[go: up one dir, main page]

JP2022106769A - Circuit device and electronic apparatus - Google Patents

Circuit device and electronic apparatus Download PDF

Info

Publication number
JP2022106769A
JP2022106769A JP2022066259A JP2022066259A JP2022106769A JP 2022106769 A JP2022106769 A JP 2022106769A JP 2022066259 A JP2022066259 A JP 2022066259A JP 2022066259 A JP2022066259 A JP 2022066259A JP 2022106769 A JP2022106769 A JP 2022106769A
Authority
JP
Japan
Prior art keywords
image
circuit
comparison
error detection
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022066259A
Other languages
Japanese (ja)
Other versions
JP7322999B2 (en
Inventor
クマー アナンダバイラバサミー アナンド
Kumar Anandabairavasamy Anand
ウィットマイアー マンフレッド
Wittmeir Manfred
ジェフリー エリック
Eric Jeffrey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018034613A external-priority patent/JP7180079B2/en
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2022066259A priority Critical patent/JP7322999B2/en
Publication of JP2022106769A publication Critical patent/JP2022106769A/en
Application granted granted Critical
Publication of JP7322999B2 publication Critical patent/JP7322999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Controls And Circuits For Display Device (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

【課題】ヘッドアップディスプレイにおける表示画像のエラーを適切に検出することが可能な回路装置、電子機器及びエラー検出方法等を提供すること。【解決手段】回路装置100は、画像処理回路135と比較回路145とを含む。画像処理回路135は、入力された第1の画像IMA1を、被投影体に投影するための第2の画像IMA2にマッピング処理する第1のマッピング処理と、第1のマッピング処理の逆マッピング処理により第2の画像IMA2を第3の画像IMA3に変換する第2のマッピング処理とを行う。比較回路145は、第1の画像IMA1と第3の画像IMA3との間の比較を行い、その比較の結果を、第2の画像IMA2のエラー検出を行うための情報として出力する。【選択図】 図1A circuit device, an electronic device, an error detection method, and the like capable of appropriately detecting an error in an image displayed on a head-up display are provided. A circuit device (100) includes an image processing circuit (135) and a comparison circuit (145). The image processing circuit 135 performs a first mapping process of mapping the input first image IMA1 to a second image IMA2 to be projected onto the object to be projected, and a reverse mapping process of the first mapping process. and a second mapping process for converting the second image IMA2 into a third image IMA3. The comparison circuit 145 performs a comparison between the first image IMA1 and the third image IMA3, and outputs the result of the comparison as information for error detection of the second image IMA2. [Selection diagram] Fig. 1

Description

本発明は、回路装置及び電子機器等に関する。 The present invention relates to circuit devices, electronic devices, and the like.

2次元画像を被投影体に投影し、その投影された画像がユーザーに提示されるヘッドアップディスプレイ(HUD:Head Up Display)が知られている。被投影体は例えば自動車のフロントガラス等であり、非平面形状であることが多い。このため、画像を非平面に投影したときに、歪んでいない画像がユーザーに提示されるように、ヘッドマウントディスプレイコントローラー(HUDC:Head Up Display Controller)が画像のマッピング処理を行う。 A head-up display (HUD) is known in which a two-dimensional image is projected onto a projected object and the projected image is presented to a user. The projected object is, for example, the windshield of an automobile, and often has a non-planar shape. Therefore, the head-mounted display controller (HUDC: Head Up Display Controller) performs image mapping processing so that an undistorted image is presented to the user when the image is projected on a non-plane surface.

マッピング処理の従来技術は例えば特許文献1に開示されている。特許文献1には、出所配列と行先配列との間の画素のマッピング手法が記載されており、特に行先配列から出所配列への逆マッピングの手法が詳細に記載されている。出所配列は、マッピング処理前の画素の配列であり、行先配列は、出所配列をマッピング処理により座標変換するときの行先となる画素の配列である。 The prior art of mapping processing is disclosed in, for example, Patent Document 1. Patent Document 1 describes a pixel mapping method between a source array and a destination array, and particularly describes a method of inverse mapping from a destination array to a source array in detail. The source array is an array of pixels before the mapping process, and the destination array is an array of pixels that is the destination when the source array is coordinate-transformed by the mapping process.

特開平10-49665号公報Japanese Unexamined Patent Publication No. 10-49665

上記のようにヘッドアップディスプレイコントローラーがマッピング処理を行った場合、ヘッドアップディスプレイに表示された画像が適切な表示内容かどうかという問題がある。即ち、マッピング処理に用いられるマップデータや、そのマップデータを用いた座標変換が正常であるか否かを確認したいという課題がある。マッピング処理の従来技術では、マッピングの手法そのものは開示されているが、マッピング処理が正常であるかを確認する手法は開示されていない。 When the head-up display controller performs the mapping process as described above, there is a problem that the image displayed on the head-up display has appropriate display contents. That is, there is a problem that it is desired to confirm whether or not the map data used for the mapping process and the coordinate transformation using the map data are normal. In the prior art of mapping processing, the mapping method itself is disclosed, but the method for confirming whether the mapping processing is normal is not disclosed.

本発明の一態様は、入力された第1の画像を、被投影体に投影するための第2の画像にマッピング処理する第1のマッピング処理と、前記第1のマッピング処理の逆マッピング処理により前記第2の画像を第3の画像に変換する第2のマッピング処理とを行う画像処理回路と、前記第1の画像と前記第3の画像との間の比較を行い、前記比較の結果を、前記第2の画像のエラー検出を行うための情報として出力する比較回路と、を含む回路装置に関係する。 One aspect of the present invention is a first mapping process for mapping an input first image to a second image for projecting onto a projected object, and a reverse mapping process for the first mapping process. An image processing circuit that performs a second mapping process for converting the second image into a third image is compared with the first image and the third image, and the result of the comparison is obtained. The present invention relates to a circuit device including a comparison circuit that outputs information for detecting an error in the second image.

また本発明の一態様では、前記比較回路は、前記第1の画像の画素値と前記第3の画像の画素値とに基づいて、又は前記第1の画像のエッジ画像の画素値と前記第3の画像のエッジ画像の画素値とに基づいて、前記第1の画像と前記第3の画像との間の一致度合いを示す指標を、前記比較の結果として求めてもよい。 Further, in one aspect of the present invention, the comparison circuit is based on the pixel value of the first image and the pixel value of the third image, or the pixel value of the edge image of the first image and the first. An index indicating the degree of coincidence between the first image and the third image may be obtained as a result of the comparison based on the pixel value of the edge image of the third image.

また本発明の一態様では、前記画像処理回路は、前記被投影体に対応するマップデータから生成された第1のマップデータを用いて前記第1のマッピング処理を行い、前記マップデータである第2のマップデータを用いて前記第2のマッピング処理を行ってもよい。 Further, in one aspect of the present invention, the image processing circuit performs the first mapping process using the first map data generated from the map data corresponding to the projected object, and is the map data. The second mapping process may be performed using the map data of 2.

また本発明の他の態様は、被投影体に対応するマップデータに基づいて、入力された第1の画像を、前記被投影体に投影するための第2の画像にマッピング処理する第1のマッピング処理と、前記マップデータに基づいて、前記第1のマッピング処理とは異なる第2のマッピング処理により前記第1の画像を第3の画像に変換する第2のマッピング処理とを行う画像処理回路と、前記第2の画像と前記第3の画像との間の比較を行い、前記比較の結果を、前記第2の画像のエラー検出を行うための情報として出力する比較回路と、を含む回路装置に関係する。 Another aspect of the present invention is the first aspect of mapping the input first image to the second image for projecting onto the projected object based on the map data corresponding to the projected object. An image processing circuit that performs a mapping process and a second mapping process for converting the first image into a third image by a second mapping process different from the first mapping process based on the map data. A circuit including a comparison circuit that makes a comparison between the second image and the third image and outputs the result of the comparison as information for performing error detection of the second image. Related to the device.

また本発明の他の態様では、前記比較回路は、前記第2の画像の画素値と前記第3の画像の画素値とに基づいて、又は前記第2の画像のエッジ画像の画素値と前記第3の画像のエッジ画像の画素値とに基づいて、前記第2の画像と前記第3の画像との間の一致度合いを示す指標を、前記比較の結果として求めてもよい。 Further, in another aspect of the present invention, the comparison circuit is based on the pixel value of the second image and the pixel value of the third image, or the pixel value of the edge image of the second image and the said. An index indicating the degree of coincidence between the second image and the third image may be obtained as a result of the comparison based on the pixel value of the edge image of the third image.

また本発明の他の態様では、前記画像処理回路は、前記マップデータから生成された第1のマップデータを用いて前記第1のマッピング処理を行い、前記マップデータである第2のマップデータを用いて前記第2のマッピング処理を行ってもよい。 Further, in another aspect of the present invention, the image processing circuit performs the first mapping process using the first map data generated from the map data, and obtains the second map data which is the map data. You may use it to perform the second mapping process.

また本発明の他の態様では、前記画像処理回路は、前記第1の画像よりも低解像度の前記第3の画像を生成し、前記比較回路は、前記第2の画像に対して、前記第3の画像の解像度に合わせる低解像度化を行い、前記第3の画像と前記低解像度化後の前記第2の画像とを比較してもよい。 Further, in another aspect of the present invention, the image processing circuit generates the third image having a resolution lower than that of the first image, and the comparison circuit generates the third image with respect to the second image. The resolution may be reduced to match the resolution of the image of 3, and the third image may be compared with the second image after the reduction in resolution.

また本発明の他の態様では、前記比較の結果に基づいて前記第2の画像のエラー検出を行うエラー検出回路を含んでもよい。 Further, in another aspect of the present invention, an error detection circuit that detects an error in the second image based on the result of the comparison may be included.

また本発明の他の態様では、前記エラー検出回路によりエラーと判定されたときの回路装置の動作モードが設定される動作モード設定レジスターを含んでもよい。 Further, in another aspect of the present invention, an operation mode setting register for setting the operation mode of the circuit device when an error is determined by the error detection circuit may be included.

また本発明の他の態様では、前記動作モード設定レジスターには、前記エラー検出の結果を前記回路装置の外部装置に通知するモード、前記第2の画像を非表示にするモード、又は特定の画像を表示させるモードが、前記動作モードとして設定されてもよい。 In another aspect of the present invention, the operation mode setting register has a mode of notifying the external device of the circuit device of the error detection result, a mode of hiding the second image, or a specific image. The mode for displaying the above may be set as the operation mode.

また本発明の他の態様では、前記エラー検出回路は、前記比較の結果と、前記第2の画像のエラーを判定するための閾値との比較により、前記エラー検出を行ってもよい。 Further, in another aspect of the present invention, the error detection circuit may perform the error detection by comparing the result of the comparison with a threshold value for determining an error in the second image.

また本発明の他の態様では、前記閾値が設定される閾値レジスターを含んでもよい。 In another aspect of the present invention, a threshold register in which the threshold is set may be included.

また本発明の更に他の態様は、上記のいずれかに記載の回路装置を含む電子機器に関係する。 Yet another aspect of the present invention relates to an electronic device including the circuit device according to any of the above.

本実施形態の回路装置の第1の構成例。A first configuration example of the circuit device of this embodiment. 第1の構成例の回路装置の変形例。A modification of the circuit device of the first configuration example. 第1の構成例の回路装置の動作を模式的に示した図。The figure which schematically showed the operation of the circuit apparatus of the 1st configuration example. 本実施形態の回路装置の第2の構成例。A second configuration example of the circuit device of this embodiment. 比較回路の詳細な構成例。Detailed configuration example of the comparison circuit. 本実施形態の回路装置の第3の構成例。A third configuration example of the circuit device of this embodiment. 第3の構成例の回路装置の動作を模式的に示した図。The figure which schematically showed the operation of the circuit apparatus of the 3rd configuration example. 本実施形態の回路装置の第4の構成例。A fourth configuration example of the circuit device of this embodiment. 解析画像の第1の例。The first example of the analysis image. 基準画像の例。An example of a reference image. 基準画像の平均化画像。An averaged image of the reference image. 解析画像の第2の例。The second example of the analysis image. 解析画像の第3の例。A third example of an analysis image. 解析画像の第4の例。Fourth example of the analysis image. 関心領域における解析画像の例。An example of an analysis image in a region of interest. 解析画像から計算されたエッジ値の例。An example of the edge value calculated from the analysis image. 関心領域におけるYCbCrの各チャンネルのヒストグラム。Histogram of each channel of YCbCr in the region of interest. ヒストグラムに相互相関演算を行って得られた相互相関値。Cross-correlation value obtained by performing cross-correlation calculation on the histogram. 解析画像と基準画像のヒストグラムの例。An example of a histogram of the analysis image and the reference image. 解析画像と基準画像のヒストグラムの相互相関値の例。An example of the cross-correlation value of the histogram of the analysis image and the reference image. 電子機器の構成例。Configuration example of electronic equipment.

以下、本発明の好適な実施の形態について詳細に説明する。なお以下に説明する本実施形態は特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. The present embodiment described below does not unreasonably limit the content of the present invention described in the claims, and all the configurations described in the present embodiment are indispensable as a means for solving the present invention. Not necessarily.

1.第1、第2の構成例
図1は、本実施形態の回路装置の第1の構成例である。回路装置100は、インターフェース110(第1のインターフェース)、前処理回路125、画像処理回路135、インターフェース140(第2のインターフェース)、比較回路145、レジスター回路170、インターフェース190(第3のインターフェース)を含む。回路装置100は、例えば集積回路装置(IC)である。
1. 1. First and Second Configuration Examples FIG. 1 is a first configuration example of the circuit device of the present embodiment. The circuit device 100 includes an interface 110 (first interface), a preprocessing circuit 125, an image processing circuit 135, an interface 140 (second interface), a comparison circuit 145, a register circuit 170, and an interface 190 (third interface). include. The circuit device 100 is, for example, an integrated circuit device (IC).

インターフェース110は、例えば処理装置200等から回路装置100に送信される画像データを受信し、その受信した画像データを、回路装置100の内部で用いられる形式に変換する。例えば、インターフェース110はOpenLDI(Open LVDS Display Interface)であり、LVDS(Low Voltage Differential Signaling)で受信したシリアル信号を、RGBのパラレル信号に変換する。処理装置200は、例えばSoC(System on a Chip)やMCU(Micro Control Unit)、CPU(Central Processing Unit)等である。 The interface 110 receives, for example, image data transmitted from the processing device 200 or the like to the circuit device 100, and converts the received image data into a format used inside the circuit device 100. For example, the interface 110 is an Open LDI (Open LVDS Display Interface), and converts a serial signal received by LVDS (Low Voltage Differential Signaling) into an RGB parallel signal. The processing device 200 is, for example, a SoC (System on a Chip), an MCU (Micro Control Unit), a CPU (Central Processing Unit), or the like.

前処理回路125は、インターフェース110から入力される画像データに対して前処理を行い、前処理後の画像IMA1を出力する。例えば、前処理回路125は、ガンマ補正やFRC(Frame Rate Control)、ホワイトバランス処理等を前処理として行う。前処理回路125は、画像処理回路135に入力される画像を取得する回路であり、画像取得回路とも呼ぶ。 The preprocessing circuit 125 performs preprocessing on the image data input from the interface 110, and outputs the image IMA1 after the preprocessing. For example, the preprocessing circuit 125 performs gamma correction, FRC (Frame Rate Control), white balance processing, and the like as preprocessing. The preprocessing circuit 125 is a circuit that acquires an image input to the image processing circuit 135, and is also called an image acquisition circuit.

画像処理回路135は、被投影体の表面形状に合わせて画像をマッピングするマッピング処理部WEA1と、その逆マッピングを行うマッピング処理部WEA2と、を含む。具体的には、マッピング処理部WEA1は、前処理回路125が出力した画像IMA1に対して、マップデータMPA1を用いたマッピング処理を行い、マッピング処理後の画像IMA2を出力する。このマッピング処理は、被投影体に投影された画像がユーザーから見て歪んでいない状態となるように、画像IMA1を変形する処理である。マッピング処理部WEA2は、マッピング処理部WEA1が出力した画像IMA2に対して、マップデータMPA2を用いたマッピング処理を行い、マッピング処理後の画像IMA3を出力する。このマッピング処理は、マッピング処理部WEA1が行うマッピング処理の逆変換に相当する。即ち、被投影体に合わせて変形された画像IMA2を、変形前の画像に戻す変換である。 The image processing circuit 135 includes a mapping processing unit WEA1 that maps an image according to the surface shape of the projected object, and a mapping processing unit WEA2 that performs reverse mapping thereof. Specifically, the mapping processing unit WEA1 performs mapping processing using the map data MPA1 on the image IMA1 output by the preprocessing circuit 125, and outputs the image IMA2 after the mapping processing. This mapping process is a process of transforming the image IMA1 so that the image projected on the projected object is not distorted when viewed from the user. The mapping processing unit WEA2 performs mapping processing using the map data MPA2 on the image IMA2 output by the mapping processing unit WEA1, and outputs the image IMA3 after the mapping processing. This mapping process corresponds to the inverse conversion of the mapping process performed by the mapping processing unit WEA1. That is, it is a conversion that returns the image IMA2 deformed according to the projected object to the image before the deformation.

マッピング処理にエラーが無い場合、画像IMA3とIMA1の一致度合いが高いので、後述する比較回路145により画像IAM3とIMA1とを比較することで、表示画像である画像IMA2が正常な画像であるかを検出できる。なお、画像IMA3とIMA1は必ずしも画像データとして完全に一致する必要はなく、比較回路145によって比較可能な程度に画像が相似していればよい。即ち、マッピング処理部WEA2が行うマッピング処理は、マッピング処理部WEA1が行うマッピング処理に対して逆変換であるが、画像IMA3とIMA1が完全に一致するような逆変換である必要はない。 If there is no error in the mapping process, the degree of matching between the image IMA3 and the IMA1 is high. Therefore, by comparing the image IMA3 and the IMA1 with the comparison circuit 145 described later, it can be determined whether the image IMA2 which is the display image is a normal image. Can be detected. The images IMA3 and IMA1 do not necessarily have to completely match as image data, and the images may be similar to the extent that they can be compared by the comparison circuit 145. That is, the mapping process performed by the mapping processing unit WEA2 is an inverse conversion to the mapping processing performed by the mapping processing unit WEA1, but it does not have to be an inverse conversion such that the image IMA3 and the IMA1 completely match.

被投影体とは、画像IAM2が投影又は表示される物体のことである。即ち、画像IMA2は、インターフェース140から投影装置に出力され、投影装置が画像IMA2を被投影体に投影する。この被投影体に投影された画像がユーザーに提示される。投影装置は、例えば液晶表示パネルと、その液晶表示パネルを駆動する表示ドライバーと、光源と、レンズとを含む。表示ドライバーは受信した画像データに基づいて液晶表示パネルに画像を表示させ、光源が液晶表示パネルに光を出力し、液晶表示パネルを通過した光がレンズにより被投影体に投影される。被投影体は、投影された光を反射する反射面を有しており、例えば反射面は被投影体の表面である。反射面は、入射光の少なくとも一部を反射する面であり、反射は、乱反射、正反射のいずれであってもよい。被投影体は、ヘッドアップディスプレイが画像を投影する対象物であり、例えば車載のヘッドアップディスプレイの場合には被投影体は自動車のフロントガラス等である。なお、被投影体は、この例に限定されず、投影装置によって画像が投影又は表示される対象物であればよい。 The projected object is an object on which the image IAM2 is projected or displayed. That is, the image IMA2 is output from the interface 140 to the projection device, and the projection device projects the image IMA2 onto the projected object. The image projected on the projected object is presented to the user. The projection device includes, for example, a liquid crystal display panel, a display driver for driving the liquid crystal display panel, a light source, and a lens. The display driver displays an image on the liquid crystal display panel based on the received image data, the light source outputs light to the liquid crystal display panel, and the light passing through the liquid crystal display panel is projected onto the object to be projected by the lens. The projected object has a reflecting surface that reflects the projected light, for example, the reflecting surface is the surface of the projected object. The reflecting surface is a surface that reflects at least a part of the incident light, and the reflection may be either diffuse reflection or specular reflection. The projected object is an object on which the head-up display projects an image. For example, in the case of an in-vehicle head-up display, the projected object is an automobile windshield or the like. The projected object is not limited to this example, and may be any object whose image is projected or displayed by the projection device.

マッピング処理とは、マップデータに基づいて画像の画素位置を座標変換する処理である。マッピング処理は、座標変換に伴う処理として、画素値の補間処理等を含むことができる。マッピング処理としてはフォワードマッピングとリバースマッピングがある。フォワードマッピングでは、処理前の画像の画素位置を、処理後の画像の画素位置に座標変換し、その座標変換の結果を用いて処理後の画像を生成する。即ち、処理前の画像の画素を順次に選択していき、その選択された画素の画素位置(xa,ya)を座標変換し、その画素の画素値を、座標変換後の画素位置(ua,va)における画素値とする。一方、リバースマッピングでは、処理後の画像の画素位置を、処理前の画像の画素位置に座標変換し、その座標変換の結果を用いて処理後の画像を生成する。即ち、処理後の画像の画素位置を順次に選択していき、その選択された画素位置(ub,vb)を処理前の画像の画素位置に座標変換し、その画素位置(xb,yb)の画素の画素値を、処理後の画像の画素位置(ub,vb)における画素値とする。 The mapping process is a process of coordinate-transforming the pixel position of an image based on the map data. The mapping process can include a pixel value interpolation process and the like as a process associated with the coordinate transformation. There are forward mapping and reverse mapping as the mapping process. In the forward mapping, the pixel position of the image before processing is coordinate-converted to the pixel position of the image after processing, and the image after processing is generated using the result of the coordinate conversion. That is, the pixels of the image before processing are sequentially selected, the pixel positions (xa, ya) of the selected pixels are coordinate-converted, and the pixel values of the pixels are converted into the pixel positions (ua, ua, after coordinate conversion. Let it be the pixel value in va). On the other hand, in reverse mapping, the pixel position of the processed image is coordinate-converted to the pixel position of the image before processing, and the processed image is generated using the result of the coordinate conversion. That is, the pixel positions of the processed image are sequentially selected, the selected pixel positions (ub, vb) are coordinate-converted to the pixel positions of the image before processing, and the pixel positions (xb, yb) are converted into coordinates. The pixel value of the pixel is taken as the pixel value at the pixel position (ub, vb) of the processed image.

マップデータとは、被投影体の反射面の形状に対応した座標変換を示すデータであり、マッピング処理前の画像の画素位置とマッピング処理後の画像の画素位置との間を対応付けるデーブルデータである。フォワードマッピングに用いられるマップをフォワードマップと呼び、そのマップデータは、マッピング処理前の画像の画素位置(xa,ya)に対して、マッピング処理後の画像の画素位置(ua,va)が対応付けられたデーブルデータである。リバースマッピングに用いられるマップをリバースマップと呼び、そのマップデータは、マッピング処理後の画像の画素位置(ub,vb)に対して、マッピング処理前の画像の画素位置(xb,yb)が対応付けられたデーブルデータである。マッピング処理部WEA1、WEA2が用いるマップデータMPA1、MPA2は、例えば処理装置200からインターフェース190を介してマッピング処理部WEA1、WEA2に入力される。 The map data is data showing coordinate conversion corresponding to the shape of the reflecting surface of the projected object, and is table data that associates the pixel position of the image before the mapping process with the pixel position of the image after the mapping process. .. The map used for forward mapping is called a forward map, and in the map data, the pixel positions (ua, va) of the image after the mapping process are associated with the pixel positions (xa, ya) of the image before the mapping process. This is the table data that was created. The map used for reverse mapping is called a reverse map, and in the map data, the pixel positions (xb, yb) of the image before the mapping process are associated with the pixel positions (ub, vb) of the image after the mapping process. This is the table data that was created. The map data MPA1 and MPA2 used by the mapping processing units WEA1 and WEA2 are input to the mapping processing units WEA1 and WEA2 from, for example, the processing device 200 via the interface 190.

インターフェース140は、画像IMA2を回路装置100の外部に出力する。回路装置100の外部とは、例えば表示パネルを駆動する表示ドライバーである。例えば、インターフェース140はLVDSのインターフェースであり、画像処理回路135からのRGBのパラレル信号をLVDSのシリアル信号に変換する。 The interface 140 outputs the image IMA2 to the outside of the circuit device 100. The outside of the circuit device 100 is, for example, a display driver that drives a display panel. For example, the interface 140 is an LVDS interface and converts RGB parallel signals from the image processing circuit 135 into LVDS serial signals.

比較回路145は、画像IMA1と画像IMA3との間の比較処理を行い、その比較結果を出力する。この比較結果は、画像IMA2のエラーを検出するために用いられる。即ち、マップデータMPA1及び、マッピング処理部WEA1が行うマッピング処理が正常であったか否かを検証するために用いられる。具体的には、比較回路145は、画像IMA1と画像IMA3との間の一致度合いを示す指標を求める。この指標は、後述する形状指標又に相当するものであり、画像IMA1とIMA3に表示されているものの形状又はそのエッジの一致度合いに応じて値が変化する指標である。或いは、指標として後述する視認性指標を求めてもよい。視認性指標は、アイコン等が表示される関心領域の画像と、それ以外の背景領域の画像との間の非類似度合いに応じて値が変化する指標である。関心領域の画像は前景画像とも呼ぶ。具体的には、画像IMA1、IMA3の画素値のヒストグラムを比較することで、前景画像と背景画像のコントラストを示す指標を求める。 The comparison circuit 145 performs comparison processing between the image IMA1 and the image IMA3, and outputs the comparison result. This comparison result is used to detect an error in image IMA2. That is, it is used to verify whether or not the mapping processing performed by the map data MPA1 and the mapping processing unit WEA1 is normal. Specifically, the comparison circuit 145 obtains an index indicating the degree of agreement between the image IMA1 and the image IMA3. This index corresponds to the shape index or the shape index described later, and is an index whose value changes according to the shape of what is displayed on the images IMA1 and IMA3 or the degree of coincidence of the edges thereof. Alternatively, a visibility index described later may be obtained as an index. The visibility index is an index whose value changes according to the degree of dissimilarity between the image of the region of interest in which the icon or the like is displayed and the image of the other background region. The image of the region of interest is also called the foreground image. Specifically, by comparing the histograms of the pixel values of the images IMA1 and IMA3, an index showing the contrast between the foreground image and the background image is obtained.

レジスター回路170は、インターフェース190を介して処理装置200からアクセス可能に構成されている。レジスター回路170は、比較回路145が出力する比較結果の情報を記憶する比較結果レジスター175を含み、処理装置200は、インターフェース190を介して比較結果レジスター175から比較結果の情報を読み出す。処理装置200は、その比較結果の情報に基づいてエラー検出を行うエラー検出回路を含む。以上の画像比較とエラー検出により、被投影体に投影される画像IMA2のエラー検出を実現している。即ち、マッピング処理部WEA1によるマッピング処理が正常に行われたか否かを検出している。 The register circuit 170 is configured to be accessible from the processing apparatus 200 via the interface 190. The register circuit 170 includes a comparison result register 175 that stores the comparison result information output by the comparison circuit 145, and the processing device 200 reads the comparison result information from the comparison result register 175 via the interface 190. The processing device 200 includes an error detection circuit that detects an error based on the information of the comparison result. By the above image comparison and error detection, error detection of the image IMA2 projected on the projected object is realized. That is, it is detected whether or not the mapping process by the mapping process unit WEA1 is normally performed.

なお、上述の構成は、比較回路145が出力した比較結果の情報をレジスター回路170に記憶し、処理装置200がインターフェース190を介してレジスター回路170から比較結果の情報を読み出し、処理装置200内のエラー検出回路でエラー検出を行うものであるが、これに限られない。即ち、例えば図4等のように回路装置100内にエラー検出回路を含む場合には、比較回路145が出力した比較結果の情報に基づき回路装置100内のエラー検出回路がエラー検出を行ってもよい。この場合、回路装置100内のエラー検出回路がエラーを検出した後、回路装置100が処理装置200に対して割込みをかけてエラーを報知してもよい。 In the above configuration, the comparison result information output by the comparison circuit 145 is stored in the register circuit 170, the processing device 200 reads the comparison result information from the register circuit 170 via the interface 190, and the comparison result information is read in the processing device 200. The error detection circuit detects the error, but the present invention is not limited to this. That is, when an error detection circuit is included in the circuit device 100 as shown in FIG. 4, for example, even if the error detection circuit in the circuit device 100 performs error detection based on the comparison result information output by the comparison circuit 145. good. In this case, after the error detection circuit in the circuit device 100 detects the error, the circuit device 100 may interrupt the processing device 200 to notify the error.

インターフェース190は、回路装置100と処理装置200との間で設定情報や制御情報等を通信する。例えば、インターフェース190は、SPI(Serial Peripheral Interface)方式やI2C方式等のシリアル通信インターフェースである。処理装置200からの設定情報や制御情報は、例えばレジスター回路170に書き込まれ、回路装置100は、その設定情報や制御情報に応じた動作を行う。 The interface 190 communicates setting information, control information, and the like between the circuit device 100 and the processing device 200. For example, the interface 190 is a serial communication interface such as an SPI (Serial Peripheral Interface) system or an I2C system. The setting information and control information from the processing device 200 are written to, for example, the register circuit 170, and the circuit device 100 operates according to the setting information and control information.

なお、回路装置100に含まれるロジック回路は、例えば個々の回路として構成されてもよいし、或いは自動配置配線等により一体化された回路として構成されてもよい。ロジック回路は、例えば前処理回路125、画像処理回路135、比較回路145である。また、これらのロジック回路の一部又は全部が、DSP(Digital Signal Processor)等のプロセッサーにより実現されてもよい。この場合、各回路の機能が記述されたプログラムや命令セットがメモリーに記憶され、そのプログラムや命令セットをプロセッサーが実行することで、各回路の機能が実現される。 The logic circuit included in the circuit device 100 may be configured as an individual circuit, for example, or may be configured as an integrated circuit by automatic arrangement and wiring or the like. The logic circuit is, for example, a preprocessing circuit 125, an image processing circuit 135, and a comparison circuit 145. Further, a part or all of these logic circuits may be realized by a processor such as a DSP (Digital Signal Processor). In this case, a program or instruction set in which the function of each circuit is described is stored in the memory, and the processor executes the program or instruction set to realize the function of each circuit.

上述の前処理回路125は、画像処理回路135に入力される画像を取得する回路としたがこれに限られない。図2は、第1の構成例の回路装置の変形例である。例えば、インターフェース110から入力される画像データをIMA1’とし、マッピング処理部WEA1がIMA1’に対してマップデータMPA1を用いたマッピング処理を行う。その後、マッピング処理部WEA1によるマッピング処理後の画像データに対して後処理回路126がガンマ補正やFRC、ホワイトバランス処理等を後処理として行う構成でもよい。後処理回路126が図1の前処理回路125に対応する。マッピング処理部WEA2は、後処理回路126が出力する画像データIMA2’に対してマップデータMPA2を用いたマッピング処理を行う。この場合、マッピング処理が正常であるか否かを確認できることに加えて、ガンマ補正やFRC、ホワイトバランス処理等の後処理で画像が大きく変更されていないことも確認することができる。 The above-mentioned preprocessing circuit 125 is a circuit for acquiring an image input to the image processing circuit 135, but the present invention is not limited to this. FIG. 2 is a modification of the circuit device of the first configuration example. For example, the image data input from the interface 110 is set to IMA1', and the mapping processing unit WEA1 performs mapping processing using the map data MPA1 on the IMA1'. After that, the post-processing circuit 126 may perform gamma correction, FRC, white balance processing, and the like as post-processing on the image data after the mapping processing by the mapping processing unit WEA1. The post-processing circuit 126 corresponds to the pre-processing circuit 125 of FIG. The mapping processing unit WEA2 performs mapping processing using the map data MPA2 on the image data IMA2'output by the post-processing circuit 126. In this case, in addition to being able to confirm whether or not the mapping process is normal, it is also possible to confirm that the image has not been significantly changed by post-processing such as gamma correction, FRC, and white balance processing.

次に、図1の回路装置100の動作を説明する。図3は、図1の回路装置100の動作を模式的に示した図である。 Next, the operation of the circuit device 100 of FIG. 1 will be described. FIG. 3 is a diagram schematically showing the operation of the circuit device 100 of FIG.

図3に示すように、基準のマップデータをマップ変換処理してマップAを生成し、基準のマップデータをマップBとして用いる。具体的には、図1に示す不揮発性メモリー210が基準のマップデータを記憶しており、処理装置200が不揮発性メモリー210から基準のマップデータを読み出してマップ変換処理して、マップAに対応するマップデータMPA1を生成する。マップデータMPA1はインターフェース190を介してマッピング処理部WEA1に入力される。マップ変換処理は、例えばフォワードマップとリバースマップの間の変換や、マップの回転、マップの平行移動等である。また処理装置200が基準のマップデータを、マップBに対応するマップデータMPA2として出力する。マップデータMPA2はインターフェース190を介してマッピング処理部WEA2に入力される。 As shown in FIG. 3, the reference map data is subjected to map conversion processing to generate map A, and the reference map data is used as map B. Specifically, the non-volatile memory 210 shown in FIG. 1 stores the reference map data, and the processing device 200 reads the reference map data from the non-volatile memory 210 and performs map conversion processing to correspond to the map A. Generates the map data MPA1 to be used. The map data MPA1 is input to the mapping processing unit WEA1 via the interface 190. The map conversion process includes, for example, conversion between a forward map and a reverse map, rotation of a map, translation of a map, and the like. Further, the processing device 200 outputs the reference map data as the map data MPA2 corresponding to the map B. The map data MPA2 is input to the mapping processing unit WEA2 via the interface 190.

ワープエンジンAは、マッピング処理部WEA1に対応しており、マップAを用いて画像IMA1をマッピング処理して画像IMA2を生成する。マッピング処理は、ワープ処理とも呼ぶ。また、ワープエンジンBは、マッピング処理部WEA2に対応しており、マップBを用いて画像IMA2を逆マッピング処理して画像IMA3を生成する。この逆マッピング処理は、マップ変換処理におけるマップの回転や平行移動の逆変換に対応した画像の回転変換や平行移動を含んでもよい。 The warp engine A corresponds to the mapping processing unit WEA1, and maps the image IMA1 using the map A to generate the image IMA2. The mapping process is also called a warp process. Further, the warp engine B corresponds to the mapping processing unit WEA2, and the image IMA2 is reverse-mapped using the map B to generate the image IMA3. This inverse mapping process may include rotation transformation and translation of an image corresponding to the inverse transformation of map rotation and translation in the map transformation process.

ワープエンジンAは、表示用の画像IMA2を生成するので、ワープエンジンBに比べて高品質なマッピング処理を行う。例えば、表示の解像度に合わせた高解像なマッピング処理を行う。また表示の品質を確保するために画素値の補間処理を行う。一方、ワープエンジンBは、エラー検出用の画像IMA3を生成するので、ワープエンジンAに比べて簡素化したマッピング処理を行う。例えば、座標変換の対象画素を間引くことにより、画像IMA1よりも低解像度な画像IMA3を生成する。また画素値の補間処理を省略してもよい。 Since the warp engine A generates the image IMA2 for display, it performs a higher quality mapping process than the warp engine B. For example, high-resolution mapping processing is performed according to the display resolution. In addition, pixel value interpolation processing is performed to ensure display quality. On the other hand, since the warp engine B generates the image IMA3 for error detection, the mapping process is simplified as compared with the warp engine A. For example, by thinning out the target pixels for coordinate transformation, an image IMA3 having a resolution lower than that of the image IMA1 is generated. Further, the pixel value interpolation process may be omitted.

比較回路145が行う比較処理において、後述するように画像IMA1の間引き処理を行い、画像IMA1とIMA3の画素の位置合わせを行い、その位置合わせ後の画像から指標を求める。 In the comparison process performed by the comparison circuit 145, the image IMA1 is thinned out as described later, the pixels of the image IMA1 and the IMA3 are aligned, and the index is obtained from the image after the alignment.

以上の動作では、基準のマップデータをマップ変換処理してマップAを生成している。このため、マップ変換処理におけるエラーによってマップAに異常が生じた場合、マップAを用いたワープエンジンAにより生成された画像IMA2に異常が生じる可能性がある。また、マップAに異常が無かったとしても、ワープエンジンAによるマッピング処理に異常が生じた場合、ワープエンジンAにより生成された画像IMA2に異常が生じる可能性がある。このような異常を検出するためには、ワープエンジンAによって変形された画像からエラーを検出する必要があり、従来技術ではエラー検出が困難である。例えば、CRC等のデータエラー検出を用いた場合、ワープエンジンAによって変換される前の画像のCRC値を基準とするため、ワープエンジンAによって変換された後の画像から求めたCRC値とは、そもそも一致しない。 In the above operation, the map A is generated by performing map conversion processing on the reference map data. Therefore, if an abnormality occurs in the map A due to an error in the map conversion process, an abnormality may occur in the image IMA2 generated by the warp engine A using the map A. Further, even if there is no abnormality in the map A, if an abnormality occurs in the mapping process by the warp engine A, there is a possibility that an abnormality occurs in the image IMA2 generated by the warp engine A. In order to detect such an abnormality, it is necessary to detect the error from the image deformed by the warp engine A, and it is difficult to detect the error by the prior art. For example, when data error detection such as CRC is used, the CRC value of the image before being converted by the warp engine A is used as a reference. Therefore, the CRC value obtained from the image after being converted by the warp engine A is It doesn't match in the first place.

本実施形態では、ワープエンジンBによって画像IMA2を逆マッピング処理し、その逆マッピング処理後の画像IMA3と、元の画像IMA1とを比較して、一致度合いを示す指標を求めている。マップA及びワープエンジンAに異常が無い場合、画像IMA3とIMA1の一致度合いが高いので、指標により画像IMA2のエラーを検出できる。なお、指標は一致度合いに応じて変化する値なので、画像IMA1とIMA3は完全一致でなくてもよい。即ち、マップA又はワープエンジンAに軽微な異常があったとしても、画像IMA2がユーザーに視認できる程度のものであれば、非エラーと判定してもよい。例えば、エラー検出において指標を閾値判定し、その閾値を設定することによって、どの程度の一致度合いをエラーと判定するかを調整できる。 In the present embodiment, the image IMA2 is subjected to reverse mapping processing by the warp engine B, and the image IMA3 after the reverse mapping processing is compared with the original image IMA1 to obtain an index indicating the degree of agreement. When there is no abnormality in the map A and the warp engine A, the degree of coincidence between the image IMA3 and the IMA1 is high, so that the error of the image IMA2 can be detected by the index. Since the index is a value that changes according to the degree of coincidence, the images IMA1 and IMA3 do not have to be a perfect match. That is, even if there is a slight abnormality in the map A or the warp engine A, if the image IMA2 is visible to the user, it may be determined as non-error. For example, in error detection, an index is determined as a threshold value, and by setting the threshold value, it is possible to adjust how much the degree of agreement is determined as an error.

図4は、本実施形態の回路装置の第2の構成例である。図4では、回路装置100がエラー検出回路150を含む。またレジスター回路170がエラー検出結果レジスター176と動作モード設定レジスター177と閾値レジスター178とを含む。なお、既に説明した構成要素と同一の構成要素には同一の符号を付し、その構成要素についての説明を適宜に省略する。 FIG. 4 is a second configuration example of the circuit device of the present embodiment. In FIG. 4, the circuit device 100 includes an error detection circuit 150. Further, the register circuit 170 includes an error detection result register 176, an operation mode setting register 177, and a threshold value register 178. The same components as those already described are designated by the same reference numerals, and the description of the components will be omitted as appropriate.

比較回路145は、画像IMA1とIMA3の比較結果をエラー検出回路150に出力する。エラー検出回路150は、その比較結果に基づいて表示用の画像IMA2のエラー検出を行う。比較結果が上述の指標である場合、エラー検出回路150は、指標と閾値とを比較することで、エラー検出を行う。形状指標に対する閾値は、どの程度の類似性を有していれば許容できるかを示す閾値である。視認性指標に対する閾値は、どの程度の視認性を有していれば許容できるかを示す閾値である。 The comparison circuit 145 outputs the comparison result of the images IMA1 and IMA3 to the error detection circuit 150. The error detection circuit 150 performs error detection of the image IMA2 for display based on the comparison result. When the comparison result is the above-mentioned index, the error detection circuit 150 performs error detection by comparing the index and the threshold value. The threshold value for the shape index is a threshold value indicating how much similarity is acceptable. The threshold value for the visibility index is a threshold value indicating how much visibility is acceptable.

画像処理回路135は、エラー検出回路150によりエラーが検出された場合、インターフェース140への画像IMA2の出力を停止する。或いは、インターフェース140は、エラー検出回路150によりエラーが検出された場合、画像IMA2の出力を停止する。インターフェース140は、エラー情報と共に画像IMA2を出力し、そのエラー情報を受信した表示ドライバーが、エラー情報に基づく動作を行ってもよい。エラー情報は、例えばエラー判定フラグ、或いは指標等である。エラー情報に基づく動作は、例えば表示の停止等である。 When an error is detected by the error detection circuit 150, the image processing circuit 135 stops the output of the image IMA2 to the interface 140. Alternatively, the interface 140 stops the output of the image IMA2 when an error is detected by the error detection circuit 150. The interface 140 may output the image IMA2 together with the error information, and the display driver receiving the error information may perform an operation based on the error information. The error information is, for example, an error determination flag, an index, or the like. The operation based on the error information is, for example, stopping the display.

エラー検出結果レジスター176は、エラー検出回路150が出力したエラー検出結果を記憶する。エラー検出結果は、例えば、表示画像がエラーと判定されたか否かを示すエラー判定フラグである。 The error detection result register 176 stores the error detection result output by the error detection circuit 150. The error detection result is, for example, an error determination flag indicating whether or not the display image is determined to be an error.

動作モード設定レジスター177は、処理装置200からインターフェース190を介してモード設定情報が設定される。モード設定情報は、エラー検出結果がエラーを示す場合における回路装置100の動作モードを設定する情報であり、エラー検出時の動作としてどのような動作を行うかを設定する情報である。画像処理回路135は、モード設定情報に基づいて、上述のようなエラー検出時の動作を行う。なお、エラー検出時の動作を処理装置200が行うように構成してもよい。この場合、処理装置200は、インターフェース190を介してエラー検出結果レジスター176からエラー検出結果を読み出す。処理装置200は、エラー検出結果がエラーを示していた場合、エラー検出時の動作を行う。エラー検出時の動作は、例えば回路装置100への画像データの送信停止や、或いは、回路装置100への所定の画像データの送信等である。所定の画像データは、エラー検出時にユーザーに提示する画像の画像データである。 Mode setting information is set in the operation mode setting register 177 from the processing device 200 via the interface 190. The mode setting information is information for setting the operation mode of the circuit device 100 when the error detection result indicates an error, and is information for setting what kind of operation is performed as the operation at the time of error detection. The image processing circuit 135 performs the above-mentioned error detection operation based on the mode setting information. The processing device 200 may be configured to perform the operation at the time of error detection. In this case, the processing device 200 reads the error detection result from the error detection result register 176 via the interface 190. When the error detection result indicates an error, the processing device 200 performs the operation at the time of error detection. The operation at the time of error detection is, for example, stopping the transmission of image data to the circuit device 100, transmitting predetermined image data to the circuit device 100, or the like. The predetermined image data is image data of an image presented to the user when an error is detected.

閾値レジスター178は、処理装置200からインターフェース190を介して閾値が設定される。エラー検出回路150は、指標と、閾値レジスター178に設定された閾値とを比較してエラー検出を行う。即ち、エラー検出回路150は、形状指標と形状指標用閾値とを比較し、視認性指標と視認性指標用閾値とを比較し、それらの比較結果に基づいてエラー検出を行い、その結果をエラー検出結果として出力する。例えば、それらの比較結果の少なくとも一方がエラーを示す結果である場合、第2の画像にエラーが存在すると判定する。 The threshold value register 178 is set from the processing device 200 via the interface 190. The error detection circuit 150 compares the index with the threshold value set in the threshold value register 178 to perform error detection. That is, the error detection circuit 150 compares the shape index with the threshold value for the shape index, compares the visibility index with the threshold value for the visibility index, performs error detection based on the comparison result, and obtains the result as an error. Output as a detection result. For example, if at least one of the comparison results indicates an error, it is determined that an error exists in the second image.

図4の構成においても、図1の構成と同様に、画像IMA1とIMA3の比較を行うことで、その比較結果に基づいて、被投影体に投影されるマッピング処理後の画像IMA2のエラー検出を行うことができる。 Also in the configuration of FIG. 4, similarly to the configuration of FIG. 1, by comparing the image IMA1 and the IMA3, the error detection of the image IMA2 after the mapping process projected on the projected object is detected based on the comparison result. It can be carried out.

なお、以上では回路装置100がエラー検出結果を処理装置200に出力する場合を例に説明したが、回路装置100がエラー検出結果を回路装置100の外部に出力せず、エラー検出結果を回路装置100の内部でのみ用いてもよい。例えば、エラーが検出された場合に回路装置100がセーフモードに移行してもよい。セーフモードにおいて、例えば所定のエラー通知画像を表示ドライバーに送信したり、或いは液晶表示装置のバックライトを消灯させる制御を行ってもよい。これにより、処理装置200からの制御ではなく回路装置100からの制御によって直接にユーザーへエラー状態を通知できる。 Although the case where the circuit device 100 outputs the error detection result to the processing device 200 has been described above as an example, the circuit device 100 does not output the error detection result to the outside of the circuit device 100, and the error detection result is output to the circuit device. It may be used only inside 100. For example, the circuit device 100 may shift to safe mode when an error is detected. In the safe mode, for example, a predetermined error notification image may be transmitted to the display driver, or control may be performed to turn off the backlight of the liquid crystal display device. As a result, the error status can be directly notified to the user by the control from the circuit device 100 instead of the control from the processing device 200.

以上に説明した図1、図4の回路装置100としては、ヘッドアップディスプレイを制御するヘッドアップディスプレイコントローラーや、表示ドライバーを制御する表示コントローラーを想定できる。但し、本実施形態の手法を適用できる回路装置はこれらに限定されない。例えば、回路装置は、表示コントローラーの機能を含む表示ドライバーであってもよい。回路装置がヘッドアップディスプレイコントローラーや表示コントローラー、表示ドライバーである場合、回路装置は例えば集積回路装置(IC)である。なお、回路装置は複数の集積回路装置を含んでもよい。例えば、回路装置は、第1の集積回路装置であるヘッドアップディスプレイコントローラーと、第2の集積回路装置である処理装置と、を含む。この場合、ヘッドアップディスプレイコントローラーは、画像IMA1とIMA3の比較処理を行う比較回路を含み、処理装置は、ヘッドアップディスプレイコントローラーから受信された比較結果に基づいてエラー検出を行うエラー検出回路を含む。 As the circuit device 100 of FIGS. 1 and 4 described above, a head-up display controller that controls a head-up display and a display controller that controls a display driver can be assumed. However, the circuit apparatus to which the method of this embodiment can be applied is not limited to these. For example, the circuit device may be a display driver that includes the functionality of a display controller. When the circuit device is a head-up display controller, a display controller, or a display driver, the circuit device is, for example, an integrated circuit device (IC). The circuit device may include a plurality of integrated circuit devices. For example, the circuit device includes a head-up display controller which is a first integrated circuit device and a processing device which is a second integrated circuit device. In this case, the head-up display controller includes a comparison circuit that performs comparison processing between the images IMA1 and IMA3, and the processing device includes an error detection circuit that performs error detection based on the comparison result received from the head-up display controller.

図5は、比較回路145の詳細な構成例である。比較回路145は、画素アレンジ処理部146と、指標取得部147とを含む。 FIG. 5 is a detailed configuration example of the comparison circuit 145. The comparison circuit 145 includes a pixel arrangement processing unit 146 and an index acquisition unit 147.

画素アレンジ処理部146は、画像IMA1とIMA3を比較するための画素アレンジ処理を行い、処理後の画像IMA1とIMA3を指標取得部147に出力する。具体的には、上述のように画像IMA3は画像IMA1より低解像なので、画素アレンジ処理部146は、画像IMA1の画素数を画像IMA3の画素数に合わせるサブサンプリング処理を行う。また、画像IMA1とIMA3で同じ画素位置に画素が配置されるように、例えば回転処理や並進処理、補間処理等を行ってもよい。 The pixel arrangement processing unit 146 performs pixel arrangement processing for comparing the images IMA1 and IMA3, and outputs the processed images IMA1 and IMA3 to the index acquisition unit 147. Specifically, since the image IMA3 has a lower resolution than the image IMA1 as described above, the pixel arranging processing unit 146 performs a subsampling process that matches the number of pixels of the image IMA1 with the number of pixels of the image IMA3. Further, for example, rotation processing, translation processing, interpolation processing, and the like may be performed so that the pixels are arranged at the same pixel positions in the images IMA1 and IMA3.

指標取得部147は、画素アレンジ処理された画像IMA1とIMA3に基づいて、画像IMA2のエラーを検出するための指標を求める。上述のように、指標は形状指標であり、更に視認性指標を取得してもよい。形状指標、視認性指標の詳細は後述する。指標取得部147が出力した指標は、比較結果の情報として比較結果レジスター175に記憶される。又は、エラー検出回路150が指標に基づいてエラー検出を行う。 The index acquisition unit 147 obtains an index for detecting an error in the image IMA2 based on the pixel-arranged images IMA1 and IMA3. As described above, the index is a shape index, and a visibility index may be further acquired. Details of the shape index and visibility index will be described later. The index output by the index acquisition unit 147 is stored in the comparison result register 175 as information on the comparison result. Alternatively, the error detection circuit 150 performs error detection based on the index.

以上の実施形態によれば、画像処理回路135は、入力された第1の画像を、被投影体に投影するための第2の画像にマッピング処理する第1のマッピング処理と、第1のマッピング処理の逆マッピング処理により第2の画像を第3の画像に変換する第2のマッピング処理とを行う。比較回路145は、第1の画像と第3の画像との間の比較を行い、比較の結果を、第2の画像のエラー検出を行うための情報として出力する。 According to the above embodiment, the image processing circuit 135 has a first mapping process for mapping the input first image to a second image for projecting onto the projected object, and a first mapping process. The second mapping process of converting the second image into the third image by the reverse mapping process of the process is performed. The comparison circuit 145 makes a comparison between the first image and the third image, and outputs the result of the comparison as information for performing error detection of the second image.

図1~図5では、IMA1が第1の画像であり、IMA2が第2の画像であり、IMA3が第3の画像である。またマッピング処理部WEA1が行うマッピング処理が第1のマッピング処理であり、マッピング処理部WEA2が行うマッピング処理が第2のマッピング処理である。エラー検出を行うための情報は、画像IMA1とIMA3の比較結果の情報であり、例えば後述する形状指標、又は視認性指標、又は形状指標及び視認性指標に相当する。 In FIGS. 1 to 5, IMA1 is a first image, IMA2 is a second image, and IMA3 is a third image. The mapping process performed by the mapping processing unit WEA1 is the first mapping process, and the mapping process performed by the mapping processing unit WEA2 is the second mapping process. The information for performing error detection is information on the comparison result of the images IMA1 and IMA3, and corresponds to, for example, a shape index or a visibility index, or a shape index and a visibility index described later.

図3等で説明したように、マッピング処理やマップデータに異常が生じた場合には第2の画像に異常が発生するが、従来技術ではその異常を検出することが困難であった。この点、本実施形態によれば、第2のマッピング処理において、第1のマッピング処理の逆マッピング処理により第2の画像を第3の画像に変換することで、第1の画像と第3の画像とを比較することが可能になる。第3の画像は第2の画像から生成されたものなので、第3の画像と、基準である第1の画像との一致度合いが高ければ、第2の画像にエラーがないと判断できる。このようにして、例えばヘッドアップディスプレイ等の被投影体に投影される画像が適切な表示内容になっているかを、検出できる。 As described with reference to FIG. 3 and the like, when an abnormality occurs in the mapping process or the map data, an abnormality occurs in the second image, but it has been difficult to detect the abnormality by the prior art. In this regard, according to the present embodiment, in the second mapping process, the first image and the third image are obtained by converting the second image into the third image by the inverse mapping process of the first mapping process. It becomes possible to compare with the image. Since the third image is generated from the second image, it can be determined that there is no error in the second image if the degree of agreement between the third image and the reference first image is high. In this way, it is possible to detect whether or not the image projected on the projected object such as a head-up display has appropriate display contents.

また本実施形態では、比較回路145は、第1の画像の画素値と第3の画像の画素値とに基づいて、又は第1の画像のエッジ画像の画素値と第3の画像のエッジ画像の画素値とに基づいて、第1の画像と第3の画像との間の一致度合いを示す指標を、比較の結果として求める。 Further, in the present embodiment, the comparison circuit 145 is based on the pixel value of the first image and the pixel value of the third image, or the pixel value of the edge image of the first image and the edge image of the third image. As a result of comparison, an index indicating the degree of matching between the first image and the third image is obtained based on the pixel value of.

ここで、エッジ画像の画素値は、その画素でのエッジ量を意味しており、エッジ抽出によって得られた信号値である。一致度合いを表す指標は、形状指標であり、その詳細については後述する。 Here, the pixel value of the edge image means the amount of edges in the pixel, and is a signal value obtained by edge extraction. The index showing the degree of agreement is a shape index, and the details thereof will be described later.

このようにすれば、CRCのようなビット単位のエラー検出ではなく、第1の画像と第3の画像との間の一致度合いを表す指標に基づいて第3の画像のエラー検出を行うことができる。第3の画像にエラーが検出されなければ、マッピング処理が正常に行われたと判断できるので、マッピング処理により生成される第2の画像のエラーを検出できる。例えば車載のヘッドアップディスプレイなどでは、ユーザーに提示するためのアイコン等を表示させる。本実施形態によれば、このようなアイコンが1ビットエラーなどで表示が停止せずに、形状が正しく認識できる場合においてユーザーに提示することができる。 In this way, the error detection of the third image can be performed based on the index indicating the degree of agreement between the first image and the third image, instead of the error detection in bit units such as CRC. can. If no error is detected in the third image, it can be determined that the mapping process has been performed normally, so that an error in the second image generated by the mapping process can be detected. For example, on an in-vehicle head-up display or the like, an icon or the like to be presented to the user is displayed. According to the present embodiment, such an icon can be presented to the user when the shape can be correctly recognized without stopping the display due to a 1-bit error or the like.

また本実施形態では、画像処理回路135は、被投影体に対応するマップデータから生成された第1のマップデータを用いて第1のマッピング処理を行い、マップデータである第2のマップデータを用いて第2のマッピング処理を行う。 Further, in the present embodiment, the image processing circuit 135 performs the first mapping process using the first map data generated from the map data corresponding to the projected object, and obtains the second map data which is the map data. The second mapping process is performed using the data.

図1~図4では、被投影体に対応するマップデータは、不揮発性メモリー210に記憶されたマップデータである。第1のマップデータは、マップデータMPA1であり、マップ変換処理によって生成されたマップAのデータである。第2のマップデータは、マップデータMPA2であり、不揮発性メモリー210から読み出されたマップデータであるマップBのデータである。 In FIGS. 1 to 4, the map data corresponding to the projected object is the map data stored in the non-volatile memory 210. The first map data is the map data MPA1, which is the data of the map A generated by the map conversion process. The second map data is the map data MPA2, which is the data of the map B which is the map data read from the non-volatile memory 210.

被投影体に対応するマップデータから第1のマップデータを生成した場合、その処理において異常が発生すると、第1のマップデータを用いてマッピング処理される第2の画像に異常が発生するおそれがある。本実施形態によれば、基準となるマップデータをそのまま第2のマップデータとして用いて、比較用の画像である第3の画像を生成する。これにより、第3の画像と第1の画像との比較結果により、第1のマップデータを用いた第1のマッピング処理が正常であったか否かを判断できるようになる。 When the first map data is generated from the map data corresponding to the projected object, if an abnormality occurs in the processing, there is a possibility that an abnormality may occur in the second image to be mapped using the first map data. be. According to the present embodiment, the reference map data is used as it is as the second map data to generate a third image which is an image for comparison. As a result, it becomes possible to determine whether or not the first mapping process using the first map data was normal based on the comparison result between the third image and the first image.

また本実施形態では、回路装置100は、比較回路145による比較の結果に基づいて、第2の画像のエラー検出を行うエラー検出回路150を含む。 Further, in the present embodiment, the circuit device 100 includes an error detection circuit 150 that detects an error in the second image based on the result of comparison by the comparison circuit 145.

このようにすれば、回路装置100に内蔵されたエラー検出回路150によって表示画像のエラー検出を行うことができる。そして、エラー検出結果に基づいて回路装置100がエラー検出時の動作を行うことができ、或いは、エラー検出結果を処理装置200等に出力して、処理装置200等がエラー検出結果に基づいてエラー検出時の動作を行うことができる。 In this way, the error detection circuit 150 built in the circuit device 100 can detect the error in the displayed image. Then, the circuit device 100 can perform the operation at the time of error detection based on the error detection result, or the error detection result is output to the processing device 200 or the like, and the processing device 200 or the like outputs an error based on the error detection result. The operation at the time of detection can be performed.

また本実施形態では、回路装置100は、エラー検出回路150によりエラーと判定されたときの回路装置100の動作モードが設定される動作モード設定レジスター177を含む。 Further, in the present embodiment, the circuit device 100 includes an operation mode setting register 177 in which the operation mode of the circuit device 100 when an error is determined by the error detection circuit 150 is set.

このようにすれば、第1の画像と第2の画像の比較結果に基づいて第2の画像がエラーと判定されたときの回路装置100の動作モードを、インターフェースを介して動作モード設定レジスター177に設定することができる。例えば、処理装置200がインターフェース190を介して動作モード設定レジスター177に動作モードを設定できる。例えばユーザーが望むエラー検出時の動作を、回路装置100に行わせることが可能になる。 In this way, the operation mode of the circuit device 100 when the second image is determined to be an error based on the comparison result of the first image and the second image is set to the operation mode setting register 177 via the interface. Can be set to. For example, the processing device 200 can set the operation mode in the operation mode setting register 177 via the interface 190. For example, it is possible to make the circuit device 100 perform the operation at the time of error detection desired by the user.

また本実施形態では、動作モード設定レジスター177には、エラー検出の結果を回路装置100の外部装置に通知するモード、第2の画像を非表示にするモード、又は特定の画像を表示させるモードが、動作モードとして設定される。 Further, in the present embodiment, the operation mode setting register 177 has a mode of notifying the external device of the circuit device 100 of the error detection result, a mode of hiding the second image, or a mode of displaying a specific image. , Set as the operating mode.

外部装置は、例えば処理装置200であり、例えばSoCやCPU等である。外部装置へは、例えばインターフェース190を介してエラー検出の結果を出力する。なお、インターフェースによっては回路装置100から処理装置200に対する通知の発信ができないものがあるが、その場合は回路装置100が割込みで処理装置200へ通知を行い、処理装置がインターフェースを介して回路装置から詳細情報を読み出すことができる。非表示にするとは、表示パネルに画像を表示させない状態に設定することであり、例えば表示パネルの全表示領域を黒又は白にすることである。特定の画像とは、エラー検出の対象となった表示画像とは異なる画像であり、エラー検出時において表示させたい画像である。例えば、エラー検出時にユーザーに提示したメッセージや記号、色等が表示された画像である。色の場合、例えば表示パネルの表示領域の全部又は一部に例えば赤等の所定の色を表示させる。 The external device is, for example, a processing device 200, such as a SoC or a CPU. The error detection result is output to the external device via, for example, the interface 190. Depending on the interface, the circuit device 100 cannot send a notification to the processing device 200. In that case, the circuit device 100 notifies the processing device 200 by an interrupt, and the processing device sends a notification from the circuit device via the interface. Detailed information can be read. Hiding means setting the display panel to not display an image, for example, setting the entire display area of the display panel to black or white. The specific image is an image different from the display image targeted for error detection, and is an image to be displayed at the time of error detection. For example, it is an image displaying a message, a symbol, a color, or the like presented to the user when an error is detected. In the case of color, for example, a predetermined color such as red is displayed in all or a part of the display area of the display panel.

このようにすれば、第2の画像がエラーと判定されたときの回路装置100の動作モードを、上記3つのモードのいずれかに設定することができる。例えばユーザーが望むエラー検出時の動作として、上記3つのモードの動作のいずれかを回路装置100に行わせることが可能になる。 In this way, the operation mode of the circuit device 100 when the second image is determined to be an error can be set to any of the above three modes. For example, as an operation at the time of error detection desired by the user, it is possible to cause the circuit device 100 to perform any of the above three modes of operation.

また本実施形態では、エラー検出回路150は、比較の結果と、第2の画像のエラーを判定するための閾値との比較により、エラー検出を行う。 Further, in the present embodiment, the error detection circuit 150 performs error detection by comparing the result of the comparison with the threshold value for determining the error of the second image.

図4では、第2の画像のエラーを判定するための閾値は、比較結果である指標と比較される閾値である。 In FIG. 4, the threshold value for determining the error of the second image is the threshold value to be compared with the index which is the comparison result.

CRCでは、画像データと共に受信されたCRC値と、受信された画像データから演算したCRC値とを比較することで、画像データにエラーが存在するか否かが検出される。一方、本実施形態における比較結果である指標は、単純にエラーであるか否かを示すだけの指標ではなく、第1の画像と第3の画像の一致度合いに応じて値が変化する。この指標と閾値とを比較することで、CRC等のデータエラー検出手法が使用できない場合であっても、エラー検出を行うことができる。即ち、一致度合いに基づいて形状の類似性が確保できないと判断される場合に、エラーと判定することが可能となる。 In CRC, whether or not an error exists in the image data is detected by comparing the CRC value received together with the image data with the CRC value calculated from the received image data. On the other hand, the index that is the comparison result in the present embodiment is not an index that simply indicates whether or not there is an error, but the value changes according to the degree of matching between the first image and the third image. By comparing this index with the threshold value, error detection can be performed even when a data error detection method such as CRC cannot be used. That is, when it is determined that the shape similarity cannot be ensured based on the degree of coincidence, it is possible to determine an error.

また本実施形態では、回路装置100は、閾値が設定される閾値レジスター178を含む。 Further, in the present embodiment, the circuit device 100 includes a threshold register 178 in which a threshold value is set.

このようにすれば、比較結果である指標と比較するための閾値を、インターフェースを介して閾値レジスター178に設定することができる。例えば、処理装置200がインターフェース190を介して閾値レジスター178に閾値を設定できる。閾値を可変に設定することで、どの程度の形状の類似性がある場合にエラーであると判断するかが可変となる。閾値レジスター178を設けることで、例えばユーザーが任意にエラー判定基準である閾値を設定できるようになる。 In this way, the threshold value for comparison with the index which is the comparison result can be set in the threshold value register 178 via the interface. For example, the processing device 200 can set a threshold value in the threshold value register 178 via the interface 190. By setting the threshold value variably, it becomes variable how much the shape similarity is judged to be an error. By providing the threshold value register 178, for example, the user can arbitrarily set a threshold value which is an error determination criterion.

2.第3、第4の構成例
図6は、本実施形態の回路装置の第3の構成例である。図6では、画像処理回路135は、被投影体の表面形状に合わせて画像をマッピングするマッピング処理部WEB1と、それと同方向のマッピングを行うマッピング処理部WEB2と、を含む。そして比較回路145が、マッピング処理部WEB1、WEB2が出力する画像IMB2、IMB3を比較する。なお、既に説明した構成要素と同一の構成要素には同一の符号を付し、その構成要素についての説明を適宜に省略する。
2. Third and Fourth Configuration Examples FIG. 6 is a third configuration example of the circuit device of the present embodiment. In FIG. 6, the image processing circuit 135 includes a mapping processing unit WEB1 that maps an image according to the surface shape of the projected object, and a mapping processing unit WEB2 that performs mapping in the same direction as the mapping processing unit WEB1. Then, the comparison circuit 145 compares the images IMB2 and IMB3 output by the mapping processing units WEB1 and WEB2. The same components as those already described are designated by the same reference numerals, and the description of the components will be omitted as appropriate.

前処理回路125は、前処理後の画像IMB1を出力する。前処理の内容は図1で説明した内容と同様である。 The preprocessing circuit 125 outputs the preprocessed image IMB1. The content of the preprocessing is the same as the content described with reference to FIG.

マッピング処理部WEB1は、前処理回路125が出力した画像IMB1に対して、マップデータMPB1を用いたマッピング処理を行い、マッピング処理後の画像IMB2を出力する。このマッピング処理は、図1のマッピング処理部WEA1が行うマッピング処理と同様である。マッピング処理部WEB2は、前処理回路125が出力した画像IMB1に対して、マップデータMPB2を用いたマッピング処理を行い、マッピング処理後の画像IMB3を出力する。このマッピング処理は、被投影体の表面形状に合わせて画像をマッピングする処理であるが、マッピング処理部WEB1が行うマッピング処理と同一である必要はない。即ち、マップデータ及びマッピング処理の少なくとも一方がマッピング処理部WEB1とは異なっていてもよい。例えば、マッピング処理部WEB2は、画像IMB2よりも低解像度な画像IMB3を生成する。また画素値の補間処理を省略してもよい。 The mapping processing unit WEB1 performs mapping processing using the map data MPB1 on the image IMB1 output by the preprocessing circuit 125, and outputs the image IMB2 after the mapping processing. This mapping process is the same as the mapping process performed by the mapping processing unit WEA1 of FIG. The mapping processing unit WEB2 performs mapping processing using the map data MPB2 on the image IMB1 output by the preprocessing circuit 125, and outputs the image IMB3 after the mapping processing. This mapping process is a process of mapping an image according to the surface shape of the projected object, but it does not have to be the same as the mapping process performed by the mapping processing unit WEB1. That is, at least one of the map data and the mapping process may be different from the mapping process unit WEB1. For example, the mapping processing unit WEB2 generates an image IMB3 having a resolution lower than that of the image IMB2. Further, the pixel value interpolation process may be omitted.

比較回路145は、画像IMB2と画像IMB3との間の比較処理を行い、その比較結果を出力する。この比較結果は、画像IMB2のエラーを検出するために用いられる。即ち、マップデータMPB1及び、マッピング処理部WEB1が行うマッピング処理が正常であったか否かを検証するために用いられる。具体的には、比較回路145は、画像IMB2と画像IMB3との間の一致度合いを示す指標を求める。この指標は、後述する形状指標又に相当するものである。或いは、指標として後述する視認性指標を求めてもよい。 The comparison circuit 145 performs comparison processing between the image IMB2 and the image IMB3, and outputs the comparison result. This comparison result is used to detect an error in the image IMB2. That is, it is used to verify whether or not the mapping process performed by the map data MPB1 and the mapping processing unit WEB1 is normal. Specifically, the comparison circuit 145 obtains an index indicating the degree of agreement between the image IMB2 and the image IMB3. This index corresponds to the shape index or the shape index described later. Alternatively, a visibility index described later may be obtained as an index.

レジスター回路170は、比較回路145が出力する比較結果の情報を記憶する比較結果レジスター175を含む。処理装置200は、インターフェース190を介して比較結果レジスター175から読み出した比較結果の情報に基づいてエラー検出を行う。以上の画像比較とエラー検出により、被投影体に投影される画像IMB2のエラー検出を実現している。即ち、マッピング処理部WEB1によるマッピング処理が正常に行われたか否かを検出している。 The register circuit 170 includes a comparison result register 175 that stores information on the comparison result output by the comparison circuit 145. The processing device 200 performs error detection based on the information of the comparison result read from the comparison result register 175 via the interface 190. By the above image comparison and error detection, error detection of the image IMB2 projected on the projected object is realized. That is, it is detected whether or not the mapping process by the mapping process unit WEB1 is normally performed.

次に、図6の回路装置100の動作を説明する。図7は、図6の回路装置100の動作を模式的に示した図である。 Next, the operation of the circuit device 100 of FIG. 6 will be described. FIG. 7 is a diagram schematically showing the operation of the circuit device 100 of FIG.

図7に示すように、基準のマップデータをマップ変換処理してマップCを生成し、基準のマップデータをマップDとして用いる。具体的には、図6に示す不揮発性メモリー210が基準のマップデータを記憶しており、処理装置200が不揮発性メモリー210から基準のマップデータを読み出してマップ変換処理して、マップCに対応するマップデータMPB1を生成する。マップデータMPB1はインターフェース190を介してマッピング処理部WEB1に入力される。また処理装置200が基準のマップデータを、マップDに対応するマップデータMPB2として出力する。マップデータMPB2はインターフェース190を介してマッピング処理部WEB2に入力される。 As shown in FIG. 7, the reference map data is subjected to map conversion processing to generate map C, and the reference map data is used as map D. Specifically, the non-volatile memory 210 shown in FIG. 6 stores the reference map data, and the processing device 200 reads the reference map data from the non-volatile memory 210 and performs map conversion processing to correspond to the map C. Generates the map data MPB1 to be used. The map data MPB1 is input to the mapping processing unit WEB1 via the interface 190. Further, the processing device 200 outputs the reference map data as the map data MPB2 corresponding to the map D. The map data MPB2 is input to the mapping processing unit WEB2 via the interface 190.

ワープエンジンCは、マッピング処理部WEB1に対応しており、マップCを用いて画像IMB1をマッピング処理して画像IMB2を生成する。また、ワープエンジンDは、マッピング処理部WEB2に対応しており、マップDを用いて画像IMB1をマッピング処理して画像IMB3を生成する。このマッピング処理は、マップ変換処理におけるマップの回転や平行移動に対応した画像の回転変換や平行移動を含んでもよい。 The warp engine C corresponds to the mapping processing unit WEB1, and maps the image IMB1 using the map C to generate the image IMB2. Further, the warp engine D corresponds to the mapping processing unit WEB2, and maps the image IMB1 using the map D to generate the image IMB3. This mapping process may include rotation conversion and translation of an image corresponding to rotation and translation of the map in the map conversion process.

ワープエンジンCは、表示用の画像IMB2を生成するので、ワープエンジンDに比べて高品質なマッピング処理を行う。例えば、表示の解像度に合わせた高解像なマッピング処理を行う。また表示の品質を確保するために画素値の補間処理を行う。一方、ワープエンジンDは、エラー検出用の画像IMB3を生成するので、ワープエンジンCに比べて簡素化したマッピング処理を行う。例えば、座標変換の対象画素を間引くことにより、画像IMB2よりも低解像度な画像IMB3を生成する。また画素値の補間処理を省略してもよい。 Since the warp engine C generates the image IMB2 for display, it performs a higher quality mapping process than the warp engine D. For example, high-resolution mapping processing is performed according to the display resolution. In addition, pixel value interpolation processing is performed to ensure display quality. On the other hand, since the warp engine D generates the image IMB3 for error detection, the mapping process is simplified as compared with the warp engine C. For example, by thinning out the target pixels for coordinate transformation, an image IMB3 having a resolution lower than that of the image IMB2 is generated. Further, the pixel value interpolation process may be omitted.

比較回路145が行う比較処理において、画像IMB2の間引き処理を行い、画像IMB2とIMB3の画素の位置合わせを行い、その位置合わせ後の画像から指標を求める。比較回路145の詳細な構成は、図5と同様である。即ち、図5においてIMA1、IMA3をIMB2、IMB3に読み替えればよい。 In the comparison process performed by the comparison circuit 145, the image IMB2 is thinned out, the pixels of the image IMB2 and the IMB3 are aligned, and the index is obtained from the image after the alignment. The detailed configuration of the comparison circuit 145 is the same as that in FIG. That is, in FIG. 5, IMA1 and IMA3 may be read as IMB2 and IMB3.

本実施形態では、ワープエンジンDがワープエンジンCと同方向のマッピング処理を行い、マッピング処理後の画像IMB2とIMB3とを比較して、一致度合いを示す指標を求めている。マップC及びワープエンジンCに異常が無い場合、画像IMB2とIMB3の一致度合いが高いので、指標により画像IMB2のエラーを検出できる。なお、指標は一致度合いに応じて変化する値なので、画像IMB2とIMBは完全一致でなくてもよい。即ち、マップC又はワープエンジンCに軽微な異常があったとしても、画像IMB2がユーザーに視認できる程度のものであれば、非エラーと判定してもよい。 In the present embodiment, the warp engine D performs mapping processing in the same direction as the warp engine C, compares the images IMB2 and IMB3 after the mapping processing, and obtains an index indicating the degree of agreement. When there is no abnormality in the map C and the warp engine C, the degree of coincidence between the image IMB2 and the IMB3 is high, so that an error in the image IMB2 can be detected by the index. Since the index is a value that changes according to the degree of coincidence, the images IMB2 and IMB do not have to be exactly coincident. That is, even if there is a slight abnormality in the map C or the warp engine C, if the image IMB2 is visible to the user, it may be determined as non-error.

図8は、本実施形態の回路装置の第4の構成例である。図8では、回路装置100がエラー検出回路150を含む。またレジスター回路170がエラー検出結果レジスター176と動作モード設定レジスター177と閾値レジスター178とを含む。なお、既に説明した構成要素と同一の構成要素には同一の符号を付し、その構成要素についての説明を適宜に省略する。 FIG. 8 is a fourth configuration example of the circuit device of the present embodiment. In FIG. 8, the circuit device 100 includes an error detection circuit 150. Further, the register circuit 170 includes an error detection result register 176, an operation mode setting register 177, and a threshold value register 178. The same components as those already described are designated by the same reference numerals, and the description of the components will be omitted as appropriate.

比較回路145は、画像IMB2とIMB3の比較結果をエラー検出回路150に出力する。エラー検出回路150は、その比較結果に基づいて表示用の画像IMB2のエラー検出を行う。比較結果が上述の指標である場合、エラー検出回路150は、指標と閾値とを比較することで、エラー検出を行う。 The comparison circuit 145 outputs the comparison result of the images IMB2 and IMB3 to the error detection circuit 150. The error detection circuit 150 performs error detection of the image IMB2 for display based on the comparison result. When the comparison result is the above-mentioned index, the error detection circuit 150 performs error detection by comparing the index and the threshold value.

図8の構成においても、図6の構成と同様に、画像IMB2とIMB3の比較を行うことで、その比較結果に基づいて、被投影体に投影されるマッピング処理後の画像IMB2のエラー検出を行うことができる。 Also in the configuration of FIG. 8, similarly to the configuration of FIG. 6, by comparing the image IMB2 and the IMB3, the error detection of the image IMB2 projected on the projected object after the mapping process is detected based on the comparison result. It can be carried out.

なお、以上では回路装置100がエラー検出結果を処理装置200に出力する場合を例に説明したが、回路装置100がエラー検出結果を回路装置100の外部に出力せず、エラー検出結果を回路装置100の内部でのみ用いてもよい。 Although the case where the circuit device 100 outputs the error detection result to the processing device 200 has been described above as an example, the circuit device 100 does not output the error detection result to the outside of the circuit device 100, and the error detection result is output to the circuit device. It may be used only inside 100.

以上に説明した図6、図8の回路装置100としては、ヘッドアップディスプレイを制御するヘッドアップディスプレイコントローラーや、表示ドライバーを制御する表示コントローラーを想定できる。但し、本実施形態の手法を適用できる回路装置はこれらに限定されない。例えば、回路装置は、表示コントローラーの機能を含む表示ドライバーであってもよい。回路装置がヘッドアップディスプレイコントローラーや表示コントローラー、表示ドライバーである場合、回路装置は例えば集積回路装置(IC)である。なお、回路装置は複数の集積回路装置を含んでもよい。例えば、回路装置は、第1の集積回路装置であるヘッドアップディスプレイコントローラーと、第2の集積回路装置である処理装置と、を含む。この場合、ヘッドアップディスプレイコントローラーは、画像IMB2とIMB3の比較処理を行う比較回路を含み、処理装置は、ヘッドアップディスプレイコントローラーから受信された比較結果に基づいてエラー検出を行うエラー検出回路を含む。 As the circuit device 100 of FIGS. 6 and 8 described above, a head-up display controller that controls the head-up display and a display controller that controls the display driver can be assumed. However, the circuit apparatus to which the method of this embodiment can be applied is not limited to these. For example, the circuit device may be a display driver that includes the functionality of a display controller. When the circuit device is a head-up display controller, a display controller, or a display driver, the circuit device is, for example, an integrated circuit device (IC). The circuit device may include a plurality of integrated circuit devices. For example, the circuit device includes a head-up display controller which is a first integrated circuit device and a processing device which is a second integrated circuit device. In this case, the head-up display controller includes a comparison circuit that performs comparison processing of the images IMB2 and IMB3, and the processing device includes an error detection circuit that performs error detection based on the comparison result received from the head-up display controller.

以上の実施形態によれば、画像処理回路135は、被投影体に対応するマップデータに基づいて、入力された第1の画像を、被投影体に投影するための第2の画像にマッピング処理する第1のマッピング処理と、マップデータに基づいて、第1のマッピング処理とは異なる第2のマッピング処理により第1の画像を第3の画像に変換する第2のマッピング処理とを行う。比較回路145は、第2の画像と第3の画像との間の比較を行い、その比較の結果を、第2の画像のエラー検出を行うための情報として出力する。 According to the above embodiment, the image processing circuit 135 maps the input first image to the second image for projecting on the projected object based on the map data corresponding to the projected object. The first mapping process is performed, and the second mapping process of converting the first image into the third image by the second mapping process different from the first mapping process is performed based on the map data. The comparison circuit 145 makes a comparison between the second image and the third image, and outputs the result of the comparison as information for performing error detection of the second image.

図6~図8では、IMB1が第1の画像であり、IMB2が第2の画像であり、IMB3が第3の画像である。またマッピング処理部WEB1が行うマッピング処理が第1のマッピング処理であり、マッピング処理部WEB2が行うマッピング処理が第2のマッピング処理である。エラー検出を行うための情報は、画像IMB2とIMB3の比較結果の情報であり、例えば後述する形状指標、又は視認性指標、又は形状指標及び視認性指標に相当する。 In FIGS. 6 to 8, IMB1 is the first image, IMB2 is the second image, and IMB3 is the third image. Further, the mapping process performed by the mapping processing unit WEB 1 is the first mapping process, and the mapping process performed by the mapping processing unit WEB 2 is the second mapping process. The information for performing error detection is information on the comparison result of the images IMB2 and IMB3, and corresponds to, for example, a shape index or a visibility index, or a shape index and a visibility index described later.

ここで、第1、第2のマッピング処理が異なるとは、ハードウェア又はアルゴリズムが異なることである。例えば、図6、図8において、マッピング処理部WEB1、WEB2が別個のマッピング処理回路で構成されてもよい。又は、第1、第2のマッピング処理が異なるとは、マップデータ及びマッピング処理の内容の少なくとも一方が異なることである。例えば、図7で説明したように、第1のマッピング処理に対応するワープエンジンCが用いるマップCは、基準のマップデータをマップ変換処理したものであり、第2のマッピング処理に対応するワープエンジンDが用いるマップDは、基準のマップデータそのものであってもよい。或いは、第1のマッピング処理はフォワードマッピング及びリバースマッピングの一方であり、第2のマッピング処理は、その他方であってもよい。或いは、第1、第2のマッピング処理で解像度が異なるマッピング処理であってもよい。或いは、第1のマッピング処理は補間処理を含み、第2のマッピング処理は補間処理を含まなくてもよい。 Here, the difference between the first and second mapping processes is that the hardware or algorithm is different. For example, in FIGS. 6 and 8, the mapping processing units WEB1 and WEB2 may be configured by separate mapping processing circuits. Alternatively, the difference between the first and second mapping processes means that at least one of the map data and the contents of the mapping process is different. For example, as described with reference to FIG. 7, the map C used by the warp engine C corresponding to the first mapping process is a map conversion process of the reference map data, and the warp engine corresponding to the second mapping process. The map D used by D may be the reference map data itself. Alternatively, the first mapping process may be one of the forward mapping and the reverse mapping, and the second mapping process may be the other. Alternatively, the first and second mapping processes may have different resolutions. Alternatively, the first mapping process may include the interpolation process, and the second mapping process may not include the interpolation process.

本実施形態によれば、第1の画像が第1、第2のマッピング処理により第2、第3の画像に変換される。第1、第2のマッピング処理は、第1の画像に対して同様な変形を行う同一方向のマッピング処理である。これにより、第2の画像と第3の画像とを比較することが可能になる。第2の画像と第3の画像との一致度合いが高ければ、第2の画像にエラーがないと判断できる。このようにして、例えばヘッドアップディスプレイ等の被投影体に投影される画像が適切な表示内容になっているかを、検出できる。また、第2のマッピング処理が、第1のマッピング処理とは異なるマッピング処理であることで、第1、第2のマッピング処理で同じ異常が発生することを避けることができ、エラーの検出精度を向上できる。 According to this embodiment, the first image is converted into the second and third images by the first and second mapping processes. The first and second mapping processes are mapping processes in the same direction that perform the same deformation on the first image. This makes it possible to compare the second image with the third image. If the degree of coincidence between the second image and the third image is high, it can be determined that there is no error in the second image. In this way, it is possible to detect whether or not the image projected on the projected object such as a head-up display has appropriate display contents. Further, since the second mapping process is a mapping process different from the first mapping process, it is possible to avoid the same abnormality from occurring in the first and second mapping processes, and the error detection accuracy can be improved. Can be improved.

また本実施形態では、比較回路145は、第2の画像の画素値と第3の画像の画素値とに基づいて、又は第2の画像のエッジ画像の画素値と第3の画像のエッジ画像の画素値とに基づいて、第2の画像と第3の画像との間の一致度合いを示す指標を、比較の結果として求める。 Further, in the present embodiment, the comparison circuit 145 is based on the pixel value of the second image and the pixel value of the third image, or the pixel value of the edge image of the second image and the edge image of the third image. As a result of comparison, an index indicating the degree of matching between the second image and the third image is obtained based on the pixel value of.

このようにすれば、CRCのようなビット単位のエラー検出ではなく、第2の画像と第3の画像との間の一致度合いを表す指標に基づいて第2の画像のエラー検出を行うことができる。この処理でエラーが検出されなければ、マッピング処理が正常に行われたと判断できるので、マッピング処理により生成される第2の画像のエラーを検出できる。例えば車載のヘッドアップディスプレイなどでは、ユーザーに提示するためのアイコン等を表示させる。本実施形態によれば、このようなアイコンが1ビットエラーなどで表示が停止せずに、形状が正しく認識できる場合においてユーザーに提示することができる。 In this way, the error detection of the second image can be performed based on the index indicating the degree of agreement between the second image and the third image, instead of the error detection in bit units such as CRC. can. If no error is detected in this process, it can be determined that the mapping process has been performed normally, so that an error in the second image generated by the mapping process can be detected. For example, on an in-vehicle head-up display or the like, an icon or the like to be presented to the user is displayed. According to the present embodiment, such an icon can be presented to the user when the shape can be correctly recognized without stopping the display due to a 1-bit error or the like.

また本実施形態では、画像処理回路135は、被投影体に対応するマップデータから生成された第1のマップデータを用いて第1のマッピング処理を行い、マップデータである第2のマップデータを用いて第2のマッピング処理を行う。 Further, in the present embodiment, the image processing circuit 135 performs the first mapping process using the first map data generated from the map data corresponding to the projected object, and obtains the second map data which is the map data. The second mapping process is performed using the data.

図6~図8では、被投影体に対応するマップデータは、不揮発性メモリー210に記憶されたマップデータである。第1のマップデータは、マップデータMPB1であり、マップ変換処理によって生成されたマップCのデータである。第2のマップデータは、マップデータMPB2であり、不揮発性メモリー210から読み出されたマップデータであるマップDのデータである。 In FIGS. 6 to 8, the map data corresponding to the projected object is the map data stored in the non-volatile memory 210. The first map data is the map data MPB1 and is the data of the map C generated by the map conversion process. The second map data is the map data MPB2, which is the map D data which is the map data read from the non-volatile memory 210.

本実施形態によれば、基準となるマップデータをそのまま第2のマップデータとして用いて、比較用の画像である第3の画像を生成する。これにより、第3の画像と第2の画像との比較結果により、第1のマップデータを用いた第1のマッピング処理が正常であったか否かを判断できるようになる。 According to the present embodiment, the reference map data is used as it is as the second map data to generate a third image which is an image for comparison. As a result, it becomes possible to determine whether or not the first mapping process using the first map data was normal based on the comparison result between the third image and the second image.

また本実施形態では、画像処理回路135は、第1の画像よりも低解像度の第3の画像を生成する。比較回路145は、第2の画像に対して、第3の画像の解像度に合わせる低解像度化を行い、第3の画像と低解像度化後の第2の画像とを比較する。 Further, in the present embodiment, the image processing circuit 135 generates a third image having a resolution lower than that of the first image. The comparison circuit 145 reduces the resolution of the second image to match the resolution of the third image, and compares the third image with the second image after the reduction.

図5の構成を図6、図8の比較回路145に適用した場合には、画素アレンジ処理部146が、第2の画像に対して、第3の画像の解像度に合わせる低解像度化を行い、指標取得部147が、第3の画像と低解像度化後の第2の画像とを比較して指標を取得する。 When the configuration of FIG. 5 is applied to the comparison circuit 145 of FIGS. 6 and 8, the pixel arranging processing unit 146 reduces the resolution of the second image to match the resolution of the third image. The index acquisition unit 147 compares the third image with the second image after the resolution is reduced to acquire the index.

本実施形態によれば、比較用の画像である第3の画像を低解像度にすることで、第3の画像を生成する第2のマッピング処理を低解像なマッピング処理にできる。これにより、第2のマッピング処理の処理負荷を低減でき、又は第2のマッピング処理を行うハードウェアの回路規模を低減できる。そして、第2の画像に対して、第3の画像の解像度に合わせる低解像度化を行うことで、第3の画像と第2の画像とを比較することが可能となる。 According to the present embodiment, by lowering the resolution of the third image, which is an image for comparison, the second mapping process for generating the third image can be made into a low-resolution mapping process. As a result, the processing load of the second mapping process can be reduced, or the circuit scale of the hardware that performs the second mapping process can be reduced. Then, by lowering the resolution of the second image to match the resolution of the third image, it is possible to compare the third image with the second image.

3.比較処理、エラー検出処理
以下、比較回路145が行う比較処理と、エラー検出回路150が行うエラー検出処理について説明する。なお、ここでは比較処理において指標を取得する場合を例に説明し、比較処理を指標取得処理と呼ぶ。但し、比較処理はこれに限定されず、種々の画像比較を用いることができる。
3. 3. Comparison processing, error detection processing Hereinafter, the comparison processing performed by the comparison circuit 145 and the error detection processing performed by the error detection circuit 150 will be described. Here, a case where an index is acquired in the comparison process will be described as an example, and the comparison process will be referred to as an index acquisition process. However, the comparison process is not limited to this, and various image comparisons can be used.

コンテンツをディスプレイに表示する画像処理システムでは、画像の所定の領域が当初の意図と一致しているか否かを確認する必要がある場合がある。例えば、自動車用システムのクラスターディスプレイに重要な画像を表示する場合を考える。クラスターディスプレイは、メーターパネルのディスプレイである。このとき、画面に表示されている既存のコンテンツに重ねられた可視画像を介して所定の重要な情報を表示する必要がある。以下では、画像が正しく表示されているか否かを検出するためのいくつかの方法を説明する。検出は、関心領域を解析し、その領域が正しく表示されている程度を示すいくつかの主要な指標を導き出すことによって行う。本実施形態では関心領域は画像全体であるが、画像の一部の領域を関心領域としてもよい。以下、関心領域をROI(Region Of Interest)とも呼ぶ。 In an image processing system that displays content on a display, it may be necessary to check whether a predetermined area of the image matches the original intention. For example, consider the case of displaying an important image on a cluster display of an automobile system. A cluster display is a meter panel display. At this time, it is necessary to display predetermined important information via a visible image superimposed on the existing content displayed on the screen. The following describes some methods for detecting whether an image is displayed correctly. Detection is performed by analyzing the region of interest and deriving several key indicators of how well the region is displayed. In the present embodiment, the region of interest is the entire image, but a part of the region of the image may be the region of interest. Hereinafter, the region of interest is also referred to as ROI (Region Of Interest).

なお、以下では解析対象となる画像を解析画像と呼び、解析の基準となる画像を基準画像と呼ぶ。図1、図4では画像IMA3が解析画像であり、画像IMA1が基準画像である。図6、図8では、画像IMB2が解析画像であり、画像IMB3が基準画像である。なお、比較処理は2画像の相互比較なので、解析画像と基準画像を入れ替えても構わない。 In the following, the image to be analyzed is referred to as an analysis image, and the image as a reference for analysis is referred to as a reference image. In FIGS. 1 and 4, the image IMA3 is an analysis image, and the image IMA1 is a reference image. In FIGS. 6 and 8, the image IMB2 is an analysis image and the image IMB3 is a reference image. Since the comparison process is a mutual comparison of two images, the analysis image and the reference image may be exchanged.

3.1.形状指標(第1の指標)の第1の演算手法
形状指標は、関心領域における解析画像と基準画像の形状が一致しているか否かを示す指標である。以下、形状指標の演算手法について説明する。
3.1. The first calculation method of the shape index (first index) The shape index is an index indicating whether or not the shapes of the analysis image and the reference image in the region of interest match. Hereinafter, the calculation method of the shape index will be described.

図9は、解析画像の第1の例である。A1は関心領域であり、A2はアイコンである。なお、関心領域を示す点線は、実際には表示画像には描画されていない。また、ここでは関心領域を解析画像の一部としているが、関心領域は解析画像の全体であってもよい。 FIG. 9 is a first example of the analysis image. A1 is an area of interest and A2 is an icon. The dotted line indicating the region of interest is not actually drawn on the display image. Further, although the region of interest is a part of the analysis image here, the region of interest may be the entire analysis image.

まず、最終的な平均化画像がm×n画素となるように、解析画像のROIの画素ブロックを平均化する。このサブサンプリング処理は、少数の画素エラーが重要なエラーとして検出されないために行うものであり、これらのエラーを無視し、基準画像と解析画像の全体形状を確認する。無視したいエラーは、例えば色ずれ、小さな歪み等である。完全な一致を得るために、サブサンプリングされた画像の解像度を高めることができる。m×nの値は、用途に応じて選択することができる。以下に述べるように基準画像に関連して使用する場合には、m×nの値はサンプルデータ観測に基づいて選択する。 First, the ROI pixel blocks of the analysis image are averaged so that the final averaged image has m × n pixels. This subsampling process is performed because a small number of pixel errors are not detected as important errors, these errors are ignored, and the overall shape of the reference image and the analysis image is confirmed. Errors that you want to ignore are, for example, color shifts, small distortions, and so on. The resolution of the subsampled image can be increased to obtain an exact match. The value of m × n can be selected according to the application. When used in connection with a reference image as described below, the m × n value is selected based on sample data observations.

解析画像の関心領域がu×v画素である場合には、平均化ブロックサイズはu/m×v/n画素である。基準背景情報が利用できない場合には、基準画素が存在しない部分の解析画像の画素を削除する。これは、基準前景マスキングに相当する。これは、基準画像と解析画像との間で背景画素をベースライン化する(そろえる、同条件にする)ことが必要であるために行う。ベースライン化するとは、そろえる、或いは同条件にすることである。そのため、背景画素の値は、解析画像及び基準画像の両方において同じ値に設定する。 When the region of interest of the analysis image is u × v pixels, the averaged block size is u / m × v / n pixels. When the reference background information is not available, the pixels of the analysis image in the portion where the reference pixels do not exist are deleted. This corresponds to standard foreground masking. This is done because it is necessary to baseline (align, make the same conditions) the background pixels between the reference image and the analysis image. Making a baseline means aligning or making the same conditions. Therefore, the value of the background pixel is set to the same value in both the analysis image and the reference image.

基準画像の平均化もm×n画素となるように行う。平均化は、各チャンネルに対して別々に行う。図10は、基準画像の例である。基準画像RIAのアイコンである前景F1は、着色されており、アイコン以外の領域である背景は例えば黒等の無色である。図10では、基準画像RIAのサイズは256×256画素である。図11は、基準画像の平均化画像である。図11では、m=n=16であり、平均化画像SRefのサイズは16×16画素である。この基準画像及びその平均化画像の背景が無色である場合、解析画像の関心領域も背景を無色に変換して、その関心領域の平均化画像を求めてもよい。例えば、背景を削除することで、背景を無色に変換してもよい。 The averaging of the reference image is also performed so that the number of pixels is m × n. The averaging is done separately for each channel. FIG. 10 is an example of a reference image. The foreground F1 which is the icon of the reference image RIA is colored, and the background which is an area other than the icon is colorless such as black. In FIG. 10, the size of the reference image RIA is 256 × 256 pixels. FIG. 11 is an averaged image of the reference image. In FIG. 11, m = n = 16, and the size of the averaged image SRef is 16 × 16 pixels. When the background of the reference image and its averaged image is colorless, the background of the area of interest of the analysis image may also be converted to colorless to obtain an averaged image of the area of interest. For example, the background may be converted to colorless by deleting the background.

次に、基準画像の平均化画像(SRef m×n)と解析画像の関心領域の平均化画像(SAnz m×n)を、距離基準を使用して画素毎に比較し、下式(1)のように距離Dを求める。距離Dは3次元距離である。本実施形態では、距離基準はデカルト距離の2乗であるが、その他の距離基準であっても同様なパラメーターが得られる。

Figure 2022106769000002
Next, the averaged image of the reference image (SRef m × n) and the averaged image of the region of interest (SANz m × n) of the analysis image are compared for each pixel using the distance reference, and the following equation (1) Find the distance D as in. The distance D is a three-dimensional distance. In this embodiment, the distance reference is the square of the Cartesian distance, but similar parameters can be obtained with other distance criteria.
Figure 2022106769000002

cは、チャンネルを表し、xは平均化画像での横方向の画素位置を表し、yは平均化画像での縦方向の画素位置を表す。横方向は水平方向とも呼び、縦方向は垂直方向とも呼ぶ。m、nは平均化画像のサイズである。Rxycは、チャンネルcにおける基準画像の平均化画像の位置(x,y)での画素値を表す。R'cは、チャンネルcにおけるRxy画素の平均値を表す。Rxy画素の平均値は、Rxycを平均化画像内で平均したものである。Axycは、チャンネルcにおける解析画像の平均化画像の位置(x,y)での画素値を表す。A'cは、チャンネルcにおけるAxy画素の平均値を表す。Axy画素の平均値は、Axycを平均化画像内で平均したものである。 c represents a channel, x represents a horizontal pixel position in the averaged image, and y represents a vertical pixel position in the averaged image. The horizontal direction is also called the horizontal direction, and the vertical direction is also called the vertical direction. m and n are the sizes of the averaged image. R xyc represents the pixel value at the position (x, y) of the averaged image of the reference image on the channel c. R'c represents the average value of R xy pixels in channel c . The average value of the R xy pixels is the average value of the R xy c in the averaged image. A xyc represents the pixel value at the position (x, y) of the averaged image of the analysis image on the channel c. A'c represents the average value of A xy pixels in channel c . The average value of A xy pixels is the average value of A xy c in the averaged image.

各チャンネルにおいて平均値を減算する理由は、基準画像と解析画像との間の小さな色ずれがエラーとして扱われないようにするためである。完全な一致が求められる場合には、平均値を0に設定することができる。この場合、距離基準によって形状及び色の一致をチェックすることになる。 The reason for subtracting the average value in each channel is to prevent a small color shift between the reference image and the analysis image from being treated as an error. If an exact match is required, the mean value can be set to 0. In this case, the match of shape and color is checked by the distance reference.

形状指標Sは、下式(2)、(3)によって距離パラメーターから導出される。形状指標Sは形状パラメーターとも呼ぶ。Tは閾値であり、任意の値を採用できる。D<Tの場合にはT/D=1となり、形状指標Sは変化しない。

Figure 2022106769000003
Figure 2022106769000004
The shape index S is derived from the distance parameter by the following equations (2) and (3). The shape index S is also called a shape parameter. T is a threshold value, and any value can be adopted. When D <T, T / D = 1, and the shape index S does not change.
Figure 2022106769000003
Figure 2022106769000004

関数fは、ハードウェアへの実装が容易となるように選択する。例えば、関数fは、範囲0~1が0~kにスケーリングされるようなスケーリング関数Kであってもよい。以下に記載する例では、関数fは単位関数である。即ち、S=T/Dである。形状指標Sは、基準画像と解析画像との間の形状の一致度を示す。画像が一致していない場合には、この値は減少し、0となる傾向がある。その例を以下に記載する。 The function f is selected so that it can be easily implemented in hardware. For example, the function f may be a scaling function K such that the range 0 to 1 is scaled to 0 to k. In the example described below, the function f is a unit function. That is, S = T / D. The shape index S indicates the degree of coincidence of the shape between the reference image and the analysis image. If the images do not match, this value tends to decrease to zero. An example is described below.

図9では、基準画像のアイコンが解析画像に正しく表示されている。この場合、形状指標はS=1となり、図9では、Shape:1.000と示す。 In FIG. 9, the icon of the reference image is correctly displayed on the analysis image. In this case, the shape index is S = 1, and in FIG. 9, Shape: 1.000 is shown.

図12は、解析画像の第2の例である。B1は関心領域を示す。図12のB2に示すように、基準画像のアイコンが解析画像では不明瞭になっている。即ち、基準画素のいくつかが解析画像には存在しておらず、関数fが単位関数の場合には形状指標Sは1未満となる。このような不明瞭な前景の場合、形状指標が小さい値となる。なお、後述する視認性指標も小さい値となる。 FIG. 12 is a second example of the analysis image. B1 indicates a region of interest. As shown in B2 of FIG. 12, the icon of the reference image is obscured in the analysis image. That is, some of the reference pixels do not exist in the analysis image, and when the function f is a unit function, the shape index S is less than 1. In the case of such an unclear foreground, the shape index becomes a small value. The visibility index described later also has a small value.

図13は、解析画像の第3の例である。E1は関心領域を示す。図13のE2に示すように、基準画像のアイコンが解析画像では回転している。この例では、形状は基準から回転しているので、関数fが単位関数の場合には形状指標Sは1未満となる。このように前景が回転している場合、形状指標が小さい値となる。なお、後述する視認性指標も大きい値となる。視認性指標については後述するが、視認性指標と形状指標を組み合わせることにより様々な前景の状態において適切なエラー検出を行うことが可能となり、エラー検出の精度を向上できる。 FIG. 13 is a third example of the analysis image. E1 indicates a region of interest. As shown in E2 of FIG. 13, the icon of the reference image is rotated in the analysis image. In this example, since the shape is rotated from the reference, the shape index S is less than 1 when the function f is a unit function. When the foreground is rotated in this way, the shape index becomes a small value. The visibility index, which will be described later, also has a large value. The visibility index will be described later, but by combining the visibility index and the shape index, it is possible to perform appropriate error detection in various foreground states, and the accuracy of error detection can be improved.

上記の形状指標は、ベース信号の一致のみをチェックする。視認性が低い画像の場合には、エッジ検出カーネルを解析画像の関心領域及び基準画像とコンボリューションして一次勾配画像を生成した後、形状演算アルゴリズムによってパラメーターを求めることができる。エッジ検出カーネルは、例えばLaplacian又はSobel等である。求めたパラメーターにより、形状指標によって得られた誤検知を除去することができる。このようにすれば、視認性が低い画像の場合にも正しいエラー検出結果を得ることができる。 The above shape index only checks for base signal matching. In the case of an image with low visibility, the edge detection kernel can be convoluted with the region of interest and the reference image of the analysis image to generate a first-order gradient image, and then the parameters can be obtained by a shape calculation algorithm. The edge detection kernel is, for example, Laplacian or Sobel. With the obtained parameters, the false positives obtained by the shape index can be eliminated. By doing so, it is possible to obtain a correct error detection result even in the case of an image having low visibility.

3.2.形状指標の第2の演算手法
図14は、解析画像の第4の例である。図14では、ダッシュボード画像DIMの上にアイコンICAが重ねられている。アイコン画像は、ある透過率でダッシュボード画像にブレンドされる。
3.2. Second Calculation Method for Shape Index FIG. 14 is a fourth example of an analysis image. In FIG. 14, the icon ICA is superimposed on the dashboard image DIM. The icon image is blended with the dashboard image with some transparency.

本実施形態では、エッジ検出技術を用いて、関心領域における解析画像と基準画像のエッジを検出する。エッジ検出技術は、例えばソーベルエッジ検出畳み込み演算子を用いたエッジ検出技術である。 In this embodiment, the edge detection technique is used to detect the edges of the analysis image and the reference image in the region of interest. The edge detection technique is, for example, an edge detection technique using a Sobel edge detection convolution operator.

図15は、関心領域における解析画像の例である。画像CIBは、ダッシュボード画像DIMに基準画像ICBをブレンドした関心領域の画像である。アイコン部分では、ブレンドによりダッシュボード画像DIMが透けて見えている。なお、エラーが無い場合には、関心領域における基準画像は、図15と同様の画像であると期待される。 FIG. 15 is an example of an analysis image in the region of interest. The image CIB is an image of the region of interest in which the dashboard image DIM is blended with the reference image ICB. In the icon part, the dashboard image DIM can be seen through by blending. If there is no error, the reference image in the region of interest is expected to be the same image as in FIG.

図16は、解析画像から計算されたエッジ値の例である。ECIBは図15の画像CIBのエッジ画像である。図示の関係上、エッジを黒線及びグレー線で示しているが、実際にはエッジの強度はグレースケールで示すことができる。白は高強度のエッジを示し、黒はエッジ無しを示す。このエッジ検出は、輝度チャンネルに対して行われる。同様に、エッジ検出は、色チャンネルに対して、又はYCbCrのような色空間においても行われる。なお、エラーが無い場合には、関心領域における基準画像のエッジ画像は、図16と同様の画像であると期待される。 FIG. 16 is an example of the edge value calculated from the analysis image. The ECIB is an edge image of the image CIB of FIG. For the sake of illustration, the edges are shown by black lines and gray lines, but in reality, the strength of the edges can be shown by gray scale. White indicates high intensity edges and black indicates no edges. This edge detection is performed on the luminance channel. Similarly, edge detection is performed on a color channel or in a color space such as YCbCr. If there is no error, the edge image of the reference image in the region of interest is expected to be the same image as in FIG.

前景領域と背景領域におけるエッジは、基準画像と解析画像について計算され、形状指標は、下式(4)~(15)に示すように類似量を算出することにより計算される。下式(15)のMatchが形状指標である。形状指標は適合値とも呼ぶ。以下では、基準画像はm×n画素のサイズであり、表示画像の関心領域もm×n画素であるとする。 The edges in the foreground region and the background region are calculated for the reference image and the analysis image, and the shape index is calculated by calculating the similar amount as shown in the following equations (4) to (15). The Match of the following formula (15) is a shape index. The shape index is also called a conforming value. In the following, it is assumed that the reference image has a size of m × n pixels and the region of interest of the display image is also m × n pixels.

下式(4)は、水平ソーベルカーネル、即ち水平方向のエッジを検出するソーベルフィルターの演算子である。下式(5)は、垂直ソーベルカーネル、即ち垂直方向のエッジを検出するソーベルフィルターの演算子である。

Figure 2022106769000005
Figure 2022106769000006
Equation (4) below is an operator of the horizontal sobel kernel, that is, the sobel filter that detects the horizontal edge. Equation (5) below is a vertical Sobel kernel, that is, an operator of a Sobel filter that detects vertical edges.
Figure 2022106769000005
Figure 2022106769000006

下式(6)~(11)に示すように、基準画像と表示画像の関心領域における各画素位置について、エッジ値を計算する。「*」は畳み込み演算子である。Nは、値を0と1の間に保つための正規化係数であり、ここではN=4である。IRefは、基準画像の輝度(Y)チャンネルである。IRef(x,y)は、基準画像の輝度チャンネルの位置x、yの画素である。xは0<x≦mの整数であり、yは0<y≦nの整数である。IRenは、関心領域における表示画像の輝度チャンネルである。IRen(x,y)は、関心領域における表示画像の輝度チャンネルの位置x、yを中心とした3×3画素である。

Figure 2022106769000007
Figure 2022106769000008
Figure 2022106769000009
Figure 2022106769000010
Figure 2022106769000011
Figure 2022106769000012
As shown in the following equations (6) to (11), the edge value is calculated for each pixel position in the region of interest of the reference image and the display image. "*" Is a convolution operator. N is a normalization coefficient for keeping the value between 0 and 1, where N = 4. IRef is the luminance (Y) channel of the reference image. IRef (x, y) is a pixel at the position x, y of the luminance channel of the reference image. x is an integer of 0 <x ≦ m, and y is an integer of 0 <y ≦ n. IRen is the luminance channel of the displayed image in the region of interest. IREN (x, y) is a 3 × 3 pixel centered on the positions x and y of the luminance channel of the display image in the region of interest.
Figure 2022106769000007
Figure 2022106769000008
Figure 2022106769000009
Figure 2022106769000010
Figure 2022106769000011
Figure 2022106769000012

下式(12)~(15)に示すように、上記のエッジ値から形状指標Match(適合値)を求める。「・」は内積演算子を表す。

Figure 2022106769000013
Figure 2022106769000014
Figure 2022106769000015
Figure 2022106769000016
As shown in the following equations (12) to (15), the shape index Match (matching value) is obtained from the above edge values. "・" Represents the inner product operator.
Figure 2022106769000013
Figure 2022106769000014
Figure 2022106769000015
Figure 2022106769000016

図15、図16に上記の演算を適用すると、例えばMatch=0.78となる。 When the above calculation is applied to FIGS. 15 and 16, for example, Match = 0.78.

背景を分析せずに適合値を計算することが要求される場合には、下式(16)~(21)に示す計算を用いる。

Figure 2022106769000017
Figure 2022106769000018
Figure 2022106769000019
Figure 2022106769000020
Figure 2022106769000021
Figure 2022106769000022
When it is required to calculate the conforming value without analyzing the background, the calculation shown in the following equations (16) to (21) is used.
Figure 2022106769000017
Figure 2022106769000018
Figure 2022106769000019
Figure 2022106769000020
Figure 2022106769000021
Figure 2022106769000022

(x,y)は、1である。なお、M(x,y)は、いずれの画素について比較を行うかを定義するマスク画素であってもよい。このマスクは、比較しない画素を0で定義し、比較する画素を1で定義する単純な1ビットマスクで実現できる。例えば、アイコンのみを比較する等、関心領域の一部のみを画像比較したい場合には、それに応じたマスクを設定すればよい。 M (x, y) is 1. Note that M (x, y) may be a mask pixel that defines which pixel is to be compared. This mask can be realized by a simple 1-bit mask in which pixels to be compared are defined by 0 and pixels to be compared are defined by 1. For example, when it is desired to compare an image of only a part of an area of interest, such as comparing only icons, a mask corresponding to the image may be set.

以上の実施形態によれば、比較回路145は、解析画像の画素値と基準画像の画素値とに基づいて、又は解析画像のエッジ画像の画素値と基準画像のエッジ画像の画素値とに基づいて、解析画像と基準画像との一致度合いを表す指標を求める。エラー検出回路150は、その指標に基づいて表示画像のエラー検出を行う。 According to the above embodiment, the comparison circuit 145 is based on the pixel value of the analysis image and the pixel value of the reference image, or based on the pixel value of the edge image of the analysis image and the pixel value of the edge image of the reference image. Then, an index showing the degree of matching between the analysis image and the reference image is obtained. The error detection circuit 150 detects an error in the displayed image based on the index.

このようにすれば、CRCのようなビット単位のエラー検出ではなく、解析画像と基準画像との間の一致度合いを表す指標に基づいて解析画像のエラー検出を行うことができる。解析画像が基準画像に対して一致度合いが高い場合、その解析画像が基準画像に対して視覚的に同じ形状に見える可能性が高い。即ち、本手法によれば、解析画像の形状が正しく表示されていない場合にエラーと判断することが可能となる。そして、解析画像にエラーが検出されなければ、マッピング処理が正常に行われたと判断できるので、解析画像のエラー検出を行うことで、被投影体に投影される画像のエラーを検出できる。 In this way, it is possible to perform error detection of the analysis image based on an index indicating the degree of agreement between the analysis image and the reference image, instead of error detection in bit units such as CRC. When the analysis image has a high degree of agreement with the reference image, it is highly possible that the analysis image looks visually the same as the reference image. That is, according to this method, it is possible to determine an error when the shape of the analysis image is not displayed correctly. If no error is detected in the analyzed image, it can be determined that the mapping process has been performed normally. Therefore, by detecting the error in the analyzed image, it is possible to detect the error in the image projected on the projected object.

ここで、上式(2)~(4)に示す第1の演算手法は、解析画像の画素値と基準画像の画素値とに基づいて指標(S)を求める場合に対応する。また、上式(5)~(21)に示す第2の演算手法は、解析画像のエッジ画像の画素値と基準画像のエッジ画像の画素値とに基づいて指標(Match)を求める場合に対応する。エッジ画像の画素値は、上式(6)、(9)、(16)、(17)のエッジ量に対応する。 Here, the first calculation method shown in the above equations (2) to (4) corresponds to the case where the index (S) is obtained based on the pixel value of the analysis image and the pixel value of the reference image. Further, the second calculation method shown in the above equations (5) to (21) corresponds to a case where an index (Match) is obtained based on the pixel value of the edge image of the analysis image and the pixel value of the edge image of the reference image. do. The pixel value of the edge image corresponds to the edge amount of the above equations (6), (9), (16), and (17).

また、一致度合いとは、例えばアイコン、文字、図形、マーク等(以下アイコン等と呼ぶ)の形状の一致の程度のことである。より具体的には、アイコン等の輪郭と向きの一致の程度のことである。また更に、アイコン等の輪郭の内側の状態、例えば輪郭の内側が塗りつぶされているか否か等の状態の一致の程度を含んでもよい。例えば、一致度合いを表す指標は、前景画像と背景画像の一致度合いが高いほど値が大きくなる。 The degree of matching is, for example, the degree of matching of the shapes of icons, characters, figures, marks, etc. (hereinafter referred to as icons). More specifically, it is the degree of matching between the contour and the direction of the icon or the like. Further, it may include the degree of coincidence of the state inside the contour such as the icon, for example, whether or not the inside of the contour is filled. For example, the index indicating the degree of matching increases as the degree of matching between the foreground image and the background image increases.

また本実施形態では、上式(2)、(3)に示すように、比較回路145は所与の閾値(T)を距離情報(D)で除算した値から指標(S)を求める。 Further, in the present embodiment, as shown in the above equations (2) and (3), the comparison circuit 145 obtains the index (S) from the value obtained by dividing the given threshold value (T) by the distance information (D).

形状の一致度合いが高いほど距離(D)が小さくなるので、所与の閾値を距離情報で除算することで、形状の一致度合いが高いほど値が大きくなる指標(S)を求めることができる。 Since the distance (D) becomes smaller as the degree of shape matching increases, an index (S) whose value increases as the degree of shape matching increases can be obtained by dividing a given threshold value by the distance information.

また本実施形態では、比較回路145は、解析画像のエッジ画像の画素値と基準画像のエッジ画像の画素値との積和演算(上式(12))を行い、その積和演算の結果から指標を求める(上式(15))。 Further, in the present embodiment, the comparison circuit 145 performs a product-sum calculation (the above equation (12)) between the pixel value of the edge image of the analysis image and the pixel value of the edge image of the reference image, and is based on the result of the product-sum calculation. Find the index (Equation (15) above).

エッジ画像は、各画素の画素値としてエッジ量が定義された画像である。形状が一致している場合、解析画像のエッジ画像と基準画像のエッジ画像とを同じ画素で比べると、同じ(略同じを含む)エッジ量になっているはずである。逆に、形状が一致していない場合にはエッジの位置が解析画像と基準画像で一致しないので、例えば解析画像のエッジ画像に大きなエッジ量があっても、基準画像のエッジ画像の同じ画素ではエッジ量がゼロになっていたりする。このため、同じ画素同士のエッジ量を積和すると、形状が一致している場合には積和の結果が大きな値になり、形状が一致していない場合には積和の結果が小さな値になる。このため、エッジ量の積和演算を用いることで、形状の一致度合いを適切に評価できる。 The edge image is an image in which the edge amount is defined as the pixel value of each pixel. When the shapes match, when the edge image of the analysis image and the edge image of the reference image are compared with the same pixels, the edge amounts should be the same (including substantially the same). On the contrary, when the shapes do not match, the edge positions do not match between the analysis image and the reference image. Therefore, for example, even if the edge image of the analysis image has a large amount of edges, the same pixels of the edge image of the reference image The amount of edges is zero. Therefore, when the edge amounts of the same pixels are summed, the sum of products results in a large value when the shapes match, and the sum of products results in a small value when the shapes do not match. Become. Therefore, by using the product-sum calculation of the edge amount, the degree of matching of the shapes can be appropriately evaluated.

ここで、上式(12)では、積和の「積」はベクトルの内積になっているが、「積」はこれに限定されない。例えばエッジ量がスカラーで定義される場合には、「積」はスカラー同士の積となる。 Here, in the above equation (12), the "product" of the sum of products is the inner product of the vectors, but the "product" is not limited to this. For example, when the edge amount is defined by a scalar, the "product" is the product of the scalars.

3.3.視認性指標(第2の指標)を求める第1の演算手法
視認性指標の演算においても、形状指標の演算と同様に解析画像と基準画像の用語を用いる。図1、図4では画像IMA3が解析画像であり、画像IMA1が基準画像である。図6、図8では、画像IMB2が解析画像であり、画像IMB3が基準画像である。なお、比較処理は2画像の相互比較なので、解析画像と基準画像を入れ替えても構わない。
3.3. First calculation method for obtaining the visibility index (second index) In the calculation of the visibility index, the terms of the analysis image and the reference image are used as in the calculation of the shape index. In FIGS. 1 and 4, the image IMA3 is an analysis image, and the image IMA1 is a reference image. In FIGS. 6 and 8, the image IMB2 is an analysis image and the image IMB3 is a reference image. Since the comparison process is a mutual comparison of two images, the analysis image and the reference image may be exchanged.

図17は、関心領域におけるYCbCrの各チャンネルのヒストグラムである。また図18は、解析画像と基準画像のヒストグラムに相互相関演算を行って得られた相互相関値である。 FIG. 17 is a histogram of each channel of YCbCr in the region of interest. Further, FIG. 18 is a cross-correlation value obtained by performing a cross-correlation operation on the histograms of the analysis image and the reference image.

図17に示すように、YCbCr画像の各チャンネルについて、n個のバイナリーを使用してヒストグラムを求める。例えば、256個のバイナリーを使用し、異なるバイナリーの組を有するヒストグラムを生成することができる。 As shown in FIG. 17, for each channel of the YCbCr image, a histogram is obtained using n binaries. For example, 256 binaries can be used to generate a histogram with different sets of binaries.

ヒストグラムは、関心領域において特定の値が生じる回数をカウントする。即ち、YCbCr画像の各チャンネルについて、各バイナリーが示す値を有する画素の数を関心領域内でカウントする。次に、ヒストグラムを0~aの間の値に正規化する。値「a」は、実装の容易さを考慮して選択することができる。例えばaを1又は255等に設定できる。図17では、a=1である。次に、各チャンネルにおいて、解析画像と基準画像のヒストグラムを相互相関演算する。そして、その相互相関信号をその後の解析に使用する。図18に示すように、相互相関信号を、ゼロ遅延におけるピーク値が1又は予め設定した値となるように正規化する。 The histogram counts the number of times a particular value occurs in a region of interest. That is, for each channel of the YCbCr image, the number of pixels having the value indicated by each binary is counted in the region of interest. The histogram is then normalized to a value between 0 and a. The value "a" can be selected in consideration of ease of implementation. For example, a can be set to 1 or 255. In FIG. 17, a = 1. Next, in each channel, the histograms of the analysis image and the reference image are cross-correlated. Then, the cross-correlation signal is used for the subsequent analysis. As shown in FIG. 18, the cross-correlation signal is normalized so that the peak value at zero delay is 1 or a preset value.

相互相関値は、下式(22)により求められる。f、gは相関演算される関数を表す。f、gの一方が解析画像のヒストグラムであり、f、gの他方が基準画像のヒストグラムである。f*gは、関数fと関数gの相関演算を表す。f*は関数fの複素共役を表し、本実施形態ではf*=fである。mはヒストグラムのバイナリーの番号を表す。nは遅延(lag)を表し、図18ではnは-255~+255の整数である。

Figure 2022106769000023
The cross-correlation value is obtained by the following equation (22). f and g represent functions to be correlated. One of f and g is a histogram of the analysis image, and the other of f and g is a histogram of the reference image. f * g represents a correlation operation between the function f and the function g. f * represents the complex conjugate of the function f, and in this embodiment f * = f. m represents the binary number of the histogram. n represents a delay (lag), and in FIG. 18, n is an integer from -255 to +255.
Figure 2022106769000023

なお、図17のヒストグラムでは、256個のバイナリーが0~1の間に正規化されているため、横軸が0~1になっている。図18の相関値は、1バイナリーずつ遅延を変えながら相関値を求めているため、横軸が-(256-1)~+(256-1)になっている。 In the histogram of FIG. 17, since 256 binaries are normalized between 0 and 1, the horizontal axis is 0 to 1. As for the correlation value in FIG. 18, since the correlation value is obtained while changing the delay for each binary, the horizontal axis is − (256-1) to + (256-1).

図18に示すように、二色の画像が関心領域に存在する場合には、相関演算により側波帯が得られる。上記ピークが生じる中心からの遅延の距離は、色間のコントラストを示す。中心は、ゼロ遅延に対応する。コントラストによって人間の目は画像の特徴を識別することができるため、3つのチャンネル全てのピークについてチェックする。コントラストは、例えば輝度コントラストや色コントラストである。図18では、Yチャンネルを点線で示し、Cbチャンネルを細実線で示し、Crチャンネルを太実線で示している。チェックは、相互相関信号のノイズを拾わないようにピーク検索の閾値を設定することによって行う。例えば、最小ピーク閾値を0.05に設定する。信号におけるピークを検索して局所最大値を求める。検索するピークは、閾値より大きいピーク値のピークである。 As shown in FIG. 18, when a two-color image exists in the region of interest, a sideband is obtained by the correlation calculation. The distance of the delay from the center where the peak occurs indicates the contrast between colors. The center corresponds to zero delay. The contrast allows the human eye to identify the features of the image, so check for peaks on all three channels. The contrast is, for example, luminance contrast or color contrast. In FIG. 18, the Y channel is shown by a dotted line, the Cb channel is shown by a fine solid line, and the Cr channel is shown by a thick solid line. The check is performed by setting a peak search threshold so as not to pick up the noise of the cross-correlation signal. For example, the minimum peak threshold is set to 0.05. Find the peak in the signal to find the local maximum. The peak to be searched is a peak having a peak value larger than the threshold value.

なお、帯域内信号ピークを回避するために、連続するピーク間の最小距離を所定値に設定することもできる。これらの閾値は調節可能な値であり、用途に応じて選択する。 In addition, in order to avoid in-band signal peaks, the minimum distance between consecutive peaks can be set to a predetermined value. These thresholds are adjustable values and are selected according to the application.

識別可能な画像が二色以上の背景上に示されているか否かを示す視認性指標を求めるために、全てのチャンネルについて、ノイズ閾値を超える相互相関信号の全てのピークを求めた後、ピークが生じる最大距離、即ち最大遅延を求める。3つのチャンネルにおいてピークが生じる遅延のうち最大値を、視認性を示す指標として選択する。 After finding all the peaks of the cross-correlation signal that exceeds the noise threshold for all channels, to find a visibility index that indicates whether the identifiable image is shown on a background of two or more colors, then the peaks. The maximum distance at which is generated, that is, the maximum delay is obtained. The maximum value of the delays at which peaks occur in the three channels is selected as an index indicating visibility.

図18に示す相関プロットでは、ピークを丸で示している。図示する例では、Crチャンネルが最大の分離を示しており、距離は184である。上記値を考えられる最大遅延に正規化する。例えば、考えられる最大遅延はヒストグラムのバイナリーの数である256である。従って、指標値は184/255=0.722である。図9で上述した画像では、上記指標値をVisパラメーターとして示している。上記演算は、一つの例について示している。 In the correlation plot shown in FIG. 18, the peaks are circled. In the illustrated example, the Cr channel shows maximum separation and the distance is 184. Normalize the above values to the maximum possible delay. For example, the maximum possible delay is 256, which is the number of binaries in the histogram. Therefore, the index value is 184/255 = 0.722. In the image described above in FIG. 9, the index value is shown as a Vis parameter. The above operation shows one example.

図9において、黒色で示す部分であるアイコンA2の内部は赤色であり、白色で示す部分である背景は緑色である。 In FIG. 9, the inside of the icon A2, which is the portion shown in black, is red, and the background, which is the portion shown in white, is green.

図9の画像では、関心領域内に赤と緑の二色の画素群があるので、図17に示すヒストグラムでは、YCbCrの各チャンネルに2つの大小のピークが生じる。例えば、CrチャンネルではバイナリーBa、Bbにピークが生じている。この2つのピークの間の距離は、アイコンである前景アイコンの色と背景の色との間のコントラストを表しており、距離が大きいほど前景と背景の色がより異なることを意味する。ヒストグラムにおける2つのピークの間の距離は、図18に示す相互相関値においてピークが発生する遅延の距離になる。図9の画像では、アイコンである前景アイコンが赤色で背景が緑色なので、図17に示すヒストグラムにおいてCrチャンネルの2つのピーク間の距離が最大距離となっており、その距離は|Ba-Bb|×255である。これが、相互相関値において、ピークが発生する最大距離として検出され、正規化した指標値は|Ba-Bb|となる。従って、アイコンである前景アイコンの色と背景の色との間のコントラストが大きいほど、視認性の指標値も大きくなる。 In the image of FIG. 9, since there are two color pixel groups of red and green in the region of interest, in the histogram shown in FIG. 17, two large and small peaks occur in each channel of YCbCr. For example, in the Cr channel, peaks occur in binary Ba and Bb. The distance between these two peaks represents the contrast between the color of the foreground icon, which is the icon, and the background color, which means that the larger the distance, the more different the foreground and background colors. The distance between the two peaks in the histogram is the distance of the delay at which the peaks occur at the cross-correlation values shown in FIG. In the image of FIG. 9, since the foreground icon, which is an icon, is red and the background is green, the distance between the two peaks of the Cr channel is the maximum distance in the histogram shown in FIG. 17, and the distance is | Ba-Bb | It is × 255. This is detected as the maximum distance at which the peak occurs in the cross-correlation value, and the normalized index value is | Ba-Bb |. Therefore, the greater the contrast between the color of the foreground icon, which is the icon, and the color of the background, the larger the index value of visibility.

エラー検出回路150は、上記のようにして求めた視認性指標に基づいてエラー検出を行う。例えば、視認性指標と所与の閾値とを比較し、視認性指標が所与の閾値より小さい場合にエラーと判定する。或いは、視認性指標をエラー検出結果として回路装置100の外部に出力してもよい。 The error detection circuit 150 performs error detection based on the visibility index obtained as described above. For example, the visibility index is compared with a given threshold value, and if the visibility index is smaller than the given threshold value, an error is determined. Alternatively, the visibility index may be output to the outside of the circuit device 100 as an error detection result.

3.4.視認性指標を求める第2~第4の演算手法
第2の演算手法では、相互相関信号の中心からのピークの距離を求める代わりに、相互相関信号に所定の閾値を超えるピークが存在しているか否かを調べる。そのようなピークが存在している場合には、画素の分布を考慮する限りにおいて、基準画像と解析画像はかなり一致していることになる。これにより、解析画像に対する第1のレベルのエラー検出を行うことができる。このパラメーターは、空間的相関は示さず、画素分布相関のみを示す。この場合の指標は、中心からのピークの距離ではなく、ピーク値自体であってもよい。
3.4. Second to Fourth Calculation Method for Finding Visibility Index In the second calculation method, instead of finding the distance of the peak from the center of the cross-correlation signal, does the cross-correlation signal have a peak exceeding a predetermined threshold value? Find out if it isn't. When such a peak is present, the reference image and the analysis image are in good agreement as long as the pixel distribution is taken into consideration. This makes it possible to perform first-level error detection on the analyzed image. This parameter does not show spatial correlation, only pixel distribution correlation. The index in this case may be the peak value itself, not the distance of the peak from the center.

図19は、解析画像と基準画像のヒストグラムの例である。図20は、図19のヒストグラムの相互相関値の例である。ここでは、カラー画像の1チャンネル分について説明するが、同様の処理を複数のチャンネルに対して行う。例えば、複数のチャンネルの相互相関値のピークのうち最大のピーク値を採用すればよい。 FIG. 19 is an example of a histogram of an analysis image and a reference image. FIG. 20 is an example of the cross-correlation value of the histogram of FIG. Here, one channel of the color image will be described, but the same processing is performed for a plurality of channels. For example, the maximum peak value among the peaks of the cross-correlation values of a plurality of channels may be adopted.

図19に示すように、解析画像と基準画像のヒストグラムには、3以上のピークが生じている。図19の例では4つのピークが生じている。解析画像のヒストグラムのピークと、基準画像のヒストグラムのピークが、Bnだけずれているとする。この場合、図20に示すように、相互相関値には遅延Bnのところに大きなピークが現れる。このピークのピーク値が閾値Thrより大きい場合、例えば、そのピーク値を視認性の指標値に採用する。 As shown in FIG. 19, the histograms of the analysis image and the reference image have three or more peaks. In the example of FIG. 19, four peaks occur. It is assumed that the peak of the histogram of the analysis image and the peak of the histogram of the reference image are deviated by Bn. In this case, as shown in FIG. 20, a large peak appears at the delay Bn in the cross-correlation value. When the peak value of this peak is larger than the threshold value Thr, for example, the peak value is adopted as an index value of visibility.

第3の演算手法では、視認性の指標値として前景と背景のコントラスト比を求める。 In the third calculation method, the contrast ratio between the foreground and the background is obtained as an index value of visibility.

第1の演算手法では、Crチャンネルのヒストグラムにおいてピークが生じるバイナリーBa、Bbの差分|Ba-Bb|を、視認性の指標値として用いている。 In the first calculation method, the difference | Ba-Bb | of the binary Ba and Bb in which the peak occurs in the histogram of the Cr channel is used as an index value of visibility.

第3の演算手法では、コントラスト比|Ba-Bb|/Ba又は|Ba-Bb|/Bbを求め、それを視認性の指標値とする。或いは、第2の演算手法のような基準画像を用いる場合には、解析画像におけるC1=|Ba-Bb|と基準画像におけるC2=|Ba-Bb|を求め、コントラスト比C1/C2又はC2/C1を求め、それを視認性の指標値とする。 In the third calculation method, the contrast ratio | Ba-Bb | / Ba or | Ba-Bb | / Bb is obtained and used as an index value of visibility. Alternatively, when a reference image such as the second calculation method is used, C1 = | Ba-Bb | in the analysis image and C2 = | Ba-Bb | in the reference image are obtained, and the contrast ratio C1 / C2 or C2 / C1 is obtained and used as an index value of visibility.

第4の演算手法では、多次元ヒストグラムを生成して視認性指標を求める。 In the fourth calculation method, a multidimensional histogram is generated to obtain a visibility index.

第1の演算手法では、視認性の解析に各チャンネルの1次元ヒストグラムを使用している。 In the first calculation method, a one-dimensional histogram of each channel is used for the analysis of visibility.

一方、第4の演算手法では、複数のチャンネルの信号から多次元ヒストグラムを生成し、その多次元ヒストグラムに対して多次元相関演算を行って、視認性指標を求める。多次元相関演算は、多次元相互相関演算である。これにより、人間の目によるコントラスト検出をより良好に模擬できる可能性がある。3D色ヒストグラムを使用することにより、より良好な性能が得られる場合がある。 On the other hand, in the fourth calculation method, a multidimensional histogram is generated from signals of a plurality of channels, and a multidimensional correlation calculation is performed on the multidimensional histogram to obtain a visibility index. The multidimensional cross-correlation operation is a multidimensional cross-correlation operation. This may allow better simulation of contrast detection by the human eye. Better performance may be obtained by using the 3D color histogram.

以上の実施形態によれば、比較回路145は、解析画像と基準画像の画素値に基づいて指標を統計的に求める。 According to the above embodiment, the comparison circuit 145 statistically obtains an index based on the pixel values of the analysis image and the reference image.

指標を統計的に求めるとは、解析画像に含まれる複数の画素値を第1の統計の母集団とし、基準画像に含まれる複数の画素値を第2の統計の母集団として、統計的な手法を用いた処理によって指標を求めることである。具体的には、解析画像と基準画像の各々からヒストグラムを生成し、それらのヒストグラムに基づいて指標を求める。 To obtain the index statistically means that a plurality of pixel values included in the analysis image are used as the population of the first statistic, and a plurality of pixel values included in the reference image are used as the population of the second statistic. The index is obtained by processing using the method. Specifically, a histogram is generated from each of the analysis image and the reference image, and an index is obtained based on the histogram.

本実施形態によれば、統計的に指標を求めることで、前景画像と背景画像との間の非類似度合いを表す指標を求めることが可能となる。即ち、CRCのようにデータの欠陥を検出するのではなく、統計的な手法によって前景画像と背景画像との間の非類似度合いを評価し、その非類似度合いによってエラーと判定するか否かを決定できる。 According to the present embodiment, by statistically obtaining an index, it is possible to obtain an index indicating the degree of dissimilarity between the foreground image and the background image. That is, instead of detecting data defects as in CRC, the degree of dissimilarity between the foreground image and the background image is evaluated by a statistical method, and whether or not an error is determined based on the degree of dissimilarity is determined. Can be decided.

また本実施形態では、比較回路145は、解析画像と基準画像の画素値のヒストグラムを求め、そのヒストグラムを用いた相関演算を行う。上述の例では画素値はYCbCrの画素値である。比較回路145は、解析画像のうち関心領域の画像である前景画像と、解析画像のうち前景画像の背景に相当する背景画像との間の非類似度合いを表す視認性指標を相関演算の結果に基づいて求める。エラー検出回路150は、その指標に基づいてエラー検出を行う。 Further, in the present embodiment, the comparison circuit 145 obtains a histogram of the pixel values of the analysis image and the reference image, and performs a correlation calculation using the histogram. In the above example, the pixel value is the pixel value of YCbCr. The comparison circuit 145 uses a visibility index indicating the degree of dissimilarity between the foreground image, which is an image of the region of interest in the analysis image, and the background image corresponding to the background of the foreground image in the analysis image as the result of the correlation calculation. Find based on. The error detection circuit 150 performs error detection based on the index.

前景画像が背景画像に対して非類似度合いが高い場合、その前景画像が背景画像に対して視覚的に区別されている可能性が高いので、前景画像の視認性が高いと考えられる。即ち、本手法によれば、前景画像の視認性が低い場合にエラーと判断することが可能となる。例えば車載のメーターパネルなどでは、ユーザーに警告するためのアイコン等を表示させる。本実施形態によれば、このようなアイコンが1ビットエラーなどで表示が停止されずに、視認性が確保されている場合において出来るだけ表示させ、ユーザーに警告を行うことができる。 When the foreground image has a high degree of dissimilarity to the background image, it is highly likely that the foreground image is visually distinguished from the background image, so that the visibility of the foreground image is considered to be high. That is, according to this method, it is possible to determine an error when the visibility of the foreground image is low. For example, on an in-vehicle instrument panel or the like, an icon or the like for warning the user is displayed. According to the present embodiment, it is possible to warn the user by displaying such an icon as much as possible when the display is not stopped due to a 1-bit error or the like and the visibility is ensured.

ここで、前景画像は、解析画像のうち、指標により背景画像との非類似度合いを判定したい領域の画像のことである。また、その領域が所与の領域である。また背景画像は、前景画像を除く表示画像の一部又は全体のことである。即ち、前景画像を含む領域である関心領域)を、表示画像の一部又は全体に設定し、その関心領域のうち前景画像を除く領域の画像が背景画像である。 Here, the foreground image is an image of a region of the analysis image in which the degree of dissimilarity with the background image is to be determined by an index. Also, that area is a given area. The background image is a part or the whole of the display image excluding the foreground image. That is, the region of interest, which is the region including the foreground image) is set as a part or the whole of the display image, and the image of the region of interest excluding the foreground image is the background image.

また非類似度合いとは、色空間の構成成分であるの各成分における非類似の程度のことである。構成成分は、チャンネルとも呼ぶ。例えば、YCbCr空間では、前景画像の輝度と背景画像の輝度とがどの程度異なるか、又は前景画像の色と背景画像の色とがどの程度異なるかを表す度合いである。或いは、RGB空間では、前景画像の色と背景画像の色とがどの程度異なるかを表す度合いである。 The degree of dissimilarity is the degree of dissimilarity in each component of the color space. Components are also called channels. For example, in the YCbCr space, it is a degree indicating how much the brightness of the foreground image and the brightness of the background image are different, or how much the color of the foreground image and the color of the background image are different. Alternatively, in the RGB space, it is a degree indicating how much the color of the foreground image and the color of the background image are different.

また本実施形態では、比較回路145は、色空間の構成成分の各成分のヒストグラムを求め、各成分のヒストグラムに対して相互相関演算を行い、相互相関のピークが生じる距離を各成分について求め、求めた距離のうち最大の距離に基づいて指標を求める。最大の距離は、図18において|Ba-Bb|であり、ここでの指標は視認性指標である。 Further, in the present embodiment, the comparison circuit 145 obtains a histogram of each component of the constituent components of the color space, performs a cross-correlation calculation on the histogram of each component, and obtains the distance at which the peak of the cross-correlation occurs for each component. The index is calculated based on the maximum distance obtained. The maximum distance is | Ba-Bb | in FIG. 18, and the index here is a visibility index.

このようにすれば、色空間の構成成分の各成分のうち、前景画像と背景画像で最も差が大きい成分により指標を求めることができる。前景画像と背景画像で最も差が大きい成分は、視覚的にも差が大きく見えると考えられるので、その成分により指標を求めることで、背景と前景の非類似度合いを評価できる。そして、この指標を用いることで、前景の視認性を適切に評価できる。 In this way, among the constituent components of the color space, the index can be obtained from the component having the largest difference between the foreground image and the background image. Since the component having the largest difference between the foreground image and the background image is considered to have a large difference visually, the degree of dissimilarity between the background and the foreground can be evaluated by obtaining an index from the component. Then, by using this index, the visibility of the foreground can be appropriately evaluated.

ここで、指標は最大の距離|Ba-Bb|に基づいて求められた値であればよい。例えば第1の演算手法では、指標は最大の距離|Ba-Bb|そのものである。また第2の演算手法では、指標は、最大の距離|Ba-Bb|に基づくコントラスト比である。コントラスト比は、例えば|Ba-Bb|/Ba等である。 Here, the index may be a value obtained based on the maximum distance | Ba-Bb |. For example, in the first calculation method, the index is the maximum distance | Ba-Bb | itself. Further, in the second calculation method, the index is the contrast ratio based on the maximum distance | Ba-Bb |. The contrast ratio is, for example, | Ba-Bb | / Ba or the like.

また本実施形態では、図19、図20で説明したように、比較回路145は、解析画像から色空間の構成成分の各成分の第1のヒストグラムをヒストグラムとして求め、基準画像から各成分の第2のヒストグラムを求める。比較回路145は、各成分について第1のヒストグラムと第2のヒストグラムの相互相関演算を行い、相互相関のピークのピーク値に基づいて指標を求める。 Further, in the present embodiment, as described with reference to FIGS. 19 and 20, the comparison circuit 145 obtains the first histogram of each component of the color space component as a histogram from the analysis image, and obtains the first histogram of each component from the reference image. Find the histogram of 2. The comparison circuit 145 performs a cross-correlation calculation between the first histogram and the second histogram for each component, and obtains an index based on the peak value of the peak of the cross-correlation.

このようにすれば、解析画像と基準画像が2色以上の色を含むマルチトーンの場合であっても、前景画像と背景画像の非類似度合いを表す指標を求めることができる。即ち、基準画像のヒストグラムには2以上のピークが発生するが、このヒストグラムと同じパターンが解析画像のヒストグラムに含まれている場合、少なくとも色又は輝度のパターンにおいて基準画像に類似した画像が解析画像に含まれていることになる。この場合、相互相関演算の結果に大きなピークが発生するはずなので、そのピーク値により指標を求めることで、前景の視認性を適切に評価できる。 In this way, even when the analysis image and the reference image are multitone including two or more colors, an index indicating the degree of dissimilarity between the foreground image and the background image can be obtained. That is, two or more peaks occur in the histogram of the reference image, but when the same pattern as this histogram is included in the histogram of the analysis image, an image similar to the reference image in at least the color or brightness pattern is the analysis image. Will be included in. In this case, a large peak should occur in the result of the cross-correlation calculation, so the visibility of the foreground can be appropriately evaluated by obtaining an index from the peak value.

また本実施形態では、比較回路145は、第1の指標である形状指標と、第2の指標である視認性指標とを求める。エラー検出回路150は、第1の指標及び第2の指標に基づいてエラー検出を行う。 Further, in the present embodiment, the comparison circuit 145 obtains a shape index which is a first index and a visibility index which is a second index. The error detection circuit 150 performs error detection based on the first index and the second index.

このようにすれば、互いに異なる性質について評価した2つの指標を組み合わせて投影画像のエラー検出を行うことができる。即ち、解析画像と基準画像との間の輝度や色の非類似度合いを表す視認性指標と、解析画像と基準画像との間の形状の一致度合いを表す形状指標とを組み合わせることで、投影画像のエラー検出をより高精度に行うことができる。 In this way, error detection of the projected image can be performed by combining two indexes evaluated for different properties. That is, by combining a visibility index showing the degree of brightness and color dissimilarity between the analysis image and the reference image and a shape index showing the degree of shape matching between the analysis image and the reference image, the projected image Error detection can be performed with higher accuracy.

4.電子機器
図21は、本実施形態の回路装置を含む電子機器の構成例である。電子機器300は、処理装置310、回路装置320、投影装置380、記憶装置350、操作装置360、通信装置370を含む。処理装置310は、例えばMCU等である。回路装置320は、図1、図4、図6、図8の回路装置100に対応し、例えばヘッドアップディスプレイコントローラー或いは表示コントローラーである。
4. Electronic device FIG. 21 is a configuration example of an electronic device including the circuit device of this embodiment. The electronic device 300 includes a processing device 310, a circuit device 320, a projection device 380, a storage device 350, an operation device 360, and a communication device 370. The processing device 310 is, for example, an MCU or the like. The circuit device 320 corresponds to the circuit device 100 of FIGS. 1, 4, 6, and 8, and is, for example, a head-up display controller or a display controller.

投影装置380は、表示ドライバー330、表示パネル340、光源335、レンズ345を含む。表示ドライバー330が表示パネル340を駆動して画像を表示させる。光源335が表示パネル340に投影用の光を出力し、表示パネル340を通過した又は表示パネル340から反射した光がレンズ345に入射する。レンズ345は被投影体に画像を結像させる。 The projection device 380 includes a display driver 330, a display panel 340, a light source 335, and a lens 345. The display driver 330 drives the display panel 340 to display an image. The light source 335 outputs light for projection to the display panel 340, and the light that has passed through the display panel 340 or is reflected from the display panel 340 is incident on the lens 345. The lens 345 forms an image on the projected object.

処理装置310は、記憶装置350に記憶された画像データ、又は通信装置370により受信された画像データを回路装置320に転送する。回路装置320は、画像データに対する画像処理や、表示タイミング制御や、表示ドライバーに転送する画像データのエラー検出処理等を行う。エラー検出処理では、視認性指標や形状指標の算出と、それらの指標に基づくエラー検出を行う。表示ドライバー330は、回路装置320から転送された画像データと、回路装置320による表示タイミング制御に基づいて、表示パネル340を駆動し、画像を表示させる。表示パネル340は、例えば液晶表示パネルである。記憶装置350は、例えばメモリー、或いはハードディスクドライブ、或いは光学ディスクドライブ等である。操作装置360は、電子機器300をユーザーが操作するための装置であり、例えばボタンや、或いはタッチパネルや、或いはキーボード等である。通信装置370は、例えば有線通信(を行う装置や、或いは無線通信を行う装置である。有線通信は、例えばLAN、又はUSB等である。無線通信は、例えば無線LANや、無線近接通信等である。 The processing device 310 transfers the image data stored in the storage device 350 or the image data received by the communication device 370 to the circuit device 320. The circuit device 320 performs image processing on the image data, display timing control, error detection processing of the image data to be transferred to the display driver, and the like. In the error detection process, the visibility index and the shape index are calculated, and the error detection based on these indexes is performed. The display driver 330 drives the display panel 340 to display an image based on the image data transferred from the circuit device 320 and the display timing control by the circuit device 320. The display panel 340 is, for example, a liquid crystal display panel. The storage device 350 is, for example, a memory, a hard disk drive, an optical disk drive, or the like. The operation device 360 is a device for a user to operate the electronic device 300, and is, for example, a button, a touch panel, a keyboard, or the like. The communication device 370 is, for example, a device for performing wired communication (or a device for performing wireless communication. The wired communication is, for example, LAN, USB, etc.) The wireless communication is, for example, a wireless LAN, wireless proximity communication, or the like. be.

図21では、電子機器がヘッドアップディスプレイである場合を例に説明したが、本実施形態の回路装置を含む電子機器はこれに限定されない。本実施形態の回路装置を含む電子機器としては、例えばヘッドマウントディスプレイやプロジェクター等、画像を被投影体に投影する種々の機器を想定できる。電子機器の構成は図21に限定されず、用途に応じて種々の構成をとることができる。例えば車載用の電子機器では、回路装置320と投影装置380と操作装置360がメーターパネルに組み込まれ、処理装置310と記憶装置350と通信装置370がECU(Electronic Control Unit)に組み込まれる。この場合、メーターパネルが、本実施形態の回路装置を含む電子機器に相当する。 In FIG. 21, the case where the electronic device is a head-up display has been described as an example, but the electronic device including the circuit device of the present embodiment is not limited to this. As the electronic device including the circuit device of the present embodiment, various devices such as a head-mounted display and a projector that project an image onto a projected object can be assumed. The configuration of the electronic device is not limited to FIG. 21, and various configurations can be adopted depending on the application. For example, in an in-vehicle electronic device, a circuit device 320, a projection device 380, and an operation device 360 are incorporated in an instrument panel, and a processing device 310, a storage device 350, and a communication device 370 are incorporated in an ECU (Electronic Control Unit). In this case, the instrument panel corresponds to an electronic device including the circuit device of the present embodiment.

なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また本実施形態及び変形例の全ての組み合わせも、本発明の範囲に含まれる。また回路装置、電子機器の構成・動作等も、本実施形態で説明したものに限定されず、種々の変形実施が可能である。 Although the present embodiment has been described in detail as described above, those skilled in the art will easily understand that many modifications that do not substantially deviate from the novel matters and effects of the present invention are possible. Therefore, all such modifications are included in the scope of the present invention. For example, a term described at least once in a specification or drawing with a different term in a broader or synonymous manner may be replaced by that different term anywhere in the specification or drawing. All combinations of the present embodiment and modifications are also included in the scope of the present invention. Further, the configuration and operation of the circuit device and the electronic device are not limited to those described in the present embodiment, and various modifications can be performed.

100…回路装置、110…インターフェース、125…前処理回路、135…画像処理回路、140…インターフェース、145…比較回路、146…画素アレンジ処理部、147…指標取得部、150…エラー検出回路、170…レジスター回路、175…比較結果レジスター、176…エラー検出結果レジスター、177…動作モード設定レジスター、178…閾値レジスター、190…インターフェース、200…処理装置、210…不揮発性メモリー、300…電子機器、310…処理装置、320…回路装置、330…表示ドライバー、335…光源、340…表示パネル、345…レンズ、350…記憶装置、360…操作装置、370…通信装置、380…投影装置、IMA1~IMA3…画像、IMB1~IMB3…画像、MPA1,MPA2…マップデータ、MPB1,MPB2…マップデータ、WEA1,WEA2…マッピング処理部、WEB1,WEB2…マッピング処理部 100 ... circuit device, 110 ... interface, 125 ... preprocessing circuit, 135 ... image processing circuit, 140 ... interface, 145 ... comparison circuit, 146 ... pixel arrangement processing unit, 147 ... index acquisition unit, 150 ... error detection circuit, 170 ... Register circuit, 175 ... Comparison result register, 176 ... Error detection result register, 177 ... Operation mode setting register, 178 ... Threshold register, 190 ... Interface, 200 ... Processing device, 210 ... Non-volatile memory, 300 ... Electronic equipment, 310 ... Processing device, 320 ... Circuit device, 330 ... Display driver, 335 ... Light source, 340 ... Display panel, 345 ... Lens, 350 ... Storage device, 360 ... Operating device, 370 ... Communication device, 380 ... Projection device, IMA1 to IMA3 ... image, IMB1 to IMB3 ... image, MPA1, MPA2 ... map data, MPB1, MPB2 ... map data, WEA1, WEA2 ... mapping processing unit, WEB1, WEB2 ... mapping processing unit

Claims (13)

入力された第1の画像を、被投影体に投影するための第2の画像にマッピング処理する第1のマッピング処理と、前記第1のマッピング処理の逆マッピング処理により前記第2の画像を第3の画像に変換する第2のマッピング処理とを行う画像処理回路と、
前記第1の画像と前記第3の画像との間の比較を行い、前記比較の結果を、前記第2の画像のエラー検出を行うための情報として出力する比較回路と、
を含むことを特徴とする回路装置。
The second image is seconded by the first mapping process of mapping the input first image to the second image for projecting onto the projected object and the inverse mapping process of the first mapping process. An image processing circuit that performs a second mapping process that converts to the image of 3 and
A comparison circuit that makes a comparison between the first image and the third image and outputs the result of the comparison as information for performing error detection of the second image.
A circuit device characterized by including.
請求項1において、
前記比較回路は、
前記第1の画像の画素値と前記第3の画像の画素値とに基づいて、又は前記第1の画像のエッジ画像の画素値と前記第3の画像のエッジ画像の画素値とに基づいて、前記第1の画像と前記第3の画像との間の一致度合いを示す指標を、前記比較の結果として求めることを特徴とする回路装置。
In claim 1,
The comparison circuit
Based on the pixel value of the first image and the pixel value of the third image, or based on the pixel value of the edge image of the first image and the pixel value of the edge image of the third image. , A circuit device characterized in that an index indicating a degree of agreement between the first image and the third image is obtained as a result of the comparison.
請求項1又は2において、
前記画像処理回路は、
前記被投影体に対応するマップデータから生成された第1のマップデータを用いて前記第1のマッピング処理を行い、前記マップデータである第2のマップデータを用いて前記第2のマッピング処理を行うことを特徴とする回路装置。
In claim 1 or 2,
The image processing circuit
The first mapping process is performed using the first map data generated from the map data corresponding to the projected object, and the second mapping process is performed using the second map data which is the map data. A circuit device characterized by doing.
被投影体に対応するマップデータに基づいて、入力された第1の画像を、前記被投影体に投影するための第2の画像にマッピング処理する第1のマッピング処理と、前記マップデータに基づいて、前記第1のマッピング処理とは異なる第2のマッピング処理により前記第1の画像を第3の画像に変換する第2のマッピング処理とを行う画像処理回路と、
前記第2の画像と前記第3の画像との間の比較を行い、前記比較の結果を、前記第2の画像のエラー検出を行うための情報として出力する比較回路と、
を含むことを特徴とする回路装置。
Based on the map data, the first mapping process of mapping the input first image to the second image for projecting on the projected object based on the map data corresponding to the projected object, and the map data. An image processing circuit that performs a second mapping process for converting the first image into a third image by a second mapping process different from the first mapping process.
A comparison circuit that makes a comparison between the second image and the third image and outputs the result of the comparison as information for performing error detection of the second image.
A circuit device characterized by including.
請求項4において、
前記比較回路は、
前記第2の画像の画素値と前記第3の画像の画素値とに基づいて、又は前記第2の画像のエッジ画像の画素値と前記第3の画像のエッジ画像の画素値とに基づいて、前記第2の画像と前記第3の画像との間の一致度合いを示す指標を、前記比較の結果として求めることを特徴とする回路装置。
In claim 4,
The comparison circuit
Based on the pixel value of the second image and the pixel value of the third image, or based on the pixel value of the edge image of the second image and the pixel value of the edge image of the third image. , A circuit device characterized in that an index indicating a degree of agreement between the second image and the third image is obtained as a result of the comparison.
請求項4又は5において、
前記画像処理回路は、
前記マップデータから生成された第1のマップデータを用いて前記第1のマッピング処理を行い、前記マップデータである第2のマップデータを用いて前記第2のマッピング処理を行うことを特徴とする回路装置。
In claim 4 or 5,
The image processing circuit
The first mapping process is performed using the first map data generated from the map data, and the second mapping process is performed using the second map data which is the map data. Circuit equipment.
請求項4乃至6のいずれかにおいて、
前記画像処理回路は、
前記第1の画像よりも低解像度の前記第3の画像を生成し、
前記比較回路は、
前記第2の画像に対して、前記第3の画像の解像度に合わせる低解像度化を行い、前記第3の画像と前記低解像度化後の前記第2の画像とを比較することを特徴とする回路装置。
In any of claims 4 to 6,
The image processing circuit
Generate the third image with a lower resolution than the first image.
The comparison circuit
The second image is reduced in resolution to match the resolution of the third image, and the third image is compared with the second image after the reduction in resolution. Circuit equipment.
請求項1乃至7のいずれかにおいて、
前記比較の結果に基づいて前記第2の画像のエラー検出を行うエラー検出回路を含むことを特徴とする回路装置。
In any of claims 1 to 7,
A circuit device including an error detection circuit that detects an error in the second image based on the result of the comparison.
請求項8において、
前記エラー検出回路によりエラーと判定されたときの回路装置の動作モードが設定される動作モード設定レジスターを含むことを特徴とする回路装置。
In claim 8.
A circuit device including an operation mode setting register in which an operation mode of the circuit device is set when an error is determined by the error detection circuit.
請求項9において、
前記動作モード設定レジスターには、
前記エラー検出の結果を前記回路装置の外部装置に通知するモード、前記第2の画像を非表示にするモード、又は特定の画像を表示させるモードが、前記動作モードとして設定されることを特徴とする回路装置。
In claim 9.
The operation mode setting register has
A mode for notifying the external device of the circuit device of the result of the error detection, a mode for hiding the second image, or a mode for displaying a specific image is set as the operation mode. Circuit equipment to do.
請求項8乃至10のいずれかにおいて、
前記エラー検出回路は、
前記比較の結果と、前記第2の画像のエラーを判定するための閾値との比較により、前記エラー検出を行うことを特徴とする回路装置。
In any of claims 8 to 10,
The error detection circuit
A circuit device characterized in that the error detection is performed by comparing the result of the comparison with a threshold value for determining an error in the second image.
請求項11において、
前記閾値が設定される閾値レジスターを含むことを特徴とする回路装置。
11.
A circuit device including a threshold register in which the threshold is set.
請求項1乃至12のいずれかに記載の回路装置を含むことを特徴とする電子機器。 An electronic device comprising the circuit device according to any one of claims 1 to 12.
JP2022066259A 2018-02-28 2022-04-13 Circuit devices, display systems and electronics Active JP7322999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022066259A JP7322999B2 (en) 2018-02-28 2022-04-13 Circuit devices, display systems and electronics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018034613A JP7180079B2 (en) 2018-02-28 2018-02-28 Circuit devices and electronic equipment
JP2022066259A JP7322999B2 (en) 2018-02-28 2022-04-13 Circuit devices, display systems and electronics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018034613A Division JP7180079B2 (en) 2018-02-28 2018-02-28 Circuit devices and electronic equipment

Publications (2)

Publication Number Publication Date
JP2022106769A true JP2022106769A (en) 2022-07-20
JP7322999B2 JP7322999B2 (en) 2023-08-08

Family

ID=87519457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022066259A Active JP7322999B2 (en) 2018-02-28 2022-04-13 Circuit devices, display systems and electronics

Country Status (1)

Country Link
JP (1) JP7322999B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072695A1 (en) * 2005-12-22 2007-06-28 Matsushita Electric Industrial Co., Ltd. Image projection device
JP2007221365A (en) * 2006-02-15 2007-08-30 Seiko Epson Corp Image processing method, image processing program, recording medium, and projector
JP2014003615A (en) * 2005-04-26 2014-01-09 Imax Corp Electronic projection system and method
JP2014178393A (en) * 2013-03-14 2014-09-25 Ricoh Co Ltd Image projection system and image projection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003615A (en) * 2005-04-26 2014-01-09 Imax Corp Electronic projection system and method
WO2007072695A1 (en) * 2005-12-22 2007-06-28 Matsushita Electric Industrial Co., Ltd. Image projection device
JP2007221365A (en) * 2006-02-15 2007-08-30 Seiko Epson Corp Image processing method, image processing program, recording medium, and projector
JP2014178393A (en) * 2013-03-14 2014-09-25 Ricoh Co Ltd Image projection system and image projection method

Also Published As

Publication number Publication date
JP7322999B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
JP7180079B2 (en) Circuit devices and electronic equipment
JP6939929B2 (en) Circuit equipment, electronic equipment and error detection method
CN110164341B (en) Circuit device, electronic apparatus, and error detection method
US12254618B2 (en) Circuit apparatus, electronic instrument, and error detection method
JP2023075366A (en) Information processing device, recognition support method, and computer program
KR20190082080A (en) Multi-camera processor with feature matching
US20030011597A1 (en) Viewpoint converting apparatus, method, and program and vehicular image processing apparatus and method utilizing the viewpoint converting apparatus, method, and program
CN111405263A (en) Method and system for enhancing head-up display by combining two cameras
US7853069B2 (en) Stereoscopic image regenerating apparatus, stereoscopic image regenerating method, and stereoscopic image regenerating program
JP7322999B2 (en) Circuit devices, display systems and electronics
CN108989798A (en) Determination method, apparatus, equipment and the storage medium of display device crosstalk angle value
EP3605463A1 (en) Crossing point detector, camera calibration system, crossing point detection method, camera calibration method, and recording medium
CN111241946B (en) Method and system for increasing FOV (field of view) based on single DLP (digital light processing) optical machine
JP4172236B2 (en) Facial image processing apparatus and program
CN111243102B (en) Method and system for improving and increasing FOV (field of view) based on diffusion film transformation
US20240104688A1 (en) Medical image display device
KR101846279B1 (en) Display Apparatus For Displaying Three Dimensional Picture And Driving Method For The Same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7322999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150