイズまたは形状の違いによる渦電流損失Pevの変化を抑制することができず、実際にフェライトコアを作製した際に、設計通りの値を得られないことが多かった。 In general, the core loss Pcv of a ferrite composition consists of hysteresis loss Phv, eddy current loss Pev and residual loss Prv, and eddy current loss Pev varies greatly depending on the size or shape of the core (magnetic core). With conventional technologies, changes in eddy current loss Pev due to differences in core size or shape could not be suppressed, and when actually manufacturing ferrite cores, it was often not possible to obtain the value as designed. .
特許文献1では、磁気異方性と磁歪が小さくなる主成分の調整、十分な電気抵抗率が得られる副成分の調整、不可避不純物量の制御により、300kHz-100mT,100℃での低損失化がなされている。 In Patent Document 1, the loss is reduced at 300 kHz-100 mT and 100° C. by adjusting the main component that reduces magnetic anisotropy and magnetostriction, adjusting the sub-component that provides sufficient electrical resistivity, and controlling the amount of unavoidable impurities. is done.
また、特許文献2では、トランスの熱暴走防止に主眼を置き、CoOおよびTiO2を同時に添加することにより、120℃以上での損失低減がなされている。 Moreover, in Patent Document 2, the loss is reduced at 120° C. or higher by adding CoO and TiO 2 simultaneously, focusing on preventing thermal runaway of the transformer.
さらに、特許文献3では、CoOおよびTiO2を同時添加した組成物で100~300kHzでの損失低減がなされている。 Furthermore, in Patent Document 3, loss reduction at 100 to 300 kHz is achieved with a composition to which CoO and TiO 2 are added simultaneously.
さらに、特許文献4では、体積抵抗率および平均結晶粒径の適正化により、広い温度範囲で低損失化がなされている。 Furthermore, in Patent Document 4, loss is reduced over a wide temperature range by optimizing volume resistivity and average crystal grain size.
しかし、特許文献1~特許文献4ではコア形状の違いによる渦電流損失の変化について検討されていない。 However, Patent Documents 1 to 4 do not discuss changes in eddy current loss due to differences in core shape.
本発明は、このような実情を鑑みてなされ、その目的は、コアのサイズまたは形状の違いによる渦電流損失の変化を低減することができるフェライト組成物と、当該フェライト組成物を用いた電子部品と、当該電子部品を用いた電源装置を提供することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a ferrite composition capable of reducing changes in eddy current loss due to differences in core size or shape, and an electronic component using the ferrite composition. and to provide a power supply device using the electronic component.
上記の目的を達成するために、本発明に係るフェライト組成物は、
主成分と第1副成分と第2副成分とを有し、
前記主成分は、Fe2O3換算で51.0~53.5モル%の酸化鉄と、ZnO換算で7~16.5モル%の酸化亜鉛と、残部である酸化マンガンと、で構成され、
前記主成分100質量部に対して、前記第1副成分として、コバルトをCoO換算で0.09~0.27質量部、チタンをTiO2換算で0.13~0.45質量部、含有しており、
前記主成分100質量部に対して、前記第2副成分として、ケイ素、ニオブ、バナジウムおよびカルシウムをそれぞれSiO2換算、Nb2O5換算、V2O5換算およびCaCO3換算した総量をy質量部、含有しており、
平均結晶粒径がxμmであり、
前記yは、0.10~0.32であり、
前記xは、6~18であり、
前記yおよび前記xは、下記式(1)および(2)を満たし、
電気抵抗率が5Ω・m以上である。
y+0.014x≧0.229 ・・・(1)
y+0.020x≦0.549 ・・・(2)
In order to achieve the above object, the ferrite composition according to the present invention is
having a main component, a first subcomponent and a second subcomponent,
The main component is composed of 51.0 to 53.5 mol % of iron oxide in terms of Fe 2 O 3 , 7 to 16.5 mol % of zinc oxide in terms of ZnO, and manganese oxide as the balance. ,
Containing 0.09 to 0.27 parts by mass of cobalt in terms of CoO and 0.13 to 0.45 parts by mass of titanium in terms of TiO 2 as the first subcomponent with respect to 100 parts by mass of the main component. and
With respect to 100 parts by mass of the main component, the total amount of silicon, niobium, vanadium, and calcium as the second subcomponents in terms of SiO 2 , Nb 2 O 5 , V 2 O 5 , and CaCO 3 is y mass. part, contains
The average crystal grain size is x μm,
The y is 0.10 to 0.32,
The x is 6 to 18,
The y and the x satisfy the following formulas (1) and (2),
The electrical resistivity is 5Ω·m or more.
y+0.014x≧0.229 (1)
y+0.020x≦0.549 (2)
一般的に、比較的磁路断面積が小さいコアの特性を元にして製品設計を行う。しかし、実際の製品は磁路断面積が大きい場合が多く、また、形状が複雑であり磁路断面積が均一ではないことが多い。このため製品設計段階の特性と実製品の特性とが一致しないことがある。これに対して、本発明に係るフェライト組成物は、上記の構成を有することで、コアの形状またはサイズの違いによる渦電流損失の変化を低減できる、すなわち、コアのサイズまたは形状の違いによる渦電流損失の変化を抑制できる。 In general, product design is based on the characteristics of the core, which has a relatively small magnetic path cross-sectional area. However, actual products often have a large magnetic path cross-sectional area, and often have complex shapes and uneven magnetic path cross-sectional areas. For this reason, the characteristics at the product design stage may not match the characteristics of the actual product. In contrast, the ferrite composition according to the present invention, having the above configuration, can reduce changes in eddy current loss due to differences in core shape or size, that is, eddy current loss due to differences in core size or shape. A change in current loss can be suppressed.
本発明に係るフェライト組成物は、インダクタ、トランス、チョークコイル、リアクトル、アンテナ、非接触給電用コイルなどの各種電子部品において、当該電子部品に含まれる磁心や磁性シート(非接触給電用、電磁波吸収体、ノイズフィルタなど)として用いることができる。特に、本発明に係るフェライト組成物は、電源用トランスの磁心として用いることが好ましく、この電源用トランスは、たとえば、EV(Electric Vehicle:電動輸送機器)、PHV(Plug-in Hybrid Vehicle:プラグインハイブリッド自動車)、あるいはコミュータ(車両)などで用いられる車載用のスイッチング電源装置、家庭用または産業用の電気機器の電源装置、もしくはコンピュータ機器の電源装置などに組み込んで利用することができる。 The ferrite composition according to the present invention is used in various electronic parts such as inductors, transformers, choke coils, reactors, antennas, and contactless power supply coils. object, noise filter, etc.). In particular, the ferrite composition according to the present invention is preferably used as a magnetic core of a power transformer. It can be used by being incorporated in a switching power supply for a vehicle such as a hybrid vehicle, a commuter (vehicle), a power supply for household or industrial electrical equipment, or a power supply for computer equipment.
以下、本発明の実施形態について詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.
本実施形態に係るフェライト組成物は、焼結体などのバルク状の形態、粉末状の形態、もしくは薄膜状の形態であってもよく、その形態は特に限定されない。そして、本実施形態のフェライト組成物は、主成分と第1副成分と第2副成分とを有する。主成分は、酸化鉄と、酸化亜鉛と、酸化マンガンとで構成される。一方、第1副成分としては、少なくとも、コバルト(Co)と、チタン(Ti)と、を含む。さらに、第2副成分としては、ケイ素(Si)と、ニオブ(Nb)と、バナジウム(V)と、カルシウム(Ca)と、を含む。なお、以下では、第1副成分および第2副成分をまとめて「副成分」と呼ぶことがある。 The ferrite composition according to this embodiment may be in a bulk form such as a sintered body, a powder form, or a thin film form, and the form is not particularly limited. And the ferrite composition of this embodiment has a main component, a first subcomponent, and a second subcomponent. The main components are iron oxide, zinc oxide and manganese oxide. On the other hand, the first subcomponent contains at least cobalt (Co) and titanium (Ti). Furthermore, the second subcomponent includes silicon (Si), niobium (Nb), vanadium (V), and calcium (Ca). In addition, below, the first subcomponent and the second subcomponent may be collectively referred to as "subcomponent".
まず、主成分の組成について説明する。主成分全体を100モル%とすると、酸化鉄の含有率は、基準となる範囲がFe2O3換算で51.0~53.5モル%であり、好ましくは51.25~52.8モル%である。酸化亜鉛の含有率は、基準となる範囲がZnO換算で7~16.5モル%であり、好ましくは8.6~14モル%、より好ましくは8.6~12モル%である。また、酸化マンガンの含有率は、他の主成分である酸化鉄の含有率および酸化亜鉛の含有率を定めることで、主成分のうちの残部として定まる。 First, the composition of the main component will be explained. Assuming that the total amount of the main components is 100 mol%, the iron oxide content is in the range of 51.0 to 53.5 mol%, preferably 51.25 to 52.8 mol, in terms of Fe 2 O 3 . %. The standard range of zinc oxide content is 7 to 16.5 mol %, preferably 8.6 to 14 mol %, more preferably 8.6 to 12 mol % in terms of ZnO. In addition, the content of manganese oxide is determined as the balance of the main components by determining the content of iron oxide and zinc oxide, which are other main components.
上記の主成分は、フェライト組成物の断面において、スピネル型の結晶構造を有する主成分粒子を構成している。ここで、スピネル型の結晶構造は、化学量論組成式AB2O4で表記され、Aサイトには、MnおよびZnが入り、Bサイトには、Feが入る。本実施形態において、スピネル構造の主成分粒子は、円相当径での平均粒径が、xμmであり、xは6~18であり、7.5~14であることが好ましい。なお、主成分粒子の平均粒径は、フェライト組成物の断面をSEM(走査型電子顕微鏡)もしくはSTEM(走査透過型電子顕微鏡)などで観察し、得られる断面写真を画像解析することで測定できる。 The above main component constitutes main component particles having a spinel crystal structure in the cross section of the ferrite composition. Here, the spinel-type crystal structure is represented by the stoichiometric formula AB 2 O 4 , Mn and Zn enter the A site, and Fe enters the B site. In the present embodiment, the spinel-structure main component particles have an average particle diameter of x μm in equivalent circle diameter, where x is 6 to 18, preferably 7.5 to 14. The average particle size of the main component particles can be measured by observing the cross section of the ferrite composition with a SEM (scanning electron microscope) or STEM (scanning transmission electron microscope) and analyzing the resulting cross-sectional photograph. .
一方、第1副成分の含有率については、上記の主成分100質量部に対する比率、すなわち外枠量として表される。本実施形態において、Coの含有率は、基準となる範囲がCoO換算で0.09~0.27質量部であり、好ましくは0.13~0.27質量部、より好ましくは0.21~0.27質量部である。また、Tiの含有率は、基準となる範囲がTiO2換算で0.13~0.45質量部であり、好ましくは0.13~0.35質量部であり、より好ましくは0.13~0.225質量部である。 On the other hand, the content of the first subcomponent is expressed as a ratio to 100 parts by mass of the main component, ie, the amount of the outer frame. In the present embodiment, the content of Co is 0.09 to 0.27 parts by mass, preferably 0.13 to 0.27 parts by mass, more preferably 0.21 to 0.27 parts by mass in terms of CoO. It is 0.27 parts by mass. In addition, the content of Ti is 0.13 to 0.45 parts by mass, preferably 0.13 to 0.35 parts by mass, more preferably 0.13 to 0.45 parts by mass in terms of TiO 2 . It is 0.225 parts by mass.
また、第2副成分の含有率についても、上記の主成分100質量部に対する比率、すなわち外枠量として表される。具体的には、主成分100質量部に対して、第2副成分として、Si、Nb、VおよびCaをそれぞれSiO2換算、Nb2O5換算、V2O5換算およびCaCO3換算した総量をy質量部、含有しており、yは、好ましくは0.10~0.32であり、より好ましくは0.115~0.285である。 The content of the second subcomponent is also expressed as a ratio to 100 parts by mass of the main component, ie, the amount of the outer frame. Specifically, with respect to 100 parts by mass of the main component, the total amount of Si, Nb, V , and Ca as second subcomponents in terms of SiO2 , Nb2O5 , V2O5 , and CaCO3 , respectively. y parts by mass, and y is preferably 0.10 to 0.32, more preferably 0.115 to 0.285.
フェライト組成物の内部における各副成分の存在形態は、特に限定されない。たとえば、各副成分は、主成分粒子に固溶していてもよいし、主成分粒子の粒界において酸化物、複合酸化物、炭酸塩などの各種化合物として存在していてもよい。 The form in which each subcomponent exists inside the ferrite composition is not particularly limited. For example, each subcomponent may be solid-dissolved in the main component particles, or may exist as various compounds such as oxides, composite oxides, and carbonates at the grain boundaries of the main component particles.
より具体的には、CoおよびTiは、主として主成分粒子に固溶し、スピネル格子中のFeの一部が、固溶したCoまたはTiに置換されると考えられる。特に、CoとTiとを同時に添加することで、スピネル格子のAサイトではなく、BサイトであるFeがCoまたはTiに置換されやすくなると考えられる。スピネル格子のFeがCoまたはTiに置換されると、磁気異方性定数の温度依存性が小さくなり、その結果、磁気損失の温度依存性も小さくなると考えられる。 More specifically, it is believed that Co and Ti are mainly dissolved in the main component particles, and part of the Fe in the spinel lattice is replaced by dissolved Co or Ti. In particular, it is believed that simultaneous addition of Co and Ti facilitates the substitution of Co or Ti for Fe, which is the B-site, not the A-site, of the spinel lattice. When Fe in the spinel lattice is replaced with Co or Ti, the temperature dependence of the magnetic anisotropy constant is reduced, and as a result, the temperature dependence of the magnetic loss is also reduced.
一方、Caについては、主として、主成分粒子の粒界において化合物として存在すると共に、主成分粒子の粒界近傍に固溶していると考えられる。Caが上記の形態で存在することで、フェライト組成物の焼結性が向上すると共に、粒界抵抗が高められると考えられる。また、Nbは、フェライト組成物の結晶組織の均一化に寄与すると考えられる。Siは、フェライト組成物の焼結性の向上に貢献すると考えられる。また、Vは、主として、主成分粒子の粒界において化合物として存在すると考えられ、粒界抵抗を高める働きをすると考えられる。 On the other hand, Ca is considered to be mainly present as a compound at the grain boundaries of the main component particles and dissolved in the vicinity of the grain boundaries of the main component particles. Presumably, the presence of Ca in the form described above improves the sinterability of the ferrite composition and increases the grain boundary resistance. In addition, Nb is considered to contribute to homogenization of the crystal structure of the ferrite composition. Si is believed to contribute to improving the sinterability of the ferrite composition. Moreover, V is considered to exist mainly as a compound at the grain boundaries of the main component grains, and is thought to function to increase the grain boundary resistance.
また、本実施形態のフェライト組成物には、Zrが実質的に含まれないことが好ましい。本実施形態において、「Zrが実質的に含まれない」とは、Zrの含有率が、主成分100質量部に対して、ZrO2換算で0.009質量部以下であることを意味する。なお、Zrの含有率は、より好ましくは0~0.005質量部未満である。 Moreover, it is preferable that the ferrite composition of the present embodiment does not substantially contain Zr. In the present embodiment, “substantially free of Zr” means that the content of Zr is 0.009 parts by mass or less in terms of ZrO 2 with respect to 100 parts by mass of the main component. The Zr content is more preferably 0 to less than 0.005 parts by mass.
なお、本実施形態のフェライト組成物には、上述した副成分以外に、Pなどの他の副成分や不可避不純物が含まれていてもよい。他の副成分や不可避不純物の含有率は、Pev変化抑制を妨げない量とする。たとえば、不可避不純物の総含有率は、主成分100質量部に対して0~0.001質量部程度とすることが好ましい。 The ferrite composition of the present embodiment may contain other subcomponents such as P and unavoidable impurities in addition to the subcomponents described above. The contents of other subcomponents and unavoidable impurities are set so as not to hinder the suppression of Pev change. For example, the total content of unavoidable impurities is preferably about 0 to 0.001 parts by mass with respect to 100 parts by mass of the main component.
上述したような主成分の含有率、および、副成分の含有率は、蛍光X線分析装置(XRF)を用いて成分分析することで測定できる。また、SEMやSTEMでの断面観察時に、電子線マイクロアナライザ(EPMA)により成分分析することで測定してもよく、X線回折(XRD)を用いて測定することもできる。 The content rate of the main component and the content rate of the subcomponent as described above can be measured by component analysis using an X-ray fluorescence spectrometer (XRF). In addition, when observing a cross section with an SEM or STEM, it may be measured by component analysis using an electron probe microanalyzer (EPMA), or it may be measured using X-ray diffraction (XRD).
本実施形態では、上記の通り、主成分100質量部に対する、第2副成分のSiO2換算、Nb2O5換算、V2O5換算およびCaCO3換算した総量をy質量部としている。また、主成分粒子の平均結晶粒径をxμmとしている。 In the present embodiment, as described above, the total amount of the second subcomponent in terms of SiO2 , Nb2O5 , V2O5 , and CaCO3 with respect to 100 parts by mass of the main component is defined as y parts by mass. Also, the average crystal grain size of the main component particles is x μm.
本実施形態では、yおよびxは、下記式(1)および(2)を満たす。
y+0.014x≧0.229 ・・・(1)
y+0.020x≦0.549 ・・・(2)
In this embodiment, y and x satisfy the following formulas (1) and (2).
y+0.014x≧0.229 (1)
y+0.020x≦0.549 (2)
さらに、本実施形態に係るフェライト組成物の電気抵抗率は5Ω・m以上であり、である。フェライト組成物の電気抵抗率を調整する方法は特に限定されないが、たとえば焼成時の雰囲気を変化させることで調整することができる。具体的には、焼成時に酸素分圧を下げると、電気抵抗率が下がる傾向となる。 Furthermore, the electrical resistivity of the ferrite composition according to this embodiment is 5 Ω·m or more. The method for adjusting the electrical resistivity of the ferrite composition is not particularly limited, but it can be adjusted, for example, by changing the atmosphere during firing. Specifically, when the oxygen partial pressure is lowered during firing, the electrical resistivity tends to decrease.
次に、本実施形態に係るフェライト組成物の製造方法の一例について説明する。 Next, an example of a method for producing a ferrite composition according to this embodiment will be described.
まず、主成分の出発原料を準備し、焼成後に所定の組成となるように秤量する。主成分の出発原料としては、酸化物の粉末、または、加熱により酸化物となる化合物の粉末(炭酸塩の粉末など)を用いることができ、具体的には、α-Fe2O3粉末、Mn3O4粉末、ZnO粉末を用いることが好ましい。また、2種以上の金属を含む複合酸化物の粉末を、主成分の出発原料として用いてもよい。たとえば、塩化鉄および塩化マンガンを含有する水溶液を酸化焙焼することにより、FeおよびMnを含む複合酸化物の粉末を得る。そして、この複合酸化物の粉末にZnO粉末を加えて混合することで、主成分の原料としてもよい。なお、上述した各出発原料の平均粒径は、0.1~3.0μmとすることが好ましい。 First, starting materials for the main component are prepared and weighed so as to have a predetermined composition after firing. As the starting material for the main component, an oxide powder or a compound powder that becomes an oxide when heated (carbonate powder, etc.) can be used. Specifically, α-Fe 2 O 3 powder, It is preferable to use Mn3O4 powder and ZnO powder. Further, a composite oxide powder containing two or more kinds of metals may be used as a starting material for the main component. For example, by subjecting an aqueous solution containing iron chloride and manganese chloride to oxidative roasting, a composite oxide powder containing Fe and Mn is obtained. Then, ZnO powder may be added to and mixed with this composite oxide powder to form a raw material for the main component. The average particle size of each starting material described above is preferably 0.1 to 3.0 μm.
次に、秤量した主成分の出発原料を、ボールミルなどの混合機で混合し、その後、仮焼き処理する。この際、混合は、湿式混合でも乾式混合でもよく、湿式混合を選択した場合は、混合後に適宜乾燥してから、仮焼き処理する。また、仮焼き処理の条件は、保持温度を800~1100℃とすることが好ましく、温度保持時間(温度安定時間)を0.5~5時間とすることが好ましい。このような条件で仮焼きして得られた仮焼き材については、各種粉砕機を用いて、平均粒径が0.5~3.0μm程度となるまで粉砕する。なお、主成分の出発原料として、FeおよびMnを含む複合酸化物の粉末を用いる場合には、仮焼き処理を省略してもよい。 Next, the weighed starting materials of the main component are mixed in a mixer such as a ball mill, and then calcined. At this time, the mixing may be either wet mixing or dry mixing. When wet mixing is selected, the mixture is appropriately dried after mixing and then calcined. Further, as for the conditions of the calcination treatment, it is preferable to set the holding temperature to 800 to 1100° C., and the temperature holding time (temperature stabilization time) to be 0.5 to 5 hours. The calcined material obtained by calcining under such conditions is pulverized using various pulverizers until the average particle size reaches about 0.5 to 3.0 μm. Note that the calcination process may be omitted when a composite oxide powder containing Fe and Mn is used as the starting material of the main component.
次に、仮焼き後の原料に、副成分の出発原料を添加し混合する。副成分の出発原料としては、主成分の場合と同様に、酸化物の粉末、または、加熱により酸化物となる化合物の粉末を用いることができる。具体的には、CoO粉末、TiO2粉末、SiO2粉末、Nb2O5粉末、V2O5粉末およびCaCO3粉末、を用いることができる。副成分の出発原料の平均粒径についても、0.1~3.0μmとすることが好ましい。なお、副成分の出発原料は、仮焼き処理後に添加し、その後、上記の粉砕処理を行うことで、主成分と副成分とを混合しつつ仮焼き材を粉砕してもよい。また、副成分の出発原料は、仮焼き材の粉砕後に添加し、混合してもよい。さらに、CoO粉末およびTiO2粉末については、予め主成分の出発原料と共に混合し、仮焼き処理に供してもよい。 Next, starting materials of subcomponents are added to and mixed with the raw materials after calcination. As a starting material for the subcomponent, as in the case of the main component, an oxide powder or a compound powder that becomes an oxide by heating can be used. Specifically, CoO powder, TiO2 powder, SiO2 powder, Nb2O5 powder , V2O5 powder and CaCO3 powder can be used. The average particle size of the starting materials of the subcomponents is also preferably 0.1 to 3.0 μm. The starting materials for the subcomponents may be added after the calcination process, and then the above-described pulverization process may be performed to pulverize the calcined material while mixing the main and subcomponents. Also, the starting materials of the subcomponents may be added and mixed after the calcined material is pulverized. Further, the CoO powder and TiO 2 powder may be mixed in advance with the starting raw materials of the main components and subjected to calcination treatment.
次に、上記で得られた主成分と副成分との混合粉末に、ポリビニルアルコールなどの適当な結合材(バインダ)を加えて混錬し、複合材を得る。そして、この複合材を、射出成形や機械プレス成形などの手法により所定の形状に成形して、成形体を得る。たとえば、射出成形では、上記の複合材をスラリー化して金型に流し込むことで成形体を得る。また、機械プレス成形では、顆粒状の複合材を金型に充填して加圧することで成形体を得る。 Next, a suitable binder such as polyvinyl alcohol is added to the mixed powder of the main component and subcomponent obtained above, and kneaded to obtain a composite material. Then, this composite material is molded into a predetermined shape by a technique such as injection molding or mechanical press molding to obtain a molded body. For example, in injection molding, a molded article is obtained by making the composite material slurry and pouring it into a mold. In mechanical press molding, a compact is obtained by filling a granular composite material into a mold and applying pressure.
次に、上記で得られた成形体を焼成する。焼成の条件は、保持温度を1150℃~1400℃、より好ましくは1200℃~1300℃とし、温度保持時間を1~10時間、より好ましくは2~6時間とする。また、加熱開始から保持温度までの昇温過程では、昇温速度を50~300℃/時間とすることが好ましく、保持温度から900℃までの降温過程では、冷却速度を50~200℃/時間とすることが好ましい。また、焼成時の雰囲気は、酸素と窒素の混合雰囲気とし、昇温過程および温度保持過程での酸素分圧を0.1~5.0vol%とすることが好ましい。さらに、保持温度から1000℃までの降温過程では、酸素分圧を徐々に低下させ、1000℃以下では、酸素分圧を0.02vol%以下とすることが好ましい。 Next, the compact obtained above is fired. The firing conditions are a holding temperature of 1150° C. to 1400° C., more preferably 1200° C. to 1300° C., and a temperature holding time of 1 to 10 hours, more preferably 2 to 6 hours. Further, in the temperature rising process from the start of heating to the holding temperature, the temperature rising rate is preferably 50 to 300° C./hour, and in the temperature dropping process from the holding temperature to 900° C., the cooling rate is 50 to 200° C./hour. It is preferable to The atmosphere during firing is preferably a mixed atmosphere of oxygen and nitrogen, and the partial pressure of oxygen is preferably 0.1 to 5.0 vol % during the temperature rising process and the temperature holding process. Furthermore, it is preferable to gradually decrease the oxygen partial pressure in the process of lowering the temperature from the holding temperature to 1000° C., and to set the oxygen partial pressure to 0.02 vol % or less at 1000° C. or lower.
上記のような条件で焼成することで、焼結体としてのフェライト組成物が得られる。本実施形態に係る焼結体としてのフェライト組成物は、各種電子部品において、磁心や磁性シートとして用いることができる。 By firing under the above conditions, a ferrite composition as a sintered body can be obtained. The ferrite composition as a sintered body according to this embodiment can be used as a magnetic core or a magnetic sheet in various electronic components.
本実施形態に係るフェライト組成物を磁心(コア)として用いる場合の形状は、E字型、F字型、I字型、T字型、U字型、ドラム型、トロイダル型、ポット型、カップ型、もしくは単なる板状、角柱状の形状とすることができる。 When the ferrite composition according to the present embodiment is used as a magnetic core, the shape is E-shaped, F-shaped, I-shaped, T-shaped, U-shaped, drum-shaped, toroidal-shaped, pot-shaped, cup-shaped. It can be in the form of a mold, or simply a plate-like or prismatic shape.
なお、焼成後に得られた焼結体を粉砕して、粉末状のフェライト組成物を得てもよい。この場合、さらに、得られた焼結体粉末にバインダや溶媒を添加してペースト化することができる。そして、このペーストをシート法や押出法などの手法によりシート化し、その後、適宜乾燥や熱処理を施すことで、薄膜状のフェライト組成物が得られる。このような薄膜状のフェライト組成物は、たとえば、薄膜インダクタの磁心や、アンテナや非接触給電用などの磁性シート(非接触給電用、電磁波吸収体、ノイズフィルタ)として用いることができる。 The sintered body obtained after firing may be pulverized to obtain a powdery ferrite composition. In this case, a binder and a solvent can be further added to the obtained sintered body powder to form a paste. Then, the paste is formed into a sheet by a method such as a sheet method or an extrusion method, and then dried or heat-treated as appropriate to obtain a thin-film ferrite composition. Such a thin-film ferrite composition can be used, for example, as a magnetic core of a thin-film inductor, an antenna, or a magnetic sheet for non-contact power supply (for non-contact power supply, electromagnetic wave absorber, noise filter).
フェライト組成物の磁心損失Pcvは、ヒステリシス損失Phv、渦電流損失Pevおよび残留損失Prvからなり、従来の渦電流損失Pevは、コアのサイズまたは形状により大きく変化する。具体的には、コアのサイズが大きくなる程、渦電流損失が増加する傾向となり、特にコアの磁路断面積が大きくなる程、渦電流損失が増加する傾向となる。 The core loss Pcv of the ferrite composition consists of hysteresis loss Phv, eddy current loss Pev and residual loss Prv, and the conventional eddy current loss Pev varies greatly depending on the size or shape of the core. Specifically, the eddy current loss tends to increase as the size of the core increases, and in particular, the eddy current loss tends to increase as the cross-sectional area of the magnetic path of the core increases.
これに対して、本実施形態に係るフェライト組成物は主成分と第1副成分と第2副成分との含有率、平均結晶粒径が所定の範囲内であり、電気抵抗率が所定値以上であり、なおかつ、xおよびyが上記式(1)および式(2)を満たすことにより、コア(磁心)のサイズまたは形状の違いによる渦電流損失の変化を抑制できる。 In contrast, in the ferrite composition according to the present embodiment, the contents of the main component, the first subcomponent, and the second subcomponent and the average crystal grain size are within a predetermined range, and the electrical resistivity is a predetermined value or more. and x and y satisfying the above formulas (1) and (2) can suppress changes in eddy current loss due to differences in the size or shape of the core (magnetic core).
したがって、本実施形態に係るフェライト組成物は、そのサイズおよび形状が、特に限定されない。 Therefore, the size and shape of the ferrite composition according to this embodiment are not particularly limited.
本実施形態のフェライト組成物は、前述したように、磁心材料や磁性シートとして好適であり、トランス、インダクタ、チョークコイル、リアクトル、アンテナ、非接触給電用コイルなどの電子部品に用いることができる。上記の電子部品のなかでも、特にトランスとしての応用が好適である。本実施形態のフェライト組成物を含むトランスは、特に電源装置に組み込んで用いることが好ましい。電源装置としては、たとえば、上記のトランスに、入力フィルタや、スイッチング回路、整流回路、平滑回路などを組み合わせたスイッチング電源装置が挙げられる。 As described above, the ferrite composition of the present embodiment is suitable as a magnetic core material and a magnetic sheet, and can be used for electronic parts such as transformers, inductors, choke coils, reactors, antennas, and contactless power supply coils. Among the above electronic components, application as a transformer is particularly suitable. A transformer containing the ferrite composition of the present embodiment is preferably incorporated in a power supply device for use. Examples of the power supply include a switching power supply in which the above transformer is combined with an input filter, a switching circuit, a rectifying circuit, a smoothing circuit, and the like.
以上、本発明の実施形態について説明してきたが、本発明は上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.
以下、実施例および比較例を用いて、本発明をさらに詳細に説明する。ただし、本発明は、以下の実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below using examples and comparative examples. However, the present invention is not limited to the following examples.
本実験では、表1、表3、表5、表7、表9、表11、表13、表15、表17、表19および表21に示す組成を有する実施例1~93および比較例1~34のフェライトコアを作成し、その渦電流損失Pevを測定した。各実施例および各比較例のフェライトコアは、以下に示す手順で作製した。 In this experiment, Examples 1 to 93 and Comparative Example 1 having the compositions shown in Tables 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 and 21 ∼34 ferrite cores were fabricated and their eddy current loss Pev was measured. The ferrite cores of each example and each comparative example were produced by the procedure shown below.
まず、主成分の出発原料として、α-Fe2O3粉末、Mn3O4粉末、ZnO粉末を準備し、焼成後に所定の比率となるように秤量した。そして、秤量した各粉末を、ボールミルで湿式混合し、原料混合物を得た。さらに、この原料混合物を乾燥させた後、大気雰囲気において、900℃で3時間、仮焼きし、仮焼き材を得た。 First, α-Fe 2 O 3 powder, Mn 3 O 4 powder, and ZnO powder were prepared as starting materials for the main components, and weighed so as to have a predetermined ratio after firing. Then, the weighed powders were wet mixed in a ball mill to obtain a raw material mixture. Furthermore, after drying this raw material mixture, it was calcined at 900° C. for 3 hours in an air atmosphere to obtain a calcined material.
次に、上記の仮焼き材を、鉄鋼製ボールを充填したボールミルに投入し、16時間粉砕することで、平均粒径が1~2μmの粉砕粉を得た。そして、この粉砕粉と副成分の出発原料とを湿式混合し、その後乾燥させることで、混合粉末を得た。この際、副成分の出発原料としては、CoO粉末、TiO2粉末、SiO2粉末、CaCO3粉末、Nb2O5粉末、V2O5粉末を準備し、焼成後に所定の比率となるように秤量した。 Next, the above calcined material was put into a ball mill filled with steel balls, and pulverized for 16 hours to obtain a pulverized powder having an average particle size of 1 to 2 μm. Then, the pulverized powder and the starting material of the subcomponent were wet-mixed and then dried to obtain a mixed powder. At this time, CoO powder, TiO 2 powder, SiO 2 powder, CaCO 3 powder, Nb 2 O 5 powder, and V 2 O 5 powder are prepared as starting materials for the subcomponents, and are mixed in a predetermined ratio after firing. weighed.
次に、上記の混合粉末100質量部に対して、ポリビニルアルコールを0.8質量部添加し、これをスプレードライヤで噴霧、乾燥することで顆粒にした。そして、得られた顆粒を、2種類の金型にそれぞれ充填し、100MPaの圧力で加圧成形することで、トロイダル形状の成形体を得た。 Next, 0.8 parts by mass of polyvinyl alcohol was added to 100 parts by mass of the mixed powder, and the mixture was sprayed with a spray dryer and dried to form granules. Then, the obtained granules were filled in two types of molds, respectively, and pressure-molded at a pressure of 100 MPa to obtain a toroidal-shaped compact.
ここで、「2種類の金型」とは、より小さいサイズである「小コア」を得るための金型と、より大きいサイズである「大コア」を得るための金型である。すなわち、上記の工程により、焼成後に「小コア」となる「小成形体」と、焼成後に「大コア」となる「大成形体」と、を得た。 Here, "two kinds of molds" are a mold for obtaining a "small core" of a smaller size and a mold for obtaining a "large core" of a larger size. That is, through the above steps, a "small compact" that will become a "small core" after firing and a "large compact" that will become a "large core" after firing were obtained.
次に、上記の各成形体(「小成形体」および「大成形体」)を以下の条件で焼成した。焼成の条件は、保持温度を1250℃とし、保持時間を5時間とし、焼成雰囲気を酸素と窒素の混合雰囲気とした。なお、温度保持過程での酸素分圧は、4vol%とし、降温過程においては、1250℃~1000℃の温度帯で酸素分圧を単調減少させ、1000℃以下の温度帯で酸素分圧が0.02vol%となるように制御した。また、昇温速度は200℃/時間とし、冷却速度は100℃/時間とした。このような条件で焼成することで、焼結体としてのフェライトコア(「大コア」および「小コア」)が得られた。 Next, each of the above compacts (“small compact” and “large compact”) was fired under the following conditions. The firing conditions were a holding temperature of 1250° C., a holding time of 5 hours, and a mixed atmosphere of oxygen and nitrogen as the firing atmosphere. The oxygen partial pressure in the temperature holding process is 4 vol%, and in the temperature lowering process, the oxygen partial pressure is monotonically decreased in the temperature range of 1250 ° C. to 1000 ° C., and the oxygen partial pressure is 0 in the temperature range of 1000 ° C. or less. It was controlled to be .02 vol%. The temperature rising rate was 200° C./hour, and the cooling rate was 100° C./hour. By firing under these conditions, ferrite cores (“large core” and “small core”) were obtained as sintered bodies.
なお、得られたフェライトコアの形状は、小コアと大コアのいずれの場合においても上述したようにトロイダル形状であった。また、作製した小コアおよび大コアの寸法は、下記の通りであった。
小コア・・・外径:20mm,内径:10mm,高さ:5mm,磁路断面積:25mm2
大コア・・・外径:50mm,内径:10mm,高さ:10mm,磁路断面積:200mm2
The shape of the obtained ferrite core was a toroidal shape as described above in both cases of the small core and the large core. In addition, the dimensions of the small core and the large core produced were as follows.
Small core: outer diameter: 20 mm, inner diameter: 10 mm, height: 5 mm, magnetic path cross-sectional area: 25 mm 2
Large core: outer diameter: 50 mm, inner diameter: 10 mm, height: 10 mm, magnetic path cross-sectional area: 200 mm 2
また、作製したフェライトコアについては、その組成をXRFにより分析した。測定した結果を表1、表3、表5、表7、表9、表11、表13、表15、表17、表19および表21に示す。 Moreover, the composition of the produced ferrite core was analyzed by XRF. The measurement results are shown in Tables 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 and 21.
また、各実施例および各比較例の各小コアおよび各大コアについて、周波数200kHz、300kHz、400kHz、磁束密度100mTの条件で、100℃での磁気損失Pcvを測定した。下記の方法により渦電流損失Pevを計算した。
式(3)に示すように、周波数200kHz~400kHzでの磁気損失Pcvは、ヒステリシス損失Phvと、渦電流損失Pevとの和で表せる。
Pcv=Phv+Pev ・・・(3)
次にヒステリシス損失Phvは周波数fに比例し、Pevはfの2乗に比例するため、式(4)のように表せる。
Pcv=Kh×f+Ke×f2 ・・・(4)
ここで、Khはヒステリシス損失係数であり、Keは渦電流損失係数である。
式(4)の両辺を周波数fで割ると、式(5)のように表せる。
Pcv/f=Kh+Ke×f ・・・(5)
式(5)より、Pcv/fが周波数fの一次関数となるため、傾きから渦電流損失係数Keが得られる。
すなわち、周波数200kHz、300kHz、400kHzのそれぞれの磁気損失Pcvに基づき、渦電流損失係数Keを得た。
得られた渦電流損失係数Keに基づき、下記の式(6)により渦電流損失Pevを計算した。
Pev=Ke×f2 ・・・(6)
Further, the magnetic loss Pcv at 100° C. was measured under conditions of frequencies of 200 kHz, 300 kHz and 400 kHz and a magnetic flux density of 100 mT for each small core and each large core of each example and each comparative example. The eddy current loss Pev was calculated by the following method.
As shown in Equation (3), magnetic loss Pcv at frequencies of 200 kHz to 400 kHz can be expressed as the sum of hysteresis loss Phv and eddy current loss Pev.
Pcv=Phv+Pev (3)
Next, since the hysteresis loss Phv is proportional to the frequency f and Pev is proportional to the square of f, it can be expressed as Equation (4).
Pcv=Kh×f+Ke×f 2 (4)
where Kh is the hysteresis loss factor and Ke is the eddy current loss factor.
Dividing both sides of the equation (4) by the frequency f yields the equation (5).
Pcv/f=Kh+Ke×f (5)
Since Pcv/f is a linear function of the frequency f from Equation (5), the eddy current loss coefficient Ke can be obtained from the slope.
That is, the eddy current loss coefficient Ke was obtained based on the respective magnetic losses Pcv at frequencies of 200 kHz, 300 kHz, and 400 kHz.
Based on the obtained eddy current loss coefficient Ke, the eddy current loss Pev was calculated by the following formula (6).
Pev=Ke×f 2 (6)
さらに、各実施例および各比較例の各小コアおよび各大コアのPevに基づき、下記式(7)によりΔPevを算出した。結果を表2、表4、表6、表8、表10、表12、表14、表16、表18、表20および表22に示す。なお、ΔPevが400kW/m3以下である場合を良好であると判断した。
ΔPev=(大コアのPev)-(小コアのPev) ・・・(7)
Furthermore, ΔPev was calculated by the following formula (7) based on the Pev of each small core and each large core in each example and each comparative example. The results are shown in Tables 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 and 22. A ΔPev of 400 kW/m 3 or less was judged to be good.
ΔPev=(Pev of large core)−(Pev of small core) (7)
表1および表2では、主に、副成分の含有率を固定して、主成分の組成を変更した実験結果を示している。 Tables 1 and 2 mainly show experimental results in which the content of the subcomponent was fixed and the composition of the main component was changed.
表1および表2に示すように、主成分が、Fe2O3換算で51.0~53.5モル%の酸化鉄と、ZnO換算で7~16.5モル%の酸化亜鉛と、残部である酸化マンガンと、で構成してあり、所定量の副成分を含有する場合(実施例1~11)は、ΔPevが400kW/3以下であり、なおかつ、比較例1~6に比べて、ΔPevが小さいことが確認できた。 As shown in Tables 1 and 2, the main components are 51.0 to 53.5 mol% iron oxide in terms of Fe 2 O 3 , 7 to 16.5 mol% zinc oxide in terms of ZnO, and the balance and manganese oxide, and when containing a predetermined amount of subcomponents (Examples 1 to 11), ΔPev is 400 kW/ 3 or less, and compared to Comparative Examples 1 to 6, It was confirmed that ΔPev was small.
表3~表6では、主成分がFe2O3換算で52.6モル%の酸化鉄と、ZnO換算で9.5モル%の酸化亜鉛と、残部である酸化マンガンと、で構成してある場合において、第1副成分であるCoおよびTiの含有率を変更した場合の実験結果を示している。 In Tables 3 to 6, the main components are composed of 52.6 mol% iron oxide in terms of Fe 2 O 3 , 9.5 mol% zinc oxide in terms of ZnO, and the balance manganese oxide. In certain cases, experimental results are shown when the contents of Co and Ti, which are the first subcomponents, are changed.
表3~表6に示すように、第1副成分として、コバルトをCoO換算で0.09~0.27質量部、チタンをTiO2換算で0.13~0.45質量部、含有する場合(実施例12~24)は、ΔPevが400kW/m3以下であり、比較例7~14に比べて、ΔPevが小さいことが確認できた。 As shown in Tables 3 to 6, when containing 0.09 to 0.27 parts by mass of cobalt in terms of CoO and 0.13 to 0.45 parts by mass of titanium in terms of TiO 2 as the first subcomponents (Examples 12 to 24) had a ΔPev of 400 kW/m 3 or less, and it was confirmed that the ΔPev was smaller than those of Comparative Examples 7 to 14.
表7および表8では、主成分がFe2O3換算で52.2モル%の酸化鉄と、ZnO換算で11.5モル%の酸化亜鉛と、残部である酸化マンガンと、で構成してある場合において、第1副成分であるCoおよびTiの含有率を変更した場合の実験結果を示している。 In Tables 7 and 8, the main components are iron oxide of 52.2 mol% in terms of Fe 2 O 3 , zinc oxide of 11.5 mol% in terms of ZnO, and manganese oxide as the balance. In certain cases, experimental results are shown when the contents of Co and Ti, which are the first subcomponents, are changed.
表7および表8に示すように、主成分がFe2O3換算で52.2モル%の酸化鉄と、ZnO換算で11.5モル%の酸化亜鉛と、残部である酸化マンガンと、で構成してある場合においも、第1副成分として、コバルトをCoO換算で0.09~0.27質量部、チタンをTiO2換算で0.13~0.45質量部、含有する場合(実施例25~31)は、ΔPevが400kW/m3以下であることが確認できた。 As shown in Tables 7 and 8, the main components are 52.2 mol% iron oxide in terms of Fe 2 O 3 , 11.5 mol% zinc oxide in terms of ZnO, and the balance manganese oxide. In the case where it is configured, as the first subcomponent, cobalt is converted to 0.09 to 0.27 parts by mass in terms of CoO, and titanium is contained in 0.13 to 0.45 parts by mass in terms of TiO 2 (implementation Examples 25 to 31) were confirmed to have a ΔPev of 400 kW/m 3 or less.
表9~表14では、「y+0.014x」および「y+0.020x」を変更した場合の実験結果を示している。 Tables 9 to 14 show experimental results when "y+0.014x" and "y+0.020x" are changed.
表9~表14に示すように、yが、0.10~0.32であり、xが、6~18であり、yおよびxが、式(1)および(2)を満たす場合(実施例32~62)は、ΔPevが400kW/m3以下であり、比較例15~22に比べて、ΔPevが小さいことが確認できた。 As shown in Tables 9 to 14, when y is 0.10 to 0.32, x is 6 to 18, and y and x satisfy formulas (1) and (2) (implementation Examples 32 to 62) had a ΔPev of 400 kW/m 3 or less, and it was confirmed that the ΔPev was smaller than those of Comparative Examples 15 to 22.
表15~表20では、主成分がFe2O3換算で52.2モル%の酸化鉄と、ZnO換算で11.5モル%の酸化亜鉛と、残部である酸化マンガンと、で構成してある場合において、「y+0.014x」および「y+0.020x」を変更した場合の実験結果を示している。 In Tables 15 to 20, the main components are 52.2 mol% of iron oxide in terms of Fe 2 O 3 , 11.5 mol% of zinc oxide in terms of ZnO, and the balance of manganese oxide. In some cases, experimental results are shown when "y+0.014x" and "y+0.020x" are changed.
表15~表20に示すように、主成分がFe2O3換算で52.2モル%の酸化鉄と、ZnO換算で11.5モル%の酸化亜鉛と、残部である酸化マンガンと、で構成してある場合においても、yが、0.10~0.32であり、xが、6~18であり、yおよびxが、式(1)および(2)を満たす場合(実施例63~93)は、ΔPevが400kW/m3以下であり、比較例23~30に比べて、ΔPevが小さいことが確認できた。 As shown in Tables 15 to 20, the main components are 52.2 mol% iron oxide in terms of Fe 2 O 3 , 11.5 mol% zinc oxide in terms of ZnO, and the balance manganese oxide. Even if configured, y is 0.10 to 0.32, x is 6 to 18, and y and x satisfy equations (1) and (2) (Example 63 ˜93) had a ΔPev of 400 kW/m 3 or less, and it was confirmed that the ΔPev was smaller than those of Comparative Examples 23-30.
表1~表22より、電気抵抗率が5Ω・m以上である場合(実施例1~93)は、電気抵抗率が4Ω・m以下である場合(比較例31~34)に比べて、ΔPevが小さくなることが確認できた。 From Tables 1 to 22, ΔPev was confirmed to be smaller.
表1~表22の結果を総合すると、主成分の組成と、第1副成分(Co,Ti)と、第2副成分(Si,Nb,V,Ca)の含有率、xの値、yの値とが、全て本発明の基準となる範囲を満足し、xおよびyが式(1)および(2)を満足し、電気抵抗率が5Ω・m以上であることで、コアのサイズまたは形状の違いによる渦電流損失の変化を抑制できることが確認できた。また、上記の要素のうち一部でも、基準となる範囲を満足しない場合には、コアのサイズまたは形状の違いによる渦電流損失の変化が増大することが確認できた。 Combining the results in Tables 1 to 22, the composition of the main component, the content of the first subcomponent (Co, Ti), and the second subcomponent (Si, Nb, V, Ca), the value of x, and the value of y All of the values of and satisfy the ranges that are the criteria of the present invention, x and y satisfy the formulas (1) and (2), and the electrical resistivity is 5 Ω · m or more, so that the size of the core or It was confirmed that the change in eddy current loss due to the difference in shape can be suppressed. It was also confirmed that if even some of the above factors do not satisfy the standard range, the change in eddy current loss increases due to the difference in the size or shape of the core.
Claims (3)
前記主成分は、Fe2O3換算で51.0~53.5モル%の酸化鉄と、ZnO換算で7~16.5モル%の酸化亜鉛と、残部である酸化マンガンと、で構成され、
前記主成分100質量部に対して、前記第1副成分として、コバルトをCoO換算で0.09~0.27質量部、チタンをTiO2換算で0.13~0.45質量部、含有しており、
前記主成分100質量部に対して、前記第2副成分として、ケイ素、ニオブ、バナジウムおよびカルシウムをそれぞれSiO2換算、Nb2O5換算、V2O5換算およびCaCO3換算した総量をy質量部、含有しており、
平均結晶粒径がxμmであり、
前記yは、0.10~0.32であり、
前記xは、6~18であり、
前記yおよび前記xは、下記式(1)および(2)を満たし、
電気抵抗率が5Ω・m以上であるフェライト組成物。
y+0.014x≧0.229 ・・・(1)
y+0.020x≦0.549 ・・・(2) having a main component, a first subcomponent and a second subcomponent,
The main component is composed of 51.0 to 53.5 mol % of iron oxide in terms of Fe 2 O 3 , 7 to 16.5 mol % of zinc oxide in terms of ZnO, and manganese oxide as the balance. ,
Containing 0.09 to 0.27 parts by mass of cobalt in terms of CoO and 0.13 to 0.45 parts by mass of titanium in terms of TiO 2 as the first subcomponent with respect to 100 parts by mass of the main component. and
With respect to 100 parts by mass of the main component, the total amount of silicon, niobium, vanadium, and calcium as the second subcomponents in terms of SiO 2 , Nb 2 O 5 , V 2 O 5 , and CaCO 3 is y mass. part, contains
The average crystal grain size is x μm,
The y is 0.10 to 0.32,
The x is 6 to 18,
The y and the x satisfy the following formulas (1) and (2),
A ferrite composition having an electrical resistivity of 5 Ω·m or more.
y+0.014x≧0.229 (1)
y+0.020x≦0.549 (2)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2021060964A JP7643911B2 (en) | 2021-03-31 | 2021-03-31 | Ferrite composition, electronic component, and power supply device |
| CN202210322803.3A CN115215642B (en) | 2021-03-31 | 2022-03-30 | Ferrite composition, electronic component, and power supply device |
| JP2025030170A JP2025084862A (en) | 2021-03-31 | 2025-02-27 | Ferrite composition, electronic component, and power supply device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2021060964A JP7643911B2 (en) | 2021-03-31 | 2021-03-31 | Ferrite composition, electronic component, and power supply device |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2025030170A Division JP2025084862A (en) | 2021-03-31 | 2025-02-27 | Ferrite composition, electronic component, and power supply device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2022156991A true JP2022156991A (en) | 2022-10-14 |
| JP7643911B2 JP7643911B2 (en) | 2025-03-11 |
Family
ID=83559374
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2021060964A Active JP7643911B2 (en) | 2021-03-31 | 2021-03-31 | Ferrite composition, electronic component, and power supply device |
| JP2025030170A Pending JP2025084862A (en) | 2021-03-31 | 2025-02-27 | Ferrite composition, electronic component, and power supply device |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2025030170A Pending JP2025084862A (en) | 2021-03-31 | 2025-02-27 | Ferrite composition, electronic component, and power supply device |
Country Status (2)
| Country | Link |
|---|---|
| JP (2) | JP7643911B2 (en) |
| CN (1) | CN115215642B (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023182133A1 (en) * | 2022-03-23 | 2023-09-28 | 戸田工業株式会社 | MnZn-BASED FERRITE |
| JP7539601B1 (en) | 2023-04-26 | 2024-08-23 | Jfeケミカル株式会社 | MnZn ferrite |
| WO2024225176A1 (en) * | 2023-04-26 | 2024-10-31 | Jfeケミカル株式会社 | MnZn-BASED FERRITE |
| JP7580014B1 (en) | 2023-06-28 | 2024-11-08 | Jfeケミカル株式会社 | MnZn ferrite |
| WO2025004945A1 (en) * | 2023-06-28 | 2025-01-02 | Jfeケミカル株式会社 | Mnzn-based ferrite |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001068326A (en) * | 1999-08-30 | 2001-03-16 | Tdk Corp | MnZn BASED FERRITE |
| JP2004035372A (en) | 2002-07-08 | 2004-02-05 | Minebea Co Ltd | Low loss ferrite material |
| JP5332254B2 (en) | 2008-03-25 | 2013-11-06 | Tdk株式会社 | Ferrite sintered body |
| CN101409124A (en) * | 2008-08-02 | 2009-04-15 | 广东风华高新科技股份有限公司 | MnZn ferrite material and method for preparing magnet core |
| JP5786322B2 (en) | 2010-11-30 | 2015-09-30 | Tdk株式会社 | Ferrite core |
| CN102219487B (en) | 2011-04-16 | 2013-02-20 | 江门安磁电子有限公司 | Wide-temperature low-loss MnZn ferrite material and preparation method thereof |
| JP5828308B2 (en) | 2011-10-26 | 2015-12-02 | Tdk株式会社 | Ferrite core and transformer |
| CN103680796B (en) * | 2013-12-10 | 2016-03-09 | 苏州冠达磁业有限公司 | High temperature low-power consumption height superimposed characteristics manganese-zinc ferrite and preparation method thereof |
| CN105097169B (en) * | 2014-05-15 | 2018-05-04 | Tdk株式会社 | FERRITE CORE, electronic unit and supply unit |
| JP6409553B2 (en) * | 2014-12-16 | 2018-10-24 | Tdk株式会社 | Ferrite core, electronic component, and power supply device |
| JP6330645B2 (en) * | 2014-12-16 | 2018-05-30 | Tdk株式会社 | Ferrite core, electronic component, and power supply |
| JP6551057B2 (en) * | 2015-08-26 | 2019-07-31 | Tdk株式会社 | Ferrite core, electronic component, and power supply device |
| WO2017164350A1 (en) | 2016-03-25 | 2017-09-28 | 日立金属株式会社 | METHOD FOR PRODUCING MnZn-BASED FERRITE, AND MnZn-BASED FERRITE |
| JP6142950B1 (en) * | 2016-09-30 | 2017-06-07 | Tdk株式会社 | Ferrite composition and electronic component |
| JP6540977B1 (en) * | 2018-01-17 | 2019-07-10 | Tdk株式会社 | Ferrite sintered body and electronic component using the same |
| JP7484086B2 (en) | 2019-05-15 | 2024-05-16 | 株式会社プロテリアル | Manufacturing method of MnZn ferrite core |
-
2021
- 2021-03-31 JP JP2021060964A patent/JP7643911B2/en active Active
-
2022
- 2022-03-30 CN CN202210322803.3A patent/CN115215642B/en active Active
-
2025
- 2025-02-27 JP JP2025030170A patent/JP2025084862A/en active Pending
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023182133A1 (en) * | 2022-03-23 | 2023-09-28 | 戸田工業株式会社 | MnZn-BASED FERRITE |
| JP7539601B1 (en) | 2023-04-26 | 2024-08-23 | Jfeケミカル株式会社 | MnZn ferrite |
| WO2024225176A1 (en) * | 2023-04-26 | 2024-10-31 | Jfeケミカル株式会社 | MnZn-BASED FERRITE |
| JP7580014B1 (en) | 2023-06-28 | 2024-11-08 | Jfeケミカル株式会社 | MnZn ferrite |
| JP7604714B1 (en) | 2023-06-28 | 2024-12-23 | Jfeケミカル株式会社 | MnZn ferrite |
| WO2025004945A1 (en) * | 2023-06-28 | 2025-01-02 | Jfeケミカル株式会社 | Mnzn-based ferrite |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115215642B (en) | 2024-01-02 |
| JP2025084862A (en) | 2025-06-03 |
| JP7643911B2 (en) | 2025-03-11 |
| CN115215642A (en) | 2022-10-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7643911B2 (en) | Ferrite composition, electronic component, and power supply device | |
| KR102414450B1 (en) | Ferrite composition, electronic component, and power supply device | |
| KR20170028918A (en) | Ferrite composition and electronic device | |
| JP5423962B2 (en) | Ferrite composition, ferrite core and electronic component | |
| JP6558505B2 (en) | Ni-based ferrite sintered body, coil component, and manufacturing method of Ni-based ferrite sintered body | |
| JP5699542B2 (en) | Ferrite composition, ferrite core and electronic component | |
| JP2025016636A (en) | MnZn-based ferrite and its manufacturing method | |
| JP5699540B2 (en) | Ferrite composition, ferrite core and electronic component | |
| JP5831256B2 (en) | Ferrite composition, ferrite core and electronic component | |
| JP5510273B2 (en) | Ferrite composition, ferrite core and electronic component | |
| JP4826093B2 (en) | Ferrite, electronic component and manufacturing method thereof | |
| JP5510296B2 (en) | Ferrite composition, ferrite core and electronic component | |
| JP7643912B2 (en) | Ferrite composition, electronic component, and power supply device | |
| JP2005108977A (en) | Mn-Zn SYSTEM FERRITE, MAGNETIC CORE FOR TRANSFORMER, AND TRANSFORMER | |
| JP6064526B2 (en) | Ferrite composition, ferrite core and electronic component | |
| JP3584437B2 (en) | Method for producing Mn-Zn ferrite | |
| JP5716538B2 (en) | Ferrite composition and electronic component | |
| JP5831255B2 (en) | Ferrite composition, ferrite core and electronic component | |
| JP5812069B2 (en) | Ferrite composition, ferrite core and electronic component | |
| JP2025151055A (en) | Ferrite composition, magnetic core, electronic component and power supply device | |
| JP5929119B2 (en) | Ferrite composition and electronic component | |
| JP5811816B2 (en) | Ferrite composition, ferrite core and electronic component | |
| JP5742504B2 (en) | Ferrite composition and electronic component | |
| JP5733100B2 (en) | Ferrite composition and electronic component | |
| JP6311298B2 (en) | Ferrite composition, ferrite core and electronic component |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231121 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240813 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240820 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241018 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250128 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250227 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7643911 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |