JP2022100369A - Separator for liquid lead-acid batteries - Google Patents
Separator for liquid lead-acid batteries Download PDFInfo
- Publication number
- JP2022100369A JP2022100369A JP2022072931A JP2022072931A JP2022100369A JP 2022100369 A JP2022100369 A JP 2022100369A JP 2022072931 A JP2022072931 A JP 2022072931A JP 2022072931 A JP2022072931 A JP 2022072931A JP 2022100369 A JP2022100369 A JP 2022100369A
- Authority
- JP
- Japan
- Prior art keywords
- microporous film
- separator
- sheet
- liquid lead
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
【課題】主原料として沈降法で製造された合成非晶質シリカであるシリカ微粉を用いて製造した微多孔質膜からなる液式鉛蓄電池用セパレータにあって、これを使用した電池で電池使用が進んだ場合にも、セパレータから電解液中に溶出するアルカリ金属イオン量やハロゲンイオン量を少なくすることができ、充電受入性の向上を妨げにくくでき、電池寿命性能の低下を招きにくくできるセパレータを提供すること。【解決手段】アルカリ珪酸塩水溶液と鉱酸を反応させ沈殿析出により非晶質シリカを合成後、濾過・水洗により純度の調整を行う沈降法で製造された合成非晶質シリカであるシリカ微粉を40重量%以上含む微多孔質膜からなる液式鉛蓄電池用セパレータであって、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm2/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm2/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)であることを特徴とする液式鉛蓄電池用セパレータ。【選択図】なしKind Code: A1 A separator for a liquid lead-acid battery comprising a microporous film produced using silica fine powder, which is synthetic amorphous silica produced by a precipitation method, as a main raw material, and used in a battery using the separator. Separator that can reduce the amount of alkali metal ions and halogen ions that are eluted from the separator into the electrolyte even when the deterioration progresses, making it less likely to hinder the improvement of charge acceptance and reduce the deterioration of battery life performance. to provide SOLUTION: Silica fine powder, which is synthetic amorphous silica produced by a sedimentation method in which amorphous silica is synthesized by precipitation by reacting an aqueous alkali silicate solution with a mineral acid, and then the purity is adjusted by filtering and washing with water. A liquid lead-acid battery separator comprising a microporous film containing 40% by weight or more, wherein the microporous film (10 cm × 10 cm × 2 sheets) is immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50 ° C. for 24 hours When left to stand, the concentration of alkali metals (Li, Na, K, Rb, Cs) (ICP emission spectroscopic analysis) is 5 mg/100 cm2/sheet or less (however, the base thickness of the microporous film is converted to 0.2 mm value), and the concentration of halogen content (F, Cl, Br, I) (ICP emission spectroscopic analysis) is 0.4 mg/100 cm2/sheet or less (however, the base thickness of the microporous film is converted to 0.2 mm). A separator for a liquid lead-acid battery, characterized by: [Selection figure] None
Description
本発明は、電解液を非流動化させてメンテナンスフリー化したいわゆる密閉型鉛蓄電池(制御弁式鉛蓄電池とも言う)ではなく、旧来の方式である流動性をもった電解液を有したいわゆる液式鉛蓄電池(ベント式鉛蓄電池、開放型鉛蓄電池とも言う)に用いる、液式鉛蓄電池用セパレータに関する。 The present invention is not a so-called closed-type lead-acid battery (also referred to as a control valve type lead-acid battery) in which the electrolytic solution is made non-fluidized to be maintenance-free, but a so-called liquid having a fluid electrolytic solution, which is a conventional method. The present invention relates to a separator for a liquid lead-acid battery used for a lead-acid battery (also referred to as a vent-type lead-acid battery or an open-type lead-acid battery).
従来、液式鉛蓄電池用セパレータとして、ポリエチレンセパレータと呼ばれる、通常、重量平均分子量が50万以上のポリオレフィン系樹脂(通常超高分子量ポリエチレン)20~60重量%と、比表面積が50m2/g以上の無機粉体(通常シリカ微粉)40~80重量%と、開孔剤を兼ねる可塑剤(通常鉱物オイル)0~30重量%と、界面活性剤(固形分)0~10重量%と、添加剤(酸化防止剤、耐候剤等)0~5重量%とからなる微多孔質フィルム製セパレータがある。 Conventionally, as a separator for a liquid lead storage battery, a polyethylene separator, which is a polyolefin resin having a weight average molecular weight of 500,000 or more (usually an ultra-high molecular weight polyethylene) of 20 to 60% by weight and a specific surface area of 50 m 2 / g or more. 40-80% by weight of inorganic powder (usually silica fine powder), 0-30% by weight of plasticizer (usually mineral oil) that also serves as a pore-opening agent, and 0-10% by weight of surfactant (solid content). There is a separator made of a microporous film containing 0 to 5% by weight of an agent (antioxidant, weather resistant agent, etc.).
前記微多孔質フィルム製セパレータは、通常、前記ポリオレフィン系樹脂と前記無機粉体と前記可塑剤(上記セパレータ組成よりも多めに配合)と前記界面活性剤と前記添加剤を混合した原料組成物を加熱溶融混練しながらシート状に押し出し、所定の厚さにロール圧延成形した後、前記可塑剤の全部または一部を抽出除去することによって得られる、ベース厚さが0.1~0.3mm程度、平均細孔径(水銀圧入法)が0.01~0.5μm程度、空隙率(水銀圧入法)が50~90体積%程度のシートである。 The separator made of a microporous film is usually a raw material composition in which the polyolefin resin, the inorganic powder, the plasticizer (combined in a larger amount than the separator composition), the surfactant and the additive are mixed. The base thickness is about 0.1 to 0.3 mm, which is obtained by extruding into a sheet shape while heat-melting and kneading, rolling and molding to a predetermined thickness, and then extracting and removing all or part of the plasticizer. The sheet has an average pore diameter (mercury injection method) of about 0.01 to 0.5 μm and a porosity (mercury injection method) of about 50 to 90% by volume.
前記無機粉体の役割は、原料組成物を加熱溶融混練する際に可塑剤を吸着担持しておくこと、微多孔質フィルムの微多孔構造(緻密で複雑な孔構造と高空隙率)を作り出すこと、微多孔質フィルムの製造過程で可塑剤を除去した際に生じるシート収縮に耐え寸法安定性を保つこと、微多孔質フィルムの電池組み込み時の使用前に行われる乾燥工程(水分除去工程)のような加熱処理時にもシート収縮に耐え寸法安定性を保つこと、微多孔質フィルムの電解液吸液性を良くすること、微多孔質フィルムの電解液濡れ性を良くすること、微多孔質フィルムの電解液保持性を良くすること、などである。 The role of the inorganic powder is to adsorb and support a plasticizer when the raw material composition is heated, melted and kneaded, and to create a microporous structure (dense and complicated pore structure and high porosity) of the microporous film. That, to withstand the sheet shrinkage that occurs when the plasticizer is removed in the process of manufacturing the microporous film and to maintain dimensional stability, and the drying step (moisture removal step) that is performed before use when the microporous film is installed in the battery. To withstand sheet shrinkage and maintain dimensional stability even during heat treatment such as, improve the electrolyte absorption property of the microporous film, improve the electrolyte wettability of the microporous film, and microporous For example, to improve the electrolyte retention of the film.
よって、通常、前記無機粉体としては、シリカ微粉が用いられ、特に、比表面積が大きいこと、吸油量が大きいこと、親水基(シラノール基)が多いこと、などの観点から、乾式法または湿式法の製造方法のうち、湿式法の沈降法で製造された合成非晶質シリカが、用いられている。 Therefore, usually, silica fine powder is used as the inorganic powder, and in particular, from the viewpoints of having a large specific surface area, a large amount of oil absorption, and a large number of hydrophilic groups (silanol groups), a dry method or a wet method is used. Among the manufacturing methods of the method, synthetic amorphous silica manufactured by the precipitation method of the wet method is used.
一方、鉛蓄電池の車載用途においては、アイドリングストップ車に搭載される鉛蓄電池では、放電量が多くなるため、充電受入性の高いことが求められるようになってきている。鉛蓄電池の充電受入性を高めようとする場合、電解液中にアルカリ金属(Li、Na、K、Rb、Cs)イオンが多く存在すると、充電受入性の向上の妨げになることが知られている(特許文献1)。 On the other hand, in the case of in-vehicle use of lead-acid batteries, the lead-acid batteries mounted on idling stop vehicles are required to have high charge acceptability because the amount of discharge is large. When trying to improve the charge acceptability of lead-acid batteries, it is known that the presence of a large amount of alkali metal (Li, Na, K, Rb, Cs) ions in the electrolytic solution hinders the improvement of charge acceptability. (Patent Document 1).
また、鉛蓄電池においては、ハロゲン(F、Cl、Br、I)の不純物が多く混入すると、鉛または鉛合金製の極板格子や極柱を腐食させ、電池寿命性能を低下させる要因になり得ることも知られている(特許文献2)。 Further, in a lead-acid battery, if a large amount of halogen (F, Cl, Br, I) impurities are mixed, it may corrode the lead or lead alloy plate lattice or pole column and cause a decrease in battery life performance. It is also known (Patent Document 2).
前記沈降法で製造される合成非晶質シリカとは、中性またはアルカリ性下でアルカリ珪酸塩(珪酸ナトリウム)水溶液と鉱酸(硫酸)を反応させて非晶質シリカを沈殿析出させるという方法によるものであり、生成された非晶質シリカには、副生物として硫酸ナトリウム等の塩類が含まれており、後工程で濾過・水洗の処理により塩類を除去する処理(純度を高める処理)が行われている。 The synthetic amorphous silica produced by the precipitation method is a method of precipitating and precipitating amorphous silica by reacting an aqueous solution of an alkaline silicate (sodium silicate) with a mineral acid (sulfuric acid) under neutral or alkaline conditions. The produced amorphous silica contains salts such as sodium sulfate as a by-product, and is subjected to a treatment (treatment to increase purity) to remove the salts by filtration and washing with water in a subsequent step. It has been.
しかし、前記非晶質シリカの製造工程における塩類の除去処理は完全ではないため、通常、製造された前記非晶質シリカは、副生物の硫酸ナトリウムを微量含んでいる。よって、このようなシリカ微粉を用いて製造した前記微多孔質フィルムにも、微量の硫酸ナトリウムが含まれており、鉛蓄電池用セパレータとして使用された場合には、電池使用が進むにつれて、電解液中にNaイオンを溶出させてしまい、溶出量が多い場合には、充電受入性の向上を妨げる要因になり得る。 However, since the salt removal treatment in the process of producing the amorphous silica is not perfect, the produced amorphous silica usually contains a trace amount of sodium sulfate as a by-product. Therefore, the microporous film produced using such silica fine powder also contains a small amount of sodium sulfate, and when used as a separator for a lead storage battery, an electrolytic solution is used as the battery is used. If Na ions are eluted inside and the amount of elution is large, it may be a factor that hinders the improvement of charge acceptability.
また、前記非晶質シリカの製造工程における塩類の除去処理を水洗にて行うに際し、水洗に使用する水が、ハロゲンであるCl分を混入させてしまうことも起こり得る。つまり、水道水(残留塩素が含まれる)を使う場合や、塩分(塩化ナトリウム)を含んだ地下水を使う場合などである。よって、このような水を用いて水洗処理が行われたシリカ微粉を用いて製造した前記微多孔質フィルムにも、微量のCl分が含まれており、鉛蓄電池用セパレータとして使用された場合には、電池使用が進むにつれて、電解液中にClイオンを溶出させてしまい、溶出量が多い場合には、極板格子や極柱の腐食を促し、電池寿命性能を低下させる要因になり得る。 Further, when the salt removal treatment in the manufacturing process of the amorphous silica is performed by washing with water, the water used for washing may be mixed with Cl, which is a halogen. That is, when tap water (containing residual chlorine) is used, or when groundwater containing salt (sodium chloride) is used. Therefore, the microporous film produced by using silica fine powder washed with water using such water also contains a small amount of Cl, and is used as a separator for a lead storage battery. Will elute Cl ions into the electrolytic solution as the battery is used, and if the amount of elution is large, it may promote corrosion of the electrode plate lattice and the electrode column, and may be a factor of deteriorating the battery life performance.
よって、本発明は、前記従来の問題点に鑑み、主原料として沈降法で製造された合成非晶質シリカであるシリカ微粉を用いて製造した微多孔質膜からなる液式鉛蓄電池用セパレータにあって、これを使用した電池で電池使用が進んだ場合にも、セパレータから電解液中に溶出するアルカリ金属イオン量やハロゲンイオン量を少なくすることができ、充電受入性の向上を妨げにくくでき、電池寿命性能の低下を招きにくくできるセパレータを提供することを目的とする。 Therefore, in view of the above-mentioned conventional problems, the present invention provides a separator for a liquid lead-acid battery made of a microporous film manufactured by using silica fine powder which is a synthetic amorphous silica manufactured by a precipitation method as a main raw material. Therefore, even when the battery is used in a battery using this, the amount of alkali metal ions and the amount of halogen ions eluted from the separator into the electrolytic solution can be reduced, and the improvement of charge acceptability can be less likely to be hindered. It is an object of the present invention to provide a separator that can prevent a decrease in battery life performance.
本発明の液式鉛蓄電池用セパレータは、前記目的を達成するべく、アルカリ珪酸塩水溶液と鉱酸を反応させ沈殿析出により非晶質シリカを合成後、濾過・水洗により純度の調整を行う沈降法で製造された合成非晶質シリカであるシリカ微粉を40重量%以上含む微多孔質膜からなる液式鉛蓄電池用セパレータであって、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm2/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm2/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)であることを特徴とする。 In order to achieve the above object, the separator for a liquid lead storage battery of the present invention is a precipitation method in which an aqueous alkali silicate solution is reacted with a mineral acid to synthesize amorphous silica by precipitation precipitation, and then the purity is adjusted by filtration and washing with water. A separator for a liquid lead storage battery comprising a microporous film containing 40% by weight or more of silica fine powder, which is a synthetic amorphous silica produced in the above, wherein the microporous film (10 cm × 10 cm × 2 sheets) is heated. The concentration (ICP emission spectroscopic analysis) of the alkali metal content (Li, Na, K, Rb, Cs) when immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at 50 ° C. for 24 hours and left to stand is 5 mg / 100 cm 2 / sheet or less. (However, the base thickness of the microporous film is converted to 0.2 mm), and the concentration of halogen (F, Cl, Br, I) (ICP emission spectroscopic analysis) is 0.4 mg / 100 cm 2 / sheet or less (however, value). However, it is characterized in that the base thickness of the microporous film is 0.2 mm conversion value).
また、前記濾過・水洗は、イオン交換水、または、塩分(塩化ナトリウム)を含まない地下水を使用して行われることを特徴とする。 Further, the filtration / washing is performed using ion-exchanged water or groundwater containing no salt (sodium chloride).
また、前記微多孔質膜は、前記シリカ微粉とポリオレフィン系樹脂を主体としてなる微多孔質フィルムであることを特徴とする。 Further, the microporous film is characterized by being a microporous film mainly composed of the silica fine powder and a polyolefin-based resin.
また、前記微多孔質フィルムは、ベース厚さが0.1~0.3mm、平均細孔径(水銀圧入法)が0.01~0.5μm、空隙率(水銀圧入法)が50~90体積%の微多孔質フィルムであることを特徴とする。 The microporous film has a base thickness of 0.1 to 0.3 mm, an average pore diameter (mercury injection method) of 0.01 to 0.5 μm, and a porosity (mercury injection method) of 50 to 90 volumes. % Is a microporous film.
本発明によれば、主原料として沈降法で製造された合成非晶質シリカであるシリカ微粉を用いて製造した微多孔質膜からなる鉛蓄電池用セパレータにあって、これを使用した電池で電池使用が進んだ場合にも、セパレータから電解液中に溶出するアルカリ金属イオン量やハロゲンイオン量を少なくすることができ、充電受入性の向上を妨げにくくでき、電池寿命性能の低下を招きにくくできるセパレータを提供することができる。 According to the present invention, there is a separator for a lead storage battery made of a microporous film manufactured by using silica fine powder which is a synthetic amorphous silica manufactured by a precipitation method as a main raw material, and a battery using the separator is used. Even when the battery is used more and more, the amount of alkali metal ions and halogen ions eluted from the separator into the electrolytic solution can be reduced, the improvement of charge acceptability can be less likely to be hindered, and the battery life performance can be less likely to be deteriorated. A separator can be provided.
本発明の液式鉛蓄電池用セパレータは、アルカリ珪酸塩水溶液と鉱酸を反応させ沈殿析出により非晶質シリカを合成後、濾過・水洗により純度の調整(副生物である塩類を除去し非晶質シリカの純度を高める)を行う沈降法で製造された合成非晶質シリカであるシリカ微粉(以下、単に「前記シリカ微粉」と言う場合がある)を40重量%以上含む微多孔質膜であって、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm2/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm2/枚以下(但し、微多孔質膜のベース厚さ0.2mm換算値)であることを条件とする。 In the separator for a liquid lead storage battery of the present invention, an aqueous alkali silicate solution is reacted with a mineral acid to synthesize amorphous silica by precipitation, and then the purity is adjusted by filtration and washing with water (amorphous by removing salts as by-products). A microporous film containing 40% by weight or more of silica fine powder (hereinafter, may be simply referred to as "the silica fine powder"), which is a synthetic amorphous silica produced by a precipitation method (to increase the purity of quality silica). Therefore, when the microporous film (10 cm × 10 cm × 2 sheets) was immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50 ° C. for 24 hours and left to stand, the alkali metal content (Li, Na, K, Rb, The concentration of Cs) (ICP emission spectroscopic analysis) is 5 mg / 100 cm 2 / sheet or less (however, the base thickness of the microporous film is 0.2 mm equivalent), and the halogen content (F, Cl, Br, I). The condition is that the concentration (ICP emission spectroscopic analysis) is 0.4 mg / 100 cm 2 / sheet or less (however, the base thickness of the microporous film is converted to 0.2 mm).
前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm2/枚以下であるようにすることで、本発明の液式鉛蓄電池用セパレータを用いた液式鉛蓄電池において、セパレータから電解液中に溶出するアルカリ金属イオン量を抑えることができるようになるので、充電受入性の向上を妨げにくくなる。よって、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)は4mg/100cm2/枚以下がより好ましい。 Alkali metal content (Li, Na, K, Rb, Cs) when the microporous film (10 cm × 10 cm × 2 sheets) was immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50 ° C. for 24 hours and left to stand. By setting the concentration (ICP emission spectroscopic analysis) to 5 mg / 100 cm 2 / sheet or less, in the liquid lead storage battery using the separator for the liquid lead storage battery of the present invention, the alkali eluted from the separator into the electrolytic solution. Since the amount of metal ions can be suppressed, it is less likely to hinder the improvement of charge acceptability. Therefore, when the microporous film (10 cm × 10 cm × 2 sheets) was immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50 ° C. for 24 hours and left to stand, the concentration of alkali metal (ICP emission spectroscopic analysis) was 4 mg. / 100 cm 2 / sheet or less is more preferable.
前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm2/枚以下であるようにすることで、本発明の液式鉛蓄電池用セパレータを用いた液式鉛蓄電池において、セパレータから電解液中に溶出するハロゲンイオン量を抑えることができるようになるので、極板格子や極柱の腐食を促すことによる電池寿命性能の低下を招きにくくなる。よって、前記微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、ハロゲン分の濃度(ICP発光分光分析)は0.2mg/100cm2/枚以下がより好ましく、0.1mg/100cm2/枚以下が更に好ましい。 The concentration of halogen (F, Cl, Br, I) (ICP) when the microporous film (10 cm × 10 cm × 2 sheets) was immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50 ° C. for 24 hours and left to stand. Halogen ions eluted from the separator into the electrolytic solution in the liquid-type lead storage battery using the separator for the liquid-type lead storage battery of the present invention by setting the emission spectroscopic analysis) to 0.4 mg / 100 cm 2 / sheet or less. Since the amount can be suppressed, it is less likely that the battery life performance is deteriorated by promoting the corrosion of the plate grid and the pole column. Therefore, when the microporous film (10 cm × 10 cm × 2 sheets) is immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50 ° C. for 24 hours and left to stand, the concentration of halogen (ICP emission spectroscopic analysis) is 0. 2 mg / 100 cm 2 / sheet or less is more preferable, and 0.1 mg / 100 cm 2 / sheet or less is further preferable.
前記微多孔質膜は、前記シリカ微粉とポリオレフィン系樹脂を主体としてなる微多孔質フィルムであることが好ましく、また、その微多孔質フィルムは、ベース厚さが0.1~0.3mm、平均細孔径(水銀圧入法)が0.01~0.5μm、空隙率(水銀圧入法)が50~90体積%の微多孔質フィルムであることが好ましい。なお、ベース厚さとは、例えば、微多孔質フィルムがリブ状突起を有する場合に、リブ状突起を含めた総厚さと区別するために用いる用語で、リブ状突起の高さを除外した(リブ状突起を設けない場合の)膜厚さを言う。 The microporous film is preferably a microporous film mainly composed of the silica fine powder and a polyolefin-based resin, and the microporous film has a base thickness of 0.1 to 0.3 mm and an average. A microporous film having a pore diameter (mercury injection method) of 0.01 to 0.5 μm and a porosity (mercury injection method) of 50 to 90% by volume is preferable. The base thickness is a term used to distinguish the microporous film from the total thickness including the rib-shaped protrusions when the microporous film has rib-shaped protrusions, and excludes the height of the rib-shaped protrusions (ribs). It refers to the film thickness (when no protrusions are provided).
前記シリカ微粉は、前述したように、原料組成物を加熱溶融混練する際に可塑剤を吸着担持しておくこと、微多孔質フィルムの微多孔構造(緻密で複雑な孔構造と高空隙率)を作り出すこと、微多孔質フィルムの製造過程で可塑剤を除去した際に生じるシート収縮に耐え寸法安定性を保つこと、微多孔質フィルムの電池組み込み時の使用前に行われる乾燥工程(水分除去工程)のような加熱処理時にもシート収縮に耐え寸法安定性を保つこと、微多孔質フィルムの電解液吸液性を良くすること、微多孔質フィルムの電解液濡れ性を良くすること、微多孔質フィルムの電解液保持性を良くすること、等の役割があり、よって、比表面積が大きいこと、吸油量が大きいこと、親水基(シラノール基)が多いこと、等の観点から、乾式法または湿式法の製造方法のうち、湿式法の沈降法で製造された合成非晶質シリカであることが必要であるが、湿式法の沈降法で製造された合成非晶質シリカには、副生物として硫酸ナトリウム等の塩類が含まれており、後工程で濾過・水洗の処理により塩類を除去する処理が行われているものの、塩類の除去処理は完全ではなく、また、水洗処理に水道水(残留塩素が含まれる)や塩分(塩化ナトリウム)を含んだ地下水が使われ得るため、電池性能に悪影響を与え得るNa分やCl分を微量含んでいる。よって、本発明では、シリカ微粉として、湿式法の沈降法で製造された合成非晶質シリカであって、アルカリ金属分(Li、Na、K、Rb、Cs)やハロゲン分(F、Cl、Br、I)の含有量を、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm2/枚以下、かつ、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm2/枚以下となるようなレベルにまで低減したシリカ微粉を用いる。また、本発明の前記非晶質シリカの製造工程における水洗処理(副生物の塩類を除去する処理)は、イオン交換水、または、塩分(塩化ナトリウム)を含まない地下水を使用して行われることが好ましい。なお、本願において、塩分(塩化ナトリウム)を含まない地下水とは、塩分(塩化ナトリウム)濃度が300ppm以下である地下水を指す。 As described above, the silica fine powder has a plasticizer adsorbed and carried when the raw material composition is heated, melted and kneaded, and the microporous structure of the microporous film (dense and complicated pore structure and high void ratio). To withstand sheet shrinkage that occurs when the plasticizer is removed during the manufacturing process of the microporous film, and to maintain dimensional stability. To withstand sheet shrinkage and maintain dimensional stability even during heat treatment such as step), to improve the electrolyte liquid absorbency of the microporous film, to improve the electrolyte wettability of the microporous film, fine The dry method has roles such as improving the electrolyte retention of the porous film, and therefore has a large specific surface area, a large amount of oil absorption, and a large number of hydrophilic groups (silanol groups). Alternatively, among the manufacturing methods of the wet method, it is necessary to use the synthetic amorphous silica produced by the precipitation method of the wet method, but the synthetic amorphous silica produced by the precipitation method of the wet method is subordinate to the synthetic amorphous silica. Although salts such as sodium sulfate are contained as organisms and the salts are removed by filtration and washing in a subsequent step, the removal of salts is not complete and tap water is used for washing. Since groundwater containing (containing residual chlorine) and salt (sodium chloride) can be used, it contains a small amount of Na and Cl, which can adversely affect the battery performance. Therefore, in the present invention, the silica fine powder is a synthetic amorphous silica produced by the precipitation method of the wet method, and has an alkali metal content (Li, Na, K, Rb, Cs) and a halogen content (F, Cl, The content of Br, I) is an alkali metal when the finally obtained microporous film (10 cm × 10 cm × 2 sheets) is immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50 ° C. for 24 hours and left to stand. Silica reduced to a level where the concentration of minutes (ICP emission spectroscopic analysis) is 5 mg / 100 cm 2 / sheet or less and the concentration of halogen content (ICP emission spectroscopic analysis) is 0.4 mg / 100 cm 2 / sheet or less. Use fine powder. Further, the washing treatment (treatment for removing salts of by-products) in the manufacturing process of the amorphous silica of the present invention is performed using ion-exchanged water or groundwater containing no salt (sodium chloride). Is preferable. In the present application, the groundwater containing no salt (sodium chloride) refers to groundwater having a salt (sodium chloride) concentration of 300 ppm or less.
前記微多孔質フィルムのベース厚さは、0.1~0.3mmであることが好ましいが、0.3mmを超えると電気抵抗が悪化し、0.1mm未満であると、良好な耐短絡性(ここで言う短絡とは、デンドライトショートと呼ばれる浸透短絡、局部的な基材の弱い部分、極板の凸部からの高圧迫や衝撃や突刺し、極板からの酸化力による酸化損耗等、が原因で孔が開くまたは割れを生じることで引き起こされる通常の短絡の両方を指す)が維持できにくくなる。 The base thickness of the microporous film is preferably 0.1 to 0.3 mm, but if it exceeds 0.3 mm, the electrical resistance deteriorates, and if it is less than 0.1 mm, it has good short-circuit resistance. (The short circuit mentioned here is a permeation short circuit called dendrite short circuit, a local weak part of the base material, high pressure pressure from the convex part of the electrode plate, impact or piercing, oxidative wear due to the oxidizing force from the electrode plate, etc. Refers to both normal short circuits caused by perforations or cracks caused by) becomes difficult to maintain.
前記微多孔質フィルムの空隙率(水銀圧入法)は、50体積%以上であることが好ましいが、50体積%以上であることで、液式鉛蓄電池用セパレータとして内部抵抗(電気抵抗)を低く抑えることができ、液式鉛蓄電池の高性能化に寄与する。よって、微多孔質フィルムの空隙率(水銀圧入法)は、60~90体積%、更には70~90体積%であることがより好ましい。 The void ratio (mercury press-fitting method) of the microporous film is preferably 50% by volume or more, but when it is 50% by volume or more, the internal resistance (electrical resistance) is low as a separator for a liquid lead-acid battery. It can be suppressed and contributes to higher performance of liquid lead-acid batteries. Therefore, the porosity (mercury press-fitting method) of the microporous film is more preferably 60 to 90% by volume, more preferably 70 to 90% by volume.
前記微多孔質フィルムを得る方法は、ポリオレフィン系樹脂と前記シリカ微粉と可塑剤を主体とする原料組成物を溶融混練して製膜後可塑剤の一部または全部を除去することによるのが好ましい。これにより、膜全体に均一かつ微細で複雑に入り組んだ複雑な経路を有する無数の連通孔が形成された膜が得られる。具体的な製造法の一例を以下に示す。まず、所定量のポリオレフィン系樹脂、前記シリカ微粉、可塑剤に、必要に応じて各種添加剤(界面活性剤、酸化防止剤、耐候剤等)を加えた原材料をヘンシェルミキサーまたはレーディゲミキサー等の混合機により攪拌・混合し、原料混合物を得る。次に、この混合物を先端にTダイを取り付けた二軸押出機に投入し加熱溶融・混練しながらシート状に押し出し、一方のロールに所定の溝を刻設した一対の成形ロール間を通すことで、平板状シートの片面に所定形状のリブを一体に成形したフィルム状物を得る。次に、このフィルム状物を、適当な溶剤(例えば、n-ヘキサン)中に浸漬し、鉱物オイルの所定量を抽出除去し乾燥すれば、目的の微多孔質フィルムが得られる。なお、原料組成物とは、溶融混練工程に持ち込まれる全原材料からなる組成物のことを言い、あくまでも「すべての原材料(の組成物)」のことを指す意味であり、特定的に、原料混合物や溶融混練物のことを指す意味ではない。 The method for obtaining the microporous film is preferably by melt-kneading a raw material composition mainly composed of a polyolefin resin, the silica fine powder and a plasticizer, and removing a part or all of the plasticizer after film formation. .. As a result, it is possible to obtain a film in which innumerable communication holes having a uniform, fine, and intricately intricate path are formed in the entire film. An example of a specific manufacturing method is shown below. First, a raw material obtained by adding various additives (surfactant, antioxidant, weathering agent, etc.) to a predetermined amount of polyolefin resin, the silica fine powder, and a plasticizer as needed is added to a Henshell mixer, a Ladyge mixer, or the like. Stir and mix with the mixer of the above to obtain a raw material mixture. Next, this mixture is put into a twin-screw extruder with a T-die attached to the tip, extruded into a sheet while being heated, melted and kneaded, and passed between a pair of forming rolls having a predetermined groove engraved on one roll. A film-like material obtained by integrally molding a rib having a predetermined shape on one side of a flat plate-shaped sheet is obtained. Next, the film-like material is immersed in a suitable solvent (for example, n-hexane) to extract and remove a predetermined amount of mineral oil and dried to obtain the desired microporous film. The raw material composition refers to a composition composed of all raw materials brought into the melt-kneading process, and means "all raw materials (compositions)" to the last, and specifically, a raw material mixture. It does not mean that it refers to melt-kneaded products.
前記微多孔質フィルムは、ポリオレフィン系樹脂と前記シリカ微粉と可塑剤の合計含有量が90重量%以上、ポリオレフィン系樹脂の含有量が20~60重量%、前記シリカ微粉の含有量が40~80重量%、可塑剤の含有量が0~30重量%、界面活性剤の含有量が0~8重量%であることが好ましい。ポリオレフィン系樹脂の含有量が20重量%未満あるいは前記シリカ微粉の含有量が80重量%超えであると、ポリオレフィン系樹脂による微多孔質フィルムへの機械的強度や耐酸化性やシール性の確保が十分でなくなり、ポリオレフィン系樹脂の含有量が60重量%超えあるいは前記シリカ微粉の含有量が40重量%未満であると、微多孔質フィルムの大きな空隙率や微細かつ複雑な孔構造を確保しづらくなり微多孔質フィルム製セパレータの良好な電気抵抗特性を維持できなくなる。 The microporous film has a total content of the polyolefin resin, the silica fine powder and the plasticizer of 90% by weight or more, a polyolefin resin content of 20 to 60% by weight, and a silica fine powder content of 40 to 80%. It is preferable that the content of the plasticizer is 0 to 30% by weight and the content of the surfactant is 0 to 8% by weight. When the content of the polyolefin resin is less than 20% by weight or the content of the silica fine powder is more than 80% by weight, the mechanical strength, oxidation resistance and sealing property of the microporous film by the polyolefin resin can be ensured. If the content is not sufficient and the content of the polyolefin resin exceeds 60% by weight or the content of the silica fine powder is less than 40% by weight, it is difficult to secure a large void ratio and a fine and complicated pore structure of the microporous film. As a result, the good electrical resistance characteristics of the microporous film separator cannot be maintained.
前記ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等の単独重合体または共重合体およびこれらの混合物が使用できる。中でも、成形性や経済性の面で、ポリエチレンを主体とすることが好ましい。ポリエチレンは、溶融成形温度がポリプロピレンよりも低く、生産性が良好で製造コストを抑えられる。ポリオレフィン系樹脂は、重量平均分子量が50万以上とすることにより、シリカ微粉を多く含んだ微多孔質フィルムにあっても、膜の機械的強度を確保することができる。このため、ポリオレフィン系樹脂は、重量平均分子量が100万以上、更には150万以上であることがより好ましい。ポリオレフィン系樹脂は、シリカ微粉との混合性も良好で、微多孔質フィルムにあってシリカ微粉の骨格を接着機能材料として結合させながら強度を維持するとともに、化学的に安定であり安全性が高い。 As the polyolefin-based resin, homopolymers or copolymers such as polyethylene, polypropylene, polybutene, and polymethylpentene, and mixtures thereof can be used. Above all, it is preferable to use polyethylene as a main component in terms of moldability and economy. Polyethylene has a lower melt molding temperature than polypropylene, has good productivity, and can reduce manufacturing costs. By setting the weight average molecular weight of the polyolefin resin to 500,000 or more, the mechanical strength of the film can be ensured even in a microporous film containing a large amount of silica fine powder. Therefore, it is more preferable that the polyolefin-based resin has a weight average molecular weight of 1 million or more, more preferably 1.5 million or more. Polyolefin-based resins have good mixability with silica fine powder, and are chemically stable and highly safe while maintaining strength while binding the skeleton of silica fine powder as an adhesive functional material in a microporous film. ..
前記シリカ微粉としては、粒径が細かく内部や表面に孔構造を備えたものが使用できる。無機粉体の中でもシリカは、粒子径、比表面積等の各種粉体特性の選択範囲が広く、比較的安価で入手しやすく、不純物が少ない。前記シリカ微粉は、比表面積が100m2/g以上であると、微多孔質フィルムの孔構造をより微細化(緻密化)かつ複雑化して耐短絡性を高め、微多孔質フィルムの電解液保持力を高め、粉体表面に多数の親水基(-OH)を備えることにより微多孔質フィルムの親水性を高めるため好ましい。このため、前記シリカ微粉の比表面積は150m2/g以上であることがより好ましい。また、前記シリカ微粉の比表面積は400m2/g以下であることが好ましい。前記シリカ微粉の比表面積が400m2/gを超える場合は、粒子の表面活性度が高く凝集力が強くなるため、微多孔質フィルム中で前記シリカ微粉が均一分散されにくくなるため好ましくない。 As the silica fine powder, those having a fine particle size and a pore structure inside or on the surface can be used. Among the inorganic powders, silica has a wide selection range of various powder characteristics such as particle size and specific surface area, is relatively inexpensive and easily available, and has few impurities. When the specific surface area of the silica fine powder is 100 m 2 / g or more, the pore structure of the microporous film is made finer (densified) and more complicated to improve short-circuit resistance, and the electrolyte solution of the microporous film is retained. It is preferable because the force is increased and the surface of the powder is provided with a large number of hydrophilic groups (-OH) to enhance the hydrophilicity of the microporous film. Therefore, it is more preferable that the specific surface area of the silica fine powder is 150 m 2 / g or more. Further, the specific surface area of the silica fine powder is preferably 400 m 2 / g or less. When the specific surface area of the silica fine powder exceeds 400 m 2 / g, the surface activity of the particles is high and the cohesive force is strong, so that the silica fine powder is difficult to be uniformly dispersed in the microporous film, which is not preferable.
前記可塑剤としては、ポリオレフィン系樹脂の可塑剤となり得る材料を選択することが好ましく、ポリオレフィン系樹脂と相溶性を有し各種溶剤等で容易に抽出できる各種有機液状体が使用でき、具体的には、飽和炭化水素(パラフィン)からなる工業用潤滑油等の鉱物オイル、ステアリルアルコール等の高級アルコール、フタル酸ジオクチル等のエステル系可塑剤等が使用できる。中でも、再利用がしやすい点で、鉱物オイルが好ましい。可塑剤は、ポリオレフィン系樹脂、シリカ微粉、可塑剤を主体とした原料組成物中に、30~70重量%配合されることが好ましい。 As the plasticizer, it is preferable to select a material that can be a plasticizer for the polyolefin resin, and various organic liquids that are compatible with the polyolefin resin and can be easily extracted with various solvents or the like can be used, and specifically. Can be used as a mineral oil such as an industrial lubricating oil made of saturated hydrocarbon (paraffin), a higher alcohol such as stearyl alcohol, an ester plasticizer such as dioctyl phthalate, and the like. Of these, mineral oil is preferable because it is easy to reuse. The plasticizer is preferably blended in an amount of 30 to 70% by weight in a raw material composition mainly composed of a polyolefin resin, silica fine powder, and a plasticizer.
前記可塑剤は、前述した通り、ポリオレフィン系樹脂とシリカ微粉と可塑剤を主体とした原料組成物を溶融混練して所定形状のフィルム状物に成形された後、除去されることで、多孔質化するものであり、微多孔質フィルム製セパレータ中の可塑剤の含有量はゼロであっても構わない。しかし、液式鉛蓄電池用セパレータにおいては、鉱物オイルのような可塑剤を適量含有させておくことで、耐酸化性の向上に寄与させることができる。このような場合、セパレータ中の可塑剤の含有量は5~30重量%とすることが好ましい。但し、可塑剤の含有量を多くすると、微多孔質フィルムの空隙率が低下し、微多孔質フィルム製セパレータの電気抵抗が悪化するため、このような観点からは、可塑剤の含有量は20重量%以下であることがより好ましい。 As described above, the plasticizer is porous by melting and kneading a raw material composition mainly composed of a polyolefin resin, silica fine powder, and a plasticizer, forming a film-like material having a predetermined shape, and then removing the plasticizer. The content of the plasticizer in the separator made of a microporous film may be zero. However, the separator for a liquid lead-acid battery can contribute to the improvement of oxidation resistance by containing an appropriate amount of a plasticizer such as mineral oil. In such a case, the content of the plasticizer in the separator is preferably 5 to 30% by weight. However, if the content of the plasticizer is increased, the void ratio of the microporous film decreases and the electrical resistance of the separator made of the microporous film deteriorates. Therefore, from this viewpoint, the content of the plasticizer is 20. It is more preferably 0% by weight or less.
前記可塑剤を抽出除去するために用いる溶剤としては、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の飽和炭化水素系の有機溶剤を使用することができる。 As the solvent used for extracting and removing the plasticizer, a saturated hydrocarbon-based organic solvent such as hexane, heptane, octane, nonane, and decane can be used.
前記原料組成物または前記微多孔質フィルムには、その他、必要に応じて、界面活性剤(親水化剤)、酸化防止剤、紫外線吸収剤、耐候剤、滑剤、抗菌剤、防黴剤、顔料、染料、着色剤、防曇剤、艶消し剤等の添加剤を、本発明の目的および効果を損なわない範囲で添加(配合)または含有させてもよい。 In addition to the raw material composition or the microporous film, if necessary, a surfactant (hydrophilic agent), an antioxidant, an ultraviolet absorber, a weather resistant agent, a lubricant, an antibacterial agent, an antifungal agent, and a pigment , Dyes, colorants, antifogging agents, matting agents and the like may be added (blended) or contained within a range that does not impair the object and effect of the present invention.
前記微多孔質フィルムは、比表面積が大きく親水性が高い前記シリカ微粉を多量に含有しており、それだけでも、親水性を有し、水溶液である液式鉛蓄電池の硫酸電解液に対する濡れ性や硫酸電解液の浸透性(浸み込み性)を有するが、電槽内に極板とセパレータが密に組み込まれた積層体に対し硫酸電解液を注液した際に、速やかにセパレータの空隙中に電解液が吸液され速やかにセパレータの空隙が電解液に置換されるようにするため、微多孔質フィルム中には界面活性剤(固形分)を0.2~8重量%含ませることが好ましい。 The microporous film contains a large amount of the silica fine powder having a large specific surface area and high hydrophilicity, and has hydrophilicity by itself, and has a wettability with respect to a sulfuric acid electrolytic solution of a liquid lead storage battery which is an aqueous solution. It has the permeability (penetration property) of the sulfuric acid electrolytic solution, but when the sulfuric acid electrolytic solution is injected into the laminate in which the electrode plate and the separator are densely incorporated in the battery case, it is quickly contained in the voids of the separator. In order to absorb the electrolytic solution and quickly replace the voids of the separator with the electrolytic solution, the microporous film may contain 0.2 to 8% by weight of a surfactant (solid content). preferable.
前記界面活性剤を微多孔質フィルムに含ませる方法としては、製膜前の原料組成物中に予め分散状態に添加しておく方法(内添法)、製膜され可塑剤が除去された微多孔質フィルムに対して後処理(付着処理)する方法(外添法)があるが、製造工程が簡略化できる点と、本発明の微多孔質フィルムから界面活性剤を染み出しにくくできる点で、原料組成物中に予め添加する方法(内添法)が好ましい。界面活性剤(固形分)の含有量(必要量)は、微多孔質フィルム中に0.2~8重量%である。界面活性剤(固形分)の含有量をこの範囲以上に増量しても、微多孔質フィルムの親水性を向上させる効果は大きく伸びず、逆に、微多孔質フィルムの空隙率を低下させて液式鉛蓄電池用セパレータとして内部抵抗(電気抵抗)の増大を招いたり、液式鉛蓄電池用セパレータとして自己放電の増大を招く。よって、界面活性剤(固形分)の含有量は、微多孔質フィルム中に0.2~5重量%であることがより好ましい。 As a method of incorporating the surfactant into the microporous film, a method of adding the surfactant to the raw material composition before film formation in a dispersed state in advance (internal addition method), or a method of forming the film and removing the plasticizer. There is a method (adhesion treatment) for post-treatment (adhesion treatment) of the porous film, but the manufacturing process can be simplified and the surfactant can be less likely to seep out from the microporous film of the present invention. , A method of adding in advance to the raw material composition (internal addition method) is preferable. The content (required amount) of the surfactant (solid content) is 0.2 to 8% by weight in the microporous film. Even if the content of the surfactant (solid content) is increased above this range, the effect of improving the hydrophilicity of the microporous film does not greatly increase, and conversely, the void ratio of the microporous film is lowered. As a separator for a liquid lead-acid battery, it causes an increase in internal resistance (electrical resistance), and as a separator for a liquid lead-acid battery, it causes an increase in self-discharge. Therefore, the content of the surfactant (solid content) is more preferably 0.2 to 5% by weight in the microporous film.
前記界面活性剤としては、微多孔質フィルムの親水性を向上できる材料であればよく、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤の何れも使用できる。ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、脂肪酸モノグリセリド、ソルビタン脂肪酸エステル類等が使用できる。カチオン系界面活性剤としては、脂肪族アミン塩類、第四級アンモニウム塩、ポリオキシエチレンアルキルアミン、アルキルアミンオキシド等が使用できる。アニオン系界面活性剤としては、アルキルスルフォン酸塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、アルキルスルホコハク酸塩、ドデシルベンゼンスルフォン酸塩等が使用できる。中でも、ポリオレフィン系樹脂に対して少量の添加で高い親水性の付与が可能であること、比較的高い耐熱性を有することで界面活性剤を予め原料組成物中に添加して微多孔質フィルムの製造(加熱溶融成形による製造)が行えることなどから、アルキルベンゼンスルフォン酸塩、アルキルスルホコハク酸塩、ドデシルベンゼンスルフォン酸塩が好ましい。 The surfactant may be any material that can improve the hydrophilicity of the microporous film, and any nonionic surfactant, cationic surfactant, or anionic surfactant can be used. As the nonionic surfactant, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl allyl ethers, fatty acid monoglycerides, sorbitan fatty acid esters and the like can be used. As the cationic surfactant, aliphatic amine salts, quaternary ammonium salts, polyoxyethylene alkylamines, alkylamine oxides and the like can be used. As the anionic surfactant, alkyl sulphonate, alkylbenzene sulphonate, alkylnaphthalen sulphonate, alkyl sulfosuccinate, dodecylbenzene sulphonate and the like can be used. Above all, since it is possible to impart high hydrophilicity to the polyolefin resin by adding a small amount and it has relatively high heat resistance, a surfactant is added in advance to the raw material composition to form a microporous film. Alkylbenzene sulphonate, alkyl sulfosuccinate, and dodecylbenzene sulphonate are preferable because they can be manufactured (manufactured by heat melt molding).
次に、本発明の実施例について、比較例とともに詳細に説明する。
(実施例1)
ポリオレフィン系樹脂として重量平均分子量が150万の超高分子量ポリエチレン樹脂粉体(融点約135℃)1000重量部と、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m2/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量を、水洗処理水の流量を従来よりも多くして低減し、かつ、従来よりもCl分の少ない水洗処理水を使う事で、Cl分の混入を低減し、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm2/枚以下、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm2/枚以下となるようにしたもの)2590重量部と、可塑剤としてパラフィン系鉱物オイル5380重量部と、界面活性剤としてアルキルスルホコハク酸塩(固形分)109重量部とをレーディゲミキサーにて混合し、この原料組成物を先端にTダイを取り付けた二軸押出機を用い加熱溶融混練しながらシート状に押し出し、一方のロールに極板当接用主リブのための所定の溝を刻設した一対の成形ロール間を通し、平板状シートの一方の面に所定形状の極板当接用主リブを一体に成形加工したフィルム状物を得た。次に、このフィルム状物をn-ヘキサン中に浸漬し、パラフィン系鉱物オイルの所定量を抽出除去し、乾燥させて、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを実施例1の液式鉛蓄電池用セパレータとした。
Next, examples of the present invention will be described in detail together with comparative examples.
(Example 1)
As a polyolefin resin, 1000 parts by weight of an ultra-high molecular weight polyethylene resin powder (melting point of about 135 ° C.) with a weight average molecular weight of 1.5 million and a specific surface area of 200 m 2 by the BET method, which is a synthetic amorphous silica produced by the precipitation method. / G of silica fine powder (however, the content of salts such as sodium sulfate produced as a by-product in the manufacturing process is reduced by increasing the flow rate of the washed water more than before, and the Cl content is higher than before. By using a small amount of washing water, the mixing of Cl content is reduced, and the finally obtained microporous film (10 cm x 10 cm x 2 sheets) is immersed in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50 ° C. for 24 hours. The concentration of the alkali metal (Li, Na, K, Rb, Cs) (ICP emission spectroscopic analysis) was 5 mg / 100 cm 2 / sheet or less, and the halogen content (F, Cl, Br, I) was left unattended. Concentration (ICP emission spectroscopic analysis) is 0.4 mg / 100 cm 2 / sheet or less) 2590 parts by weight, paraffin mineral oil 5380 parts by weight as a plasticizer, and alkyl sulfosuccinate as a surfactant. 109 parts by weight of (solid content) is mixed with a Ladyge mixer, and this raw material composition is extruded into a sheet while being heated, melted and kneaded using a twin-screw extruder with a T-die attached to the tip, and put into one roll. A film in which a plate-shaped sheet is integrally molded with a plate-contacting main rib having a predetermined shape on one surface of a flat plate-shaped sheet by passing it between a pair of molding rolls in which a predetermined groove is carved for the plate-contacting main rib. I got a substance. Next, this film-like material was immersed in n-hexane, a predetermined amount of paraffin-based mineral oil was extracted and removed, and the film was dried to obtain 22.9% by weight of polyethylene resin, 59.3% by weight of silica fine powder, and paraffin. It is composed of 16.0% by weight of paraffin oil and 1.8% by weight of surfactant (solid content), has a base thickness of 0.20 mm, has a void ratio of 62% by volume by the mercury intrusion method, and is by the mercury intrusion method. A ribbed microporous film having an average pore diameter of 0.09 μm and a maximum pore diameter of 0.65 μm by a mercury intrusion method was obtained. This was used as a separator for a liquid lead-acid battery of Example 1.
(実施例2)
ポリオレフィン系樹脂として重量平均分子量が150万の超高分子量ポリエチレン樹脂粉体(融点約135℃)1000重量部と、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m2/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量を、水洗処理水の流量を実施例1よりも多くして更に低減し、かつ、従来よりもCl分の少ない水洗処理水を使う事で、Cl分の混入を低減し、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が4mg/100cm2/枚以下、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.4mg/100cm2/枚以下となるようにしたもの)2590重量部と、可塑剤としてパラフィン系鉱物オイル5380重量部と、界面活性剤としてアルキルスルホコハク酸塩(固形分)109重量部とをレーディゲミキサーにて混合し、この原料組成物を先端にTダイを取り付けた二軸押出機を用い加熱溶融混練しながらシート状に押し出し、一方のロールに極板当接用主リブのための所定の溝を刻設した一対の成形ロール間を通し、平板状シートの一方の面に所定形状の極板当接用主リブを一体に成形加工したフィルム状物を得た。次に、このフィルム状物をn-ヘキサン中に浸漬し、パラフィン系鉱物オイルの所定量を抽出除去し、乾燥させて、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを実施例2の液式鉛蓄電池用セパレータとした。
(Example 2)
As a polyolefin resin, 1000 parts by weight of an ultra-high molecular weight polyethylene resin powder (melting point of about 135 ° C.) with a weight average molecular weight of 1.5 million and a specific surface area of 200 m 2 by the BET method, which is a synthetic amorphous silica produced by the precipitation method. The content of / g of silica fine powder (however, the content of salts such as sodium sulfate produced as a by-product in the manufacturing process is further reduced by increasing the flow rate of the washed water as compared with Example 1 and further reduced, and more than before. By using water-washed water with a low Cl content, the mixing of Cl content is reduced, and the finally obtained microporous film (10 cm x 10 cm x 2 sheets) is placed in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50 ° C. The concentration of the alkali metal content (Li, Na, K, Rb, Cs) (ICP emission spectroscopic analysis) was 4 mg / 100 cm 2 / sheet or less and the halogen content (F, Cl, Br) when left to stand for 24 hours. , I) concentration (ICP emission spectroscopic analysis) is 0.4 mg / 100 cm 2 / sheet or less) 2590 parts by weight, paraffin mineral oil 5380 parts by weight as a plasticizer, and alkyl as a surfactant. 109 parts by weight of sulfosuccinate (solid content) was mixed with a Ladyge mixer, and this raw material composition was extruded into a sheet while being heated, melted and kneaded using a twin-screw extruder with a T-die attached to the tip. A pair of forming rolls having a predetermined groove for the electrode plate contact main rib are passed through the roll, and the electrode plate contact main rib having a predetermined shape is integrally formed on one surface of the flat plate-shaped sheet. A processed film-like substance was obtained. Next, this film-like material was immersed in n-hexane, a predetermined amount of paraffin-based mineral oil was extracted and removed, and the film was dried to obtain 22.9% by weight of polyethylene resin, 59.3% by weight of silica fine powder, and paraffin. It is composed of 16.0% by weight of paraffin oil and 1.8% by weight of surfactant (solid content), has a base thickness of 0.20 mm, has a void ratio of 62% by volume by the mercury intrusion method, and is by the mercury intrusion method. A ribbed microporous film having an average pore diameter of 0.09 μm and a maximum pore diameter of 0.65 μm by a mercury intrusion method was obtained. This was used as a separator for a liquid lead-acid battery of Example 2.
(実施例3)
ポリオレフィン系樹脂として重量平均分子量が150万の超高分子量ポリエチレン樹脂粉体(融点約135℃)1000重量部と、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m2/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量を、水洗処理水の流量を従来よりも多くして低減し、かつ、実施例1よりもCl分の少ない水洗処理水を使う事で、Cl分の混入を更に低減し、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分(Li、Na、K、Rb、Cs)の濃度(ICP発光分光分析)が5mg/100cm2/枚以下、かつ、ハロゲン分(F、Cl、Br、I)の濃度(ICP発光分光分析)が0.1mg/100cm2/枚以下となるようにしたもの)2590重量部と、可塑剤としてパラフィン系鉱物オイル5380重量部と、界面活性剤としてアルキルスルホコハク酸塩(固形分)109重量部とをレーディゲミキサーにて混合し、この原料組成物を先端にTダイを取り付けた二軸押出機を用い加熱溶融混練しながらシート状に押し出し、一方のロールに極板当接用主リブのための所定の溝を刻設した一対の成形ロール間を通し、平板状シートの一方の面に所定形状の極板当接用主リブを一体に成形加工したフィルム状物を得た。次に、このフィルム状物をn-ヘキサン中に浸漬し、パラフィン系鉱物オイルの所定量を抽出除去し、乾燥させて、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを実施例3の液式鉛蓄電池用セパレータとした。
(Example 3)
As a polyolefin resin, 1000 parts by weight of an ultra-high molecular weight polyethylene resin powder (melting point of about 135 ° C.) with a weight average molecular weight of 1.5 million and a specific surface area of 200 m 2 by the BET method, which is a synthetic amorphous silica produced by the precipitation method. / G of silica fine powder (however, the content of salts such as sodium sulfate produced as a by-product in the manufacturing process is reduced by increasing the flow rate of the washed water more than before, and Cl is higher than that of Example 1. By using water washed with a small amount of water, the mixing of Cl content is further reduced, and the finally obtained microporous film (10 cm x 10 cm x 2 sheets) is placed in 126 g of sulfuric acid with a specific gravity of 1.26 at a temperature of 50 ° C. The concentration of the alkali metal (Li, Na, K, Rb, Cs) (ICP emission spectroscopic analysis) was 5 mg / 100 cm 2 / sheet or less and the halogen content (F, Cl, Br) when left to stand for 24 hours. , I) concentration (ICP emission spectroscopic analysis) is 0.1 mg / 100 cm 2 / sheet or less) 2590 parts by weight, paraffin mineral oil 5380 parts by weight as a plasticizer, and alkyl as a surfactant. 109 parts by weight of sulfosuccinate (solid content) was mixed with a Ladyge mixer, and this raw material composition was extruded into a sheet while being heated, melted and kneaded using a twin-screw extruder with a T-die attached to the tip. A pair of forming rolls having a predetermined groove for the electrode plate contact main rib are passed through the roll, and the electrode plate contact main rib having a predetermined shape is integrally formed on one surface of the flat plate-shaped sheet. A processed film-like substance was obtained. Next, this film-like material was immersed in n-hexane, a predetermined amount of paraffin-based mineral oil was extracted and removed, and the film was dried to obtain 22.9% by weight of polyethylene resin, 59.3% by weight of silica fine powder, and paraffin. It is composed of 16.0% by weight of paraffin oil and 1.8% by weight of surfactant (solid content), has a base thickness of 0.20 mm, has a void ratio of 62% by volume by the mercury intrusion method, and is by the mercury intrusion method. A ribbed microporous film having an average pore diameter of 0.09 μm and a maximum pore diameter of 0.65 μm by a mercury intrusion method was obtained. This was used as a separator for a liquid lead-acid battery of Example 3.
(比較例1)
ポリオレフィン系樹脂として重量平均分子量が150万の超高分子量ポリエチレン樹脂粉体(融点約135℃)1000重量部と、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m2/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量は従来通りで、Cl分が従来通りの水洗処理水を使った場合、Cl分の混入を低減せず、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm2/枚超え、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm2/枚超えとなるようにしたもの)2590重量部と、可塑剤としてパラフィン系鉱物オイル5380重量部と、界面活性剤としてアルキルスルホコハク酸塩(固形分)109重量部とをレーディゲミキサーにて混合し、この原料組成物を先端にTダイを取り付けた二軸押出機を用い加熱溶融混練しながらシート状に押し出し、一方のロールに極板当接用主リブのための所定の溝を刻設した一対の成形ロール間を通し、平板状シートの一方の面に所定形状の極板当接用主リブを一体に成形加工したフィルム状物を得た。次に、このフィルム状物をn-ヘキサン中に浸漬し、パラフィン系鉱物オイルの所定量を抽出除去し、乾燥させて、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを比較例1の液式鉛蓄電池用セパレータとした。
(Comparative Example 1)
As a polyolefin resin, 1000 parts by weight of an ultra-high molecular weight polyethylene resin powder (melting point of about 135 ° C.) with a weight average molecular weight of 1.5 million and a specific surface area of 200 m 2 by the BET method, which is a synthetic amorphous silica produced by the precipitation method. / G of silica fine powder (however, the content of salts such as sodium sulfate produced as a by-product in the manufacturing process is the same as before, and when the Cl content is the same as the conventional washing-treated water, the mixing of Cl content is reduced. The concentration of alkali metal (ICP emission) when the finally obtained microporous film (10 cm × 10 cm × 2 sheets) was immersed in 126 g of sulfuric acid having a specific gravity of 1.26 at a temperature of 50 ° C. for 24 hours and left to stand. Spectral analysis) exceeds 5 mg / 100 cm 2 / sheet, halogen concentration (ICP emission spectroscopic analysis) exceeds 0.4 mg / 100 cm 2 / sheet) 2590 parts by weight, and paraffin-based mineral as a plasticizer 5380 parts by weight of oil and 109 parts by weight of alkyl sulfosuccinate (solid content) as a surfactant are mixed with a Ladyge mixer, and this raw material composition is used as a twin-screw extruder with a T-die attached to the tip. It is extruded into a sheet while being heat-melted and kneaded, passed between a pair of forming rolls in which a predetermined groove for a main rib for contacting a electrode plate is carved in one roll, and a predetermined shape is formed on one surface of the flat plate-shaped sheet. A film-like material obtained by integrally molding the main rib for contacting the electrode plate was obtained. Next, this film-like material was immersed in n-hexane, a predetermined amount of paraffin-based mineral oil was extracted and removed, and the film was dried to obtain 22.9% by weight of polyethylene resin, 59.3% by weight of silica fine powder, and paraffin. It is composed of 16.0% by weight of paraffin oil and 1.8% by weight of surfactant (solid content), has a base thickness of 0.20 mm, has a void ratio of 62% by volume by the mercury intrusion method, and is by the mercury intrusion method. A ribbed microporous film having an average pore diameter of 0.09 μm and a maximum pore diameter of 0.65 μm by a mercury intrusion method was obtained. This was used as a separator for a liquid lead-acid battery of Comparative Example 1.
(比較例2)
シリカ微粉体として、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m2/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量は従来通りであるが、従来よりもCl分の少ない水洗処理水を使う事で、Cl分の混入を低減し、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm2/枚超え、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm2/枚以下となるようにしたもの)を使用するようにした以外は比較例1と同様にして、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを比較例2の液式鉛蓄電池用セパレータとした。
(Comparative Example 2)
As the silica fine powder, a silica fine powder having a specific surface area of 200 m 2 / g by the BET method, which is a synthetic amorphous silica produced by the precipitation method (however, contains salts such as sodium sulfate produced as a by-product in the production process). The amount is the same as before, but by using washed water with less Cl content than before, the mixing of Cl content is reduced, and the temperature of the finally obtained microporous film (10 cm x 10 cm x 2 sheets) is increased. When immersed in 126 g of sulfuric acid with a specific gravity of 1.26 at 50 ° C. for 24 hours and left to stand, the concentration of alkali metal (ICP emission spectroscopic analysis) exceeds 5 mg / 100 cm 2 / sheet, and the concentration of halogen (ICP emission spectroscopic analysis). 22.9% by weight of polyethylene resin, 59.3% by weight of silica fine powder, in the same manner as in Comparative Example 1 except that 0.4 mg / 100 cm 2 / sheet or less was used. Consists of 16.0% by weight of paraffin-based mineral oil and 1.8% by weight of surfactant (solid content), the base thickness is 0.20 mm, the void ratio by the mercury intrusion method is 62% by volume, and the mercury intrusion method. A ribbed microporous film having an average pore diameter of 0.09 μm and a maximum pore diameter of 0.65 μm by the mercury intrusion method was obtained. This was used as a separator for a liquid lead-acid battery of Comparative Example 2.
(比較例3)
シリカ微粉体として、沈降法で製造された合成非晶質シリカであるBET法による比表面積が200m2/gのシリカ微粉体(但し、製造過程で副生物として生成する硫酸ナトリウム等の塩類の含有量を、水洗処理水の流量を従来よりも多くして低減したが、Cl分が従来通りの水洗処理水を使った場合、Cl分の混入を低減せず、最終的に得られる微多孔質膜(10cm×10cm×2枚)を温度50℃の比重1.26の硫酸126g中へ24h浸漬し放置したときの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm2/枚以下、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm2/枚超えとなるようにしたもの)を使用するようにした以外は比較例1と同様にして、ポリエチレン樹脂22.9重量%、シリカ微粉体59.3重量%、パラフィン系鉱物オイル16.0重量%、界面活性剤(固形分)1.8重量%とで構成される、ベース厚さが0.20mm、水銀圧入法による空隙率が62体積%、水銀圧入法による平均細孔径が0.09μm、水銀圧入法による最大孔径が0.65μmのリブ付き微多孔質フィルムを得た。これを比較例3の液式鉛蓄電池用セパレータとした。
(Comparative Example 3)
As the silica fine powder, silica fine powder having a specific surface area of 200 m 2 / g by the BET method, which is a synthetic amorphous silica produced by the precipitation method (however, contains salts such as sodium sulfate produced as a by-product in the production process). The amount was reduced by increasing the flow rate of the water-washed water compared to the conventional method, but when the Cl content was the same as the conventional water-washed water, the cl content was not reduced and the finally obtained microporous property was used. When the film (10 cm × 10 cm × 2 sheets) was immersed in 126 g of sulfuric acid having a specific surface area of 1.26 at a temperature of 50 ° C. for 24 hours and left to stand, the concentration of alkali metal (ICP emission spectroscopic analysis) was 5 mg / 100 cm 2 / sheet or less. , Polyethylene resin 22.9 weight in the same manner as in Comparative Example 1 except that the concentration of halogen (ICP emission spectroscopic analysis) was adjusted to exceed 0.4 mg / 100 cm 2 / sheet). %, Silica fine powder 59.3% by weight, paraffin mineral oil 16.0% by weight, surfactant (solid content) 1.8% by weight, base thickness 0.20 mm, mercury press-fitting method A ribbed microporous film having a void ratio of 62% by volume, an average pore diameter of 0.09 μm by the mercury intrusion method, and a maximum pore diameter of 0.65 μm by the mercury intrusion method was obtained. This was used as a separator for a liquid lead-acid battery of Comparative Example 3.
次に、上記にて得られた実施例1~3、比較例1~3の各セパレータについて、以下の方法により、各種特性評価を行った。結果を表1に示す。なお、MD(MD方向)とは、製造されるシートの製造方向、CD(CD方向)とは、MD方向と直交する方向を言う。
〈ベース厚さ〉
ダイヤルゲージ(尾崎製作所社製 ピーコックG-6)を用いて、微多孔質フィルム(リブ状突起を有する場合はリブ状突起を含まない箇所)の任意の点、数箇所を測定した。
〈引張強度、伸び〉
微多孔質フィルムから、MDおよびCD方向に、10mm×70mmの長方形サイズに裁断し試験片とする。容量294N以下のショッパー式またはこれに準ずる引張試験機を用い、試験機のつかみの間隔(a)を約50mmとし、試験片を取り付け、毎分200mmの引張速さで引張試験を行い、試験片が切断した時の引張荷重(b)、距離(c)を読む。引張強度は、引張荷重(b)を試験片の断面積で除して算出する。伸びは、距離(c)を試験機のつかみの間隔(a)で除して算出する。
〈空隙率〉
微多孔質フィルムの細孔容積(水銀圧入法)と真密度(浸漬法)から、次式により算出した。
空隙率=Vp/((1/ρ)+Vp)
但し、Vp:細孔容積(cm3/g)、ρ:真密度(g/cm3)
〈平均細孔径〉
水銀圧入時の、圧力と水銀の容量から細孔径分布を算出した。全細孔容積の50%の容積の水銀が圧入された時点の細孔径を平均細孔径(メディアン径)とした。
〈最大孔径〉
平均細孔径試験における細孔径分布曲線から、水銀の圧入が開始された孔径を最大孔径とした。
〈浸透性〉
微多孔質フィルムを70mm×70mmの正方形サイズに裁断した試験片を、温度20℃の比重1.20の硫酸の液面に浮かべたのち、試験片の表面に硫酸が浸透し、試験片の一部が変色するまでの時間を測定し、浸透性(秒)とした。
〈電気抵抗〉
微多孔質フィルムを70mm×70mmの正方形サイズに裁断して試験片とし、SBA S 0402に準拠した試験装置で測定した。
〈耐酸化寿命〉
50mm×50mmの正方形状の鉛板製の正極および負極を、70mm×70mmの正方形状に裁断した微多孔質フィルム製セパレータを挟んで、同心状にかつ正方形状の向きを合わせて積層し、積層した正極(1枚)、セパレータ(1枚)、負極(1枚)からなる極群に19.6kPaの加圧をかけて電槽内に組み込んだ後、比重1.300(20℃)の希硫酸電解液を1000ml注入し、液温度50±2℃で5.0Aの直流定電流を流し、端子電圧が2.6V以下または電圧差が0.2V以上となった時点の通電時間を測定し、耐酸化時間(h)とした。なお、表1には、比較例1の値を100とした場合の相対値を表示した。
〈デンドライトショート特性〉
70mm×70mmの正方形状にカットした微多孔質フィルムを50mm×50mmの正方形状の鉛極板(純鉛製、厚さ3mm)2枚で挟んで、微多孔質フィルムと2枚の鉛極板の3つの正方形の中心が一致しかつ3つの正方形の各辺が互いに平行であるようにして、電槽内に水平状態に設置し、その上に(正方形の中心位置に)5kgの重りを載せた後、飽和硫酸鉛水溶液を注入する。その後、鉛極板に3.2mAの電流を通電し、電圧の変化を連続的に記録する。電圧は、通電開始後にやや上昇し、その後緩やかに低下する。この時の最大電圧の70%に電圧が低下するまで時間を計測する。なお、表1には、比較例1の値を100とした場合の相対値を表示した。
〈ICP発光分光分析〉
100mm×100mmの正方形状にカットした微多孔質フィルム2枚を、比重1.26の硫酸126gの入ったビーカーに入れる。これを50℃に保持した恒温水槽に入れて、24時間静置する。24時間静置後に、硫酸(抽出液)中から、微多孔質フィルムを取り出す。硫酸(抽出液)を1/10に希釈し、希釈液中のアルカリ金属分(Li、Na、K、Rb、Cs)、および、ハロゲン分(F、Cl、Br、I)を、ICP発光分光分析装置にて定量分析する。得られた値は、ppmからmg/100cm2/枚(面積が100cm2の微多孔質フィルム1枚当たりの重量)に換算する(但し、微多孔質フィルム1枚当たりとはベース厚さ0.2mm当たりであることとし、ベース厚さがこれと異なる場合は値を換算してベース厚さ0.2mm当たりとなるよう補正する)。
〈電池試験(充電受入性、電池寿命)〉
充電受入性は、JIS D 5301(2006)に基づき、5時間率電流で2.5時間放電した時の、充電開始後の充電電流を測定する。電池寿命は、JIS D 5301(2006)に基づく軽負荷寿命試験の方法で、充放電サイクル試験を行い、30秒目電圧が7.2V以下となった時のサイクル数を測定する。なお、表1の充電受入性、電池寿命は、比較例1の値を100とした場合の相対値(相対結果)を表示した。
Next, various characteristic evaluations were carried out for each of the separators of Examples 1 to 3 and Comparative Examples 1 to 3 obtained above by the following methods. The results are shown in Table 1. The MD (MD direction) is the manufacturing direction of the sheet to be manufactured, and the CD (CD direction) is the direction orthogonal to the MD direction.
<Base thickness>
Using a dial gauge (Peacock G-6 manufactured by Ozaki Seisakusho Co., Ltd.), arbitrary points and several points of the microporous film (where rib-like protrusions are not included) were measured.
<Tensile strength, elongation>
The microporous film is cut into a rectangular size of 10 mm × 70 mm in the MD and CD directions to obtain a test piece. Using a shopper type or similar tensile tester with a capacity of 294 N or less, set the grip interval (a) of the tester to about 50 mm, attach a test piece, and perform a tensile test at a tensile speed of 200 mm per minute. Read the tensile load (b) and distance (c) when cutting. The tensile strength is calculated by dividing the tensile load (b) by the cross-sectional area of the test piece. The elongation is calculated by dividing the distance (c) by the grip interval (a) of the testing machine.
<Porosity>
It was calculated by the following formula from the pore volume (mercury press-fitting method) and true density (immersion method) of the microporous film.
Porosity = Vp / ((1 / ρ) + Vp)
However, Vp: pore volume (cm 3 / g), ρ: true density (g / cm 3 )
<Average pore size>
The pore size distribution was calculated from the pressure and the volume of mercury at the time of mercury injection. The pore diameter at the time when mercury having a volume of 50% of the total pore volume was injected was defined as the average pore diameter (median diameter).
<Maximum hole diameter>
From the pore size distribution curve in the average pore size test, the pore size at which mercury injection was started was taken as the maximum pore size.
<Permeability>
A test piece obtained by cutting a microporous film into a square size of 70 mm × 70 mm is floated on the liquid surface of sulfuric acid having a specific gravity of 1.20 at a temperature of 20 ° C. The time until the part discolored was measured and used as the permeability (seconds).
<Electrical resistance>
The microporous film was cut into a square size of 70 mm × 70 mm to obtain a test piece, which was measured with a test device compliant with SBA S 0402.
<Oxidation resistant life>
A 50 mm x 50 mm square lead plate positive electrode and a negative electrode are laminated concentrically and in a square orientation with a microporous film separator cut into a 70 mm x 70 mm square. A rare group of electrodes consisting of a positive electrode (1 sheet), a separator (1 sheet), and a negative electrode (1 sheet) was subjected to a pressure of 19.6 kPa and incorporated into an electric bath, and then had a specific gravity of 1.300 (20 ° C.). 1000 ml of sulfuric acid electrolytic solution was injected, a DC constant current of 5.0 A was passed at a solution temperature of 50 ± 2 ° C., and the energization time was measured when the terminal voltage was 2.6 V or less or the voltage difference was 0.2 V or more. , The oxidation resistance time (h). In Table 1, the relative value when the value of Comparative Example 1 is 100 is displayed.
<Dendrite short characteristics>
A 70 mm x 70 mm square cut microporous film is sandwiched between two 50 mm x 50 mm square lead electrode plates (pure lead, 3 mm thick), and the microporous film and two lead electrode plates are sandwiched between them. Place the three squares horizontally in the battery case so that the centers of the three squares are aligned and the sides of the three squares are parallel to each other, and place a 5 kg weight (at the center of the square) on it. After that, a saturated lead sulfate aqueous solution is injected. After that, a current of 3.2 mA is applied to the lead electrode plate, and the change in voltage is continuously recorded. The voltage rises slightly after the start of energization and then gradually drops. The time is measured until the voltage drops to 70% of the maximum voltage at this time. In Table 1, the relative value when the value of Comparative Example 1 is 100 is displayed.
<ICP emission spectroscopic analysis>
Two pieces of microporous film cut into a square shape of 100 mm × 100 mm are placed in a beaker containing 126 g of sulfuric acid having a specific gravity of 1.26. This is placed in a constant temperature water tank maintained at 50 ° C. and allowed to stand for 24 hours. After standing for 24 hours, the microporous film is taken out from the sulfuric acid (extract). Sulfuric acid (extract) is diluted to 1/10, and the alkali metal content (Li, Na, K, Rb, Cs) and halogen content (F, Cl, Br, I) in the diluted solution are separated by ICP emission spectroscopy. Quantitative analysis is performed with an analyzer. The obtained value is converted from ppm to mg / 100 cm 2 / sheet (weight per microporous film having an area of 100 cm 2 ) (however, the base thickness per microporous film is 0. It is assumed that it is per 2 mm, and if the base thickness is different from this, the value is converted and corrected so that it is per 0.2 mm of the base thickness).
<Battery test (charge acceptability, battery life)>
The charge acceptability is based on JIS D 5301 (2006), and the charge current after the start of charging is measured when the battery is discharged at a 5-hour rate current for 2.5 hours. The battery life is a light load life test method based on JIS D 5301 (2006), and a charge / discharge cycle test is performed, and the number of cycles when the voltage at the 30th second becomes 7.2 V or less is measured. The charge acceptability and battery life in Table 1 are shown as relative values (relative results) when the value of Comparative Example 1 is 100.
表1の結果から以下のことが分かった。
(1)本発明の実施例1のセパレータは、アルカリ金属分の濃度(ICP発光分光分析)を5mg/100cm2/枚以下としたことで、充電受入性が良化するとともに、ハロゲン分の濃度(ICP発光分光分析)を0.4mg/100cm2/枚以下としたことで、極板格子や極柱の腐食が妨げられ、電池寿命が良化した。
(2)本発明の実施例2のセパレータは、実施例1のセパレータに対し、更に、アルカリ金属分の濃度(ICP発光分光分析)を4mg/100cm2/枚以下としたことで、充電受入性が更に良化した。
(3)本発明の実施例3のセパレータは、実施例1のセパレータに対し、更に、ハロゲン分の濃度(ICP発光分光分析)を0.1mg/100cm2/枚以下としたことで、電池寿命が更に良化した。
(4)よって、本発明の実施例1~3のセパレータを自動車用鉛蓄電池に適用すれば、アイドリングストップ車で求められる充電受入性および電池寿命の向上に寄与すると考えられる。
(5)比較例1のセパレータは、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm2/枚超えであることから、充電受入性は100%と改善が見られず、また、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm2/枚超えであることから、極板格子や極柱の腐食が促進され、電池寿命は100%と改善が見られなかった。
(6)比較例2のセパレータは、ハロゲン分の濃度(ICP発光分光分析)を0.4mg/100cm2/枚以下としたことで、極板格子や極柱の腐食が妨げられ、電池寿命が良化したものの、アルカリ金属分の濃度(ICP発光分光分析)が5mg/100cm2/枚超えであることから、充電受入性は100%と改善が見られなかった。
(7)比較例3のセパレータは、アルカリ金属分の濃度(ICP発光分光分析)を5mg/100cm2/枚以下としたことで、充電受入性が良化したものの、ハロゲン分の濃度(ICP発光分光分析)が0.4mg/100cm2/枚超えであることから、極板格子や極柱の腐食が促進され、電池寿命は100%と改善が見られなかった。
From the results in Table 1, the following was found.
(1) The separator of Example 1 of the present invention has an alkali metal concentration (ICP emission spectroscopic analysis) of 5 mg / 100 cm 2 / sheet or less, which improves charge acceptability and a halogen concentration. By setting (ICP emission spectroscopic analysis) to 0.4 mg / 100 cm 2 / sheet or less, corrosion of the electrode plate lattice and the electrode column was prevented, and the battery life was improved.
(2) The separator of Example 2 of the present invention has a charge acceptability by further setting the concentration of alkali metal (ICP emission spectroscopic analysis) to 4 mg / 100 cm 2 / sheet or less with respect to the separator of Example 1. Has improved further.
(3) The separator of Example 3 of the present invention has a battery life of 0.1 mg / 100 cm 2 / sheet or less in terms of halogen content (ICP emission spectroscopic analysis) with respect to the separator of Example 1. Has improved further.
(4) Therefore, it is considered that if the separators of Examples 1 to 3 of the present invention are applied to a lead storage battery for an automobile, it contributes to the improvement of charge acceptability and battery life required for an idling stop vehicle.
(5) Since the separator of Comparative Example 1 has an alkali metal concentration (ICP emission spectroscopic analysis) of more than 5 mg / 100 cm 2 / sheet, the charge acceptability is not improved to 100%, and halogen. Since the concentration of the minute (ICP emission spectroscopic analysis) exceeded 0.4 mg / 100 cm 2 / sheet, corrosion of the electrode plate lattice and the electrode column was promoted, and the battery life was not improved to 100%.
(6) The separator of Comparative Example 2 has a halogen concentration (ICP emission spectroscopic analysis) of 0.4 mg / 100 cm 2 / sheet or less, which prevents corrosion of the electrode plate lattice and the electrode column and shortens the battery life. Although it improved, the concentration of the alkali metal (ICP emission spectroscopic analysis) was 5 mg / 100 cm 2 / sheet or more, so that the charge acceptability was not improved to 100%.
(7) The separator of Comparative Example 3 has an alkali metal concentration (ICP emission spectroscopic analysis) of 5 mg / 100 cm 2 / sheet or less, which improves charge acceptance, but has a halogen concentration (ICP emission spectroscopy). Since the spectroscopic analysis) was over 0.4 mg / 100 cm 2 / sheet, corrosion of the electrode plate lattice and the electrode column was promoted, and the battery life was not improved to 100%.
Claims (4)
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016072387 | 2016-03-31 | ||
| JP2016072387 | 2016-03-31 | ||
| JP2018509493A JP7248425B2 (en) | 2016-03-31 | 2017-03-31 | Separator for flooded lead-acid battery |
| PCT/JP2017/013500 WO2017170977A1 (en) | 2016-03-31 | 2017-03-31 | Separator for liquid-type lead storage battery |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2018509493A Division JP7248425B2 (en) | 2016-03-31 | 2017-03-31 | Separator for flooded lead-acid battery |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2022100369A true JP2022100369A (en) | 2022-07-05 |
| JP7444920B2 JP7444920B2 (en) | 2024-03-06 |
Family
ID=59965965
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2018509493A Active JP7248425B2 (en) | 2016-03-31 | 2017-03-31 | Separator for flooded lead-acid battery |
| JP2022072931A Active JP7444920B2 (en) | 2016-03-31 | 2022-04-27 | Separator for liquid lead-acid batteries |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2018509493A Active JP7248425B2 (en) | 2016-03-31 | 2017-03-31 | Separator for flooded lead-acid battery |
Country Status (3)
| Country | Link |
|---|---|
| JP (2) | JP7248425B2 (en) |
| CN (1) | CN108886124B (en) |
| WO (1) | WO2017170977A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3642893B1 (en) * | 2017-06-20 | 2025-02-26 | Daramic, LLC | Improved lead acid battery separators, batteries, and related methods |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001283898A (en) * | 2000-03-29 | 2001-10-12 | Tokuyama Corp | Electrolyte retention agent for lead-acid batteries |
| US6818355B1 (en) * | 1998-03-20 | 2004-11-16 | Ensci Inc. | Silica filled polymeric separator containing efficiency improving additives |
| JP2005251394A (en) * | 2004-03-01 | 2005-09-15 | Japan Storage Battery Co Ltd | Lead storage battery |
| CN2911976Y (en) * | 2006-04-17 | 2007-06-13 | 周文军 | High efficiency environment protection accumulator |
| CN101060180A (en) * | 2006-04-17 | 2007-10-24 | 周文军 | A low sodium silicon colloidal environment-friendly storage battery |
| WO2008062727A1 (en) * | 2006-11-20 | 2008-05-29 | Teijin Limited | Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery |
| JP2008523211A (en) * | 2004-12-07 | 2008-07-03 | ダラミック エルエルシー | Microporous material and method for producing the same |
| JP2013203650A (en) * | 2012-03-29 | 2013-10-07 | Admatechs Co Ltd | Silica particle and thermoplastic resin composition |
| WO2014046094A1 (en) * | 2012-09-19 | 2014-03-27 | 旭化成株式会社 | Separator, manufacturing method thereof, and lithium ion secondary cell |
| WO2014128803A1 (en) * | 2013-02-22 | 2014-08-28 | 株式会社Gsユアサ | Flooded lead-acid battery |
| JP2015216125A (en) * | 2015-07-27 | 2015-12-03 | 日本板硝子株式会社 | Liquid lead-acid battery separator and liquid lead-acid battery |
| JP2016024918A (en) * | 2014-07-18 | 2016-02-08 | 三菱製紙株式会社 | Manufacturing method of separator for electrochemical device, separator for electrochemical device manufactured by the manufacturing method, and electrochemical device using the same |
| JP2016519389A (en) * | 2013-03-15 | 2016-06-30 | アムテック リサーチ インターナショナル エルエルシー | Small resistivity lead acid battery separator |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19527278A1 (en) * | 1995-07-26 | 1997-01-30 | Degussa | Precipitated silica |
| JPH10172532A (en) * | 1996-12-10 | 1998-06-26 | Mitsubishi Paper Mills Ltd | Nonwoven fabric for alkaline battery separator and method for producing the same |
| JPH1143890A (en) * | 1996-12-26 | 1999-02-16 | Mitsubishi Paper Mills Ltd | Non-woven fabric, battery separator and battery |
| JP2003036831A (en) * | 2001-07-23 | 2003-02-07 | Furukawa Battery Co Ltd:The | Sealed lead-acid battery with gel electrolyte |
| JP5020449B2 (en) * | 2001-09-28 | 2012-09-05 | 日本板硝子株式会社 | Sealed separator for sealed lead-acid battery |
| JP4846193B2 (en) * | 2002-07-10 | 2011-12-28 | 株式会社トクヤマ | Easily dispersible precipitated silica cake and method for producing the same |
| US7985392B2 (en) * | 2002-07-10 | 2011-07-26 | Tokuyama Corporation | Cake of easily dispersible precipitated silica |
| JP2005053728A (en) * | 2003-08-01 | 2005-03-03 | Dsl Japan Co Ltd | Amorphous silica particle having high oil absorption and high structural performance |
| JP4628764B2 (en) * | 2004-07-06 | 2011-02-09 | 旭化成株式会社 | Storage device separator |
| JP2009032677A (en) * | 2007-07-04 | 2009-02-12 | Hitachi Maxell Ltd | Porous membrane for separator and manufacturing method thereof, battery separator and manufacturing method thereof, battery electrode and manufacturing method thereof, and lithium secondary battery |
| JP5875459B2 (en) * | 2012-05-11 | 2016-03-02 | 太平洋セメント株式会社 | Method for cleaning amorphous silica |
| CN105428570A (en) * | 2014-08-20 | 2016-03-23 | 招远市海思微孔隔膜有限公司 | PVC battery separation plate production method and PVC battery separation plate |
-
2017
- 2017-03-31 CN CN201780020347.4A patent/CN108886124B/en active Active
- 2017-03-31 JP JP2018509493A patent/JP7248425B2/en active Active
- 2017-03-31 WO PCT/JP2017/013500 patent/WO2017170977A1/en active Application Filing
-
2022
- 2022-04-27 JP JP2022072931A patent/JP7444920B2/en active Active
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6818355B1 (en) * | 1998-03-20 | 2004-11-16 | Ensci Inc. | Silica filled polymeric separator containing efficiency improving additives |
| JP2001283898A (en) * | 2000-03-29 | 2001-10-12 | Tokuyama Corp | Electrolyte retention agent for lead-acid batteries |
| JP2005251394A (en) * | 2004-03-01 | 2005-09-15 | Japan Storage Battery Co Ltd | Lead storage battery |
| JP2008523211A (en) * | 2004-12-07 | 2008-07-03 | ダラミック エルエルシー | Microporous material and method for producing the same |
| CN2911976Y (en) * | 2006-04-17 | 2007-06-13 | 周文军 | High efficiency environment protection accumulator |
| CN101060180A (en) * | 2006-04-17 | 2007-10-24 | 周文军 | A low sodium silicon colloidal environment-friendly storage battery |
| WO2008062727A1 (en) * | 2006-11-20 | 2008-05-29 | Teijin Limited | Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery |
| JP2013203650A (en) * | 2012-03-29 | 2013-10-07 | Admatechs Co Ltd | Silica particle and thermoplastic resin composition |
| WO2014046094A1 (en) * | 2012-09-19 | 2014-03-27 | 旭化成株式会社 | Separator, manufacturing method thereof, and lithium ion secondary cell |
| WO2014128803A1 (en) * | 2013-02-22 | 2014-08-28 | 株式会社Gsユアサ | Flooded lead-acid battery |
| JP2016519389A (en) * | 2013-03-15 | 2016-06-30 | アムテック リサーチ インターナショナル エルエルシー | Small resistivity lead acid battery separator |
| JP2016024918A (en) * | 2014-07-18 | 2016-02-08 | 三菱製紙株式会社 | Manufacturing method of separator for electrochemical device, separator for electrochemical device manufactured by the manufacturing method, and electrochemical device using the same |
| JP2015216125A (en) * | 2015-07-27 | 2015-12-03 | 日本板硝子株式会社 | Liquid lead-acid battery separator and liquid lead-acid battery |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108886124B (en) | 2021-06-04 |
| WO2017170977A1 (en) | 2017-10-05 |
| CN108886124A (en) | 2018-11-23 |
| JP7444920B2 (en) | 2024-03-06 |
| JPWO2017170977A1 (en) | 2019-02-07 |
| JP7248425B2 (en) | 2023-03-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240234947A1 (en) | Separators for lead acid batteries, improved batteries and related methods | |
| JP5841478B2 (en) | Separator for liquid lead acid battery and liquid lead acid battery | |
| US20230420804A1 (en) | Lead acid battery separators, batteries, and related methods | |
| US10270136B2 (en) | Separator for lead-acid battery, and lead-acid battery | |
| KR20180123735A (en) | Improved separator, battery and related method for Reinforced Immersion Type Battery | |
| JP7380580B2 (en) | lead acid battery | |
| WO2017143212A1 (en) | Improved separators, lead acid batteries, and methods and systems associated therewith | |
| JP6030194B2 (en) | Liquid lead-acid battery separator and liquid lead-acid battery | |
| US20250038356A1 (en) | Separators, lead acid batteries, and methods and systems associated therewith | |
| JP2022100369A (en) | Separator for liquid lead-acid batteries | |
| JP2014179519A (en) | Separator for electricity storage device, and electricity storage device | |
| JP2023020286A (en) | Lead-acid battery separator and lead-acid battery | |
| JP5020449B2 (en) | Sealed separator for sealed lead-acid battery | |
| JP2005285688A (en) | Separator for battery and its manufacturing method as well as battery | |
| JP6769306B2 (en) | Separator for lead-acid battery and lead-acid battery | |
| JP2013070006A (en) | Heat resistance separator for power storage device, and method of manufacturing the same | |
| WO2025018297A1 (en) | Separator for lead acid batteries | |
| WO2025070735A1 (en) | Separator for lead acid batteries | |
| JP7533474B2 (en) | Lead-acid battery | |
| JP2002260961A (en) | Separator for electronic double-layer capacitor | |
| WO2021084877A1 (en) | Lead-acid battery | |
| JP2003303738A (en) | Separator for capacitor and its manufacturing method | |
| JPH0992256A (en) | Manufacture of storage battery separator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220427 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230530 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230728 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231031 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240220 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240222 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7444920 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |