JP2023168643A - Rational processing method of spent nuclear fuel - Google Patents
Rational processing method of spent nuclear fuel Download PDFInfo
- Publication number
- JP2023168643A JP2023168643A JP2023131725A JP2023131725A JP2023168643A JP 2023168643 A JP2023168643 A JP 2023168643A JP 2023131725 A JP2023131725 A JP 2023131725A JP 2023131725 A JP2023131725 A JP 2023131725A JP 2023168643 A JP2023168643 A JP 2023168643A
- Authority
- JP
- Japan
- Prior art keywords
- nuclides
- nuclide
- tank
- weight
- soluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Measurement Of Radiation (AREA)
Abstract
Description
本発明は、核分裂生成物による高レベル放射性廃棄物の処理技術に関するものである。 The present invention relates to a technology for processing high-level radioactive waste using nuclear fission products.
100万kW級の原子力発電所では、5%濃縮ウラン燃料で毎年約23トンの核燃料を使用し、使用済み核燃料から発生する核分裂生成物(FP:Fission Products)はU235の比率、燃焼度、運転状況、照射時間などにより核種や発生量は変わるが、一般的に核燃料1トンから発生する核分裂生成物は2~5%と言われている。 A 1,000,000 kW class nuclear power plant uses approximately 23 tons of 5% enriched uranium fuel every year, and the fission products (FP) generated from spent nuclear fuel depend on the U235 ratio, burnup, and operation. Although the types of nuclides and the amount generated vary depending on the situation and irradiation time, it is generally said that 2 to 5% of fission products are generated from one ton of nuclear fuel.
これらの核分裂生成物は、PUREX(Plutonium and Uranium Recovery by Extraction)法をベースとした使用済み核燃料の再処理によりウラン、プルトニウムなどのアクチノイドを回収後に高レベル放射性廃液(HALW;Highly Active Liquid Waste)となる。(アクチノイド除去については特許文献1などがある) These fission products are converted into highly active liquid waste (HALW) after recovering actinides such as uranium and plutonium through reprocessing of spent nuclear fuel based on the PUREX (Plutonium and Uranium Recovery by Extraction) method. ste) and Become. (For actinide removal, there is Patent Document 1 etc.)
この高レベル放射性廃液は濃縮して容積を減らしガラスに溶け込ませ、ステンレス製の容器(キャニスター)に固化され(ガラス固化体)、 このガラス固化体は、内部の放射性物質の崩壊により高温度を保つため、中間保管場所で30~50年間ほど貯蔵し放射性物質が減り温度が低下してから、このガラス固化体は最終的に地下300メートル以深の安定した地層中に処分(地層処分)される。 This high-level radioactive waste liquid is concentrated, reduced in volume, dissolved in glass, and solidified in a stainless steel container (canister) (vitrified material). This vitrified material maintains a high temperature due to the decay of the radioactive materials inside. Therefore, the vitrified material is stored in an intermediate storage site for about 30 to 50 years, until the radioactive material is reduced and the temperature is lowered, and then the vitrified material is finally disposed of (geological disposal) in a stable geological formation more than 300 meters underground.
このような処理法ではガラス固化体が増加し、保管場所の確保、ガラス固化体の管理などが問題で、特に保管場所の確保は喫緊の課題である。そこで、高レベル廃棄物中の元素や放射性核種を半減期、元素の化学的性質、利用目的等に応じてグループ化し、長寿命の核種は、中性子照射などにより核反応を起こさせ、短寿命または非放射性の核種に変換させる(核変換技術)、さらに有用な元素や核種の利用を図る(高レベル廃棄物の資源化)という方法が検討されている。(非特許文献1など) In such a treatment method, the amount of vitrified material increases, and there are problems such as securing a storage space and managing the vitrified material, and securing a storage space is an especially urgent issue. Therefore, elements and radionuclides in high-level waste are grouped according to half-life, chemical properties of the elements, purpose of use, etc. Long-lived nuclides are treated with short-lived or Methods of converting radioactive nuclides into non-radioactive nuclides (transmutation technology) and using more useful elements and nuclides (recycling high-level waste) are being considered. (Non-patent Document 1 etc.)
核変換技術においては、長寿命核分裂生成物に中性子、荷電粒子ビーム、陽電子などを照射して核種変換させる報告例はあるが、これらは、特定した放射性核種のみを対象にしたもので、高レベル放射性廃棄物全体に係るものでない。(特許文献2、3、4)
Regarding nuclear transmutation technology, there are reports of nuclear transmutation by irradiating long-lived fission products with neutrons, charged particle beams, positrons, etc., but these only target specific radionuclides and require high-level It is not related to radioactive waste as a whole. (
使用済み核燃料の再処理工場で扱う硝酸溶解液、または工程で発生する放射性プロセス廃液から白金族元素、テクネチウム、テルル及びセレンを高回収率で選択的に分離回収する方法が提案されているが、これらは再利用のための回収に係るもので、ガラス固化体に係るものではない。(特許文献5) A method has been proposed to selectively separate and recover platinum group elements, technetium, tellurium, and selenium at a high recovery rate from the nitric acid solution handled at spent nuclear fuel reprocessing plants or the radioactive process waste fluid generated during the process. These are related to recovery for reuse and are not related to vitrified solids. (Patent Document 5)
放射性廃棄物の処理方法において、放射性廃棄物から核分裂生成物のうち放射性核種を含み原子番号が共通する同位体元素の群に、加速器により生成した高エネルギーの中性子を照射して非弾性散乱を生じさせ、(n,2n)反応あるいは(n,3n)反応により、質量数(中性子数)を1あるいは2少なくする核種変換を行うもので、同位体元素の中性子分離エネルギーの偶奇性に基づいて異なることを利用し、質量数の異なる核種の反応断面積が10倍以上異なる中性子エネルギー帯を選択し、この選択したエネルギー帯の中性子を照射して、変換対象の長寿命核種の質量数を減らし、短寿命核種あるいは安定核種に変換させる放射性廃棄物の処理方法であって、同位体分離を伴わずに抽出する技術が開示されている。(特許文献6) In a radioactive waste disposal method, high-energy neutrons generated by an accelerator are irradiated with high-energy neutrons generated by an accelerator to cause inelastic scattering to a group of isotopic elements containing radionuclides and having a common atomic number among fission products from radioactive waste. It is a nuclide transmutation that reduces the mass number (neutron number) by 1 or 2 by (n, 2n) reaction or (n, 3n) reaction, and differs depending on the parity of the neutron separation energy of the isotope element. Taking advantage of this, we select a neutron energy band in which the reaction cross sections of nuclides with different mass numbers differ by a factor of 10 or more, and irradiate this selected energy band with neutrons to reduce the mass number of the long-lived nuclide to be converted. A method for processing radioactive waste that converts it into short-lived nuclides or stable nuclides, and a technology for extraction without isotope separation has been disclosed. (Patent Document 6)
しかし、前記の同位体元素の中性子分離エネルギーの偶奇性に基づいて異なることを利用し、選択した高エネルギー帯の中性子を照射して変換対象の長寿命核種の質量数を減らし、短寿命核種あるいは安定核種に変換させる放射性廃棄物の処理方法において、反応断面積が10倍以上異なる高エネルギー帯の中性子を照射するが、変換されたくない核種の反応断面積は10分の1以下ではあるが、(n,2n)反応が生じ、放射性核種が残存することが考えられ、放射性核種と安定核種の完全な分離は実現困難である。また、前記放射性廃棄物の対象とする元素は10元素で、半減期が1010年以上の放射性核種についての記述はない。さらに、放射性核種の発生重量あるいは放射能の記述がなく定量的な記述がない。 However, by utilizing the fact that the neutron separation energy of the above-mentioned isotopes differs based on the parity and oddity, neutrons in the selected high energy band are irradiated to reduce the mass number of the long-lived nuclide to be converted, and the mass number of the long-lived nuclide to be converted is reduced. In a method for treating radioactive waste that converts it into stable nuclides, neutrons in a high-energy band with a reaction cross section that is more than 10 times different are irradiated, but the reaction cross section of the nuclide that is not desired to be converted is less than one-tenth, (n, 2n) reaction may occur and radionuclides may remain, making complete separation of radionuclides and stable nuclides difficult to achieve. Furthermore, there are 10 elements targeted for radioactive waste, and there is no description of radionuclides with half-lives of 10 to 10 years or more. Furthermore, there is no description of the weight of radionuclides generated or radioactivity, and there is no quantitative description.
本発明は、原子力発電所で発生した使用済み核燃料からPUREX法などの再処理によりウラン、プルトニウムなどのアクチノイドを取り除いた後に残された高レベル放射性廃液に含まれる核種と廃液に含まれない残渣などに含まれる核種について、不要な放射性核種を短寿命核種または安定核種に変換し、放射性廃棄物のガラス固化体化する重量を低減し、再利用可能な放射性核種および安定核種を資源として回収する合理的な核分裂生成物の処理方法を提供することを目的とする。 The present invention deals with the removal of actinides such as uranium and plutonium from spent nuclear fuel generated at nuclear power plants through reprocessing such as the PUREX method, and the nuclides contained in the high-level radioactive waste liquid left behind and residues not included in the waste liquid. With regard to nuclides contained in The purpose of this study is to provide a method for treating nuclear fission products.
本発明は、使用済み核燃料から生じるFPのうち、取出し直後から発生した気体核種を回収し貯蔵する槽(以後、気体槽という)とウラン、プルトニウムなどアクチノイドの回収処理を経てから規定の時間を経た後、気体核種を除いたFPのうち、硝酸に可溶な核種(以後、可溶性核種という)と、硝酸に難溶あるいは不溶な核種(以後、難溶性核種という)に分離して回収する貯蔵槽(以後、貯蔵槽の前者を可溶物槽、後者を難溶物槽という)とを具備し、これらの核種に低エネルギーの冷中性子を照射して中性子捕獲反応により質量数を変化させて核種変換を行う方法で、中性子照射後、規定時間経過後、請求項1乃至5で記述した方法を用い、規定の時間貯蔵し、既定の回数だけ中性子を照射することを特徴とする放射性廃棄物の処理方法を提供する。 The present invention provides a tank (hereinafter referred to as a gas tank) for recovering and storing gaseous nuclides generated from spent nuclear fuel immediately after its removal, and a tank for recovering and storing actinides such as uranium and plutonium after a specified period of time has passed. After that, out of the FP excluding gaseous nuclides, a storage tank separates and collects nuclides that are soluble in nitric acid (hereinafter referred to as soluble nuclides) and nuclides that are poorly soluble or insoluble in nitric acid (hereinafter referred to as poorly soluble nuclides). (Hereinafter, the former of the storage tanks will be referred to as the soluble material tank and the latter will be referred to as the refractory tank.) These nuclides are irradiated with low-energy cold neutrons and their mass numbers are changed by a neutron capture reaction. A method for converting radioactive waste, which is characterized in that after irradiation with neutrons, after a predetermined time has elapsed, the method described in claims 1 to 5 is used to store the waste for a predetermined time and irradiate it with neutrons a predetermined number of times. Provide a processing method.
該放射性廃棄物の処理方法において、冷却期間を含め規定のt0時間経過後、可溶物槽の可溶性核種に1回目の冷中性子を照射し、規定のt1時間貯蔵後、放射性崩壊で発生した気体核種は気体槽に移送し、発生した難溶性核種は固液分離装置などを用い別の貯蔵槽(難溶物槽A)に回収する。以後、冷中性子を可溶性核種にNi回照射後、規定のti時間貯蔵後、放射線崩壊で発生した気体核種は気体槽に回収し、発生した難溶性核種は固液分離装置などを用い難溶物槽Aに回収し、この難溶性核種には冷中性子を照射しないことを特徴とする放射性廃棄物の処理方法である。 In this radioactive waste disposal method, after a specified t 0 hours including the cooling period, the soluble nuclides in the solubles tank are irradiated with cold neutrons for the first time, and after being stored for the specified t 1 hour, radioactive decay occurs. The generated gaseous nuclides are transferred to a gas tank, and the generated poorly soluble nuclides are collected into another storage tank (hardly soluble tank A) using a solid-liquid separator or the like. Thereafter, after irradiating the soluble nuclides with cold neutrons twice and storing them for a specified time, the gaseous nuclides generated by radiation decay are collected in a gas tank, and the poorly soluble nuclides generated are separated using a solid-liquid separator. This method of processing radioactive waste is characterized in that the radioactive waste is collected in a storage tank A, and the hardly soluble nuclides are not irradiated with cold neutrons.
該放射性廃棄物の処理方法において、既定のt0時間経過後、難溶物槽の難溶性核種に1回目の冷中性子を照射後、規定の濃度の硝酸溶液を投入し、規定のt1’時間貯蔵後、発生した気体核種が安定核種であれば排気し、放射性核種であれば気体槽に回収し、発生した可溶性核種は硝酸溶液と共に濾過し別の貯蔵槽(可溶物槽B)に回収し、2回目の難溶性核種への冷中性子照射後に、可溶物槽Bに回収した可溶性核種と硝酸溶液を難溶物槽に還流し、規定のt2’時間貯蔵する。以後、冷中性子を難溶性核種にNj回照射するが、Nj回目の冷中性子照射直前の可溶物槽Bにある可溶性核種を硝酸溶液と共にNj回目の冷中性子照射後に難溶物槽に還流し、規定のtj時間貯蔵後、放射性崩壊で生じた気体が安定核種であれば排気し、放射性核種であれば気体槽に回収し、可溶性核種は濾過装置などを用い可溶物槽Bに回収し、可溶性核種には中性子を照射しないことを特徴とする放射性廃棄物の処理方法である。 In the radioactive waste treatment method, after a predetermined time t 0 has elapsed, the poorly soluble nuclide in the poorly soluble tank is irradiated with cold neutrons for the first time, and then a nitric acid solution with a specified concentration is poured into the tank, and a specified t 1 ' After storage for a period of time, if the generated gas nuclide is a stable nuclide, it is exhausted, and if it is a radionuclide, it is collected in a gas tank, and the generated soluble nuclide is filtered together with a nitric acid solution and placed in another storage tank (solubles tank B). After the second cold neutron irradiation of the poorly soluble nuclides, the soluble nuclides and nitric acid solution recovered in the soluble tank B are refluxed to the poorly soluble tank and stored for a specified time t 2 '. Thereafter, cold neutrons are irradiated Nj times to the poorly soluble nuclides, but the soluble nuclides in soluble tank B immediately before the Njth cold neutron irradiation are returned to the poorly soluble tank together with the nitric acid solution after the Njth cold neutron irradiation. After storage for a specified time , if the gas generated by radioactive decay is a stable nuclide, it is exhausted, and if it is a radionuclide, it is collected in a gas tank, and soluble nuclides are collected in a soluble tank B using a filtration device, etc. However, this method of disposing of radioactive waste is characterized in that soluble nuclides are not irradiated with neutrons.
該放射性廃棄物の処理方法において、FPのうち気体核種については、規定のt0時間経過後、可溶物槽及び難溶物槽で発生した気体核種を回収するが、可溶性核種に冷中性子照射2回目の直前に、可溶物槽から回収した気体と気体槽に存在する気体のうちヨウ素のみ抽出してヨウ化物槽に貯蔵しヨウ素のみに1回の中性子照射を行う。この際、中性子は熱中性子でも構わない。ヨウ化物槽で発生した気体は気体槽に回収する。尚、難溶物槽で発生する気体が安定核種だけの場合は気体槽に回収しない。以後、気体核種には中性子を照射せず、この貯蔵期間に放射線崩壊で発生した固体核種は別の貯蔵槽(固体槽)に回収し、この固体核種には中性子を照射しないことを特徴とする放射性廃棄物の処理方法である。 In the radioactive waste treatment method, gaseous nuclides generated in the soluble and hardly soluble tanks are collected after a specified time t 0 has elapsed, but the soluble nuclides are not irradiated with cold neutrons. Immediately before the second time, only iodine is extracted from the gas recovered from the solubles tank and the gas present in the gas tank and stored in the iodide tank, and only the iodine is irradiated with neutrons once. At this time, the neutrons may be thermal neutrons. Gas generated in the iodide tank is collected in a gas tank. If the gas generated in the refractory tank is only stable nuclides, it will not be collected in the gas tank. After that, the gaseous nuclide is not irradiated with neutrons, and the solid nuclide generated by radioactive decay during this storage period is collected in another storage tank (solid tank), and this solid nuclide is not irradiated with neutrons. It is a method of disposing of radioactive waste.
可溶物槽および難溶物槽に冷中性子照射を各々Ni、Nj回繰り返し、数年程度の一定期間放置後、放射性核種が崩壊し、生じた固体核種は可溶物槽、難溶物槽A、固体槽と、難溶物槽、可溶物槽Bに回収され、前3者に回収された核種および硝酸溶液は塩化物槽1(固化装置付き)に、後2者に回収された核種および硝酸溶液は塩化物槽2(固化装置付き)に移送し、夫々加熱して硝酸を追い出すことにより、ほとんどの核種は酸化物となる。 The soluble and refractory tanks are irradiated with cold neutrons Ni and Nj times, respectively, and after being left for a certain period of several years, the radionuclides decay and the resulting solid nuclides are transferred to the soluble and refractory tanks. A. The solids tank, poorly soluble substances tank, and soluble substances tank B were collected, and the nuclides and nitric acid solution recovered in the former three were collected in chloride tank 1 (equipped with a solidification device) and the latter two. The nuclides and the nitric acid solution are transferred to a chloride tank 2 (equipped with a solidification device) and heated to drive out the nitric acid, thereby converting most of the nuclides into oxides.
上記の塩化物槽で発生した酸化物を沸点の低い塩化物に変換する。塩化物槽1に存在する塩化物を気化槽に投入して塩化物の沸点の昇順に加熱し、沸点毎に精留塔で気化させ凝縮器で分留し塩化物として取出し、安定核種のみであれば、冷却装置を介して安定核種回収槽に回収し、放射性のみの核種及び放射性核種と安定核種の混在する同位体はガラス固化核種回収槽に回収する。放射性物質として利用できる単一放射性核種は回収し、放射性物質として利用できる放射性核種と資源として再利用可能な安定核種の2核種だけの同位体は、ウラン燃料製造時に使用される質量差を利用したガス遠心分離装置により同位体分離を行い、質量数の小さい軽核種と、質量数の大きい重核種に分離し、それぞれ軽核種回収槽、重核種回収槽に回収する。次に塩化物槽2についても同様に処理する。可溶物槽で発生した核種と難溶物槽で発生した核種を別々に処理することで、安定な核種の回収重量が増加し、ガラス固化する廃棄核種重量を低減できる。 The oxides generated in the chloride bath are converted into chlorides with a low boiling point. The chloride present in chloride tank 1 is put into the vaporization tank and heated in ascending order of the boiling point of the chloride, vaporized in a rectification column for each boiling point, fractionated in a condenser and extracted as chloride, and only stable nuclides are extracted. If any, they are collected into a stable nuclide recovery tank via a cooling device, and radioactive-only nuclides and isotopes containing a mixture of radioactive nuclides and stable nuclides are collected into a vitrified nuclide recovery tank. A single radionuclide that can be used as a radioactive substance was recovered, and isotopes with only two nuclides, a radionuclide that can be used as a radioactive substance and a stable nuclide that can be reused as a resource, were collected using the mass difference used during uranium fuel production. Isotope separation is performed using a gas centrifugal separator to separate light nuclides with a small mass number and heavy nuclides with a large mass number, and collect them in a light nuclide recovery tank and a heavy nuclide recovery tank, respectively. Next, the chloride tank 2 is treated in the same manner. By treating the nuclides generated in the soluble matter tank and the nuclides generated in the refractory tank separately, the weight of stable nuclides recovered can be increased, and the weight of waste nuclides that will be vitrified can be reduced.
本発明により、不要な半減期の長い放射性核種を短寿命核種または安定核種に変換し、高レベル放射性廃棄物のガラス固化体にする核種重量を低減し、再利用可能な放射性核種および安定核種を資源として核種毎にあるいは元素毎に回収する合理的な核分裂生成物の処理方法を提供することができる。 The present invention converts unnecessary radionuclides with long half-lives into short-lived nuclides or stable nuclides, reduces the weight of nuclides in the vitrification of high-level radioactive waste, and makes reusable radionuclides and stable nuclides. It is possible to provide a rational method for processing nuclear fission products that recovers each nuclide or each element as a resource.
以下、本発明の実施形態を図1に基づいて説明する。
本発明は、核種の中性子捕獲断面積が大きくなる低エネルギーの冷中性子を核種に照射し、中性子捕獲反応により中性子を捕獲させ、質量数を変化させて核種変換を行う方法である。冷中性子源装置は中性子源から発生する中性子を極低温の液体水素を減速材として減速し、更に液体ヘリウムで減速して冷中性子に変換し、一定の時間だけ中性子照射を行うためのシャッターを具備する。中性子照射は被照射核種が核種変換されるのに十分な時間だけシャッターを開口する。中性子捕獲断面積の大きな核種は中性子を捕獲して質量数が1増加する。さらに、質量数が1増えた核種の中性子捕獲断面積が大きければ、この核種も中性子を捕獲して質量数が2増加する。
Hereinafter, an embodiment of the present invention will be described based on FIG.
The present invention is a method in which a nuclide is irradiated with low-energy cold neutrons that increase the neutron capture cross section of the nuclide, the neutrons are captured by a neutron capture reaction, and the mass number is changed to perform nuclide conversion. The cold neutron source device is equipped with a shutter that slows down the neutrons generated from the neutron source using cryogenic liquid hydrogen as a moderator, further slows them down with liquid helium, converts them into cold neutrons, and performs neutron irradiation for a certain period of time. do. For neutron irradiation, the shutter is opened only for a sufficient period of time for the irradiated nuclide to undergo nuclide transmutation. A nuclide with a large neutron capture cross section captures neutrons and its mass number increases by 1. Furthermore, if the neutron capture cross section of a nuclide whose mass number increases by 1 is large, this nuclide also captures neutrons and its mass number increases by 2.
中性子照射により、安定な核種が放射性核種に変換されることがあり、中性子照射回数と、照射後の放置時間により放射性崩壊で生じる核種と重量が変化するので、廃棄する核種重量を減らし、資源として回収できる核種重量を最大にするように、中性子照射回数と放置時間の最適化が必要となる。これに関しては実施例で述べる。 Due to neutron irradiation, stable nuclides may be converted to radioactive nuclides, and the number of neutron irradiations and the length of time left after irradiation change the nuclides and weight produced by radioactive decay. Therefore, the weight of nuclides to be discarded can be reduced and used as resources. In order to maximize the weight of recovered nuclides, it is necessary to optimize the number of neutron irradiations and the exposure time. This will be discussed in Examples.
(使用済み核燃料取出しから一定時間放置後の処理)
使用済み核燃料取出しから発生したFPのうち気体核種は気体槽に回収し、発生したFPのうち気体核種を除いた核種は一定期間冷却してからPUREX法などの再処理後、残された高レベル放射性廃棄物には硝酸溶液中にある可溶性核種と残渣などの難溶性核種が存在する。
硝酸溶液中で発生したヨウ素の95%はウラン、プルトニウム回収処理中に気体として回収され、残りはヨウ化銀、ヨウ化パラジウムとして硝酸溶液中に残渣として残るが、ヨウ素酸などの添加により、気体として回収できるので、一定期間(t0時間)に発生したこれらの気体は気体槽中で発生した核種の重量として扱う。〔参考文献1;末尾に記載〕
なお、炭素は硝酸と反応しCO2として存在するので、気体槽に貯蔵される核種として扱う。〔参考文献2:末尾に記載〕ただし重量は炭素のみの値を示す。
この可溶性核種と、難溶性核種を夫々可溶物槽と難溶物槽に貯蔵する。硝酸に可溶な核種を含む硝酸溶液はそのまま使用しても、いったん脱硝化して、新たに濃度4~6モル/Lの硝酸溶液を加えて、硝酸に可溶な核種を硝酸化物あるいは酸化物としてもよく、この硝酸に可溶な核種を含む硝酸溶液を可溶物槽に回収する。
(Processing after removing spent nuclear fuel and leaving it for a certain period of time)
The gaseous nuclides of the FP generated from spent nuclear fuel removal are collected in a gas tank, and the nuclides other than the gaseous nuclides of the generated FP are cooled for a certain period of time and then reprocessed using the PUREX method, etc. to recover the remaining high levels. Radioactive waste contains soluble nuclides in nitric acid solution and poorly soluble nuclides such as residue.
95% of the iodine generated in the nitric acid solution is recovered as a gas during the uranium and plutonium recovery process, and the rest remains as a residue in the nitric acid solution as silver iodide and palladium iodide. Therefore, these gases generated during a certain period (t 0 hours) are treated as the weight of the nuclide generated in the gas tank. [Reference 1; listed at the end]
Note that carbon reacts with nitric acid and exists as CO2 , so it is treated as a nuclide that is stored in the gas tank. [Reference Document 2: Listed at the end] However, the weight indicates the value of carbon only.
The soluble nuclides and poorly soluble nuclides are stored in a soluble substance tank and a hardly soluble substance tank, respectively. A nitric acid solution containing nitric acid-soluble nuclides can be used as is, but it is first denitrified and a new nitric acid solution with a concentration of 4 to 6 mol/L is added to convert nitric acid-soluble nuclides into nitrates or oxides. This nitric acid solution containing nuclides soluble in nitric acid is collected in a solubles tank.
(可溶物槽)
使用済み核燃料取出しから冷却、再処理後、一定期間(t0時間)を経て、可溶性核種を回収した可溶物槽中の硝酸溶液中の核種に1回目の冷中性子を照射し、t1時間貯蔵する。t1時間経過後、可溶性核種を親核種として放射線崩壊で発生したヘリウム、キセノン、クリプトン、臭素、ヨウ素の気体核種は気体槽に回収するが、常温で液体の臭素、固体のヨウ素を気体として回収するため、必要なら可溶物槽を加熱する。これらの気体は、逆流防止付きバルブを介し真空ポンプなどにより気体槽へ移送する。
放射線崩壊で発生したゲルマニウム、ジルコニウム、パラジウム、インジウム、スズなど浮遊または沈殿した難溶性核種は固液分離装置を介し可溶物槽に付属の難溶物槽Aに回収し、濾過された可溶性核種は硝酸溶液と共に可溶物槽に還流する。t1時間経過後、可溶物槽中の核種に2回目の冷中性子を照射しt2時間貯蔵するが、必要なら可溶物槽を加熱し、この貯蔵期間に放射線崩壊で発生した気体核種を気体槽に回収し、発生した難溶性核種は可溶物槽に付属の難溶物槽Aに回収し、可溶性核種を含む硝酸溶液を可溶物槽に還流する。以後、冷中性子を可溶性核種にのみNi回照射しti時間貯蔵して、放射線崩壊で発生した気体核種を気体槽に、発生した難溶性核種を難溶物槽Aに回収し、可溶性核種を含む硝酸溶液を可溶物槽に還流するのを繰り返す。貯蔵期間に発生した難溶性核種には冷中性子を照射しない。これにより、壊変で発生した難溶性の安定核種の回収重量が増加する。尚、崩壊時に発生する熱や加熱により、硝酸溶液が蒸発するので、冷中性子照射後に必要量を充足し、液量を一定に保つ。
(Soluble tank)
After a certain period of time (t 0 hours) after spent nuclear fuel removal, cooling, and reprocessing, the nuclides in the nitric acid solution in the solubles tank from which the soluble nuclides were recovered are irradiated with cold neutrons for the first time, and then t 1 hour. Store. t After 1 hour, the gaseous nuclides of helium, xenon, krypton, bromine, and iodine generated by radiation decay using soluble nuclides as parent nuclides are collected in a gas tank, but bromine, which is liquid at room temperature, and iodine, which is solid, are collected as gases. To do this, heat the solubles bath if necessary. These gases are transferred to the gas tank by a vacuum pump or the like via a backflow prevention valve.
Floating or precipitated sparingly soluble nuclides such as germanium, zirconium, palladium, indium, and tin generated by radioactive decay are collected through a solid-liquid separator into the sparingly soluble substance tank A attached to the soluble substance tank, and the soluble nuclides are filtered. is refluxed to the solubles tank together with the nitric acid solution. After t 1 hour, the nuclides in the solubles tank are irradiated with cold neutrons for a second time and stored for t 2 hours. If necessary, the solubles tank is heated to remove gaseous nuclides generated by radioactive decay during this storage period. is collected in a gas tank, the generated poorly soluble nuclides are collected in a poorly soluble tank A attached to the solubles tank, and the nitric acid solution containing the soluble nuclides is refluxed to the solubles tank. Thereafter, only the soluble nuclides are irradiated with cold neutrons Ni times and stored for t i hours, and the gaseous nuclides generated by radiation decay are collected in the gas tank and the generated poorly soluble nuclides are collected in the poorly soluble substance tank A. Repeatedly refluxing the nitric acid solution containing the nitric acid solution to the solubles tank. Cold neutrons are not irradiated to poorly soluble nuclides generated during storage. This increases the recovered weight of poorly soluble stable nuclides generated by decay. Note that the nitric acid solution evaporates due to the heat generated during the collapse, so the required amount is satisfied after cold neutron irradiation and the liquid amount is kept constant.
(難溶物槽)
使用済み核燃料取出しから冷却、再処理後、一定期間(t0時間)を経て、難溶性核種を回収した難溶物槽中の核種に、1回目の冷中性子を照射後、難溶物槽に規定濃度の硝酸溶液を加えt1’時間貯蔵する。t1’時間経過後、難溶性核種を親核種として壊変で発生する気体は安定なヨウ素127のみで、ヨウ素を気体として放出させるため、必要なら難溶物槽を加熱し、逆流防止付きバルブを介し真空ポンプなどにより放射線モニターで安全を確認後、排気する。また、難溶性核種を親核種として放射性崩壊で発生したホウ素、ガリウム、ヒ素、セレン、銀、カドミウム、テルルなどの可溶性核種を含む硝酸溶液を濾過し難溶物槽に付属の可溶物槽Bに回収する。t1’時間経過後、難溶物槽中の核種に2回目の冷中性子を照射後、前記の可溶性核種を含む硝酸溶液と追加の硝酸溶液を加え難溶物槽に還流してt2’時間貯蔵する。この貯蔵期間に発生した硝酸に可溶な核種と硝酸溶液を3回目の冷中性子照射前に濾過し難溶物槽に付属の可溶物槽Bに回収する。以後、冷中性子を難溶性核種にのみNj回照射後、tj時間貯蔵して発生した可溶性核種を含む硝酸溶液を可溶物槽Bから難溶物槽に還流させるのを繰り返す。tj時間経過後も冷中性子照射により生じたスズ127とアンチモン127の崩壊で生じたテルル127の崩壊で安定なヨウ素127が繰り返し発生するが、前述のようにして排気できる。但し、使用済み核燃料がMOXの場合、あるいはウラン235の含有率や燃焼度が異なる場合、難溶物槽で放射性の気体核種が発生するときは、逆流防止付きバルブを介し真空ポンプなどにより気体槽へ移送する。貯蔵期間に発生した可溶性核種には冷中性子を照射しない。これにより、壊変で発生した可溶性の安定核種の回収重量が増加する。尚、冷中性子照射後に発生する可溶性核種の重量が照射回数と共に増えるので硝酸溶液も増加する必要がある。
(Hardly soluble substance tank)
After a certain period of time (t 0 hours) after spent nuclear fuel has been removed, cooled, and reprocessed, poorly soluble nuclides are collected in the poorly soluble tank and irradiated with cold neutrons for the first time, then transferred to the poorly soluble tank. A nitric acid solution of a specified concentration is added and stored for t 1 '. After time t 1 ', the only gas generated by decay using a poorly soluble nuclide as a parent nuclide is stable iodine 127. In order to release iodine as a gas, heat the poorly soluble substance tank if necessary and install a backflow prevention valve. After confirming safety with a radiation monitor, the air is evacuated using a vacuum pump or other means. In addition, the nitric acid solution containing soluble nuclides such as boron, gallium, arsenic, selenium, silver, cadmium, tellurium, etc. generated by radioactive decay using poorly soluble nuclides as parent nuclides is filtered. to be collected. After the elapse of time t1 ', the nuclide in the refractory tank is irradiated with cold neutrons for the second time, and then the nitric acid solution containing the soluble nuclide and an additional nitric acid solution are added and refluxed to the refractory tank, and t2 ' Store time. Before the third cold neutron irradiation, the nitric acid-soluble nuclides and nitric acid solution generated during this storage period are filtered and collected in the solubles tank B attached to the hardly solubles tank. Thereafter, after irradiating only the poorly soluble nuclides with cold neutrons Nj times, the nitric acid solution containing the soluble nuclides generated by storage for tj hours is repeatedly refluxed from the solubles tank B to the poorly solubles tank. Even after time t j has elapsed, stable iodine 127 is repeatedly generated by the decay of tellurium 127 produced by the decay of tin 127 and antimony 127 produced by cold neutron irradiation, but it can be exhausted as described above. However, if the spent nuclear fuel is MOX, or if the uranium-235 content or burnup is different, or if radioactive gaseous nuclides are generated in the refractory tank, the gas tank should be removed using a vacuum pump etc. through a valve with a backflow prevention valve. Transfer to. Soluble nuclides generated during storage are not irradiated with cold neutrons. This increases the recovered weight of soluble stable nuclides generated by decay. Note that since the weight of soluble nuclides generated after cold neutron irradiation increases with the number of irradiations, the amount of nitric acid solution must also increase.
(気体槽)
使用済み核燃料取出しから一定期間(t0時間)放置後発生し気体核種は、t1時間経過後、可溶物槽に2回目の冷中性子照射直前に可溶物槽から回収した気体核種と合わせて、気体槽を加熱し臭素とヨウ素を昇華・気化させ気体槽の上部に設けた冷却装置で、気体槽内の上部にある受け皿を冷却してヨウ素のみを液化させ、ヨウ化物槽に移送しヨウ素に熱中性子を照射し核種変換する。これはヨウ素の中性子捕獲断面積が熱中性子に対しても大きいので熱中性子照射でかまわない。t1時間経過後、気体槽に規定濃度の硝酸溶液を加えt2時間放置する。この放置期間に放射線崩壊で生じた固体核種は可溶性核種の安定なルビジウムとセシウムのみで気体槽に付属の固体槽に回収し、発生した気体核種は気体槽に還流させる。発生した可溶性核種には中性子を照射しない。また、ヨウ化物槽で発生した核種はキセノンだけで、気体槽に還流させる。以後、可溶槽の冷中性子照射と貯蔵期間サイクルに同期して、可溶物槽で発生した気体を回収し、崩壊で発生した可溶性核種と硝酸溶液を気体槽に還流することをNi回繰り返す。尚、難溶物槽で発生した気体が安定なヨウ素127以外にも存在する場合は難溶物槽の冷中性子照射とその後の貯蔵期間サイクルに同期させて、冷中性子照射直前に気体槽に還流させる。
(gas tank)
After the spent nuclear fuel has been removed for a certain period of time (t 0 hours), the gaseous nuclides generated are combined with the gaseous nuclides recovered from the solubles tank just before the second cold neutron irradiation into the solubles tank after t 1 hours have elapsed. Then, the gas tank is heated to sublimate and vaporize bromine and iodine, and a cooling device installed at the top of the gas tank cools the saucer at the top of the gas tank to liquefy only the iodine, which is then transferred to the iodide tank. Iodine is irradiated with thermal neutrons to convert its nuclide. This can be done by thermal neutron irradiation because the neutron capture cross section of iodine is large even for thermal neutrons. After 1 hour has passed, a nitric acid solution with a specified concentration is added to the gas tank and left for 2 hours. The solid nuclides generated by radioactive decay during this storage period are the stable soluble nuclides rubidium and cesium, which are collected in a solid tank attached to the gas tank, and the gaseous nuclides generated are returned to the gas tank. The generated soluble nuclides are not irradiated with neutrons. In addition, the only nuclide generated in the iodide tank is xenon, which is refluxed into the gas tank. Thereafter, in synchronization with the cold neutron irradiation and storage period cycle of the solubles tank, the gas generated in the solubles tank is recovered, and the soluble nuclide and nitric acid solution generated by the decay are returned to the gas tank, which is repeated Ni times. . In addition, if the gas generated in the refractory tank contains other than stable iodine-127, it is synchronized with the cold neutron irradiation of the refractory tank and the subsequent storage period cycle, and is returned to the gas tank immediately before the cold neutron irradiation. let
可溶物槽と難溶物槽に冷中性子照射を各々Ni、Nj回繰り返した後、数年程度の一定期間貯蔵後、放射性核種の崩壊で生じた固体核種は可溶物槽、難溶物槽A、固体槽と、難溶物槽、可溶物槽Bに回収され、前3者に回収した核種および硝酸溶液は塩化物槽1に、後2者に回収した核種および硝酸溶液は塩化物槽2に移送し、夫々加熱して硝酸を追い出すと、ほとんどの核種は酸化物となる。〔参考文献3;末尾に記載〕
After repeating cold neutron irradiation Ni and Nj times in the soluble matter tank and the hardly soluble matter tank, and after storage for a certain period of several years, the solid nuclides generated by the decay of radionuclides are transferred to the soluble matter tank and the hardly soluble matter tank. The nuclides and nitric acid solution recovered in tank A, the solid tank, the hardly soluble substance tank, and the soluble substance tank B are collected in the chloride tank 1, and the nuclides and nitric acid solution recovered in the latter two are chloride. When the nuclides are transferred to tank 2 and heated to drive out nitric acid, most of the nuclides become oxides. [
前記の前3者と後2者から発生した酸化物同位体を、沸点の違いを利用して元素分離するが、これらの酸化物の沸点は極めて高温であり、沸点の低い塩化物に変換する。塩化物槽1及び2に移送された酸化物を規定濃度の塩酸溶液あるいは塩素ガス注入により塩化物に変換する。塩酸で塩化物化しない核種には塩素ガスを使用し、炭素を投入すれば、下記の化学式により数時間の加熱処理で塩化物が生成する。
2[M]On+nC+xCl2→2[M]Clx+nCO2
但し、[M]は金属元素を示し、ホウ素、ゲルマニウム、ジルコニウム、ニオブ、ルビジウム、ルテニウム、ロジウム、パラジウム、ツリウム、ハフニウムが該当する。〔参考文献4;末尾に記載〕
The oxide isotopes generated from the first three and the latter two are separated into elements using the difference in boiling points, but the boiling points of these oxides are extremely high, so they are converted to chlorides with a low boiling point. . The oxides transferred to the chloride tanks 1 and 2 are converted into chlorides by injection of a hydrochloric acid solution at a specified concentration or chlorine gas. If chlorine gas is used for nuclides that cannot be converted into chlorides with hydrochloric acid and carbon is added, chlorides will be generated in several hours of heat treatment according to the chemical formula below.
2[M]On+nC+xCl 2 →2[M]Clx+nCO 2
However, [M] represents a metal element, such as boron, germanium, zirconium, niobium, rubidium, ruthenium, rhodium, palladium, thulium, and hafnium. [Reference 4; listed at the end]
塩化物槽1に存在する主に可溶物槽で発生した塩化物(実施例では60核種)を気化槽に投入し、塩化物沸点の昇順に加熱して沸点毎に精留塔で気化させ凝縮器で分留し塩化物として取出し、安定核種および安定な核種のみの同位体であれば冷却装置を介して核種回収槽に回収し、放射性核種および放射性核種のみの同位体あるいは放射性核種と安定核種の混在する同位体はガラス固化核種回収槽に回収する。また、放射性物質として利用できる放射性核種と資源として再利用できる安定核種の2核種からなる同位体は、質量差を利用したガス遠心分離装置により同位体分離を行い、質量数の小さい軽核種と質量数の大きい重核種に分離し、それぞれ軽核種回収槽、重核種回収槽に回収する。 The chlorides (60 nuclides in the example) present in the chloride tank 1 mainly generated in the solubles tank are charged into the vaporization tank, heated in ascending order of chloride boiling point, and vaporized in the rectification column for each boiling point. It is fractionated in a condenser and taken out as chloride, and if it is a stable nuclide or an isotope that is only a stable nuclide, it is collected in a nuclide recovery tank via a cooling device, and it is collected as a radionuclide and an isotope that is only a radionuclide or isotope that is stable as a radionuclide. Isotopes with mixed nuclides are collected in a vitrified nuclide recovery tank. In addition, isotopes consisting of two nuclides, a radionuclide that can be used as a radioactive substance and a stable nuclide that can be reused as a resource, are separated by isotope separation using a gas centrifugal separator that takes advantage of mass differences. Separate into large numbers of heavy nuclides and collect them in a light nuclide recovery tank and a heavy nuclide recovery tank, respectively.
次に塩化物槽2に存在する難溶物槽で発生した塩化物(実施例では36核種)を気化槽に投入し、前記と同様に、塩化物沸点の昇順に加熱し、沸点毎に精留塔で気化させ凝縮器で分留し塩化物として取出し、安定核種および安定な核種のみの同位体であれば冷却装置を介して核種回収槽に回収し、放射性核種および放射性核種のみの同位体あるいは放射性核種と安定核種の混在する同位体はガラス固化核種回収槽に回収する。詳細は実施例で述べるが、可溶物槽と難溶物槽で発生した核種を別々に処理するので、ガラス固化する廃棄物重量を低減できる。 Next, the chlorides (36 nuclides in the example) generated in the refractory tank existing in the chloride tank 2 are put into the vaporization tank, heated in ascending order of the chloride boiling point, and purified for each boiling point. It is vaporized in a distillation tower, fractionated in a condenser, and extracted as chloride.If it is a stable nuclide or isotope containing only a stable nuclide, it is collected in a nuclide recovery tank via a cooling device, and is then recovered as a radionuclide or isotope containing only a radionuclide. Alternatively, isotopes containing a mixture of radionuclides and stable nuclides are collected in a vitrified nuclide recovery tank. Although details will be described in Examples, since the nuclides generated in the soluble material tank and the hardly soluble material tank are treated separately, the weight of waste to be vitrified can be reduced.
気体槽では、臭素とヨウ素が存在するが、いずれも安定核種であり常温で夫々液体と固体として回収できる。沸点が0℃以下の気体核種では、放射性核種の重量は減少し、安定核種の重量は増加し、廃棄する放射性気体の比率が少し低下する。放射性核種のヨウ素129は安定なキセノン130に核種変換される。 Bromine and iodine are present in the gas tank, but both are stable nuclides and can be recovered as liquid and solid, respectively, at room temperature. For gaseous nuclides with a boiling point of 0° C. or lower, the weight of radionuclides decreases, the weight of stable nuclides increases, and the proportion of radioactive gas to be discarded decreases slightly. The radionuclide iodine-129 is converted into stable xenon-130.
実施例を述べる前に本発明に係る用語の定義などを説明する。原子力発電で使用済みの核燃料から発生したFPは放射性崩壊により壊変するが、この核種を原子番号、元素記号、質量数の順に示し、( )内に崩壊形式と半減期を示す。崩壊形式が2種類ある場合は分岐比を%で表示する。半減期の単位は、秒:s、分:m、時間:h、日:d、年:yで表す。尚、1年は365日として計算している。
崩壊形式にはα崩壊、β崩壊、γ崩壊などがあり、α崩壊では原子核からヘリウム原子核(α線)を放出し原子番号が2、質量数が4減った原子に変化する。β崩壊では3種類の崩壊があり、原子核の中性子から1個の電子を放出して1個の中性子が陽子に変換され原子番号が1増加する(以下、β崩壊とする)崩壊と、原子核の陽子が1個の陽電子を放出して中性子に変換され原子番号が1減るecβ+崩壊(以下、ε崩壊とする)と、核外の電子が原子核に1個捕獲され1個の陽子が中性子に変換され原子番号が1減る(以下、ec崩壊とする)崩壊がある。いずれも電子(β線)が放出される。さらに、β崩壊がほぼ同時におこる二重β崩壊があり、この崩壊では2個の中性子が陽子になるので、原子番号が2増加する(以下、2β崩壊とする)。いずれの崩壊でも質量数は変化しない。また、γ崩壊では励起された原子核が基底状態に遷移する際、余剰なエネルギーをγ線として放射する崩壊で、原子番号と質量数は変化しない。崩壊で生じた励起状態にある娘核種がγ線を放出して基底状態に壊変する核異性体転移(以下、IT崩壊とする)では原子番号、質量数とも変化しない。質量数にmがつく核種は核異性体である。ここで崩壊形式、分岐比、半減期はIAEAのデータを使用した。〔データ引用元1;末尾に記載〕
崩壊の順序は核エネルギー準位の高い核種から低い核種へと変化する。このエネルギー準位はIAEA NDSのMass Chain Chart of Nuclidesのデータに元づいている。
Before describing embodiments, definitions of terms related to the present invention will be explained. FP generated from spent nuclear fuel in nuclear power generation decays due to radioactive decay, and the nuclides are shown in the order of atomic number, element symbol, and mass number, and the decay type and half-life are shown in parentheses. If there are two types of collapse, the branching ratio is displayed as a percentage. The units of half-life are seconds: s, minutes: m, hours: h, days: d, and years: y. Note that one year is calculated as 365 days.
Types of decay include alpha decay, beta decay, and gamma decay. In alpha decay, an atomic nucleus emits a helium nucleus (alpha ray) and changes into an atom with an atomic number of 2 and a mass number reduced by 4. There are three types of β-decay: decay in which a neutron in the atomic nucleus releases one electron, converts the neutron into a proton, and increases the atomic number by 1 (hereinafter referred to as β-decay); In ecβ+ decay (hereinafter referred to as ε decay), a proton emits one positron and is converted into a neutron, and its atomic number decreases by 1, and in the other, one electron outside the nucleus is captured by the atomic nucleus, and one proton is converted into a neutron. There is a decay in which the atomic number decreases by 1 (hereinafter referred to as ec decay). In both cases, electrons (β rays) are emitted. Furthermore, there is a double β decay in which β decays occur almost simultaneously, and in this decay, two neutrons become protons, so the atomic number increases by 2 (hereinafter referred to as 2β decay). In either decay, the mass number does not change. In addition, in gamma decay, when an excited atomic nucleus transitions to the ground state, excess energy is emitted as gamma rays, and the atomic number and mass number do not change. In nuclear isomer transition (hereinafter referred to as IT decay) in which a daughter nuclide in an excited state generated by decay emits gamma rays and decays to a ground state, neither the atomic number nor the mass number changes. Nuclides with a mass number of m are nuclear isomers. Here, IAEA data were used for the decay type, branching ratio, and half-life. [Data source 1; listed at the end]
The order of decay changes from nuclides with higher nuclear energy levels to nuclides with lower nuclear energy levels. This energy level is based on data from the IAEA NDS Mass Chain Chart of Nuclides.
ある核種が放射性崩壊で、その重量が1/2になるまでの時間を半減期τといい、崩壊定数λとの関係はτ=ln(2)/λ〔ln(2)は2の自然対数〕である。核種1g当りの放射能は比放射能SRとよばれ、アボガドロ定数をNA、質量数をZとすればSR=λ×NA/Zであり、単位はBq/gである。
放射能の低減度合いは0.1Bq到達時間T0.1で表し、比放射能SRの放射性核種のt秒後の重量をmとすればT0.1=1/λ×{ln(10)+ln(SR×m)}+tで表せる。
The time it takes for a certain nuclide to radioactively decay and reduce its weight to 1/2 is called the half-life τ, and the relationship with the decay constant λ is τ=ln(2)/λ [ln(2) is the natural logarithm of 2] ]. The radioactivity per gram of nuclide is called specific radioactivity S R , where N A is Avogadro's constant and Z is the mass number, S R =λ×N A /Z, and the unit is Bq/g.
The degree of reduction in radioactivity is expressed by the time T 0.1 to reach 0.1Bq, and if m is the weight of the radionuclide with specific radioactivity S R after t seconds, then T 0.1 = 1/λ×{ln(10 )+ln( SR ×m)}+t.
ほとんどの核種の中性子捕獲断面積σnは中性子の速度に反比例するので、冷中性子(ここでは液体ヘリウムの沸点-268.9℃)の捕獲断面積σn(0.353meV)は日本原子力研究開発機構核データ研究グループのJENDL-5〔データ引用元2;末尾に記載〕の熱中性子(20℃)のσn(0.0253eV)の値を元に計算で求めた。σn(0.353meV)の値はσn(0.0253eV)の値の8.47倍である。なお、捕獲断面積が中性子の速度に反比例しない核種は熱中性子の値以上としてある。 Since the neutron capture cross section σn of most nuclides is inversely proportional to the neutron velocity, the capture cross section σn (0.353 meV) of cold neutrons (in this case, the boiling point of liquid helium -268.9°C) is It was calculated based on the value of σn (0.0253 eV) for thermal neutrons (20°C) from the Data Research Group's JENDL-5 [data source 2; listed at the end]. The value of σn (0.353 meV) is 8.47 times the value of σn (0.0253 eV). Note that nuclides whose capture cross section is not inversely proportional to the neutron velocity are defined as having a value greater than that of thermal neutrons.
核種の中性子捕獲確率σpは中性子捕獲断面積σnと核断面積σとの比で表され、核種の質量数をZとすると、原子半径はR=1.25×Z1/3〔fm〕で与えられ、核断面積σ=πR2は計算で求めた。〔日本原子力研究開発機構:原子又は原子核の表示、個数密度、核半径、単位系 (03-06-01-03)〕
中性子被照射核種のσpが1以上であれば中性子を1個捕獲して核種変換されその重量は0gとなり、質量数が1増えた核種の重量は中性子を捕獲した核種の重量になる。さらに捕獲した核種のσpが1以上であれば、質量数は2増えた核種に変換され、この核種の重量は、これらの核種の重量の和となる。σpが1以下であれば被照射核種の重量は(1-σp)倍となり、核種変換された核種の重量がσp倍に核種変換するとした。
The neutron capture probability σp of a nuclide is expressed as the ratio of the neutron capture cross section σn and the nuclear cross section σ.If the mass number of the nuclide is Z, the atomic radius is R=1.25×Z 1/3 [fm]. Given, the nuclear cross section σ=πR 2 was calculated. [Japan Atomic Energy Agency: Display of atoms or atomic nuclei, number density, nuclear radius, unit system (03-06-01-03)]
If the neutron-irradiated nuclide has a σp of 1 or more, it captures one neutron and undergoes nuclide conversion, and its weight becomes 0 g.The weight of the nuclide whose mass number increases by 1 becomes the weight of the nuclide that captured the neutron. Further, if σp of the captured nuclide is 1 or more, the mass number is converted to a nuclide whose mass number is increased by 2, and the weight of this nuclide is the sum of the weights of these nuclides. If σp is 1 or less, the weight of the irradiated nuclide will be multiplied by (1-σp), and the weight of the converted nuclide will be multiplied by σp.
ある放射性核種A(崩壊定数λA)が崩壊し、次々に生成された娘核種B(同λB)、C(同λC)、D(同λD)が放射性核種で、娘核種Eが安定核種とすると、任意の時刻tにおける放射性核種の重量をそれぞれNA、NB、NC、ND、NEとすると、これらの重量には次の連立微分方程式が成り立つ。 A radionuclide A (decay constant λ A ) decays, and the daughter nuclides B (λ B ), C (λ C ), and D (λ D ) generated one after another are radionuclides, and the daughter nuclide E is a radionuclide. Assuming that the radionuclides are stable nuclides, and the weights of the radionuclides at any time t are respectively N A , N B , N C , N D , and N E , the following simultaneous differential equations hold true for these weights.
t=0で放射性核種Aの初期重量をN0とすれば、式(1)の両辺にexp(-λA×t)をかけてtで積分すれば、式(6)が求められる。放射性核種B、C、D及び安定核種Eの初期重量は0であり、式(2)に式(6)を代入し微分方程式を解くと式(7)が求められ、以下同様にして式(3)~式(5)を解くと式(8)~式(10)が得られ、任意の時刻tにおける核種重量NA(t)、NB(t)、NC(t)、ND(t)、NE(t)は、[数2]に示した式(6)~式(10)で求められる。 If the initial weight of radionuclide A is N 0 at t=0, then equation (6) can be obtained by multiplying both sides of equation (1) by exp(-λ A ×t) and integrating over t. The initial weights of radionuclides B, C, D and stable nuclide E are 0, and by substituting equation (6) into equation (2) and solving the differential equation, equation (7) is obtained, and in the same manner, equation ( 3) By solving Equations (5) to Equations (8) to Equations (10), the nuclide weights N A (t), N B (t), N C (t), N D at any time t are obtained. (t) and N E (t) are obtained using equations (6) to (10) shown in [Equation 2].
核燃料取出しから発生した気体と、冷却期間を含めPUREX法などによりウラン、プルトニウムなどのアクチノイドを回収後、一定時間経過後、可溶性核種と難溶性核種を回収した可溶物槽と難溶物槽に分けて核種重量の変化を計算する。計算にはマイクロソフト社の表計算ソフトExcelワークシートの計算機能を使用した。以後、断わりが無い場合は中性子照射とは冷中性子照射を指し、中性子捕獲とは冷中性子捕獲を指す。 After recovering the gas generated from nuclear fuel removal and actinides such as uranium and plutonium using the PUREX method, including the cooling period, after a certain period of time, the soluble and poorly soluble nuclides are collected in the soluble and poorly soluble tanks. Calculate the change in nuclide weight separately. For calculations, the calculation function of Microsoft's spreadsheet software Excel worksheet was used. Hereinafter, unless otherwise specified, neutron irradiation refers to cold neutron irradiation, and neutron capture refers to cold neutron capture.
表1Aは核種に中性子を照射したときの核種重量の変化を求めた計算例を示す。縦方向にA列3行から同一の質量数毎に昇順で原子番号順に核種を記載し、質量数zは昇順にz1、z2、z3、・・・、原子記号と質量数をAz、Bz、Cz、・・・で表す。尚、この表では原子番号は表示していない。また、質量数にmがつく核種は核異性体を表す。
横方向にA列は核種、B列は崩壊形式、C列は半減期τ、D列は崩壊定数λ、E列は中性子捕獲確率σp(中性子捕獲断面積σnと核断面積σとの比)を表示する。但し、半減期は記載せず。σpの値は中性子エネルギーが可溶物槽と難溶物槽の固体核種は0.353meVの値を示し、気体槽の気体核種は0.0253eVの値を示すが、本表では表示の通りで実際の数値を表示していない。F列には燃料取出しt0時間(日)後の核種重量を記載し、G列には1回目の中性子照射による核種変換の状況を示し、σpが1以上の核種には+1nと記載、さらに変換された核種が中性子を捕獲して質量数が1増えた核種のσpが1以上であれば、この核種には+1n、質量数が1少ない変換された元の核種には+2nと表記する。σpが非記載の核種のセルは⇒を表記し、中性子を照射しない核種(可溶物槽では壊変で生じた難溶性核種と気体核種、難溶物槽では壊変で生じた可溶性核種と気体核種、気体槽では2回目の中性子照射のヨウ素を除く気体核種と壊変で生じた可溶性核種)のセルにも⇒を表記する。また中性子を捕獲して変換された核種は<>で示し、<>内に核種変換前の核種(元素記号と質量数)に+1n、+2n、・・・と表記する。H列には中性子照射後の累積重量を示し、中性子照射で中性子を捕獲して変換された核種は0gで空欄となる。I列1行目に秒単位で表したt1時間を記入する。中性子照射1回目のt1時間後の重量をそれぞれI~K列に、その合計をL列に表示する。以下、質量数を増やして計算する。F、H、L、N列最下行のセルに該列の核種重量の合計値をΣNt0、ΣNt0*、ΣNt1、ΣNt1*と表示してあるが、これらの合計値が等しいことで質量保存の法則が成立し、計算式の正しさを確認できる。
L列の核種重量の合計及びH、N列の累積重量は1×10-40(以下、1E-40と表記)g以下であれば原則として0gと表示する。
M列には2回目の中性子照射による核種変換の状況を示し、G列と同じである。但し、可溶物槽と気体槽ではσp>1のヨウ素はG列とは異なり、+1nあるいは+2nとなり、このほかのヨウ素のセルには⇒と表記する。N列は2回目の中性子照射後の累積重量を示し、中性子照射で中性子を捕獲して変換された核種は空欄となる。
表1Aには記載していないが、O列1行目に秒単位で表した2回目の貯蔵時間t2時間を記入し、以下、I~K列と同様にO~Q列に中性子照射t2時間後の核種重量を表示させ、その合計をR列に表示させる。さらに質量数を増やして計算する。計算対象の核種の質量数、原子番号は具体例で述べる。
ここでは可溶物槽と気体槽の核種重量変化を求める場合にについて記述しているが、難溶物槽の核種重量変化を求める場合は、t1をt1’、t2をt2’に置き換える。
以下に中性子照射後の親核種(崩壊形式,崩壊定数)が放射性崩壊して娘核種に壊変するときこれらの核種のt1時間経過後の核種重量を求める方法を説明する。なお、表ではt1を半角文字でt1と表示してある。
Table 1A shows an example of calculation for determining the change in nuclide weight when the nuclide is irradiated with neutrons. The nuclides are written in ascending order of atomic number for each mass number from column A,
In the horizontal direction, row A is the nuclide, row B is the decay type, row C is the half-life τ, row D is the decay constant λ, and row E is the neutron capture probability σp (ratio of the neutron capture cross section σn and the nuclear cross section σ). Display. However, the half-life is not stated. The neutron energy of σp is 0.353 meV for solid nuclides in the soluble and refractory tanks, and 0.0253 eV for gas nuclides in the gas tank, but as shown in this table. Not showing actual numbers. Column F shows the nuclide weight after t0 hours (days) of fuel removal, column G shows the status of nuclide transformation by the first neutron irradiation, +1n is written for nuclides with σp of 1 or more, and If the converted nuclide captures a neutron and the σp of the nuclide whose mass number increases by 1 is 1 or more, this nuclide is written as +1n, and the original converted nuclide whose mass number is reduced by 1 is written as +2n. Cells for nuclides for which σp is not listed are marked with ⇒, and nuclides that are not irradiated with neutrons (slightly soluble nuclides and gaseous nuclides generated by decay in the solubles tank, soluble nuclides and gaseous nuclides generated by decay in the poorly solubles tank) In the gas tank, ⇒ is also written for the cells for gaseous nuclides other than iodine from the second neutron irradiation and soluble nuclides generated by decay). Nuclides that have been converted by capturing neutrons are indicated by <>, and the nuclides (element symbol and mass number) before nuclide conversion are written as +1n, +2n, . . . in <>. Column H shows the cumulative weight after neutron irradiation, and nuclides converted by capturing neutrons during neutron irradiation are left blank at 0g. Enter the t1 time expressed in seconds in the first row of column I. The weights 1 hour after the first neutron irradiation are displayed in columns I to K, and the total is displayed in column L. In the following calculations, increase the mass number. The total values of the nuclide weights in the columns F, H, L, and N are displayed as ΣNt0, ΣNt0 * , ΣNt1, ΣNt1 * in the cells in the bottom row of the columns, and since these total values are equal, it follows the law of conservation of mass. holds, and the correctness of the calculation formula can be confirmed.
If the total weight of nuclides in column L and the cumulative weight of columns H and N are less than 1×10 -40 (hereinafter referred to as 1E-40) g, then in principle they are displayed as 0 g.
Column M shows the state of nuclide transformation due to the second neutron irradiation, and is the same as column G. However, in the soluble matter tank and the gas tank, iodine with σp>1 is +1n or +2n, unlike in the G column, and other iodine cells are written as ⇒. Column N shows the cumulative weight after the second neutron irradiation, and the columns are blank for nuclides that were converted by capturing neutrons during neutron irradiation.
Although not listed in Table 1A, the second storage time t 2 hours expressed in seconds is entered in the first row of column O, and the neutron irradiation time t 2 hours is written in columns O to Q in the same way as columns I to K. Display the nuclide weight after 2 hours, and display the total in column R. Further increase the mass number and calculate. The mass number and atomic number of the nuclide to be calculated will be explained using a specific example.
Here, we describe the case of calculating the nuclide weight change in the soluble substance tank and the gas tank, but when calculating the nuclide weight change in the hardly soluble substance tank, t 1 is t 1 ', t 2 is t 2 ' Replace with
Below, a method for determining the nuclide weights of these nuclides after t1 hour has elapsed when the parent nuclide (decay type, decay constant) undergoes radioactive decay and decays into daughter nuclides after neutron irradiation will be explained. In addition, in the table, t1 is displayed as t1 in half-width characters.
質量数z1の放射性核種Az1mを親核種(mは核異性体を表す)として、Az1m(IT,λaz1m)→Az1(β,λaz1)→Bz1(β,λbz1)→Cz1m(IT,λcz1m)→Cz1(安定)に壊変するとき、1回目の中性子照射t1時間後の核種Az1m、Az1、Bz1、Cz1mとCz1の重量は[数2]で示した式(6)~式(10)を以下の様に書替え、初期重量N0を核種Az1mの累積重量Naz1mに、tをt1に書替える。但し、*は乗算を表し、λcz1=0である。またNの添え字(数字)は壊変の順序を示し同一の核種が別の壊変で出現した場合に違う壊変反応であることを示している。例えばBz1は式(13)と式(17)で出現している。 Assuming that the radionuclide Az1m with mass number z1 is the parent nuclide (m represents a nuclear isomer), Az1m (IT, λaz1m) → Az1 (β, λaz1) → Bz1 (β, λbz1) → Cz1m (IT, λcz1m) → Cz1 (stable), the weights of the nuclides Az1m, Az1, Bz1, Cz1m and Cz1 after 1 hour of the first neutron irradiation t can be calculated by converting equations (6) to (10) shown in [Equation 2] below. Rewrite the initial weight N0 as the cumulative weight Naz1m of the nuclide Az1m, and rewrite t as t1. However, * represents multiplication, and λcz1=0. Furthermore, the subscript (number) of N indicates the order of decay, and indicates that different decay reactions occur when the same nuclide appears in different decays. For example, Bz1 appears in equation (13) and equation (17).
式(11)~式(15)の右辺の各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量Naz1mをセル名「H3」に、t1をセル名「I$1」に書替え、等号を含めて書替えたこれらの右辺を夫々I列3~7行セルに書込めば、t1時間後の該当核種の重量の計算結果がこれらのセルに表示される。書込みしたワークシート中のセルの内容の一例を「 」内に示すと、セルI3には式(11)の右辺「=H3*exp(-$D3*I$1)」、セルI4には式(12)の右辺「=H3*$D3*{exp(-$D3*I$1)-exp(-$D4*I$1)}/($D4-$D3)」と半角文字で書き込まれている。但し、$は絶対参照を示す。
The decay constant λ of each nuclide on the right side of equations (11) to (15) is set to the cell name of the corresponding row in column D (λ), the initial weight Naz1m is set to the cell name "H3", and t1 is set to the cell name "I". If you write these right-hand sides, rewritten as "$1" and rewritten to include an equal sign, in the cells of column I,
同様に放射性核種Az1がAz1(β,λaz1)→Bz1(β,λbz1)→Cz1m(IT,λcz1m)→Cz(安定)に壊変するとき、 t1時間後の核種Az1,Bz1,Cz1mとCz1の重量は、[数2]で示した式(6)~式(9)を以下の様に書替え、初期重量N0を核種Az1の累積重量Naz1、tをt1に書替える。 Similarly, when the radionuclide Az1 decays as Az1 (β, λaz1) → Bz1 (β, λbz1) → Cz1m (IT, λcz1m) → Cz (stable), the nuclide Az1, Bz1, Cz1m and Cz1 after 1 hour t For the weight, equations (6) to (9) shown in [Equation 2] are rewritten as follows, the initial weight N 0 is replaced with the cumulative weight Naz1 of the nuclide Az1, and t is replaced with t1.
式(16)~式(19)の右辺の各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量Naz1をセル名「H4」に、t1をセル名「I$1」に書替え、等号を含めて書替えたこれらの右辺を夫々J列4~7行セルに書込めば、t1時間後の該当核種の重量の計算結果がこれらのセルに表示される。書込みしたワークシート中のセルの内容の一例を「 」内に示すと、セルJ4には式(16)の右辺「=H4*exp(-$D4*I$1)」、セルJ7には式(17)の右辺「=H4*$D4*{exp(-$D4*I$1)-exp(-$D5*I$1)}/($D5-$D4)」と半角文字で書き込まれている。
放射性核種Bz1(σp>1)は中性子照射により中性子を捕獲して核種Bz2に変換され、照射直後の累積重量(H5セル)は0gとなるが、t1時間後に核種Az1mと核種Az1の壊変で核種Bz1が発生する。これらの重量は式(13)のN3bz1(t1)と式(17)のN2bz1(t1)の右辺であり、式中の各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量を夫々の核種の累積重量のセル名「H3」と「H4」に、tをt1と書かれたセル名「I$1」に書替え、等号を含めて書替えた両右辺を夫々I5セルとJ5セルに書込めば、t1時間後の核種Bz1の重量の計算結果がこれらのセルに表示される。
The decay constant λ of each nuclide on the right side of equations (16) to (19) is set to the cell name of the corresponding row in column D (λ), the initial weight Naz1 is set to the cell name "H4", and t1 is set to the cell name "I". If you write these right-hand sides, rewritten as "$1" and rewritten to include an equal sign, into the cells of column J and rows 4 to 7, the calculation results of the weight of the corresponding nuclide after t 1 hour will be displayed in these cells. . An example of the contents of cells in the written worksheet is shown in "", cell J4 has the right side of formula (16) "=H4*exp(-$D4*I$1)", and cell J7 has the formula The right side of (17) is written as "=H4*$D4*{exp(-$D4*I$1)-exp(-$D5*I$1)}/($D5-$D4)" in half-width characters. ing.
The radionuclide Bz1 (σp>1) captures neutrons by neutron irradiation and is converted to the nuclide Bz2, and the cumulative weight immediately after irradiation (H5 cell) becomes 0 g, but after t 1 hour, the nuclide Az1m and the nuclide Az1 decay due to the Nuclide Bz1 is generated. These weights are the right-hand sides of N3bz1(t1) in equation (13) and N2bz1(t1) in equation (17), and the decay constant λ of each nuclide in the equation is expressed as the cell name of the corresponding row in column D (λ). Then, rewrite the initial weights as the cell names "H3" and "H4" for the cumulative weight of each nuclide, rewrite t as the cell name "I$1" written as t1, and rewrite both right-hand sides including the equal sign. By writing to cell I5 and cell J5, respectively, the calculation result of the weight of nuclide Bz1 after t 1 hour will be displayed in these cells.
放射性核種Cz1mがCz1m(IT,λcz1m)→Cz1(安定)に壊変するとき、t1時間後の核種Cz1mとCz1の重量は、[数2]で示した式(6)、式(7)を以下の様に書替え、初期重量N0を核種Cz1mの累積重量Ncz1m、tをt1に書替える。 When the radionuclide Cz1m decays from Cz1m (IT, λcz1m) to Cz1 (stable), the weights of the nuclide Cz1m and Cz1 after t 1 hour can be calculated using equations (6) and (7) shown in [Equation 2]. Rewrite as follows, rewriting the initial weight N 0 as the cumulative weight Ncz1m of the nuclide Cz1m, and rewriting t as t1.
式(20)~式(21)の右辺の各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量Ncz1mをセル名「H6」に、t1をセル名「I$1」に書替え、等号を含めて書替えた両式の右辺を夫々K列6~7行セルに書込めば、t1時間後の該当核種の重量の計算結果がこれらのセルに表示される。
安定核種Cz1(σp>1)は中性子照射で中性子を捕獲して核種Cz2に変換され照射直後の累積重量(H7セル)は0gとなるが、t1時間後に核種Az1mの壊変で式(15)のN5cz1(t1)、核種Az1の壊変で式(19)のN4cz1(t1)、及び核種Cz1mの壊変で式(21)のN2cz1(t1)が生じる。これらの式の右辺の各核種の崩壊定数をD列(λ)の該当する行のセル名に、初期重量を各核種の累積重量のセル名「H3」、「H4」、「H6」に、tをt1のセル名「I$1」に書替え、等号を含めて書替えたこれらの右辺をI7、J7、K7セルに書込めば、t1時間後に生じた核種Cz1mの重量の計算結果が該セルに表示される。
L列には、核種Az1m、Az1、Bz1、Cz1m、Cz1のt1時間後の核種重量Naz1mt1、Naz1t1、Nbz1t1、Ncz1mt1、Ncz1t1がI~K列の同じ行のセルの和で求められる。
Naz1mt1=N1az1m(t1)、
Naz1t1=N2az1m(t1)+N1az1(t1)、
Nbz1t1=N3bz1(t1)+N2bz1(t1)、
Ncz1mt1=N4cz1m(t1)+N3cz1m(t1)+N1cz1m(t1)、
Ncz1t1=N5cz1(t1)+N4cz1(t1)+N2cz1(t1)である。
ワークシート中のセルの内容の一例を「 」内に示すと、セルL4には「=I4+J4
」が半角文字で書き込まれている。
The decay constant λ of each nuclide on the right side of equations (20) to (21) is set to the cell name of the corresponding row in column D (λ), the initial weight Ncz1m is set to the cell name "H6", and t1 is set to the cell name "I". If you write the right sides of both equations, rewritten as "$1" and rewritten to include the equal sign, in the cells of column K and
The stable nuclide Cz1 (σp>1) captures neutrons during neutron irradiation and is converted to the nuclide Cz2, and the cumulative weight immediately after irradiation (H7 cell) becomes 0 g, but after t 1 hour, the nuclide Az1m decays and the formula (15) The decay of nuclide Az1 produces N4cz1(t1) of equation (19), and the decay of nuclide Cz1m produces N2cz1(t1) of equation (21). The decay constant of each nuclide on the right side of these equations is the cell name of the corresponding row in column D (λ), the initial weight is the cell name of the cumulative weight of each nuclide "H3", "H4", "H6", If we rewrite t to the cell name of t1 "I$1" and write these rewritten right-hand sides including the equal sign into cells I7, J7, and K7, the calculation result of the weight of the nuclide Cz1m produced 1 hour after t is displayed in that cell.
In the L column, the nuclide weights Naz1mt1, Naz1t1, Nbz1t1, Ncz1mt1, and Ncz1t1 of the nuclides Az1m, Az1, Bz1, Cz1m, and Cz1 after t 1 hour are determined by the sum of cells in the same row of columns I to K.
Naz1mt1=N1az1m(t1),
Naz1t1=N2az1m(t1)+N1az1(t1),
Nbz1t1=N3bz1(t1)+N2bz1(t1),
Ncz1mt1=N4cz1m(t1)+N3cz1m(t1)+N1cz1m(t1),
Ncz1t1=N5cz1(t1)+N4cz1(t1)+N2cz1(t1).
An example of the content of a cell in a worksheet is shown in parentheses. Cell L4 contains "=I4+J4
" is written in half-width characters.
質量数が1増えた放射性核種Bz2〔σp=0.8〕の重量は核種Bz1〔σp>1〕の中性子捕獲で核種変換されNbz1だけ増加するが、中性子照射で核種Bz1の重量の20%は核種変換されないので、照射直後の累積重量はNbz2’=0.2×(Nbz1+Nbz2)となる。核種Bz2がBz2(β,λbz2)→Cz2(β,λcz2)→Dz2(安定)に壊変するとき、t1時間後の核種Bz2、Cz2、Dz2の重量は、[数2]で示した式(6)~式(8)を以下の様に書替え、初期重量N0を核種Bz2の累積重量Nbz2’、tをt1に書替える。但し、λdz2=0である。 The weight of radionuclide Bz2 [σp=0.8], whose mass number has increased by 1, is converted by neutron capture from nuclide Bz1 [σp>1] and increases by Nbz1, but 20% of the weight of nuclide Bz1 is reduced by neutron irradiation. Since there is no nuclide conversion, the cumulative weight immediately after irradiation is Nbz2'=0.2×(Nbz1+Nbz2). When the nuclide Bz2 decays from Bz2 (β, λbz2) → Cz2 (β, λcz2) → Dz2 (stable), the weights of the nuclides Bz2, Cz2, and Dz2 after t 1 hour are expressed by the formula shown in [Equation 2] ( 6)~Equations (8) are rewritten as follows, and the initial weight N 0 is rewritten as the cumulative weight Nbz2' of the nuclide Bz2, and t is rewritten as t1. However, λdz2=0.
式(22)~式(24)の右辺の各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量Nbz2’をセル名「H8」に、t1をセル名「I$1」に書替え、等号を含めて書替えたこれらの右辺を夫々I列8~10行セルに書込めば、t1時間後の該当核種の重量の計算結果がこれらのセルに表示される。書込みしたワークシート中のセルの内容の一例を「 」内に示すと、セルI8には「=0.2*(F5+F8)*exp(-$D8*I$1)」、セルI9には「=0.2*(F5+F8)*F8*{(exp(-$D8*I$1)-exp(-$D9*I$1)}/($D9-$D8)」が半角文字で書き込まれている。
放射性核種Cz2の重量は中性子照射により核種Cz1(σp>1)の中性子捕獲で核種変換されNcz1だけ増し、照射後の累積重量はNcz2’=Ncz1+Ncz2となる。核種Cz2がCz2(β,λcz2)→Dz2(安定)に壊変するとき、t1時間後の核種Cz2とDz2の重量は、[数2]で示した式(1)、式(2)を以下の様に書換え、初期重量N0を核種Cz2の累積重量Ncz2’、tをt1に書替える。
The decay constant λ of each nuclide on the right side of equations (22) to (24) is set to the cell name of the corresponding row in column D (λ), the initial weight Nbz2' is set to the cell name "H8", and t1 is set to the cell name " If you write these right-hand sides, which have been rewritten as "I$1" and included an equal sign, into the cells of column I, rows 8 to 10, the calculation results of the weight of the corresponding nuclide after t1 hour will be displayed in these cells. Ru. An example of the contents of cells in the written worksheet is shown in parentheses. Cell I8 contains "=0.2*(F5+F8)*exp(-$D8*I$1)" and cell I9 contains "=0.2*(F5+F8)*F8*{(exp(-$D8*I$1)-exp(-$D9*I$1)}/($D9-$D8)" is written in half-width characters. ing.
The weight of the radionuclide Cz2 increases by Ncz1 due to nuclide conversion due to neutron capture of the nuclide Cz1 (σp>1) due to neutron irradiation, and the cumulative weight after irradiation becomes Ncz2'=Ncz1+Ncz2. When the nuclide Cz2 decays from Cz2 (β, λcz2) → Dz2 (stable), the weights of the nuclide Cz2 and Dz2 after t 1 hour are calculated using equations (1) and (2) shown in [Equation 2] as follows: The initial weight N0 is rewritten as the cumulative weight Ncz2' of the nuclide Cz2, and t is rewritten as t1.
式(25)、式(26)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量Ncz2’をセル名「H9」に、t1をセル名「I$1」に書替え、等号を含めて書替えた両右辺を夫々J列9~10行セルに書込めば、t1時間後の該当核種の重量の計算結果がJ列9~10行セルに表示される。
安定核種Dz2(σp>1)は中性子照射によりDz3に核種変換され累積重量(H10セル)は0gであるが、t1時間後に核種Bz2とCz2のβ崩壊で核種Dz2が生じる。式(24)のN3dz1(t1)と式(26)のN2dz1(t1)の右辺で各核種の崩壊定数λを該当する行のD列(λ)のセル名に、両式の初期重量を該当する核種の累積重量のセル名「H8」と「H9」に、t1をセル名「I$1」に書替え、等号を含めて書替えた両右辺を夫々I10、J10セルに書込めば、t1時間後の壊変で生じた核種Dz2の重量の計算結果が該セルに表示される。なお、核種Ez2のec崩壊で生じた核種Dz2の重量については、式(28)の右辺で各核種の崩壊定数をD列(λ)の該当する行の各セル名に、初期重量N0を核種Ez2の累積重量Nez2のセル名「H11」に、t1をセル名「I$1」に書替え、等号を含めて書替えた右辺をK10セルに書込めば、t1時間後の該当核種の重量の計算結果が該セルに表示される。
放射性核種Ez2がec崩壊で原子番号が1少ない安定核種Dz2に、Ez2(ec,λez1)→Dz2(安定)に壊変するとき、t1時間後の核種Ez2とDz2の重量は、[数2]で示した式(6)、式(7)を以下の様に書換え、初期重量N0を核種Ez2の累積重量Nez2、tをt1に書替える。
On the right side of equations (25) and (26), the decay constant λ of each nuclide is set to the cell name of the corresponding row in column D (λ), the initial weight Ncz2' is set to the cell name "H9", and t1 is set to the cell name " If you rewrite both right-hand sides including the equal sign as "I$1" and write them in the cells of column J,
The stable nuclide Dz2 (σp>1) is converted into Dz3 by neutron irradiation, and the cumulative weight (H10 cell) is 0 g, but after t 1 hour, the nuclide Dz2 is generated by β decay of the nuclides Bz2 and Cz2. On the right side of N3dz1(t1) in Equation (24) and N2dz1(t1) in Equation (26), apply the decay constant λ of each nuclide to the cell name in column D (λ) of the corresponding row, and the initial weight of both equations. Rewrite t1 with the cell name "I$1" in the cell names "H8" and "H9" for the cumulative weight of nuclides to The calculation result of the weight of the nuclide Dz2 produced by decay after one hour is displayed in the cell. Regarding the weight of nuclide Dz2 produced by ec decay of nuclide Ez2, on the right side of equation (28), the decay constant of each nuclide is assigned to each cell name in the corresponding row of column D (λ), and the initial weight N0 is If you rewrite the cell name "H11" for the cumulative weight Nez2 of the nuclide Ez2, rewrite t1 to the cell name "I$1", and write the rewritten right side including the equal sign into the K10 cell, the corresponding nuclide after t 1 hour will be calculated. The weight calculation result is displayed in the cell.
When the radionuclide Ez2 decays into a stable nuclide Dz2 whose atomic number is 1 less by EC decay, from Ez2 (ec, λez1) to Dz2 (stable), the weights of the nuclides Ez2 and Dz2 after t 1 hour are [Equation 2] Equations (6) and (7) shown in are rewritten as follows, and the initial weight N0 is rewritten as the cumulative weight Nez2 of the nuclide Ez2, and t is rewritten as t1.
式(27)~式(28)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量Nez2をセル名「H11」に、t1をセル名「I$1」に書替え、等号を含めて書替えた両右辺を夫々K列11~10行セルに書込めば、t1時間後の該当核種の重量の計算結果が該セルに表示される。
L列には核種Bz2、Cz2、Dz2、Ez2のt1時間後の重量Nbz2t1、Ncz2t1、Ndz2t1、Nez2t1はI~K列の同じ行のセルの和で求められる。
Nbz2t1=N1bz2(t1)、
Ncz2t1=N2cz2(t1)+N1cz2(t1)、
Ndz2t1=N3dz2(t1)+N2dz2(t1)+N2ez2(t1)、
Nez2t1=N1ez2(t1)+N2gz6(t1)である。
尚、N2gz6(t1)は後述するように核種Gz6のα崩壊で生じたものである。
On the right side of equations (27) to (28), the decay constant λ of each nuclide is set to the cell name of the corresponding row in column D (λ), the initial weight Nez2 is set to the cell name "H11", and t1 is set to the cell name "I". $1'' and both right-hand sides rewritten including the equal sign are written into the cells of column K and
In column L, the weights Nbz2t1, Ncz2t1, Ndz2t1, and Nez2t1 of nuclides Bz2, Cz2, Dz2, and Ez2 after t 1 hour are determined by the sum of cells in the same row of columns I to K.
Nbz2t1=N1bz2(t1),
Ncz2t1=N2cz2(t1)+N1cz2(t1),
Ndz2t1=N3dz2(t1)+N2dz2(t1)+N2ez2(t1),
Nez2t1=N1ez2(t1)+N2gz6(t1).
Note that N2gz6(t1) is generated by α decay of the nuclide Gz6, as described later.
質量数が2増えた放射性核種Bz3(σpは非記載)の重量は、1回目の中性子照射により、同位体のBz1(σp>1)とBz2(σp=0.8)の中性子捕獲で、Nbz3’=Nbz3+0.8×(Nbz1+Nbz2)となる。核種Bz3がBz3(β,λbz3)→Cz3(β,λcz3)→Dz3(β,λdz3)→Ez3(安定)に壊変するとき、t1時間後の核種Bz3、Cz3、Dz3とEz3の重量は、[数2]で示した式(6)~式(9)を以下の様に書換え、初期重量N0を核種Bz3の累積重量Nbz3’、tをt1に書替える。但し、λez3=0である。 The weight of the radionuclide Bz3 (σp is not stated) whose mass number has increased by 2 is due to the neutron capture of the isotopes Bz1 (σp>1) and Bz2 (σp=0.8) due to the first neutron irradiation. '=Nbz3+0.8×(Nbz1+Nbz2). When nuclide Bz3 decays from Bz3 (β, λbz3) → Cz3 (β, λcz3) → Dz3 (β, λdz3) → Ez3 (stable), the weights of nuclides Bz3, Cz3, Dz3 and Ez3 after t 1 hour are: Equations (6) to (9) shown in [Equation 2] are rewritten as follows, and the initial weight N 0 is rewritten as the cumulative weight Nbz3' of the nuclide Bz3, and t is rewritten as t1. However, λez3=0.
式(29)~式(32)の右辺で各核種の崩壊定数λを該当する行のD列(λ)のセル名に、初期重量Nbz3’をセル名「H12」に、t1をセル名「I$1」に書替え、等号を含めて書替えたこれらの右辺を夫々I列12~15行セルに書込めば、t1時間後の該当核種の重量の計算結果がこれらのセルに表示される。書込みしたワークシート中のセルの内容の一例を「 」内に示すと、セルI12は「={F12+0.8*(F5+F8)}*exp(-$D12*I$1)」が半角文字で書き込まれている。
放射性核種Cz3(σp>1)は中性子捕獲でCz4mに核種変換され累積重量(H13セル)は0であるが、t1時間後に核種Bz2のβ崩壊でCz2を生じる。式(30)N2cz3(t1)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量Nbz3’をセル名「H12」に、t1をセル名「I$1」に書替え、等号を含めて書替えた式をI13セルに書込めば、t1時間後の核種Cz2の重量の計算結果が該セルに表示される。
On the right side of formulas (29) to (32), the decay constant λ of each nuclide is assigned to the cell name in column D (λ) of the corresponding row, the initial weight Nbz3' is assigned to the cell name "H12", and t1 is assigned to the cell name " If you write these right-hand sides, which have been rewritten as "I$1" and rewritten to include an equal sign, into the cells of column I and
The radionuclide Cz3 (σp>1) is converted into Cz4m by neutron capture and the cumulative weight (H13 cell) is 0, but after t 1 hour Cz2 is generated by β decay of the nuclide Bz2. On the right side of Equation (30) N2cz3(t1), the decay constant λ of each nuclide is assigned to the cell name of the corresponding row in column D (λ), the initial weight Nbz3' is assigned to the cell name "H12", and t1 is assigned to the cell name "I". If the formula is written into cell I13, the calculation result of the weight of the nuclide Cz2 after t1 hour will be displayed in that cell.
放射性核種Dz3の重量は同位体の核種Dz2(σp>1)の中性子捕獲によりNdz2だけ増加し、累積重量はNdz3’=Ndz2+Ndz3となる。核種Dz3がDz3(β,λdz3)→Ez3(安定)に壊変するとき、t1時間後の核種Dz3とEz3の重量は[数2]で示した式(1)、式(2)を以下の様に書替え、初期重量N0を核種Dz3の累積重量Ndz3’、tをt1に書替える。 The weight of the radionuclide Dz3 increases by Ndz2 due to neutron capture of the isotopic nuclide Dz2 (σp>1), and the cumulative weight becomes Ndz3'=Ndz2+Ndz3. When the nuclide Dz3 decays from Dz3 (β, λdz3) → Ez3 (stable), the weights of the nuclide Dz3 and Ez3 after t 1 hour can be calculated using equations (1) and (2) shown in [Equation 2] as follows: The initial weight N0 is rewritten as the cumulative weight Ndz3' of the nuclide Dz3, and t is rewritten as t1.
式(33)~式(34)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量Ndz3’をセル名「H14」に、t1をセル名「I$1」に書替え、等号を含めて書替えたこれらの右辺を夫々J列14~15行セルに書込めば、t1時間後の該当核種の重量の計算結果が該セルに表示される。
安定核種Ez3(σp>1)は中性子捕獲によりEz4に核種変換され、累積重量(H15セル)は0gとなるが、t1時間後、核種Bz3とDz3の壊変で核種Ez3が生じる。式(32)N4ez3の右辺と式(34)N2ez3の右辺で、各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量を夫々の累積重量を示すセル名「H12」と「H14」に、t1をセル名「I$1」に書替え、等号を含めて書替えた両式を夫々I15とJ15セルに書込めば、t1時間後の核種Ez2の重量の計算結果が該セルに表示される。
L列には核種Bz3、Cz3、Dz3、Ez3のt1時間後の核種重量Nbz3t1、Ncz3t1、Ndz3t1、Nez3t1が、I~K列の同じ行のセルの和で求められる。
Nbz3t1=N1bz3(t1)、
Ncz3t1=N2cz3(t1)、
Ndz3t1=N3dz3(t1)+N1dz3(t1)、
Nez3t1=N4ez3(t1)+N2ez3(t1)である。
On the right side of equations (33) to (34), the decay constant λ of each nuclide is set to the cell name of the corresponding row in column D (λ), the initial weight Ndz3' is set to the cell name "H14", and t1 is set to the cell name " If you write these right-hand sides, rewritten as "I$1" and rewritten to include the equal sign, into the cells of column J,
Stable nuclide Ez3 (σp>1) is converted into Ez4 by neutron capture, and the cumulative weight (H15 cell) becomes 0 g, but after t 1 hour, nuclide Ez3 is generated by decay of nuclides Bz3 and Dz3. On the right side of Equation (32) N4ez3 and Equation (34) N2ez3, the decay constant λ of each nuclide is written as the cell name of the corresponding row in column D (λ), and the initial weight is written as the cell name indicating the cumulative weight of each nuclide. H12" and "H14", rewrite t1 with the cell name "I$1", and write both the rewritten formulas including the equal sign into cells I15 and J15, respectively, to calculate the weight of the nuclide Ez2 after t 1 hour. The calculation result is displayed in the cell.
In the L column, the nuclide weights Nbz3t1, Ncz3t1, Ndz3t1, and Nez3t1 of the nuclides Bz3, Cz3, Dz3, and Ez3 one hour after t are determined by the sum of the cells in the same row of the I to K columns.
Nbz3t1=N1bz3(t1),
Ncz3t1=N2cz3(t1),
Ndz3t1=N3dz3(t1)+N1dz3(t1),
Nez3t1=N4ez3(t1)+N2ez3(t1).
質量数が3増えた放射性核種Cz4mの重量は核種Cz3(σp>1)の中性子捕獲でNcz3だけ増加し累積重量はNcz4m’=Ncz3+Ncz4mとなる。核種Cz4mがCz4m(IT,λcz4m)→Cz4(β,λcz4)→Dz4(安定)に壊変するとき、t1時間後の核種Cz4m、Cz4、Dz4の重量は[数2]で示した式(6)~式(8)を以下の様に書替え、初期重量N0を核種Cz4mの累積重量Ncz4m’、tをt1に書替える。但し、λdz4=0である。 The weight of the radionuclide Cz4m, whose mass number has increased by 3, increases by Ncz3 due to neutron capture of the nuclide Cz3 (σp>1), and the cumulative weight becomes Ncz4m'=Ncz3+Ncz4m. When the nuclide Cz4m decays from Cz4m (IT, λcz4m) → Cz4 (β, λcz4) → Dz4 (stable), the weights of the nuclides Cz4m, Cz4, and Dz4 after t 1 hour are expressed by the formula (6 ) ~ Rewrite equation (8) as follows, rewrite the initial weight N 0 as the cumulative weight Ncz4m' of the nuclide Cz4m, and rewrite t as t1. However, λdz4=0.
式(35)~式(37)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量Ncz4m’をセル名「H16」に、tをt1のセル名「I$1」に書替え、等号を含めて書替えたこれらの右辺を夫々I列16~18行セルに書込めば、t1時間後の該当核種の重量の計算結果が該セルに表示される。書込みしたワークシート中のセルの内容の一例を「 」内に示すと、セルI16は「=(F13+F16)*exp(-$D16*I$1)」が半角文字で書き込まれている。
放射性核種Cz4(σp>1)は中性子を捕獲してCz5に核種変換されH17セル(累積重量)は0となるが、t1時間後は放射性核種Cz4mのIT崩壊で核種Cz4を生じる。核種Cz4mの式(36)N2cz4(t1)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量Ncz4m’をセル名「H16」に、t1をセル名「I$1」に書替え、等号を含めて書替えた式をI17セルに書込めば、t1時間後の該当核種の重量の計算結果が該セルに表示される。
On the right side of equations (35) to (37), set the decay constant λ of each nuclide to the cell name of the corresponding row in column D (λ), set the initial weight Ncz4m' to the cell name "H16", and set t to the cell of t1. If you rewrite these right-hand sides with the name "I$1" and include the equal sign into the cells of column I,
The radionuclide Cz4 (σp>1) captures neutrons and is converted into Cz5, and the H17 cell (cumulative weight) becomes 0, but after t1 hour, the IT decay of the radionuclide Cz4m produces the nuclide Cz4. On the right side of formula (36) N2cz4(t1) for the nuclide Cz4m, set the decay constant λ of each nuclide to the cell name of the corresponding row in column D (λ), set the initial weight Ncz4m' to the cell name "H16", and set t1 to the cell. By rewriting the formula with the name "I$1" and including the equal sign into cell I17, the calculation result of the weight of the corresponding nuclide after t1 hour will be displayed in that cell.
安定核種Dz4より核エネルギー準位が高い放射性核種Ez4のε(β+)崩壊で原子番号が1少ない安定核種Dz4に壊変する。核種Ez4の重量は、同位体Ez3(σp>1)の中性子捕獲によりNez3だけ増加し、累積重量はNez4’=Nez3+Nez4となる。核種Ez4がEz4(ε,λez4)→Dz4(安定)に壊変するとき、t1時間後の核種Dz3とEz3の重量は[数2]で示した式(1)、式(2)を以下の様に書替え、初期重量N0を核種Ez4の累積重量Nez4’、tをt1に書替える。 The radionuclide Ez4, which has a higher nuclear energy level than the stable nuclide Dz4, decays into a stable nuclide Dz4 whose atomic number is 1 less by ε(β+) decay. The weight of the nuclide Ez4 increases by Nez3 due to neutron capture of the isotope Ez3 (σp>1), and the cumulative weight becomes Nez4'=Nez3+Nez4. When the nuclide Ez4 decays from Ez4 (ε, λez4) → Dz4 (stable), the weights of the nuclide Dz3 and Ez3 after t 1 hour can be calculated using equations (1) and (2) shown in [Equation 2] as follows: The initial weight N0 is rewritten as the cumulative weight Nez4' of the nuclide Ez4, and t is rewritten as t1.
式(38)、式(39)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量Nez4’をセル名「H19」に、t1をセル名「I$1」に書替え、等号を含めて書替えた両式を夫々J列19~18行セルに書込めば、t1時間後の該当核種の重量の計算結果が該セルに表示される。
L列には、核種Cz4m、Cz4、Dz4、Ez4のt1時間後の核種重量Ncz4mt1、Ncz4t1、Ndz4t1、Nez4t1が、I~K列の同じ行のセルの和で求められる。
Ncz4mt1=N1cz4m(t1)、
Ncz4t1=N2cz4(t1)、
Ndz4t1=N3dz4(t1)+N2dz4(t1)、
Nez4t1=N1ez4(t1)である。
On the right side of equations (38) and (39), the decay constant λ of each nuclide is set to the cell name of the corresponding row in column D (λ), the initial weight Nez4' is set to the cell name "H19", and t1 is set to the cell name " If both equations, rewritten to "I$1" and rewritten to include an equal sign, are written in the cells of column J,
In the L column, the nuclide weights Ncz4mt1, Ncz4t1, Ndz4t1, and Nez4t1 after t 1 hour of the nuclides Cz4m, Cz4, Dz4, and Ez4 are determined by the sum of cells in the same row of columns I to K.
Ncz4mt1=N1cz4m(t1),
Ncz4t1=N2cz4(t1),
Ndz4t1=N3dz4(t1)+N2dz4(t1),
Nez4t1=N1ez4(t1).
質量数が4増えた放射性核種Cz5の重量は同位体Cz4(σp>1)の中性子捕獲によりNcz4だけ増加し、累積重量はNcz5’=Ncz4+Ncz5となる。核種Dz5がβ崩壊するとき、核種Ez5mの核エネルギー準位が核種Dz5より高いと、Dz5はEz5mに壊変されず、Ez5に壊変する。Cz5(β,λcz5)→Dz5(β,λdz5)→Ez5(安定)と壊変するとき、t1時間後の核種Cz5、Dz5、Ez5の重量は[数2]で示した式(6)~式(8)を以下の様に書替え、初期重量N0を核種Cz5の累積重量Ncz5’、tをt1に書替える。但し、λez5=0である。 The weight of the radionuclide Cz5, whose mass number has increased by 4, increases by Ncz4 due to neutron capture of the isotope Cz4 (σp>1), and the cumulative weight becomes Ncz5'=Ncz4+Ncz5. When the nuclide Dz5 undergoes β decay, if the nuclear energy level of the nuclide Ez5m is higher than that of the nuclide Dz5, Dz5 does not decay to Ez5m but decays to Ez5. When decaying as Cz5 (β, λcz5) → Dz5 (β, λdz5) → Ez5 (stable), the weights of the nuclides Cz5, Dz5, and Ez5 after t 1 hour are expressed by equations (6) to Ez5 shown in [Equation 2] Rewrite (8) as follows, rewrite the initial weight N0 as the cumulative weight Ncz5' of the nuclide Cz5, and rewrite t as t1. However, λez5=0.
式(40)~式(42)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に、初期重量Ncz5’をセル名「H20」に、t1をセル名「I$1」に書替え、等号を含めて書替えたこれらの右辺を夫々I列20~21行と23行セルに書込めば、t1時間後の該当核種の重量の計算結果が該セルに表示される。書込みしたワークシート中のセルの内容の一例を「 」内に示すと、セルI20は「=(F17+F20)*exp(-$D20*I$1)」が半角文字で書き込まれている。
放射性核種Dz5(σp>1)は中性子を捕獲してDz6に核種変換され、累積重量(H21セル)は0となるが、t1時間後、放射性核種Cz5のβ崩壊で核種Dz5が生じる。式(41)N2dz5の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に書替え、初期重量Ncz5’をセル名「H20」、t1をセル名「I$1」に書替え、等号と共にこの右辺をI21セルに書込めば、t1時間後の核種Dz5の重量の計算結果が該セルに表示される。
放射性核種Ez5mがEz5m(IT、λez5m)→Ez5(安定)に壊変するとき、t1時間後の核種Ez5mとEz5の重量は[数2]で示した式(6)、式(7)を以下の様に書替え、初期重量N0を核種Ez5mの累積重量Nez5m、tをt1に書替える。
On the right side of equations (40) to (42), the decay constant λ of each nuclide is set to the cell name of the corresponding row in column D (λ), the initial weight Ncz5' is set to the cell name "H20", and t1 is set to the cell name " If we rewrite these right-hand sides, including the equal sign, into the cells of column I, rows 20-21 and 23, respectively, the calculation result of the weight of the corresponding nuclide after t 1 hour will be written in the cells. Is displayed. An example of the contents of cells in the written worksheet is shown in parentheses. In cell I20, "=(F17+F20)*exp(-$D20*I$1)" is written in half-width characters.
Radionuclide Dz5 (σp>1) captures neutrons and is converted into Dz6, and the cumulative weight (H21 cell) becomes 0, but after t1 hour, nuclide Dz5 is generated by β decay of radionuclide Cz5. On the right side of Equation (41) N2dz5, rewrite the decay constant λ of each nuclide to the cell name of the corresponding row in column D (λ), change the initial weight Ncz5' to the cell name "H20", and t1 to the cell name "I$1". If you write this right side together with an equal sign into cell I21, the calculation result of the weight of nuclide Dz5 after t1 hour will be displayed in that cell.
When the radionuclide Ez5m disintegrates from Ez5m (IT, λez5m) → Ez5 (stable), the weight of the nuclide Ez5m and Ez5 after t 1 hour is expressed by formula (6) and formula (7) shown in [Equation 2] as follows. Rewrite the initial weight N0 as the cumulative weight Nez5m of the nuclide Ez5m, and rewrite t as t1.
式(43)、式(44)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に、累積重量Nez5mをセル名「H22」、t1をセル名「I$1」に書替え、等号を含めて両右辺を夫々J列22~23行セルに書込めば、t1時間後の該当核種の重量の計算結果がJ列22~23行セルに表示される。
安定核種Ez5(σp>1)は同位体のEz6に核種変換され累積重量(H23セル)は0gとなるが、t1時間後に核種Cz5とEz5mを親核種として崩壊によりEz5が生じる。式(42)N3ez5(t1)の右辺、式(44)N2ez5(t1)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に書替え、それぞれの累積重量をセル名「H20」と「H22」に、t1をセル名「I$1」に書替え、等号を含めて両右辺を夫々I23セルとJ23セルに書込めば、t1時間後の核種Ez5の重量の計算結果が該セルに表示される。
L列には、核種Cz5、Dz5、Ez5m、Ez5のt1時間後の核種重量Ncz5t1、Ndz5t1、Nez5mt1、Nez5t1が、I~K列の同じ行のセルの和で求められる。
Ncz5t1=N1cz5(t1)、
Ndz5t1=N2dz5(t1)、
Nez5mt1=N1ez5m(t1)、
Nez5t1=N3ez5(t1)+N2ez5(t1)である。
On the right side of equations (43) and (44), the decay constant λ of each nuclide is set as the cell name of the corresponding row in column D (λ), the cumulative weight Nez5m is set as the cell name "H22", and t1 is set as the cell name "I$". 1" and write both right-hand sides, including the equal sign, in the cells of column J,
The stable nuclide Ez5 (σp>1) is converted into the isotope Ez6 and the cumulative weight (H23 cell) becomes 0 g, but after t 1 hour, Ez5 is generated by decay using the nuclides Cz5 and Ez5m as parent nuclides. Rewrite the decay constant λ of each nuclide on the right side of Equation (42) N3ez5(t1) and the right side of Equation (44) N2ez5(t1) to the cell name of the corresponding row in column D (λ), and write the cumulative weight of each into the cell. By rewriting t1 as cell name "I$1" and writing both right-hand sides, including the equal sign, into cell I23 and cell J23, respectively, the weight of nuclide Ez5 after t is 1 hour. The calculation result is displayed in the cell.
In the L column, the nuclide weights Ncz5t1, Ndz5t1, Nez5mt1, and Nez5t1 of the nuclides Cz5, Dz5, Ez5m, and Ez5 after t 1 hour are determined by the sum of cells in the same row of columns I to K.
Ncz5t1=N1cz5(t1),
Ndz5t1=N2dz5(t1),
Nez5mt1=N1ez5m(t1),
Nez5t1=N3ez5(t1)+N2ez5(t1).
質量数が5増えた放射性核種Dz6の重量は、同位体Dz5(σp>1)の中性子捕獲によりNdz5だけ増加し、中性子照射直後の累積重量はNdz6’=Ndz5+Ndz6となる。核種Dz6がDz6(β,λdz6)→Ez6(β,λez6)→Fz6(安定)に壊変するとき、t1時間後の核種Dz6、Ez6、Fz6の重量は[数2]で示した式(6)~式(8)を以下の様に書換え、初期重量N0を核種Dz6の累積重量Ndz6’に、tをt1に書替える。但し、λfz6=0 The weight of the radionuclide Dz6, whose mass number has increased by 5, increases by Ndz5 due to neutron capture of the isotope Dz5 (σp>1), and the cumulative weight immediately after neutron irradiation becomes Ndz6'=Ndz5+Ndz6. When the nuclide Dz6 decays from Dz6 (β, λdz6) → Ez6 (β, λez6) → Fz6 (stable), the weight of the nuclides Dz6, Ez6, and Fz6 after t 1 hour is expressed by the formula (6 ) ~ Rewrite equation (8) as follows, rewriting the initial weight N 0 as the cumulative weight Ndz6' of the nuclide Dz6, and rewriting t as t1. However, λfz6=0
式(45)~式(47)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に、累積重量Ndz6’をセル名「H24」、t1をセル名「I$1」に書替え、等号を含めてこれらの右辺を夫々I列24~26行セルに書込めば、t1時間後の該当核種の重量の計算結果がI列24~26行セルに表示される。書込みしたワークシート中のセルの内容の一例を示すと、セルI24は「=(F21+F24)*exp(-$D24*I$1)」が半角文字で書込まれている。
放射性核種Ez6の重量は、同位体Ez5(σp>1)の中性子捕獲によりNez5だけ増加し、累積重量はNez6’=Nez5+Nez6となる。核種Ez6がEz6(β,λez6)→Fz6(安定)に壊変するとき、t1時間後の核種Ez6とFz6の重量は[数2]で示した式(6)、式(7)を以下の様に書替え、初期重量N0を核種Dz6の累積重量Ndz6’に、tをt1に書替える。但し、λfz6=0である。
On the right side of equations (45) to (47), the decay constant λ of each nuclide is set to the cell name of the corresponding row of column D (λ), the cumulative weight Ndz6' is set to the cell name "H24", and t1 is set to the cell name "I". $1'' and write these right-hand sides, including the equal sign, in the cells of column I,
The weight of the radionuclide Ez6 increases by Nez5 due to neutron capture of the isotope Ez5 (σp>1), and the cumulative weight becomes Nez6'=Nez5+Nez6. When the nuclide Ez6 decays from Ez6 (β, λez6) → Fz6 (stable), the weights of the nuclide Ez6 and Fz6 after t 1 hour can be calculated using equations (6) and (7) shown in [Equation 2] as follows: Rewrite the initial weight N0 as the cumulative weight Ndz6' of the nuclide Dz6, and rewrite t as t1. However, λfz6=0.
式(48)、式(49)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に、累積重量Ndz6’をセル名「H24」に、t1をセル名「I$1」に書替え、等号を含めてこれらの右辺を夫々J列25~26行セルに書込めば、t1時間後の該当核種の重量の計算結果が該セルに表示される。
安定核種Fz6のt1時間後の重量は初期値Nfz6に放射性核種Dz6とEz6のβ崩壊で生じた重量が加わる。式(47)N3fz6(t1)と式(49)N2fz6(t1)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に書替え、等号を含めてこれらの右辺を夫々I26、J26セルに書込めば、t1時間後の核種Fz6の重量の計算結果が該セルに表示される。
放射性核種Gz6はα崩壊で原子番号が2、質量数が4減り核種Ez1に壊変するので、核種Gz6がGz6(α)→Ez2(安定)と壊変するとき、t1時間後の核種Gz6とEz2の重量は[数2]で示した式(6)、式(7)を以下の様に書替え、初期重量N0を核種Gz6の累積重量Ngz6に、tをt1に書替える。
On the right side of equations (48) and (49), the decay constant λ of each nuclide is set to the cell name of the corresponding row in column D (λ), the cumulative weight Ndz6' is set to the cell name "H24", and t1 is set to the cell name "I$1" and write these right sides including the equal sign into the cells of column J,
The weight of the stable nuclide Fz6 after 1 hour t is the initial value Nfz6 plus the weight generated by β decay of the radionuclides Dz6 and Ez6. Rewrite the decay constant λ of each nuclide on the right-hand sides of Equation (47) N3fz6(t1) and Equation (49) N2fz6(t1) to the cell name of the corresponding row in column D (λ), and write these right-hand sides including the equal sign. If these are written in cells I26 and J26, respectively, the calculation result of the weight of the nuclide Fz6 after t1 hour will be displayed in the cells.
The radionuclide Gz6 decreases its atomic number by 2 and mass number by 4 due to alpha decay, and decays into the nuclide Ez1. Therefore, when the nuclide Gz6 decays from Gz6 (α) to Ez2 (stable), the nuclide Gz6 and Ez2 after 1 hour t For the weight, Equations (6) and (7) shown in [Equation 2] are rewritten as follows, and the initial weight N0 is rewritten as the cumulative weight Ngz6 of the nuclide Gz6, and t is rewritten as t1.
式(50)、式(51)の右辺で各核種の崩壊定数λをD列(λ)の該当する行のセル名に、累積重量Ngz6をセル名「H27」、t1のセル名「I$1」に書替え、等号を含めて両右辺を夫々J列27と11行セルに書込めば、t1時間後の該当核種の重量の計算結果が該セルに表示される。
L列には、核種Dz6、Ez6、Fz6、Gz6のt1時間後の重量Ndz6t1、Nez6t1、Nfz6t1、Ngz6t1がI~K列の同じ行のセルの和で求められる。
Ndz6t1=N1dz6(t1)、
Nez6t1=N2ez6(t1)+N1ez6(t1)、
Nfz6t1=Nfz6+N3fz6(t1)+N2fz6(t1)、
Ngz6t1=N1gz6(t1)である。
On the right side of equations (50) and (51), the decay constant λ of each nuclide is set as the cell name of the corresponding row in column D (λ), the cumulative weight Ngz6 is set as the cell name "H27", and the cell name of t1 is set as "I$". 1'' and write both right sides, including the equal sign, into
In the L column, the weights Ndz6t1, Nez6t1, Nfz6t1, and Ngz6t1 of the nuclides Dz6, Ez6, Fz6, and Gz6 one hour after t are determined by the sum of the cells in the same row of the I to K columns.
Ndz6t1=N1dz6(t1),
Nez6t1=N2ez6(t1)+N1ez6(t1),
Nfz6t1=Nfz6+N3fz6(t1)+N2fz6(t1),
Ngz6t1=N1gz6(t1).
中性子照射2回目のt2時間貯蔵後の核種重量を求めるには、表1Aに示していないが、秒単位で表したt2をO列1行セルに記入し、中性子照射1回目の累積重量とt1時間後の核種の重量と合計重量を表示しているH列~L列(H3~L27セル)の数式をコピーし、そのままN列~R列(N3~R27セル)に貼り付ける。数式でt1をt2(数式ではI1をO1)に書替え、数式中の崩壊定数λのD列のセルは固定アドレス(絶対参照)とし、重量に関するセルは相対参照アドレスとする。式(11)~式(51)において、t1がt2に、初期重量に相当するH列の累積重量がN列の累積重量に変更されただけである。貼り付けされた移動後のセルは自動的に変更され、例えばI3セルの数式「=H3*exp(-$D3*I$1)」は「=N3*exp(-$D3*O$1)」と半角文字で書き込まれている。なお$は絶対参照を意味する。t2時間後の核種重量の計算結果はO列~Q列の該当セルに表示される。R列には、A列に記載された全核種のt2時間後の核種重量が、O~Q列の同じ行のセルの和で求められる。 To calculate the weight of the nuclide after 2 -hour storage, t2 of the second neutron irradiation, write t2 expressed in seconds in the cell of column O, row 1, and compare it with the cumulative weight of the first neutron irradiation. t Copy the formulas in columns H to L (cells H3 to L27) that display the weight and total weight of nuclides after 1 hour, and paste them as they are in columns N to R (cells N3 to R27). In the formula, t1 is rewritten as t2 (I1 is O1 in the formula), the cell in column D of the decay constant λ in the formula is set as a fixed address (absolute reference), and the cell related to weight is set as a relative reference address. In formulas (11) to (51), t1 is simply changed to t2, and the cumulative weight of column H, which corresponds to the initial weight, is changed to the cumulative weight of column N. The pasted and moved cells are automatically changed, for example, the formula "=H3*exp(-$D3*I$1)" in cell I3 becomes "=N3*exp(-$D3*O$1)"" is written in half-width characters. Note that $ means absolute reference. The calculation results of the nuclide weight after 2 hours t are displayed in the corresponding cells in columns O to Q. In column R, the nuclide weight after 2 hours t of all the nuclides listed in column A is determined by the sum of the cells in the same row of columns O to Q.
表1Bに中性子照射Ni回目と照射後の一定期間ts時間放置後の核種の重量変化を 求めた計算例を示す。この表は中性子照射Ni回の例を示し、列名(AA~AN)は仮称で実際の表では異なる。AF1セルに秒単位で表したti時間を記入し、AC列に表示された中性子照射Ni回目直前の核種の合計重量をE列のσpの値を考慮して、AD列に表示された中性子照射条件でAE列の各セルにコピーする。⇒は同一行でAC列のセルの重量をそのままAE列のセルにコピーすることを示す。σpが1以上の核種のAE列の累積重量は0gで、σpが1以下の場合はこの中性子捕獲確率を考慮した累積重量となる。また、σpが非記載の核種で<>で表示されたセルは、質量数の小さい同じ元素の中性子捕獲により核種変換されて増加した重量が加算される(例えばAE9、AE14セルなど)。中性子照射Ni回目のti時間後の核種重量を求めるには、表1Aの中性子照射1回目のI列~K列の各セルに書込んだ書替え後の式(11)~式(51)を、そのままAF列~AH列の各セルにコピーし、数式中の変数の初期重量N0をAE列の累積重量該当セル名、tをセル名「AF$1」に書替えれば、ti時間後の核種重量の計算結果がAF~AH列の該当セルに表示される。例えば、I列3~7行セルに表示された式(11)~式(15) とAF列3~7行セルに表示された式(11)~式(15)の違いは変数tがt1からtiへ、初期重量N0がNaz1mからNaz1mti-1に変更されただけである。AI列には全核種のti時間後の核種重量が、AF~AH列の同じ行のセルの和で求められる。但し、σpが非記載の安定核種は、AE列の累積重量が加算される。例を挙げると18行と26行の安定核種Dz4とFz6は、前者はAF18とAG18の和にAE18が、後者はAF26とAG26の和にAE26が加算される。この表では可溶物槽と気体槽の核種重量変化を求める場合を述べているが、難溶物槽の核種重量変化を求める場合はtiをti’、 tsをts’、NiをNjに置き換える。
Table 1B shows a calculation example for determining the weight change of the nuclide after the Nith neutron irradiation and after being left for a certain period of time ts after irradiation. This table shows an example of Ni times of neutron irradiation, and the column names (AA to AN) are tentative names and will differ in the actual table. Enter the t i time expressed in seconds in the AF1 cell, and calculate the total weight of the nuclide immediately before the Nith neutron irradiation displayed in the AC column, taking into account the value of σp in the E column, and calculate the neutrons displayed in the AD column. Copy the irradiation conditions to each cell in the AE column. ⇒ indicates that the weight of the cell in the AC column is copied as is to the cell in the AE column in the same row. The cumulative weight of the AE array of nuclides with σp of 1 or more is 0 g, and when σp is 1 or less, the cumulative weight takes into account this neutron capture probability. In addition, for cells where σp is an unspecified nuclide and are displayed in <>, the weight increased by nuclide conversion due to neutron capture of the same element with a small mass number is added (for example, AE9, AE14 cells, etc.). To determine the nuclide weight after t i hours of the Nith neutron irradiation, use formulas (11) to (51) after rewriting written in each cell in columns I to K for the first neutron irradiation in Table 1A. , copy it as it is to each cell in the AF column to AH column, and replace the initial weight N 0 of the variable in the formula with the cell name corresponding to the cumulative weight in the AE column, and t with the cell name "AF$1", then t i time The subsequent nuclide weight calculation results are displayed in the corresponding cells in columns AF to AH. For example, the difference between formulas (11) to (15) displayed in cells 3rd to 7th rows of column I and formulas (11) to (15) displayed in cells 3rd to 7th rows of AF column is that the variable t is to ti, the initial weight N 0 is only changed from Naz1m to Naz1mti-1. In column AI, the weight of all nuclides after time t i is determined by the sum of cells in the same row of columns AF to AH. However, for stable nuclides whose σp is not listed, the cumulative weight of the AE column is added. For example, for the stable nuclides Dz4 and Fz6 in
中性子照射Ni回目のti時間後に放射性核種の崩壊エネルギーによる貯蔵物の温度と放射能を低減するためts時間放置する。ts時間放置後の核種重量を求めるには、AJ1セルに秒単位で表したts時間を記入し、表1Aの中性子照射1回目のI~K列の各セルに書込んだ書替え後の式(11)~式(51)のコピーしたセルをAJ~AL列の各セルに移動し、数式中の初期重量N0をAI列(重量小計)の該当セル名、t1をセル名「AJ$1」に書替えれば、ts時間後の核種重量の計算結果がAJ~AL列の該当セルに表示される。I列3~7行セルに表示された式(11)~式(15) とAJ列3~7行セルに表示された式(11)~式(15)の違いは、列名と変数t1がts、累積重量Naz1mがNaz1mtiに変更されただけである。AN列に核種のts時間後の重量が、AJ~AL列の同じ行のセルの和で求められる。但し、安定核種はAE列の累積重量も加算され、Cz1、Dz2、Ez3、Dz4、Ez5、Fz6が該当する。また中性子を照射しないので、AE列の累積重量が0gとなる核種は、この核種を親核種として娘核種への崩壊系列が未記載のため、この系列の遂次方程式が必要となる。
5行目の核種Bz1がBz1(β,λbz1)→Cz1m(IT,λcz1m)→Cz(安定)に壊変するときts時間後のこれらの核種重量はAM列を設け、AM列5~7行セルに[数2]で示した式(6)~式(8)を以下の様に書替え、初期重量N0を核種Bz1の重量小計Nbz1tiに、tをtsに書替える。但し、λcz1=0である。
After time t i of the Nith neutron irradiation, the stored material is left for t s to reduce the temperature and radioactivity of the stored material due to the decay energy of the radionuclide. To calculate the weight of the nuclide after leaving it for t s , write the t s time expressed in seconds in cell AJ1, and then write the t s time in seconds after the rewrite written in each cell in columns I to K of the first neutron irradiation in Table 1A. Move the copied cells of formulas (11) to (51) to each cell in columns AJ to AL, change the initial weight N0 in the formula to the corresponding cell name in the AI column (weight subtotal), and change t1 to the cell name "AJ If it is rewritten as "$1", the calculation result of the nuclide weight after ts time will be displayed in the corresponding cell in columns AJ to AL. The difference between formulas (11) to (15) displayed in cells 3rd to 7th rows of column I and formulas (11) to (15) displayed in cells 3rd to 7th rows of column AJ is the column name and variable t1. The only difference is that the cumulative weight Naz1m has been changed to Naz1mti. The weight of the nuclide in column AN after time t s is determined by the sum of the cells in the same row of columns AJ to AL. However, for stable nuclides, the cumulative weight of the AE row is also added, and Cz1, Dz2, Ez3, Dz4, Ez5, and Fz6 correspond. Furthermore, since neutrons are not irradiated, for a nuclide whose cumulative weight in the AE array is 0 g, the decay sequence into daughter nuclides using this nuclide as a parent nuclide is not described, so a sequential equation for this series is required.
When the nuclide Bz1 in the 5th row decays from Bz1 (β, λbz1) → Cz1m (IT, λcz1m) → Cz (stable), the weight of these nuclides after ts time is determined by the AM column and the cells in the 5th to 7th rows of the AM column. Rewrite equations (6) to (8) shown in [Equation 2] as follows, and replace the initial weight N 0 with the weight subtotal Nbz1ti of the nuclide Bz1 and t with ts. However, λcz1=0.
式(52)~式(54)の右辺で各核種の崩壊定数λを該当する行のD列(λ)のセル名に、重量小計Nbz1tiのセル名「AI5」に、tsをセル名「AJ$1」に書替え、等号を含めてこれらの右辺を夫々AM列5~7行セルに書込めば、ts時間後の該当核種の重量の計算結果がAM列5~7行セルに表示される。
13行目の放射性核種Cz3がCz3(β,λcz3)→Dz3(β,λdz3)→Ez3(安定)に壊変するとき、ts時間後のこれらの核種重量を求めるには、AM列13~15行セルに[数2]で示した式(6)~式(8)を以下の様に書替え、初期重量N0を核種Cz3の重量小計Ncz3tiに、tをtsに書替える。但し、λez3=0
On the right side of formulas (52) to (54), the decay constant λ of each nuclide is assigned to the cell name in column D (λ) of the corresponding row, the weight subtotal Nbz1ti is assigned the cell name "AI5", and ts is assigned the cell name "AJ". $1'' and write these right-hand sides, including the equal sign, in the cells of rows 5 to 7 of column AM, respectively, and the calculation result of the weight of the corresponding nuclide after t s time will be displayed in the cells of column 5 to row 7 of AM. be done.
When the radionuclide Cz3 in the 13th row decays from Cz3 (β, λcz3) → Dz3 (β, λdz3) → Ez3 (stable), to find the weight of these nuclides after t s time, use
式(55)~式(57)の右辺で各核種の崩壊定数λを該当する行のD列λのセル名に、重量小計Ncz3tiのセル名「AI13」セルに、tsをセル名「AJ$1」に書替え、等号を含めてこれらの式を夫々AM列13~15行セルに書込めば、ts時間後の該当核種の重量の計算結果がAM列13~15行セルに表示される。
同様に17行目の放射性核種Cz4(β,λdz4)→Ez4(安定)に壊変するとき、ts時間後のこれらの核種重量を求めるには、AM列17~18行セルに[数2]で示した式(6)、式(7)を以下の様に書替え初期重量N0を核種Cz4の重量小計Ncz4tiに、tをtsに書替える。但し、λdz4=0である。
On the right side of formulas (55) to (57), put the decay constant λ of each nuclide in the cell name of column D λ of the corresponding row, put ts in the cell name "AI13" of the weight subtotal Ncz3ti, and put ts in the cell name "AJ$". 1" and write these formulas including the equal sign in the cells of
Similarly, when the radionuclide in the 17th row decays from Cz4 (β, λdz4) to Ez4 (stable), to find the weight of these nuclides after t s time, enter [Equation 2] in the AM column 17th to 18th row cells. Rewrite equations (6) and (7) as shown below, and rewrite the initial weight N 0 as the weight subtotal Ncz4ti of the nuclide Cz4, and t as ts. However, λdz4=0.
式(58)、式(59)の右辺で各核種の崩壊定数λを該当する行のD列(λ)のセル名に、重量小計Ncz4tiのセル名「AI17」セルに、tsをセル名「AJ$1」に書替え、等号を含めて両式を夫々AM列17、18行セルに書込めば、ts時間後の該当核種の重量の計算結果がAM列17、18行セルに表示される。
同様に21行目の放射性核種Dz5(β,λdz5)→Ez5(安定)では、ts時間後のこれらの核種重量を求めるには、AM列21と23行セルに[数2]で示した式(6)、式(7)を以下の様に書替え、初期重量N0を核種Dz5の重量小計Ndz5tiに、tをtsに書替える。但し、λez5=0
On the right side of formula (58) and formula (59), put the decay constant λ of each nuclide in the cell name of column D (λ) of the corresponding row, put the cell name "AI17" of the weight subtotal Ncz4ti, and put ts in the cell name "AJ$1" and write both formulas, including the equal sign, in the cells of the 17th and 18th rows of the AM column, respectively, and the calculation result of the weight of the corresponding nuclide after t s time will be displayed in the cells of the 17th and 18th rows of the AM column. be done.
Similarly, for the radionuclide Dz5 (β, λdz5) → Ez5 (stable) in the 21st row, to find the weight of these nuclides after t s , use the formula shown in [Equation 2] in the
式(60)、式(61)の右辺で各核種の崩壊定数λを該当する行のD列(λ)のセル名に、重量小計Ndz5tiのセル名「AI21」に、tをtsのセル名「AJ$1」に書替え、等号を含めて両式を夫々AM21と23セルに書込めば、ts時間後の該当核種の重量の計算結果がAM列21と23行セルに表示される。
表1BのAC、AE、AI、AN列の最下行のセルには、これらの列の核種重量の合計をΣNti-1、ΣNti*、ΣNti、ΣNtsと表示するが、表1AのΣNt0、ΣNt0*、ΣNt1、ΣNt1*を含め、これらの数値が全て等しいことを確認すれば、質量保存則に元づき、計算式の正しさを反映するものである。
On the right side of equations (60) and (61), put the decay constant λ of each nuclide in the cell name of column D (λ) of the corresponding row, put the cell name "AI21" in the weight subtotal Ndz5ti, and put t in the cell name of ts. If you rewrite it as "AJ$1" and write both formulas including the equal sign into cells AM21 and 23, respectively, the calculation result of the weight of the corresponding nuclide after t s time will be displayed in the cells of
The cells in the bottom row of columns AC, AE, AI, and AN in Table 1B display the sum of the nuclide weights in these columns as ΣNti-1, ΣNti * , ΣNti, ΣNts, whereas ΣNt0, ΣNt0 * in Table 1A , ΣNt1, ΣNt1 * , and confirming that all these values are equal reflects the correctness of the calculation formula based on the law of conservation of mass.
本発明に係る実施例として、東京電力福島第一原子力発電所の原子炉2号機の使用済み核燃料で発生したFP879種の重量推移のデータを使用した。〔データ引用元3;末尾に記載〕なお、上記データには非記載の14核種と中性子照射で新たに発生する18核種を計算対象に追加している。使用済み核燃料取出しから一定期間t0時間は数十日から数十年間であり、本実施例では180日とする。可溶物槽、難溶物槽、気体槽では、使用済み核燃料取出し180日後の重量が1E-40g以上の核種を同一質量数毎に、原子番号順に核種、崩壊形式、半減期τ、崩壊定数λ、中性子捕獲確率σp、180日後の重量を該当セルに、下記する貯蔵期間を該当セルに書込み、中性子照射回数に相当する分だけ核種重量を表示するために列を増やし、本発明を適用した場合の核種重量の経時変化を表1A、表1Bを元にExcelワークシートを作成した。ワークシートをA4用紙の表にすると120枚以上になるので割愛し、各槽毎の核種について計算した結果を表記する。半減期の単位は秒:s、分:m、時間:h、日:d、年:yで表す。
中性子捕獲確率σpは中性子捕獲断面積σnと核断面積σとの比で表され、中性子捕獲断面積σn(0.353meV)は日本原子力研究開発機構 核データ研究グループのJENDL-5のσn(0.0253eV)を元に計算で求めた。なお、σnが中性子の速度に反比例しない核種は熱中性子の値以上としてある。核種のσpが1以上であれば中性子を捕獲して核種変換され、その重量は0gとなり、質量数が増えた核種は中性子を捕獲した核種の重量となる。さらに捕獲した核種のσpが1以上であれば、質量数は2増えた核種に変換され、変換された核種のσpが1以上であれば、さらに中性子を捕獲して核種変換され質量数は3増える。一例を挙げると、バリウム同位体の0.353meVのσpは、Ba132が53.7、Ba133mが18.1、Ba133が18.1、Ba134が9.89、Ba135が38であり、それぞれ4~1個の中性子を捕獲して56Ba136mに核種変換される。
本発明では、発生した高レベル放射性廃棄物を硝酸に可溶な可溶物と難溶・不溶な難溶物とに分離貯蔵し、前者では壊変で発生した安定な難溶物には中性子を照射せず、後者では壊変で発生した安定な可溶物には中性子を照射しないので、安定な核種の回収量が槽分離をしない場合より大幅に増加する。また、高レベル放射性廃棄物のガラス固化体にする重量を最小にするため、中性子照射回数を3~16回と、その後の貯蔵期間を3日~1年をパラメータとして計算した結果、照射間隔を30日とした。照射回数は槽毎により異なる。
As an example according to the present invention, data on weight changes of 879 types of FP generated from spent nuclear fuel in reactor No. 2 of Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant was used. [
The neutron capture probability σp is expressed as the ratio of the neutron capture cross section σn and the nuclear cross section σ, and the neutron capture cross section σn (0.353 meV) is calculated from the JENDL-5 σn (0 .0253eV). Note that nuclides whose σn is not inversely proportional to the neutron speed are defined as having a thermal neutron value or higher. If σp of the nuclide is 1 or more, the nuclide is converted by capturing neutrons, and its weight becomes 0 g, and the nuclide whose mass number has increased becomes the weight of the nuclide that captured the neutron. Furthermore, if σp of the captured nuclide is 1 or more, it is converted to a nuclide whose mass number has increased by 2, and if σp of the converted nuclide is 1 or more, it is further captured and converted into a nuclide, and its mass number is 3. increase. For example, the σp of barium isotopes at 0.353 meV is 53.7 for Ba132, 18.1 for Ba133m, 18.1 for Ba133, 9.89 for Ba134, and 38 for Ba135, which are 4 to 1, respectively. neutrons are captured and converted into 56Ba136m.
In the present invention, generated high-level radioactive waste is separated and stored into nitric acid-soluble soluble materials and poorly soluble/insoluble materials, and in the former case, neutrons are applied to the stable poorly soluble materials generated by decay. In the latter case, stable soluble materials generated by decay are not irradiated with neutrons, so the amount of stable nuclides recovered is significantly greater than in the case without tank separation. In addition, in order to minimize the weight of high-level radioactive waste to be vitrified, we calculated the number of neutron irradiations from 3 to 16 times and the subsequent storage period from 3 days to 1 year. It was set as 30 days. The number of irradiations varies depending on the tank.
(可溶物槽中の核種)
表1A、表1Bを可溶物槽中の核種に適用する場合は、難溶性核種と気体核種のt0日後の重量(F列)は0gであり、中性子照射後に可溶性核種の壊変で生じた難溶性核種と気体核種には中性子を照射しないので、これらの核種の該当する行のG、M、・・AD、
・・・列のセルには⇒を表示し、中性子照射後の累積重量は照射前の合計重量となる。但し、中性子照射2回目のみσpが1以上のヨウ素は除外する。同一質量数で可溶性核種を含まない崩壊系列の場合は初期重量が0gなので、この質量数の核種は表から除外する(例えば32Ge73m~32Ge75、40Zr93~46Pd107と50Sn118~51Sb122)。計算対象は2He4から72Hf178までで、先頭の核種は中性子照射で可溶性核種3Li6が中性子捕獲により3Li8(β,0.84s)→4Be8(α,8.2×10-17s)→2He4(安定)と壊変して気体2He4が生じ、末尾の核種はJAEAデータに記載された可溶性の安定核種70Yb172が、非記載の同位体70Yb173~176のσpが1以上のため、1回目の中性子照射で核種変換されて生じた放射性核種70Yb177(β,1.91h)のβ崩壊でσpが1以上の可溶性核種71Lu177(β/IT,160.4d)を生じ、該核種が2回目の照射で核種変換されて生じた71Lu178m(β,23.1m)のβ崩壊で難溶性の核種72Hf178m(IT,23.1m)→72Hf178(安定)を生じることによる。質量数が172以上の核種は中性子照射により新たに発生した核種である。可溶物槽で発生した気体核種と難溶性核種の重量は可溶物槽の表中に記載している。
(Nuclide in the solubles tank)
When applying Tables 1A and 1B to the nuclides in the solubles tank, the weights of poorly soluble nuclides and gas nuclides after t0 day (F column) are 0 g, and the Soluble nuclides and gas nuclides are not irradiated with neutrons, so G, M, ... AD, in the rows corresponding to these nuclides
...A ⇒ is displayed in the cell of the column, and the cumulative weight after neutron irradiation is the total weight before irradiation. However, iodine with σp of 1 or more is excluded only in the second neutron irradiation. In the case of a decay series with the same mass number and no soluble nuclides, the initial weight is 0 g, so nuclides with this mass number are excluded from the table (for example, 32Ge73m to 32Ge75, 40Zr93 to 46Pd107 and 50Sn118 to 51Sb122). The calculation targets are from 2He4 to 72Hf178, and the first nuclide is neutron irradiation, and the soluble nuclide 3Li6 is neutron captured, resulting in 3Li8 (β, 0.84 s) → 4Be8 (α, 8.2×10 -17 s) → 2He4 (stable) The nuclide at the end is a soluble stable nuclide 70Yb172 described in the JAEA data, but the undescribed isotope 70Yb173-176 has a nuclide conversion of 70Yb173 to 176 because σp is 1 or more, so the first neutron irradiation causes nuclide conversion. The resulting radionuclide 70Yb177 (β, 1.91h) undergoes β decay to produce a soluble nuclide 71Lu177 (β/IT, 160.4d) with σp of 1 or more, which is converted by the second irradiation. This is because the β decay of the generated 71Lu178m (β, 23.1m) generates a poorly soluble nuclide 72Hf178m (IT, 23.1m) → 72Hf178 (stable). A nuclide with a mass number of 172 or more is a nuclide newly generated by neutron irradiation. The weights of gaseous nuclides and poorly soluble nuclides generated in the solubles tank are listed in the table for the solubles tank.
可溶物槽の可溶性核種にのみ中性子をNi回照射し、ti時間貯蔵後、発生した気体核種を気体槽に回収し、発生した難溶性核種は固液分離装置などで難溶物槽Aに回収するのをNi回繰り返し、可溶性核種以外には中性子を照射しない。本実施例では照射回数Niを可溶物槽のガラス固化体重量が最小となる9回とし、貯蔵期間tiは、t1~t8は30日、t9は310日(核燃料取出しから通算して2年に相当)とし、tsは4年とする。
可溶物槽にはPUREX法などの再処理後の硝酸溶液中に含まれる可溶性核種を溶液ごと使用しても、いったん脱硝して新たに濃度4モル/Lの硝酸溶液約300Lを加えて、硝酸に可溶な核種を硝酸化物あるいは酸化物としてもよく、この硝酸に可溶な核種を含む硝酸溶液を可溶物槽に回収する。なお、放射性崩壊による発熱で溶液温度が上昇するが、ヨウ素を液相から気相にするため必要なら加熱するため、硝酸溶液が蒸発するので、濃度4モル/Lの硝酸溶液は中性子照射後に約300Lに保つ必要がある。
表1A、表1Bを元に可溶物槽の可溶性核種にのみ中性子を前述の条件で照射した時、壊変で変化した核種重量の変化をExcelワークシートで計算した。可溶物槽の可溶性核種は241種(放射性核種が164種、安定核種が77種)、核燃料取出し180日後の重量は可溶性核種が1097.3kg(放射性核種が397.0kg、安定核種が700.3kg)である。これらの重量は全て核種単体の重量である。
Only the soluble nuclides in the soluble tank are irradiated with neutrons Ni times, and after storage for t i hours, the generated gas nuclides are collected in the gas tank, and the generated poorly soluble nuclides are transferred to the poorly soluble tank A using a solid-liquid separator, etc. This process is repeated Ni times, and neutrons are not irradiated to anything other than soluble nuclides. In this example, the number of irradiations Ni is set to 9 times to minimize the vitrification weight of the solubles tank, and the storage period t i is 30 days for t 1 to t 8 and 310 days for t 9 (total from nuclear fuel removal). (equivalent to 2 years), and ts is 4 years.
Even if the soluble nuclide contained in the nitric acid solution after reprocessing such as the PUREX method is used as a solution in the solubles tank, once denitrified, about 300 L of a new nitric acid solution with a concentration of 4 mol/L is added, The nuclide soluble in nitric acid may be a nitrate or oxide, and the nitric acid solution containing the nuclide soluble in nitric acid is collected in a solubles tank. Note that the solution temperature rises due to heat generation due to radioactive decay, but the nitric acid solution evaporates due to heating if necessary to change the iodine from the liquid phase to the gas phase, so a nitric acid solution with a concentration of 4 mol/L will have a It is necessary to keep it at 300L.
Based on Tables 1A and 1B, when only the soluble nuclides in the soluble tank were irradiated with neutrons under the conditions described above, the change in the weight of the nuclides due to decay was calculated using an Excel worksheet. There are 241 types of soluble nuclides in the solubles tank (164 types of radionuclides, 77 types of stable nuclides), and the weight 180 days after nuclear fuel removal is 1097.3 kg of soluble nuclides (397.0 kg of radionuclides, 700.0 kg of stable nuclides). 3 kg). All of these weights are the weights of individual nuclides.
可溶物槽の放射性核種について、使用済み核燃料取出し180日後の重量と、未対策で6年間放置した場合と、本発明を適用(可溶性核種にのみ中性子を前述の条件で照射)した場合の6年後の重量〔単位g〕と放射能〔単位Bq〕について計算した結果を表2A-1に示す。未対策放置6年後の放射性固体核種164種で重量371.5kgは、対策により核種数16種で重量24.6kg(可溶性核種が14種で24.6kg、難溶性核種が2種で9.6μg、気体核種は無し)に減少する。これらの重量は全て核種単体の重量であり、酸化物、硝酸化物等の化合物の重量ではない。対策により放射能は可溶性核種が278.8PBq(Pはペタ)に減少し、難溶性核種が20.8PBqに増加する。
非記載の放射性の可溶性核種150種のうち105核種は半減期が10日以下と短く対策6年後には0gとなり、半減期が50日以上の長い可溶性核種45種のσpは1以上で、中性子照射で核種変換され重量は3.56E-73gとなる。これは、9回目の中性子照射で重量76.25kgの64Gd158(安定)が核種変換されて生じた核種64Gd161が、Gd161(β,3.7m)→65Tb161(β,6.9d)→66Dy161(安定)の壊変過程で生じた放射性核種65Tb161が6年後に3.56E-73g残存することによる。核燃料取り出し180日後に存在した397.0kgの可溶性の放射性核種重量は対策により、6年後に24.6kgに減少する。
Regarding the radionuclides in the solubles tank, the weight after 180 days after removing the spent nuclear fuel, the case where it was left untreated for 6 years, and the case where the present invention was applied (irradiating only soluble nuclides with neutrons under the above conditions) Table 2A-1 shows the results of calculations regarding the weight [unit: g] and radioactivity [unit: Bq] after 2000 years. The weight of 164 types of radioactive solid nuclides after 6 years without countermeasures is 371.5 kg, but with countermeasures, the weight of 16 types of nuclides and 24.6 kg (24.6 kg with 14 types of soluble nuclides, and 9.5 kg with 2 types of poorly soluble nuclides). 6 μg, no gaseous nuclides). All of these weights are the weights of individual nuclides, not the weights of compounds such as oxides and nitrates. As a result of the countermeasures, the radioactivity of soluble nuclides will be reduced to 278.8PBq (P is peta) and that of poorly soluble nuclides will increase to 20.8PBq.
Of the 150 unlisted radioactive soluble nuclides, 105 have a short half-life of 10 days or less, and will be 0 g after 6 years of countermeasures, and 45 soluble nuclides with a long half-life of 50 days or more have a σp of 1 or more, and are neutron The nuclide is converted by irradiation and its weight becomes 3.56E-73g. This is because the nuclide 64Gd161 produced by the nuclide transmutation of 64Gd158 (stable) weighing 76.25 kg in the ninth neutron irradiation is Gd161 (β, 3.7m) → 65Tb161 (β, 6.9d) → 66Dy161 (stable). ) 3.56E-73g of radionuclide 65Tb161 generated during the decay process remains after 6 years. The weight of 397.0 kg of soluble radionuclides that existed 180 days after nuclear fuel removal will be reduced to 24.6 kg six years later due to countermeasures.
可溶物槽の放射性核種で対策後に重量が1E-40g以上の核種について、未対策で6年間放置した場合と本発明を適用した場合の重量と放射能の変化について計算した結果を表2A-2に示す。表では可溶物槽で生じた放射性核種の崩壊形式と半減期、中性子捕獲確率σp(0.353meV)、核種重量〔単位g〕と放射能〔単位Bq〕を示す。なお、重量は核種単体の重量であり、酸化物、硝酸化物等の化合物の重量ではない。 For radionuclides in the solubles tank that weigh more than 1E-40g after countermeasures, the results of calculations regarding changes in weight and radioactivity when left for 6 years without countermeasures and when the present invention is applied are shown in Table 2A- Shown in 2. The table shows the decay type and half-life of the radionuclide generated in the solubles tank, the probability of neutron capture σp (0.353 meV), the weight of the nuclide [unit: g], and the radioactivity [unit: Bq]. Note that the weight is the weight of a single nuclide, not the weight of compounds such as oxides and nitrates.
可溶物槽で生じる放射性の可溶性核種で、放射能が0.1Bq以下となるのは48Cd116、55Cs134/135、58Ce141/142、60Nd144の6種で、対策により放射能が低下した核種は、38Sr90、39Y90、48Cd116、55Cs134/135、58Ce141/142、60Nd144、62Sm151、63Eu154の10種であり、放射能が増加した核種は39Y91、63Eu155、71Lu177m/177の4種である。
対策で放射能(重量)が減少した10核種は、38Sr90と48Cd116はσpが夫々0.09と0.54で親核種は無く、両者の半減期は長く中性子照射で一部は核種変換されずに残るが重量は照射回数と共に減少し、未対策放置6年後より減少する。残りの39Y90、55Cs134/135、58Ce141/142、60Nd144、62Sm151、63Eu154はσpが1より大きく8回の中性子照射で核種変換され重量は0gとなるが、これらの核種は9回目の中性子照射で核種変換されて生じた放射性親核種38Sr90(β)、55Cs134m(IT)/Cs135m(IT)、56Ba141(β)、57La142(β)、59Pr144m(IT)→Pr144(β)、60Nd151(β)→61Pm151(β)、63Eu154m(IT)のIT、β崩壊で生じ、それぞれ未対策放置6年後の重量より少ない。尚、39Y90は半減期の長い親核種38Sr90のβ崩壊が消滅するまで残存する。
対策で放射能(重量)が増加した4核種39Y91、63Eu155、71Lu177m/177は、σpが1より大きく8回目の中性子照射で核種変換され重量は0gとなるが、この4種は9回目の中性子照射で核種変換された放射性の親核種38Sr91(β)/39Y91m(IT)、62Sm155(β)、70Yb177m(IT)→Yb177(β)のIT、β崩壊で生じ、それぞれ未対策放置6年後の重量より多い。なお、71Lu177m/177は、70Yb172/173の中性子捕獲で生じた親核種71Yb177が71Yb177m(IT)→Yb177(β)→71Lu177m(β/IT)→Lu177(β)→72Hf177m(IT)→Hf177(安定)と壊変して新しく発生した核種である。
可溶物槽で生じる放射性の難溶性核種は50Sn117mと72Hf177mで両者の親核種はσpが0で、前者は48Cd117m(β)、後者は70Yb177m(IT)であり、壊変で生じた娘核種の重量は両者共に増加しているが、0.1Bq到達時間は3.4年と6年である。72Hf177mは、親核種の71Lu177m/177が可溶性核種として6年後に分離され、半減期が1.09秒と短いので約1.2分後には、その放射能は0.1Bq以下となりHf177(安定)に壊変する。尚、50Sn117m、72Hf177m共に難溶物槽では発生しない。
可溶物槽で生じる放射性の気体核種は35Br83と36Kr83m、53I132/133、54Xe133m/133の6種である。これらの核種は以下の3通りの壊変で生じ、34Se83m(β,70s)→35Br83(β,2.37h)→36Kr83m(IT,1.83h)→Kr83(安定)、52Te132(β,3.2d)→53I132(β,2.3h)→54Xe132(安定)、52Te133m(β/IT,55.4m)→Te133(β,12.5m)→53I133(β,20.8h)→54Xe133m(IT,2.19d)→Xe133(β,5.25d)→55Cs133(安定)であり、この6種の放射性気体は中性子照射回数と共に漸次減少し、照射9回目以降に生じる放射性気体核種の各々の放射能は0.1Bq以下で無視できる。
Among the radioactive soluble nuclides generated in the solubles tank, six types have radioactivity of 0.1 Bq or less: 48Cd116, 55Cs134/135, 58Ce141/142, and 60Nd144, and the nuclides whose radioactivity has decreased due to countermeasures are 38Sr90. The nuclides with increased radioactivity are 39Y91, 63Eu155, and 71Lu177m/177.
Among the 10 nuclides whose radioactivity (weight) has decreased due to countermeasures, 38Sr90 and 48Cd116 have σp of 0.09 and 0.54, respectively, and have no parent nuclides, and both have long half-lives and some are not converted by neutron irradiation. remains, but the weight decreases with the number of irradiations, and it decreases more than after 6 years if left untreated. The remaining 39Y90, 55Cs134/135, 58Ce141/142, 60Nd144, 62Sm151, and 63Eu154 have σp greater than 1 and are converted into nuclides after 8 neutron irradiations, and their weight becomes 0 g, but these nuclides are converted into nuclides by the 9th neutron irradiation. Converted radioactive parent nuclides 38Sr90 (β), 55Cs134m (IT)/Cs135m (IT), 56Ba141 (β), 57La142 (β), 59Pr144m (IT) → Pr144 (β), 60Nd151 (β) → 61Pm151 ( β), 63Eu154m (IT) produced by IT and β decay, each weighing less than 6 years after being left untreated. Note that 39Y90 remains until β decay of the parent nuclide 38Sr90, which has a long half-life, disappears.
The four nuclides whose radioactivity (weight) increased as a result of the countermeasures, 39Y91, 63Eu155, and 71Lu177m/177, have σp greater than 1 and undergo nuclide conversion at the 8th neutron irradiation, and their weight becomes 0 g. Produced by IT and β decay of radioactive parent nuclides 38Sr91(β)/39Y91m(IT), 62Sm155(β), 70Yb177m(IT) → Yb177(β) converted by irradiation, after 6 years of leaving untreated, respectively. More than the weight. In addition, in 71Lu177m/177, the parent nuclide 71Yb177 generated by neutron capture of 70Yb172/173 is ) is a new nuclide generated by decay.
The radioactive poorly soluble nuclides produced in the solubles tank are 50Sn117m and 72Hf177m, and the parent nuclides of both have σp of 0, the former is 48Cd117m (β), the latter is 70Yb177m (IT), and the weight of the daughter nuclide produced by decay is Although both are increasing, the time taken to reach 0.1 Bq is 3.4 years and 6 years. 72Hf177m is a parent nuclide, 71Lu177m/177, which was separated as a soluble nuclide after 6 years, and has a short half-life of 1.09 seconds, so after about 1.2 minutes, its radioactivity will be less than 0.1 Bq and Hf177 (stable) decays into Incidentally, neither 50Sn117m nor 72Hf177m is generated in the refractory tank.
Six types of radioactive gas nuclides are generated in the solubles tank: 35Br83, 36Kr83m, 53I132/133, and 54Xe133m/133. These nuclides are generated by the following three types of decay: 34Se83m (β, 70s) → 35Br83 (β, 2.37h) → 36Kr83m (IT, 1.83h) → Kr83 (stable), 52Te132 (β, 3.2d) ) → 53I132 (β, 2.3h) → 54Xe132 (stable), 52Te133m (β/IT, 55.4m) → Te133 (β, 12.5m) → 53I133 (β, 20.8h) → 54Xe133m (IT, 2 .19d) -> It can be ignored if it is less than 0.1 Bq.
可溶物槽の安定核種で180日後の重量と、未対策放置6年後と本発明を適用した場合の重量変化を計算した結果を表2B-1に示す。未対策放置6年後の安定核種138種;重量817.9kg(可溶性核種が77種;715.6kg、難溶性核種が44種;102.3kg、気体核種が17種;0g)は、対策により核種数は42種(可溶性核種が24種、難溶性核種が11種、気体核種が7種)に減少し、重量は1072.7kg(可溶性核種が432.5kg、難溶性核種が634.2kg、気体核種が6.1kg)に増加する。但し、これらの核種の重量は全て核種単体の重量である。なお、可溶物槽で発生する難溶性核種11種は難溶物槽では発生しないので未対策放置6年後の重量を記載し、気体の放置6年後の7核種の重量は気体槽に記載した。
非記載の可溶性で安定な53核種は全てσpが1以上で、中性子照射により核種の重量は7.7E-50gとなる。これは8回目の中性子照射で0gとなる68Er166の親核種66Dy166(β,3.4d)のσpが0.91で中性子照射で中性子を捕獲できずに残存した重量に、9回目の照射でDy165の核種変換で生じた重量が加算されて生じた7.7E-50gのDy166(β,3.4d)が67Ho166(β,26.8h)→68Er166(安定)と壊変し、6年後にEr166が7.7E-50g残存することによる。安定核種の中性子照射で核種変換されて放射性核種が生じた場合でも、その崩壊過程で生じた娘核種で半減期の長い放射性核種があっても、該核種のσpが1より大きく、次の中性子照射で安定な核種に核種変換される。
Table 2B-1 shows the results of calculating the weight of stable nuclides in the solubles tank after 180 days, and the weight changes after 6 years of being left untreated and when the present invention is applied. 138 stable nuclides; weight 817.9 kg (77 soluble nuclides; 715.6 kg; 44 poorly soluble nuclides; 102.3 kg; 17 gaseous nuclides; 0 g) after 6 years without countermeasures. The number of nuclides decreased to 42 (24 soluble nuclides, 11 poorly soluble nuclides, 7 gaseous nuclides), and the weight was 1072.7 kg (432.5 kg soluble nuclides, 634.2 kg low soluble nuclides, gaseous nuclide increases to 6.1 kg). However, all the weights of these nuclides are the weights of individual nuclides. In addition, the 11 types of poorly soluble nuclides generated in the solubles tank do not occur in the solubles tank, so the weight after 6 years of being left untreated is recorded, and the weight of 7 nuclides after 6 years of leaving the gas in the gas tank is Described.
All 53 soluble and stable nuclides not listed have a σp of 1 or more, and the weight of the nuclides becomes 7.7E-50g by neutron irradiation. This is because the σp of the parent nuclide 66Dy166 (β, 3.4d) of 68Er166, which becomes 0g at the 8th neutron irradiation, is 0.91, and the remaining weight of 68Er166 without capturing neutrons due to neutron irradiation becomes 0g at the 9th neutron irradiation. 7.7E-50g of Dy166 (β, 3.4d) produced by adding the weight generated by nuclide conversion decays as 67Ho166 (β, 26.8h) → 68Er166 (stable), and after 6 years, Er166 becomes 7.7E-50g remains. Even if a stable nuclide is transmuted by neutron irradiation and a radionuclide is generated, even if there is a daughter nuclide produced in the decay process that has a long half-life, the σp of the nuclide is greater than 1, and the next neutron It is converted into a stable nuclide by irradiation.
可溶物槽の安定核種で、対策後の重量が1E-40g以上の可溶性核種24種と、中性子照射で発生した難溶性核種11種と気体核種7種について、中性子捕獲確率σp、核燃料取出し180日後と6年後の未対策放置後と対策後の核種重量〔単位g〕を表2B-2に示す。重量は核種単体の値を示す。
可溶性の安定核種でσp(値を[]内に示す)が1以下の核種は3種で、30Zn70[0.93]と34Se82[0.4]は中性子照射で核種変換されずに一部が残存し、前者は照射2回目以降に親核種が発生せず、後者は親核種が無いため、両者は9回の中性子照射で一部が中性子捕獲で核種変換され、その重量は漸次減少し未対策放置6年後より減少する。38Sr88[0.05]は中性子照射で核種変換されずに残存する重量が多く、照射1、2回目で37Rb86/87の核種変換で生じた親核種37Rb88(β,17.8m)のβ崩壊で生じた重量が加わり、その後も中性子照射で核種変換されず残り、その重量は漸次減少するが未対策放置6年後より多くなる。
残りの可溶性安定核種21種は全てσpが1以上で8回目の中性子照射で核種変換され重量は0gとなり、9回目の照射でσpが0か1以下の放射性の親核種に核種変換され、その後の壊変で生じた安定な可溶性核種の重量は未対策放置6年後と比べ大小が生じる。対策で重量が減少するのは31Ga71、56Ba134~138、59Pr141、60Nd142/145、62Sm152/154、63Eu151、64Gd154の13種で、重量が増加するのは64Gd155/158、66Dy161/162、67Ho165、68Er167、70Yb172/173の8種で、70Yb173は中性子照射により、新たに増えた核種である。質量数が155以上の安定核種の重量は対策により顕著に多くなる。
可溶物槽で発生する難溶性核種には中性子を照射しないので親核種となる可溶性の放射性核種のσpの値が影響する。32Ge72の親核種は30Zn72(β)[0.095
]で、中性子照射3回目で核種変換された親核種が0gとなり未対策放置6年後の重量より減少する。40Zr90の親核種は38Sr90[0.09]と39Y90m[0]で
、毎回の中性子照射で核種変換されずに残存し38Sr90(β)→39Y90(β)→40Zr90(安定)の壊変で生じた重量に、2回まで中性子照射でY89[11.1]の核種変換で生じた39Y90m(IT/β)→Y90(β)→40Zr90の壊変で生じた重量が加わり、未対策放置6年後より増加する。他の安定な難溶性核種9種は放射性の親核種のσpが0であり、中性子照射2回目で親核種が0gとなる3種では、31Ga70を親核種とする32Ge70の重量は未対策放置6年後より多くなり、47Ag108/110を親核種とする46Pd108/110の重量は未対策放置6年後より少なくなる。残り6種は、中性子照射9回まで親核種が発生する32Ge73と40Zr91/92は未対策放置6年後の重量より減少し、50Sn117は未対策放置6年後の重量より増加し、72Hf177/178は中性子照射により新たに発生した核種である。
可溶物槽で発生する安定気体は7種で、2He4は中性子照射で新たに発生した核種で気体槽では発生せず可溶物槽のみで発生する。これは3Li6/7の中性子捕獲で核種変換された3Li8(β,0.84s)を親核種として4Be8(α,<1fs)のα崩壊で2He4(安定)が生じることによる。54Xe132の親核種52Te132(β)[0.93]は中性子照射により核種変換され重量は減少し、53I132(β,2.3h)→54Xe132(安定)のβ崩壊で生じる重量が加わるが未対策放置6年後の重量より減少する。残り5種35Br79/81、36Kr83/86、54Xe134は、親核種のσpは0で、夫々の親核種34Se79m(IT/β)、Se81m(IT/β
)、Se83m(β)、37Rb86m(IT)→Rb86(β/ec)、55Cs134m(IT)の壊変で生じ、35Br81を除く4核種は未対策放置6年後の重量より減少する。
Of the stable nuclides in the solubles tank, 24 soluble nuclides with a weight of 1E-40g or more after countermeasures, 11 poorly soluble nuclides and 7 gaseous nuclides generated by neutron irradiation, neutron capture probability σp, nuclear fuel removal 180 Table 2B-2 shows the nuclide weight [unit: g] after 1 day and 6 years after being left untreated and after taking measures. Weight indicates the value of a single nuclide.
There are three soluble stable nuclides with σp (values shown in brackets) of 1 or less, and 30Zn70 [0.93] and 34Se82 [0.4] are partially converted by neutron irradiation without undergoing nuclide conversion. The former does not generate a parent nuclide after the second irradiation, and the latter does not have a parent nuclide, so in both cases, after nine neutron irradiations, part of the nuclide is converted by neutron capture, and its weight gradually decreases and the remaining nuclide remains. It will decrease from 6 years after no countermeasures are taken. 38Sr88[0.05] has a large weight that remains without being converted by neutron irradiation, and in the first and second irradiation, it is due to the β decay of the parent nuclide 37Rb88 (β, 17.8m) generated by the nuclide conversion of 37Rb86/87. The resulting weight is added, and the nuclide remains untransformed by neutron irradiation, and the weight gradually decreases, but it becomes larger than it would be after 6 years if no countermeasures were taken.
The remaining 21 types of soluble stable nuclides all have σp of 1 or more and are converted into nuclide by the 8th neutron irradiation and weigh 0g, and by the 9th irradiation are converted into radioactive parent nuclides with σp of 0 or 1 or less, and then The weight of stable soluble nuclides produced by decay will be larger or smaller than that after 6 years without countermeasures. There are 13 types whose weight will decrease as a result of countermeasures: 31Ga71, 56Ba134-138, 59Pr141, 60Nd142/145, 62Sm152/154, 63Eu151, and 64Gd154, and weight will increase in 13 types: 64Gd155/158, 66Dy161/162, 67Ho165, and 68E. r167, There are eight types of 70Yb172/173, and 70Yb173 is a new nuclide that has increased due to neutron irradiation. The weight of stable nuclides with a mass number of 155 or more increases significantly due to countermeasures.
Since the hardly soluble nuclides generated in the soluble matter tank are not irradiated with neutrons, the value of σp of the soluble radionuclide that serves as the parent nuclide is affected. The parent nuclide of 32Ge72 is 30Zn72(β) [0.095
], the parent nuclide converted by the third neutron irradiation becomes 0g, which is less than the weight after 6 years of neglect. The parent nuclides of 40Zr90 are 38Sr90[0.09] and 39Y90m[0], which remain without undergoing nuclide conversion after each neutron irradiation, and the weight generated by the decay of 38Sr90(β) → 39Y90(β) → 40Zr90 (stable) In addition, the weight generated by the decay of 39Y90m (IT/β) → Y90 (β) → 40Zr90, which occurred due to the nuclide transformation of Y89[11.1] by neutron irradiation up to two times, is added, and the weight increases from 6 years after being left untreated. do. For the other nine stable poorly soluble nuclides, the radioactive parent nuclide σp is 0, and for the three types whose parent nuclide is 0 g after the second neutron irradiation, the weight of 32Ge70 with 31Ga70 as the parent nuclide is left untreated6 The weight of 46Pd108/110, whose parent nuclide is 47Ag108/110, will be lower than that after 6 years of being left without countermeasures. Of the remaining six species, 32Ge73 and 40Zr91/92, whose parent nuclides are generated after nine neutron irradiations, decreased in weight after 6 years of being left untreated, and 50Sn117 increased in weight after 6 years of being left untreated, and 72Hf177/178 is a new nuclide generated by neutron irradiation.
Seven types of stable gases are generated in the solubles tank, and 2He4 is a nuclide newly generated by neutron irradiation and is not generated in the gas tank but only in the solubles tank. This is because 2He4 (stable) is generated by α decay of 4Be8 (α, <1 fs) using 3Li8 (β, 0.84s), which has been converted by neutron capture of 3Li6/7, as the parent nuclide. The parent nuclide of 54Xe132, 52Te132(β) [0.93], undergoes nuclide conversion by neutron irradiation and its weight decreases, and the weight generated by β decay of 53I132(β, 2.3h) → 54Xe132 (stable) is added, but it is left unaddressed. The weight will be lower than after 6 years. The remaining five species, 35Br79/81, 36Kr83/86, and 54Xe134, have parent nuclides σp of 0, and parent nuclides 34Se79m (IT/β) and Se81m (IT/β), respectively.
), Se83m (β), 37Rb86m (IT)→Rb86 (β/ec), and 55Cs134m (IT), and the weight of the four nuclides except 35Br81 decreases compared to the weight after 6 years if left untreated.
6年以降に安定核種で重量が増加する核種があり、〔〕内に示した半減期の長い放射性親核種の壊変によるもので、可溶性核種では62Sm154と64Gd154〔63Eu154m/154〕、Gd155〔Eu155〕、難溶性核種では40Zr90〔38Sr90〕、40Zr91〔39Y91〕、50Sn117〔Sn117m〕、72Hf177〔71Lu177m/177〕が該当する。これらの親核種の可溶性の放射性核種はガラス固化するが、難溶性で安定核種の親核種となる放射性の可溶性核種ストロンチウム38Sr90とルテチウム71Lu177は再利用放射性核種として回収する。(後述) There are some stable nuclides whose weight increases after 6 years, and this is due to the decay of the radioactive parent nuclide with a long half-life shown in [ ]. Among the soluble nuclides, there are 62Sm154, 64Gd154 [63Eu154m/154], and Gd155 [Eu155]. , and poorly soluble nuclides include 40Zr90 [38Sr90], 40Zr91 [39Y91], 50Sn117 [Sn117m], and 72Hf177 [71Lu177m/177]. The soluble radionuclides of these parent nuclides are vitrified, but the radioactive soluble nuclides strontium 38Sr90 and lutetium 71Lu177, which are the parent nuclides of poorly soluble and stable nuclides, are recovered as reusable radionuclides. (described later)
(難溶物槽中の核種)
表1A、1Bを難溶物槽中の核種に適用する場合には、可溶性核種と気体核種のt0日後の重量(F列)は0gであり、中性子照射後に難溶性核種の放射性崩壊で発生した可溶性核種と気体核種には中性子を照射しないので、これらの核種の該当する行のG、M、・
・、AD、・・・のセルには⇒を表示し、中性子照射後の累積重量は照射直前の合計重量となる。貯蔵時間tjはt1’、t2’、・・・とする。同一質量数で可溶性核種と気体核種だけの崩壊系列の場合は初期重量が0gなので、この質量数の核種は表から除外する(
34Se78~39Y90と54Xe127以降)。計算対象の核種は4Be9から54Xe128までで、難溶性核種51Sb128のβ崩壊で生じた可溶性核種52Te128が、2β崩壊で安定な気体核種54Xe128を生じることによる。難溶物槽で発生した気体核種及び可溶性核種の重量は難溶物槽の表中に示す。
(Nuclide in the refractory tank)
When applying Tables 1A and 1B to the nuclides in the sparingly soluble substance tank, the weight of soluble nuclides and gaseous nuclides after t day 0 (column F) is 0 g, which is generated by radioactive decay of the sparingly soluble nuclides after neutron irradiation. Since neutrons are not irradiated to soluble nuclides and gaseous nuclides, G, M, ・ in the rows corresponding to these nuclides are
⇒ is displayed in the cells of ・, AD, . . . , and the cumulative weight after neutron irradiation is the total weight immediately before irradiation. The storage times tj are assumed to be t1 ', t2 ', . In the case of a decay series with only soluble nuclides and gas nuclides with the same mass number, the initial weight is 0 g, so nuclides with this mass number are excluded from the table (
34Se78 to 39Y90 and 54Xe127 and later). The nuclides to be calculated are from 4Be9 to 54Xe128, and the soluble nuclide 52Te128 generated by β decay of the hardly soluble nuclide 51Sb128 produces a stable gas nuclide 54Xe128 by 2β decay. The weights of gaseous nuclides and soluble nuclides generated in the refractory tank are shown in the table for the refractory tank.
難溶物槽の難溶性核種にのみNj回の中性子を照射し、中性子照射後、難溶物槽に規定濃度の硝酸溶液(本実施例では4モル/L)を加えtj時間貯蔵後、発生した可溶性核種を濾過装置などで可溶物槽Bに回収し、次の中性子照射後に可溶物槽Bの可溶性核種と硝酸溶液を難溶物槽に還流させるのをNj回繰り返す。
本実施例では照射回数Njを難溶物槽のガラス固化体重量を最小にする13回とし、貯蔵期間tjは、t1~t12は30日、t13は190日(核燃料取出しから通算で2年に相当)とし、ts’は4年とする。なお、発生した可溶性核種を溶かすのに必要な濃度4モル/Lの硝酸溶液は中性子照射毎に5L、30L、70L、75L、・・・と増加し、最大で約100Lである。
表1A、表1Bを元に難溶物槽の難溶性核種にのみ中性子を前述の条件で照射した時、壊変で変化した核種重量の変化をExcelワークシートで計算した。難溶物槽の難溶性固体は133種(放射性核種が86種、安定核種が47種)、核燃料取出し180日後の重量は難溶性核種が763.4kg(放射性核種が235.9kg、安定核種が527.4kg)である。これらの重量は全て核種単体の重量である。
Only the refractory nuclides in the refractory tank are irradiated with Nj neutrons, and after neutron irradiation, a nitric acid solution of a specified concentration (4 mol/L in this example) is added to the refractory tank and stored for tj hours. The generated soluble nuclides are collected into the soluble tank B using a filter or the like, and after the next neutron irradiation, the soluble nuclides and nitric acid solution in the soluble tank B are returned to the refractory tank, which is repeated Nj times.
In this example, the number of irradiations Nj is set to 13 to minimize the vitrified weight of the refractory tank, and the storage period tj is 30 days from t1 to t12 , and 190 days at t13 (total from nuclear fuel removal). (equivalent to 2 years), and t s ' is 4 years. Note that the nitric acid solution with a concentration of 4 mol/L required to dissolve the generated soluble nuclides increases to 5 L, 30 L, 70 L, 75 L, . . . for each neutron irradiation, and reaches a maximum of about 100 L.
Based on Tables 1A and 1B, when only the poorly soluble nuclides in the poorly soluble tank were irradiated with neutrons under the conditions described above, the change in the weight of the nuclides due to decay was calculated using an Excel worksheet. There are 133 types of poorly soluble solids in the poorly soluble solids tank (86 types of radionuclides, 47 types of stable nuclides), and the weight 180 days after nuclear fuel removal is 763.4 kg of poorly soluble nuclides (235.9 kg of radionuclides, 47 types of stable nuclides). 527.4 kg). All of these weights are the weights of individual nuclides.
難溶物槽の難溶性核種について、使用済み核燃料取出し180日後の重量と、未対策で6年間放置した場合と、本発明を適用(可溶性核種にのみ中性子を前述の条件で照射)した場合の6年後の重量〔単位g〕と放射能〔単位Bq〕の計算結果を表3A-1に示す。
未対策放置6年後の難溶性の放射性固体核種数90種で重量234.0kg(可溶物槽で発生しない可溶性で放射性核種4種の未対策6年後の重量6.16kgを含む)は、対策により核種数12種で重量31.3kg(可溶性核種が4種で58.3g、難溶性核種が8種で31.2kg、気体核種は無し)に減少する。これらの重量は全て核種単体の重量であり、酸化物、硝酸化物等の化合物の重量ではない。対策により放射能は可用性核種が2.36TBq(Tはテラ)、難溶性核種が0.15TBqに減少する。
非記載の放射性難溶性核種は78種で、そのうち半減期が50日以上の長い難溶性核種15種は全てσpが1以上であり、40Zr93/95、41Nb92、42Mo100、43Tc98、44Ru106、45Rh102、50Sn119m/121m/123の10種は親核種が無く、41Nb93m/95は親核種が難溶性の放射性核種40Zr93/Zr95でσpが1より大きいので、これら12核種は1回目の中性子照射で核種変換され0gとなる。親核種のσpが0であるが半減期の長い娘核種41Nb94、43Tc99、49In115の3種は、2回目の中性子照射により核種変換で親核種は発生せず、娘核種の重量は0gとなる。
半減期の短い45Rh106と50Sn121の2種は、これらの親核種が半減期の長い44Ru106(β,371.8d)と50Sn121m(IT/β,43.9y)であるが、σpは夫々1.12と8.52で1回目の中性子照射で親核種は核種変換され0gとなり、その娘核種の重量は0gとなる。
残りの61種は半減期が短く6年後には重量は0gとなり、核燃料取り出し180日後に存在した168.8kgの難溶性の放射性核種は対策により0gとなる。
難溶物槽で放射性の難溶物を親核種として発生するする気体は安定な53I127だけで、放射性気体の発生は無い。同一質量数Zの崩壊系列で難溶性核種の壊変で生じる娘核種は可溶性核種だけで気体核種は直接発生しない。親核種が難溶性核種で気体核種が発生する崩壊系列は2種類あり、32Ge→33As→34Se→35Br→36Krと、49In→50Sn→51Sb→52Te→53I→54Xeで、放射性核種には核異性体を含む場合があり、質量数は前者が79~88で、後者は127~134である。前者はGe79~88の半減期が30秒以下で核燃料取り出し180日後には存在せず、気体の臭素、クリプトンは発生しない。後者では中性子照射により51Sn127mと52Sb128が発生するが127系列では壊変が53I127(安定)で終わり、128系列では52Te128(2β,7.7E+24y)→54Xe128(安定)で壊変が終わり放射性の気体は発生しない。また質量数が129以上は難溶性核種の発生が無く、この崩壊系列で気体核種が発生するのは質量数が127と128の場合しかない。
Regarding the hardly soluble nuclides in the hardly soluble matter tank, the weight after 180 days after removal of the spent nuclear fuel, when left untreated for 6 years, and when the present invention is applied (neutrons are irradiated only to soluble nuclides under the above conditions). Table 3A-1 shows the calculation results of weight [unit: g] and radioactivity [unit: Bq] after 6 years.
The weight of 90 types of poorly soluble radioactive solid nuclides after 6 years of unmeasured storage is 234.0 kg (including the weight of 6.16 kg of 4 soluble radionuclides that are not generated in the solubles tank after 6 years of unmeasured storage). As a result of countermeasures, the weight is reduced to 31.3 kg for 12 nuclides (58.3 g for 4 soluble nuclides, 31.2 kg for 8 poorly soluble nuclides, and no gas nuclides). All of these weights are the weights of individual nuclides, not the weights of compounds such as oxides and nitrates. As a result of the measures taken, radioactivity will be reduced to 2.36 TBq (T is T) for available nuclides and 0.15 TBq for poorly soluble nuclides.
There are 78 undescribed radioactive poorly soluble nuclides, of which 15 poorly soluble nuclides with long half-lives of 50 days or more all have σp of 1 or more, including 40Zr93/95, 41Nb92, 42Mo100, 43Tc98, 44Ru106, 45Rh102, 50Sn119m. 10 types of /121m/123 have no parent nuclide, and the parent nuclide of 41Nb93m/95 is a poorly soluble radionuclide 40Zr93/Zr95 with σp greater than 1, so these 12 nuclides undergo nuclide conversion in the first neutron irradiation and 0g becomes. For three types of daughter nuclides, 41Nb94, 43Tc99, and 49In115, whose parent nuclide has a σp of 0 but has a long half-life, the parent nuclide is not generated through nuclide conversion by the second neutron irradiation, and the weight of the daughter nuclide becomes 0 g.
The parent nuclides of 45Rh106 and 50Sn121, which have short half-lives, are 44Ru106 (β, 371.8d) and 50Sn121m (IT/β, 43.9y), which have long half-lives, but each has a σp of 1.12. At 8.52, the parent nuclide undergoes nuclide conversion and becomes 0 g with the first neutron irradiation, and the weight of its daughter nuclide becomes 0 g.
The remaining 61 species have short half-lives and will weigh 0g after 6 years, and 168.8kg of poorly soluble radionuclides that were present 180 days after the nuclear fuel was removed will weigh 0g due to countermeasures.
The gas generated in the poorly soluble substance tank using radioactive hardly soluble substances as parent nuclide is only stable 53I127, and no radioactive gas is generated. Daughter nuclides produced by the decay of poorly soluble nuclides in the decay series of the same mass number Z are only soluble nuclides, and gaseous nuclides are not directly generated. There are two types of decay sequences in which the parent nuclide is a poorly soluble nuclide and gaseous nuclides are generated: 32Ge → 33As → 34Se → 35Br → 36Kr and 49In → 50Sn → 51Sb → 52Te → 53I → 54Xe, and the radionuclides have nuclear isomers. The former has a mass number of 79 to 88, and the latter has a mass number of 127 to 134. The former has a half-life of Ge79-88 of less than 30 seconds and will not exist 180 days after the nuclear fuel is removed, and gaseous bromine and krypton will not be generated. In the latter, 51Sn127m and 52Sb128 are generated by neutron irradiation, but in the 127 series, decay ends at 53I127 (stable), and in the 128 series, decay ends at 52Te128 (2β, 7.7E + 24y) → 54Xe128 (stable), and no radioactive gas is generated. . Further, when the mass number is 129 or more, hardly soluble nuclides are not generated, and gaseous nuclides are generated only when the mass numbers are 127 and 128 in this decay series.
難溶物槽の放射性核種で対策後に重量が1E-40g以上の核種について、未対策で6年間放置した場合と本発明を適用した場合の重量と放射能の変化について計算した結果を表3A-2に示す。表では難溶物槽で生じた放射性核種の崩壊形式と半減期、中性子捕獲確率σp(0.353meV)、核種重量〔単位g〕と放射能〔単位Bq〕を示す。なお、重量は核種単体の重量であり、酸化物、硝酸化物等の化合物の重量ではない。 Table 3A shows the results of calculating the changes in weight and radioactivity for radionuclides in the refractory tank weighing 1E-40g or more after countermeasures, when they are left for 6 years without countermeasures, and when the present invention is applied. Shown in 2. The table shows the decay type and half-life of the radionuclide generated in the refractory tank, the probability of neutron capture σp (0.353 meV), the weight of the nuclide [unit: g], and the radioactivity [unit: Bq]. Note that the weight is the weight of a single nuclide, not the weight of compounds such as oxides and nitrates.
難溶物槽で生じる放射性の難溶性核種で、対策6年後に放射能が0.1Bq以下となるのは40Zr96と50Sn126の2種で、放射能が0.1Bq以上となるのは4Be10、46Pd107、51Sb124/125/126m/126の6種である。対策で放射能が低下した核種は40Zr96、46Pd107、50Sn126、51Sb124/125/126m/126の7種で、放射能が増加した核種は4Be10である。
対策で放射能(重量)が減少した7核種では、40Zr96と50Sn126はσpが0.183と0.62で親核種は無く、両者の半減期は長く中性子照射で一部は核種変換されずに残り重量は照射回数と共に減少する。46Pd107、51Sb124とSb125はσpが1より大きく13回の中性子照射で核種変換され重量は0gとなり、13回目の中性子照射で核種変換された放射性親核種44Ru107(β)、51Sb124m(IT/β)と50Sn125m(β)の壊変で生じるが、夫々放置6年後の重量より少ない。また、51Sb126m/126は親核種51Sn126(β)のσpが0.62で半減期が長いので、13回の中性子照射で核種変換されずに残存し、親核種のβ崩壊が消滅するまで残存するが、それぞれ放置6年後の重量より少ない。
対策で重量が増加した核種は1種で、σpが極めて小さい4Be10の親核種は無く、13回の中性子照射でσpが0.338の安定な4Be9が核種変換されて生じた放射性の核種4Be10(β)の重量は放置6年後の重量より微増する。
難溶物槽で6年後に残存する放射性の可溶性核種はテルルだけで、52Te125mとTe128およびTe127m/127の4種で、前2者の親核種はσpが0の50Sn125m(β)と51Sb128(β)であり、13回の中性子照射で核種変換された親核種のβ崩壊で生じ、重量は照射回数と共に漸次減少する。6年後には難溶物槽に親核種と分離されるので52Te125mの0.1Bq到達時間は3.1年で、安定なTe125に壊変する。また、52Te128は長寿命の核種で対策により未対策放置6年後の重量より減少する。後2者の親核種はσpが0の50Sn127mで、13回の中性子照射でσpが0.62で長寿命の50Sn126の核種変換で生じた50Sn127m(β,4.13m)が51Sb127(β,3.85d)→52Te127m(IT/β,106.1d)→Te127(β,9.35h)→53I127(安定)と壊変し約19年後に安定な気体I127に変化する。なお、テルルは可溶物槽では発生しない。
難溶物槽で生じる放射性気体核種は無い。
Among the radioactive and poorly soluble nuclides generated in the poorly soluble substance tank, there are two types, 40Zr96 and 50Sn126, whose radioactivity will be 0.1Bq or less after 6 years of countermeasures, and 4Be10 and 46Pd107 whose radioactivity will be 0.1Bq or more. , 51Sb124/125/126m/126. The nuclides whose radioactivity decreased as a result of the measures were 40Zr96, 46Pd107, 50Sn126, and 51Sb124/125/126m/126, and the nuclide whose radioactivity increased was 4Be10.
Among the seven nuclides whose radioactivity (weight) has been reduced by countermeasures, 40Zr96 and 50Sn126 have σp of 0.183 and 0.62, and have no parent nuclide, and both have long half-lives, and some of them are not converted by neutron irradiation. The remaining weight decreases with the number of irradiations. 46Pd107, 51Sb124 and Sb125 have σp greater than 1 and undergo nuclide conversion after 13 neutron irradiations, resulting in a weight of 0g. This occurs due to the decay of 50Sn125m(β), but each weight is smaller than the weight after 6 years of storage. In addition, 51Sb126m/126 has a long half-life with the parent nuclide 51Sn126(β) having a σp of 0.62, so it remains unconverted after 13 neutron irradiations and remains until β decay of the parent nuclide disappears. However, each weight is less than the weight after 6 years of neglect.
There was only one type of nuclide whose weight increased as a result of the countermeasures, and there was no parent nuclide of 4Be10 with an extremely small σp, but a radioactive nuclide, 4Be10 ( The weight of β) increases slightly from the weight after 6 years of storage.
The only radioactive soluble nuclide that remains after 6 years in the refractory tank is tellurium, and there are four types: 52Te125m, Te128, and Te127m/127. ), which is produced by β-decay of the parent nuclide that has undergone nuclide conversion after 13 neutron irradiations, and its weight gradually decreases with the number of irradiations. After 6 years, it will be separated from the parent nuclide in the refractory tank, so the time it takes for 52Te125m to reach 0.1Bq is 3.1 years, and it decays into stable Te125. In addition, 52Te128 is a long-lived nuclide, and if measures are taken, the weight will be reduced compared to 6 years after being left untreated. The parent nuclide of the latter two is 50Sn127m with a σp of 0, and 50Sn127m (β, 4.13m) produced by nuclide conversion of 50Sn126, which has a long-lived 50Sn126 with a σp of 0.62 after 13 neutron irradiations, becomes 51Sb127 (β, 3 .85d) → 52Te127m (IT/β, 106.1d) → Te127 (β, 9.35h) → 53I127 (stable) and changes into stable gas I127 after about 19 years. Note that tellurium is not generated in the solubles tank.
There are no radioactive gas nuclides generated in the refractory tank.
難溶物槽の安定核種で180日後の重量と、未対策で6年間放置した場合と本発明を適用した場合の重量変化を計算した結果を表3B-1に示す。未対策6年放置後の安定固体核種141種;重量450.9kg(可溶性核種が77種;7.57kg、難溶性核種が47種;443.4kg、気体核種が17種;0g)は、対策により核種数は24種(可溶性核種が12種、難溶性核種が11種、気体核種が1種)に減少し、重量は732.1kg(可溶性核種が718.1kg、難溶性核種が12.6kg、気体核種が1.41kg)に増加する。但し、これらの核種の重量は全て核種単体の重量である。
非記載の難溶性安定核種36核種は全てσpが1以上で、中性子照射により核種変換されて重量は0gとなり、核種変換された親核種となる放射性核種が長寿命でもσpが1より大きい難溶性核種となり、中性子照射により核種変換され0gとなる。例を挙げると、安定な49In113は1回目の中性子照射で核種変換され、49In115m(IT/β,4.5h)→In115(β,4.4E+14y)→50Sn115(安定)と壊変し、σpが1より大きいIn115は2回目の中性子照射でIn116mに核種変換され0gとなり、49In116m(β,54.3m)→50Sn116(安定)と壊変しIn113は0gとなり、安定な50Sn116の重量が増えるが、該核種もσpが0.9で中性子照射の照射回数と共に重量は減少する。また、安定な46Pd108は中性子照射で核種変換され46Pd108+1n→Pd109m(IT)→Pd109(β,13.6h)→47Ag109m(IT,39.8s)→Ag109(安定)と壊変し、Pd108は0gとなり安定な可溶性核種の47Ag109が増加する。
Table 3B-1 shows the weight of stable nuclides in the refractory tank after 180 days, and the calculated weight changes when left untreated for 6 years and when the present invention is applied. 141 stable solid nuclides; weight 450.9 kg (77 soluble nuclides; 7.57 kg; 47 poorly soluble nuclides; 443.4 kg; 17 gaseous nuclides; 0 g) after being left untreated for 6 years. The number of nuclides was reduced to 24 (12 soluble nuclides, 11 poorly soluble nuclides, and 1 gas nuclide), and the weight was 732.1 kg (718.1 kg soluble nuclides, 12.6 kg poorly soluble nuclides). , gaseous nuclide increases to 1.41 kg). However, all the weights of these nuclides are the weights of individual nuclides.
All 36 undescribed poorly soluble stable nuclides have σp of 1 or more, and their weight becomes 0 g after nuclide conversion by neutron irradiation. Even if the converted parent nuclide radionuclide has a long life, it is poorly soluble with σp of more than 1. It becomes a nuclide and undergoes nuclide conversion by neutron irradiation to become 0g. For example, stable 49In113 undergoes nuclide transmutation by the first neutron irradiation and decays as 49In115m (IT/β, 4.5h) → In115 (β, 4.4E+14y) → 50Sn115 (stable), and σp is 1. The larger In115 is converted into In116m by the second neutron irradiation and becomes 0g, and decays as 49In116m (β, 54.3m) → 50Sn116 (stable), and In113 becomes 0g, and the weight of stable 50Sn116 increases, but the nuclide Also, when σp is 0.9, the weight decreases with the number of neutron irradiations. In addition, stable 46Pd108 undergoes nuclide transmutation by neutron irradiation and decays as 46Pd108+1n → Pd109m (IT) → Pd109 (β, 13.6h) → 47Ag109m (IT, 39.8s) → Ag109 (stable), and Pd108 becomes 0g and is stable. 47Ag109, a soluble nuclide, increases.
対策後の重量が1E-40g以上の安定な難溶性核種11種と、中性子照射で発生した安定な可溶性核種12種と気体核種1種について中性子捕獲確率σp(0.353meV)、核燃料取出し180日後と、未対策放置6年後と対策後の核種重量〔単位g〕を表3B-2に示す。
難溶性の安定核種は11種全てが対策6年後の重量は未対策放置6年後の重量より減少している。σpが1以下の核種は7種(σpの値を[]内に示す。)で、そのうち4種、4Be9[0.34]、40Zr90[0.09]、Zr94[0.42]、50Sn124[0.94]は親核種が無いので中性子照射回数と共に重量は漸次減少する。他の3種50Sn114[0.92]/Sn116[0.91]/Sn122[0.98]は、中性子照射で核種変換されずに一部が残存し、中性子照射2回目以降、それぞれの親核種49In114(β/ε)、49In116m(β)、51Sb122m(IT)→Sb122(β/ε)は発生しないので娘核種の重量は0gとなり、13回目の中性子照射で一部が中性子捕獲で核種変換され、残された娘核種の重量は減少し未対策放置6年後より少ない。残り4種42Mo97/98と44Ru101および51Sb123はσpが1以上で、中性子照射13回で核種変換され0gとなるが、親核種40Zr97(β)/98(β)と42Mo101(β)および50Sn123m(β)のβ崩壊で発生する娘核種の重量は未対策放置6年後より少なくなる。
難溶物槽で発生する12種の可溶性核種には中性子を照射しない。このうち4種、31Ga71、33As75、34Se77、48Cd114は、それぞれの親核種32Ge71m(IT)→Ge71(ec)、32Ge75m(IT)、32Ge77m(β/IT)、49In114m(IT/ε)のσpは0で、中性子照射による親核種の発生が3回までで、発生する娘核種の重量は未対策放置6年後より少ない。52Te125は13回の中性子照射で毎回核種変換で生じた親核種50Sn125m(β)の崩壊で発生するが照射回数と共に重量は漸次減少し、未対策放置6年後より少ない。残りの7種、5B10,47Ag107/109、48Cd111、52Te122/124/126は、それぞれの親核種4Be10(β)、44Ru107(β)、46Pd109m(IT)、46Pd111m(IT/β)、51Sb122m(IT)/124m(IT/β)/126m(β/IT)のσpが0で、13回の中性子照射で発生した親核種のβ、IT崩壊で生じ、これらの娘核種の重量は未対策放置6年後の重量より多くなる。
難溶物槽で発生する安定気体核種は53I127の1.41kgだけで、中性子照射でで核種変換されたSn127m(β)を親核種として51Sb127(β,3.85d)→52Te127m(IT/β,106.1d)→52Te127(β,9.35h)→53I127(安定)と壊変することによる。放射線量モニターで安全を確認後、放出できる。尚、対策6年以降に難溶物槽に付属の可溶槽Bに残存するガラス固化体にする放射性のテルルが52Te127m(IT/β,106.1d)→Te127(β,9.35h)→53I127(安定)と壊変しI127が20℃で0.63mL(3.35mg)発生するので、テルルのガラス固化の際、銀を加えヨウ化銀として固化する。
対策6年以後に安定核種で重量が増加する核種があるが〔〕内に示した半減期の長い放射性親核種の崩壊によるもので、難溶性核種では無く、可溶性核種では5B10〔4Be10〕、47Ag107〔46Pd107〕、52Te124〔51Sb124m〕、52Te125〔51Sb125〕が該当する。これらの親核種の難溶性の放射性核種はガラス固化する。但し、熱中性子に対してもσpが大きい46Pd107の7.758kgは、6年後の核種分離で単独で存在するので、熱中性子照射により核種変換し、46Pd107+2n→46Pd109m(IT,3.1s)→Pd109(β,13.6h)→47Ag109m(IT,39.8s)→Ag109(安定)の壊変で41.2日以降に安定なAg109に変換して回収できる。
Neutron capture probability σp (0.353 meV) for 11 stable poorly soluble nuclides with a weight of 1E-40 g or more after countermeasures, 12 stable soluble nuclides generated by neutron irradiation, and 1 gas nuclide, 180 days after nuclear fuel removal Table 3B-2 shows the nuclide weight (in g) after 6 years without countermeasures and after countermeasures.
The weight of all 11 poorly soluble stable nuclides after 6 years of countermeasures was lower than the weight after 6 years of no countermeasures. There are seven types of nuclides with σp of 1 or less (the value of σp is shown in brackets), and four of them are 4Be9[0.34], 40Zr90[0.09], Zr94[0.42], and 50Sn124[ 0.94] has no parent nuclide, so its weight gradually decreases with the number of neutron irradiations. The other three types of 50Sn114[0.92]/Sn116[0.91]/Sn122[0.98] partially remain without being converted by neutron irradiation, and after the second neutron irradiation, their respective parent nuclides 49In114 (β/ε), 49In116m (β), 51Sb122m (IT) → Sb122 (β/ε) are not generated, so the weight of the daughter nuclide is 0 g, and in the 13th neutron irradiation, some of it is converted by neutron capture. , the weight of the remaining daughter nuclides has decreased and is less than after 6 years without countermeasures. The remaining four types, 42Mo97/98, 44Ru101, and 51Sb123, have σp of 1 or more and undergo nuclide conversion to 0g after 13 neutron irradiations, but the parent nuclides 40Zr97(β)/98(β), 42Mo101(β), and 50Sn123m(β ) The weight of daughter nuclides generated by β-decay will be less than after 6 years if no countermeasures are taken.
The 12 types of soluble nuclides generated in the refractory tank are not irradiated with neutrons. Four of these, 31Ga71, 33As75, 34Se77, and 48Cd114, have parent nuclides of 32Ge71m (IT) → Ge71 (ec), 32Ge75m (IT), 32Ge77m (β/IT), and 49In114m (IT/ε) whose σp is 0. In this case, the parent nuclide is generated up to three times due to neutron irradiation, and the weight of the daughter nuclide generated is less than after 6 years of no countermeasures. 52Te125 is generated by the decay of the parent nuclide 50Sn125m (β) generated by nuclide transmutation each time after 13 neutron irradiations, but its weight gradually decreases with the number of irradiations, and is less than after 6 years of no countermeasures. The remaining seven species, 5B10, 47Ag107/109, 48Cd111, 52Te122/124/126, have their respective parent nuclides 4Be10 (β), 44Ru107 (β), 46Pd109m (IT), 46Pd111m (IT/β), and 51Sb122m (IT). /124m(IT/β)/126m(β/IT) σp is 0, β of the parent nuclide generated by 13 neutron irradiations, produced by IT decay, and the weight of these daughter nuclides has been left untreated for 6 years. The weight will be more than the latter.
The stable gas nuclide generated in the refractory tank is only 1.41 kg of 53I127, and 51Sb127 (β, 3.85d) → 52Te127m (IT/β, 106.1d) → 52Te127 (β, 9.35h) → 53I127 (stable). It can be released after confirming safety with a radiation dose monitor. In addition, after the 6th year of countermeasures, the radioactive tellurium remaining in the soluble tank B attached to the refractory tank and turned into a vitrified substance is 52Te127m (IT/β, 106.1d) → Te127 (β, 9.35h) → 53I127 (stable) and 0.63 mL (3.35 mg) of I127 is generated at 20°C, so when tellurium is vitrified, silver is added and solidified as silver iodide.
Countermeasures There are stable nuclides whose weight increases after 6 years, but this is due to the decay of the radioactive parent nuclides with long half-lives shown in [ ], and they are not sparingly soluble nuclides, but soluble nuclides such as 5B10 [4Be10] and 47Ag107. [46Pd107], 52Te124 [51Sb124m], and 52Te125 [51Sb125] are applicable. The poorly soluble radionuclides of these parent nuclides are vitrified. However, 7.758 kg of 46Pd107, which has a large σp even for thermal neutrons, exists alone after 6 years of nuclide separation, so it undergoes nuclide conversion by thermal neutron irradiation, and 46Pd107+2n → 46Pd109m (IT, 3.1s) → Pd109 (β, 13.6h) → 47Ag109m (IT, 39.8s) → Ag109 (stable) disintegrates and can be converted to stable Ag109 and recovered after 41.2 days.
(気体槽中の核種)
表1A、表1Bを気体槽中の核種に適用する場合には、可溶性核種と難溶性核種のt0日後の重量(F列)は0gであり、気体核種の放射性崩壊で発生した固体核種と気体核種には中性子を照射しないので、これらの核種に該当する行のG列とM列のセルには⇒を表示し、中性子照射後の累積重量は照射直前の重量となる。気体槽では可溶物槽で発生した気体核種を可溶物槽の中性子照射直前に回収する。2回目直前に回収したヨウ素のみに1回だけ中性子を照射するのでσpが1以上のヨウ素核種に該当するM列セルには+nが表示され、核種変換で質量数が増えたσpが無記載のヨウ素核種に該当するM列セルには核種変換前の質量数の核種と捕獲中性子数が< >内に表示される。尚、ヨウ素には熱中性子を照射するので気体核種のσpは中性子エネルギー0.0253eVの値を用いる。
σpが1以上のヨウ素53I127(安定)、I128(β/IT,25m)、I129(β,1.57E+7y)は、中性子照射で夫々中性子3~1個を捕獲してI130m(IT/β,8.84m)となり、I130(β,12.4h)とI131(β,8.03d)は夫々中性子2、1個を捕獲してI132(β,2.30h)に核種変換される。同一質量数で可溶性核種と難溶性核種だけの場合は、初期重量が0gなので、この質量数の核種は表から除外する(29Cu66~34Se78、37Rb87~52Te126と54Xe137以降)。計算対象の核種は1H3から54Xe137までである。
(Nuclide in gas tank)
When applying Tables 1A and 1B to nuclides in a gas tank, the weight of soluble nuclides and poorly soluble nuclides after t day 0 (column F) is 0 g, and the solid nuclides generated by radioactive decay of gas nuclides and Since gaseous nuclides are not irradiated with neutrons, ⇒ is displayed in the cells in columns G and M of the row corresponding to these nuclides, and the cumulative weight after neutron irradiation is the weight immediately before irradiation. In the gas tank, the gaseous nuclides generated in the solubles tank are recovered immediately before the neutron irradiation of the solubles tank. Since neutrons are irradiated only once to the iodine recovered just before the second time, +n is displayed in the M column cells corresponding to iodine nuclides with σp of 1 or more, and σp whose mass number has increased due to nuclide conversion is not listed. In the M column cell corresponding to the iodine nuclide, the nuclide with the mass number before nuclide conversion and the number of captured neutrons are displayed in <>. Note that since iodine is irradiated with thermal neutrons, a value of neutron energy of 0.0253 eV is used as σp of the gas nuclide.
Iodine 53I127 (stable), I128 (β/IT, 25m), and I129 (β, 1.57E+7y) with σp of 1 or more are irradiated with neutrons and
気体槽では使用済み核燃料取出しから一定期間(t0時間)放置後発生した気体核種は可溶物槽で1回目の冷中性子照射t1時間経過後、2回目の冷中性子照射直前に可溶物槽から回収した気体核種を含めて、気体槽を加熱し臭素、ヨウ素を昇華・気化させ、冷却装置で気体槽上部のヨウ素受け皿を臭素の沸点以上の温度に冷却しヨウ素のみを液化して取出し、ヨウ化物槽に移送しヨウ素だけに熱中性子を照射し核種変換させる。なお、本実施例では、t0は180日である。
熱中性子照射は可溶物槽2回目と同期させてヨウ素のみに熱中性子を照射するので、本実施例ではt1は30日となる。可溶物槽での中性子照射と同期させて可溶物槽で発生した気体核種を気体槽に回収する。
表1A、表1Bを元に気体槽のヨウ素のみに中性子を前述の条件で照射した時、壊変で変化した核種重量の変化をExcelワークシートで計算した。可溶物槽と難溶物槽で発生した気体核種の重量は、気体槽には含めていない。
気体槽には47核種(放射性核種が30種、安定核種が17種)、核燃料取出し180日後の重量は385.4kg(放射性核種が158.1kg、安定核種が227.3kg)である。これらの重量は全て気体核種のみの重量である。
In the gas tank, the gaseous nuclides generated after being left for a certain period of time (t 0 hours) after spent nuclear fuel removal are collected in the solubles tank after the first cold neutron irradiation t 1 hour and just before the second cold neutron irradiation. The gas tank is heated to sublimate and vaporize bromine and iodine, including the gaseous nuclides recovered from the tank, and the iodine tray at the top of the gas tank is cooled to a temperature above the boiling point of bromine using a cooling device to liquefy and extract only the iodine. Then, the iodine is transferred to an iodide tank and only iodine is irradiated with thermal neutrons to convert the nuclide. Note that in this example, t 0 is 180 days.
Since thermal neutron irradiation is performed only on iodine in synchronization with the second solubles bath, t1 is 30 days in this example. The gaseous nuclides generated in the solubles tank are collected into the gas tank in synchronization with the neutron irradiation in the solubles tank.
Based on Tables 1A and 1B, when only iodine in the gas tank was irradiated with neutrons under the conditions described above, the change in nuclide weight due to decay was calculated using an Excel worksheet. The weight of gaseous nuclides generated in the soluble matter tank and the hardly soluble matter tank is not included in the gas tank.
The gas tank contains 47 nuclides (30 radionuclides, 17 stable nuclides), and the weight 180 days after nuclear fuel removal is 385.4 kg (158.1 kg of radionuclides, 227.3 kg of stable nuclides). All these weights are the weights of gaseous nuclides only.
気体槽の放射性核種について、使用済み核燃料取出し180日後の重量と、未対策で6年間放置した場合と、本発明を適用(ヨウ素のみ中性子を前述の条件で照射)した場合の6年後の重量〔単位g〕と放射能〔単位Bq〕の変化を計算した結果を表4A-1に示す。未対策放置6年後の放射性気体核種30種で重量157.5kgは、対策により核種数6種で重量146.0kgに減少する。これらの重量は全て核種単体の重量である。対策により放射能は変わらず22.1PBq(Pはペタ)である。
非記載の放射性気体核種は24種、未対策放置6年後に114.8kgあるが、対策により核種の重量は6.56×10-55gとなる。これは、54Xe131mの0.695mgがXe131m(IT,11.8d)→Xe131(安定)と壊変し、6年後に54Xe131mが6.56E-55g残存することによる。
放射性ヨウ素8種では、使用済み核燃料取り出し180日後、重量が1E-40g以上存在する核種は53I129/131/132の3種で、53I129(β,1570万年)[σp24.2]の11.48kgは、取り出し210日後、1回目の熱中性子照射により核種変換され重量は0gとなり、核種変換で生じた53I130m(IT/β,8.84m)は37.4日後にI130(β,12.4h)→54Xe130(安定)と壊変し、安定な54Xe130の11.48kgに核種変換される。I131(β,8.03d)[σp63.2]の93μgは中性子照射で核種変換され重量は0gとなり、核種変換で生じた53I132(β,2.3h)は、その4.3日後に54Xe132(安定)となる。53I132[σp0]の0.1fgは約1日後に54Xe132(安定)となる。これ以外の5種、53I128/130/130m/133/134は半減期が短く180日以内に消滅する。
残りの上記以外の放射性気体16種は半減期が10日以下の短い核種で、中性子を照射しないので放射線崩壊により安定な核種に壊変され、全16核種の重量は0gとなる。
ヨウ素を除く気体核種に中性子を照射しない理由は、多量に存在する54Xe136(2β,2.2E+21y)[σp0.1]に熱中性子を照射すると10%は核種変換され、54Xe137(β,3.8m)→55Cs137(β,30.1y)→56Ba137m(IT,2.6m)→56Ba137(安定)の壊変が生じ、この壊変過程で長寿命の放射性核種55Cs137が多量に発生することによる。
可溶物槽から回収した放射性気体核種は35Br83、36Kr83m、53I132/133、54Xe133m/133の6種で、これらの核種は中性子照射により核種変換された放射性の可溶性核種の次の3通りの壊変で生じ、34Se83m(β)→35Br83(β)→36Kr83m(IT)→36Kr83(安定)、52Te132(β)→53I132(β)→54Xe132(安定)、52Te133m(IT/β)→52Te133(β)→53I133(β)→54Xe133m(IT)→54Xe133(β)→55Cs133(安定)であり、発生する放射性気体核種の重量は中性子照射回数と共に漸次減少し、対策6年以降には1E-40g以下となる。
難溶物槽では、放射性気体核種は発生しない。
難溶物槽から回収された放射性気体核種は無いが、原子力発電の運転状況、照射時間などで使用済み核燃料のFPの発生状況が変化した場合あるいはMOX燃料等を使用した場合に放射性気体が発生するときは気体槽に回収し実施例で示した処置をとる。
Regarding the radionuclides in the gas tank, the weight after 180 days after removing the spent nuclear fuel, the weight after 6 years when left untreated for 6 years, and when the present invention is applied (only iodine is irradiated with neutrons under the above conditions) Table 4A-1 shows the results of calculating changes in [unit g] and radioactivity [unit Bq]. The weight of 30 types of radioactive gas nuclides and 157.5 kg after 6 years of unaddressed use will decrease to 146.0 kg with 6 types of nuclides after countermeasures are taken. All of these weights are the weights of individual nuclides. Due to the measures taken, radioactivity remains unchanged at 22.1PBq (P is peta).
There are 24 types of radioactive gas nuclides that are not listed, and they weigh 114.8 kg after 6 years without countermeasures, but with countermeasures, the weight of the nuclides will be 6.56 x 10 -55 g. This is because 0.695 mg of 54Xe131m decays as Xe131m (IT, 11.8d) → Xe131 (stable), and 6.56E-55 g of 54Xe131m remains after 6 years.
Of the eight types of radioactive iodine, the three nuclides that weigh more than 1E-40g 180 days after removal of spent nuclear fuel are 53I129/131/132, and 11.48kg of 53I129 (β, 15.7 million years) [σp24.2] 210 days after removal, the nuclide is converted by the first thermal neutron irradiation and its weight becomes 0g, and 53I130m (IT/β, 8.84m) generated by nuclide conversion becomes I130 (β, 12.4h) after 37.4 days. → It decays to 54Xe130 (stable) and undergoes nuclide conversion to 11.48 kg of stable 54Xe130. 93μg of I131 (β, 8.03d) [σp63.2] was converted into nuclide by neutron irradiation and its weight became 0g, and 53I132 (β, 2.3h) generated by nuclide conversion was converted to 54Xe132 ( stable). 0.1 fg of 53I132[σp0] becomes 54Xe132 (stable) after about one day. The other five species, 53I128/130/130m/133/134, have short half-lives and disappear within 180 days.
The remaining 16 radioactive gases other than those mentioned above are nuclides with short half-lives of 10 days or less, and because they are not irradiated with neutrons, they disintegrate into stable nuclides through radioactive decay, and the weight of all 16 nuclides becomes 0 g.
The reason why gaseous nuclides other than iodine are not irradiated with neutrons is that when 54Xe136 (2β, 2.2E + 21y) [σp0.1], which exists in large quantities, is irradiated with thermal neutrons, 10% is converted into a nuclide, and 54Xe137 (β, 3.8m ) → 55Cs137 (β, 30.1y) → 56Ba137m (IT, 2.6m) → 56Ba137 (stable) decay occurs, and a large amount of long-lived radionuclide 55Cs137 is generated during this decay process.
The radioactive gas nuclides recovered from the solubles tank were 35Br83, 36Kr83m, 53I132/133, and 54Xe133m/133. generated, 34Se83m (β) → 35Br83 (β) → 36Kr83m (IT) → 36Kr83 (stable), 52Te132 (β) → 53I132 (β) → 54Xe132 (stable), 52Te133m (IT/β) → 52Te133 (β) → 53I133 (β) → 54Xe133m (IT) → 54Xe133 (β) → 55Cs133 (stable), and the weight of the generated radioactive gas nuclide gradually decreases with the number of neutron irradiation, reaching 1E-40g or less after 6 years of countermeasures.
Radioactive gas nuclides are not generated in the refractory tank.
Although there are no radioactive gas nuclides recovered from the refractory tank, radioactive gas is generated when the FP generation status of spent nuclear fuel changes due to nuclear power generation operating conditions, irradiation time, etc., or when MOX fuel, etc. is used. When this happens, collect it in a gas tank and take the measures shown in the examples.
気体槽の放射性核種で対策後に重量が1E-40g以上の核種について、未対策で6年間放置した場合と本発明を適用した場合の重量と放射能の変化について計算した結果を表4A-2に示す。表では難溶物槽で生じた放射性核種の崩壊形式と半減期、中性子捕獲確率σp(0.0253eV)、核種重量〔単位g〕と放射能〔単位Bq〕を示す。なお、重量は核種単体の重量である。 Table 4A-2 shows the results of calculating the changes in weight and radioactivity for radionuclides in gas tanks weighing 1E-40g or more after countermeasures, when left for 6 years without countermeasures, and when the present invention is applied. show. The table shows the decay type and half-life of the radionuclide generated in the refractory tank, the probability of neutron capture σp (0.0253 eV), the weight of the nuclide [unit: g], and the radioactivity [unit: Bq]. Note that the weight is the weight of a single nuclide.
気体槽で生じる放射性の気体6核種は対策6年後の重量と放射能は未対策放置6年後とほぼ同等である。対策6年後に放射能が0.1Bq以下の核種は54Xe127/136の2種で、0.1Bq以上の核種は1H3、6C14、36Kr81/85の4種である。なお、6C14は酸化物の気体として存在する。σpの小さい54Xe136(2β,2.165E+21y)は対策の効果はないが、その放射能は6.5mBqと小さく、天然存在比8.86%の核種である。
気体槽で発生する放射性固体核種は無い。
The weight and radioactivity of the six radioactive gas nuclides produced in the gas tank after 6 years of countermeasures are almost the same as after 6 years of no countermeasures. After six years of countermeasures, there are two nuclides with radioactivity of 0.1 Bq or less, 54Xe127/136, and four nuclides with radioactivity of 0.1 Bq or more: 1H3, 6C14, and 36Kr81/85. Note that 6C14 exists as an oxide gas. Countermeasures are not effective for 54Xe136 (2β, 2.165E+21y), which has a small σp, but its radioactivity is as small as 6.5 mBq, and it is a nuclide with a natural abundance ratio of 8.86%.
There are no radioactive solid nuclides generated in the gas tank.
気体槽の安定核種について、180日後の重量と、未対策で6年間放置した場合と本発明を適用した場合の重量変化を計算した結果を表4B-1に示す。未対策放置6年後の安定気体核種の17種;重量227.3kgは、対策により核種数が18種;重量239.4kg(可溶性核種が2種;623g、難溶性核種は無し、気体核種が16種;238.8kg)に変化している。安定な気体核種の重量に関しては若干増加している。但し、これらの核種の重量は全て核種単体の重量である。
非記載の安定気体核種1種は2He4で、気体槽では発生せず、可溶物槽で中性子照射1回目のみ発生するので、ここには記載しない。
Table 4B-1 shows the results of calculating the weight of stable nuclides in the gas tank after 180 days and the change in weight when left untreated for 6 years and when the present invention is applied. 17 types of stable gas nuclides; weight 227.3 kg after 6 years without countermeasures; 18 types of nuclides have been added due to countermeasures; weight 239.4 kg (2 types of soluble nuclides; 623 g, no hardly soluble nuclides,
One stable gas nuclide that is not described is 2He4, which is not generated in the gas tank but only generated in the solubles tank during the first neutron irradiation, so it will not be described here.
対策後の重量が1E-40g以上の安定気体核種16種と、中性子照射で発生した可溶性安定核種2種について、中性子捕獲確率σp(気体は0.0253eV、固体は0.353meV)、核燃料取出し180日後と、未対策放置6年後と対策後の核種重量〔単位g〕を表4B-2に示す。 For 16 stable gas nuclides with a weight of 1E-40 g or more after countermeasures and 2 soluble stable nuclides generated by neutron irradiation, the neutron capture probability σp (0.0253 eV for gas, 0.353 meV for solid), nuclear fuel removal 180 Table 4B-2 shows the weight of the nuclide (in g) after 6 years without countermeasures and after countermeasures.
安定気体核種でヨウ素にのみ中性子を照射した対策により未対策放置6年後の重量より増加したのは54Xe130で、σpの大きい53I127(安定)2.6kgと53129(β,1.57E+7y)11.5kgが核種変換されて生じた53I130m(IT/β,8.84m)→I130(β,12.36h)→54Xe130(安定)の壊変で14.1kg増加したことによる。2He3は放射性核種1H3の崩壊で微増する。
安定な気体核種7N14、35Br81、36Kr80/82/83/84/86、54Xe128/131/132/134の11種は、熱中性子を照射しないので、使用済み各燃料取出しから6年後まで、その合計重量は224.3kgで変化しない。
残り3種35Br79、53I127、54Xe129は、対策6年後の重量は未対策放置6年後の重量より減少している。
6年以後に安定核種で重量が増加する気体核種があるが〔〕内に示した半減期の長い放射性気体親核種の崩壊によるもので、2He3〔1H3〕、7N14〔6C14〕、35Br81〔36Kr81〕が該当する。
気体槽で生じる安定な可溶性核種の重量は、37Rb85の623.3gと55Cs133の38.6ngで、放射性気体のβ崩壊で発生し、親核種は前者が半減期の長い36Kr85(β,10.74y)で、後者は54Xe133(β,5.25d)であり、これらは気体槽に付属の固体槽に回収され、前者は6年以後も重量が増加する。また、気体槽では安定な難溶性核種は発生しない。
可溶物槽から移送された安定な気体核種7種は、2He4、35Br79/81、36Kr83/86、54Xe132/134で、重量は6.06kgである。対策6年後以降重量は増加しない。
難溶物槽に付属の可溶物槽Bに残存する52Te127m/127の壊変で発生した安定な気体53I127は6年後も増加するが、これは難溶物槽で処置した通りである。
By irradiating only iodine with neutrons, which are stable gas nuclides, the weight of 54Xe130 has increased compared to the weight after 6 years without countermeasures, and 53I127 (stable) with large σp (stable) 2.6 kg and 53129 (β, 1.57E + 7y) 11. This is due to an increase of 14.1 kg due to the decay of 53I130m (IT/β, 8.84m) → I130 (β, 12.36h) → 54Xe130 (stable), which was generated by nuclide conversion of 5kg. 2He3 increases slightly due to the decay of radionuclide 1H3.
The 11 stable gas nuclides 7N14, 35Br81, 36Kr80/82/83/84/86, and 54Xe128/131/132/134 do not irradiate thermal neutrons, so the total amount remains unchanged until 6 years after each spent fuel is removed. The weight remains unchanged at 224.3 kg.
For the remaining three types, 35Br79, 53I127, and 54Xe129, the weight after 6 years of countermeasures is lower than the weight after 6 years of no countermeasures.
There are gaseous nuclides that are stable nuclides and increase in weight after 6 years, but this is due to the decay of radioactive gas parent nuclides with long half-lives shown in [ ], such as 2He3 [1H3], 7N14 [6C14], 35Br81 [36Kr81] is applicable.
The weight of stable soluble nuclides generated in the gas tank is 623.3 g of 37Rb85 and 38.6 ng of 55Cs133, which are generated by β decay of radioactive gas, and the parent nuclide is 36Kr85 (β, 10.74 y ), and the latter is 54Xe133 (β, 5.25d), which are recovered in a solid tank attached to the gas tank, and the former increases in weight even after 6 years. Furthermore, stable, poorly soluble nuclides are not generated in the gas tank.
The seven stable gaseous nuclides transferred from the solubles tank are 2He4, 35Br79/81, 36Kr83/86, and 54Xe132/134, and their weight is 6.06 kg. The weight will not increase after 6 years of countermeasures.
The stable gas 53I127 generated by the decay of 52Te127m/127 remaining in the solubles tank B attached to the refractory tank increases even after 6 years, but this is the same as the treatment in the refractory tank.
使用済み核燃料取出し180日後、可溶物槽の可溶性核種に30日間隔で冷中性子を9回繰り返し照射し、発生した難溶性核種と気体核種には冷中性子を照射しない。同様に難溶物槽の難溶性核種に30日間隔で冷中性子照射を13回繰り返し、発生した可溶性核種と気体核種には冷中性子を照射しない、気体槽では燃料取り出し210日後にヨウ素だけに熱中性子を1回だけ照射する対策を講じた場合、各槽で使用済み核燃料取り出し6年後に残存する放射性核種で0.1Bq到達時間(〔〕内は未対策→対策後を示す)が10年以上の核種と、放射能が0.1Bq以下の長寿命の核種について纏める。
可溶物槽の可溶性核種は、38Sr90〔1748年→1736年〕、39Y90〔1748年→1736年〕/91〔10年→12年〕、62Sm151〔4766年→3753年〕、63Eu154〔486年→396年〕/155〔202年→274年〕、71Lu177m〔※→31年〕/177〔※→20年〕の8種と、長寿命の48Cd116(1.1垓年→49μBq)、58Ce142(52.3京年→5.0pBq)、60Nd144(3.36京年→21.3fBq)の3種であり、難溶性2核種の50Sn117mと72Hf177mの0.1Bq到達時間は3.4年と6年である。
難溶物槽の難溶性核種は、4Be10〔3950万年→3980万年〕、46Pd107〔2.7億年→2.6億年〕、50Sn126〔979万年→561万年〕、51Sb125〔158年→25年〕/126m〔979万年→561万年〕/126〔979万年→561万年〕の6種と、長寿命の40Zr96〔3567京年→82.9mBq〕であり、可溶性核種は52Te127m〔17年→19年〕/127〔17年→19年〕の2種と長寿命の52Te128(83nBq→0.78nBq)である。
気体槽の気体核種は、1H3〔659年→658年〕、6C14〔18万年→同年〕、36Kr81〔471万年→同年〕/85〔624年→同年〕の4種と、長寿命の54Xe136(6.5mBq→同Bq)であり、放射性の可溶性および難溶性の核種は発生しない。これらの可溶性核種8種と難溶性核種6種、気体核種5種には、本発明の効果は限定的であるが、長寿命の可溶性核種3種と難溶性核種1種は未対策放置6年後の重量より激減しており対策の効果は顕著である。
180 days after spent nuclear fuel is removed, the soluble nuclides in the solubles tank are repeatedly irradiated with cold neutrons nine times at 30-day intervals, and the poorly soluble nuclides and gaseous nuclides generated are not irradiated with cold neutrons. Similarly, cold neutron irradiation is repeated 13 times to the poorly soluble nuclides in the poorly soluble tank at 30-day intervals, and the generated soluble and gas nuclides are not irradiated with cold neutrons.In the gas tank, only iodine is heated after 210 days after fuel removal. If measures are taken to irradiate with neutrons only once, the time required to reach 0.1Bq of radionuclides remaining after 6 years after spent nuclear fuel is removed from each tank (the numbers in brackets indicate unmeasured → after measures) will be more than 10 years. The following is a summary of nuclides and long-lived nuclides with radioactivity of 0.1 Bq or less.
The soluble nuclides in the soluble tank are 38Sr90 [1748 → 1736], 39Y90 [1748 → 1736] / 91 [10 → 12], 62Sm151 [4766 → 3753], 63Eu154 [486 → 396 years] / 155 [202 → 274 years], 71Lu177m [* → 31 years] / 177 [* → 20 years], long-lived 48Cd116 (1.1 years → 49 μBq), 58Ce142 (52 .3 quadrillion years → 5.0 pBq) and 60Nd144 (3.36 quadrillion years → 21.3 fBq), and the two poorly soluble nuclides 50Sn117m and 72Hf177m reach 0.1Bq in 3.4 years and 6 years. It is.
The poorly soluble nuclides in the poorly soluble tank are 4Be10 [39.5 million years → 39.8 million years], 46Pd107 [270 million years → 260 million years], 50Sn126 [9.79 million years → 5.61 million years], 51Sb125 [158 25 years] / 126 m [9.79 million years → 5.61 million years] / 126 [9.79 million years → 5.61 million years], and the long-lived 40Zr96 [3,567 quintillion years → 82.9 mBq], which are soluble nuclides. There are two types of 52Te127m [17 years → 19 years]/127 [17 years → 19 years] and the long-life 52Te128 (83 nBq → 0.78 nBq).
The gas nuclides in the gas tank are 1H3 [659 → 658], 6C14 [180,000 years → same year], 36Kr81 [4.71 million years → same year] / 85 [624 → same year], and the long-lived 54Xe136. (6.5 mBq→same Bq), and no radioactive soluble or poorly soluble nuclides are generated. The effect of the present invention is limited on these 8 soluble nuclides, 6 poorly soluble nuclides, and 5 gaseous nuclides, but 3 long-lived soluble nuclides and 1 poorly soluble nuclide have been left untreated for 6 years. The weight has significantly decreased compared to the previous weight, and the effects of the countermeasures are remarkable.
本発明では、発生した高レベル放射性廃棄物を硝酸に可溶な可溶物と難溶・不溶な難溶物とに分離貯蔵し、前者では壊変で発生した安定な難溶物には中性子を照射せず、後者では壊変で発生した安定な可溶物には中性子を照射しないので、安定な核種の回収量が槽分離をしない場合より大幅に増加する。また、高レベル放射性廃棄物のガラス固化体にする重量を最小にするため、中性子照射回数とその後の貯蔵期間をパラメータとして核種変換された親核種の放射線崩壊で発生する娘核種を低減し、安定な核種重量を増加させるため、中性子照射間隔を3日~1年と変えて計算した結果、30日に設定している。中性子照射回数は、可溶物槽では中性子照射回数を増やすと放射性核種55Cs134/135の放射能は照射8回で0.16mBq/23.3μBq、照射9回では71.4nBq/2.73nBqに減少するが、放射性核種71Lu177m/177の放射能は照射8回で18.3PBq/4.08PBq、照射9回で20.0PBq/4.46PBqと増加するが、後者は再利用可能な核種なので実施例では9回に設定した。
難溶物槽ではσpが0.18の40Zr96(2β,3.9E+19y)が未対策6年後の重量は53.4kgあり、12回の中性子照射で28.5kg、放射能も0.1Bq強に低減するが、13回の照射では該核種の重量は23.5kg、放射能は83mBqに低減でき、本実施例では照射回数を13回とした。
これまでは対策により各槽で6年後に核種重量が1E-40g以上残存する核種について記述したが、未対策放置6年後に存在する核種に対して、本発明の実施による効果を評価するため、0.1Bq到達時間が10年以上の放射性核種および放射能が0.1Bq以下であるが長寿命の放射性核種について槽毎に表5-1、5-2に纏めた。
表では、放射性核種、崩壊形式、半減期、中性子捕獲確率、未対策放置6年後と対策により各槽毎に発生した6年後の重量〔単位g〕、未対策放置6年後と対策6年後の放射能〔単位Bq〕と0.1Bq到達時間を示す。
In the present invention, generated high-level radioactive waste is separated and stored into nitric acid-soluble soluble materials and poorly soluble/insoluble materials, and in the former case, neutrons are applied to the stable poorly soluble materials generated by decay. In the latter case, stable soluble materials generated by decay are not irradiated with neutrons, so the amount of stable nuclides recovered is significantly greater than in the case without tank separation. In addition, in order to minimize the weight of high-level radioactive waste that is made into a vitrified material, we reduce the daughter nuclides generated by the radioactive decay of the parent nuclide that has undergone nuclide conversion, using the number of neutron irradiations and the subsequent storage period as parameters, and stabilize the waste. In order to increase the weight of the nuclide, the neutron irradiation interval was calculated to vary from 3 days to 1 year, and was set at 30 days. When the number of neutron irradiations is increased in the solubles tank, the radioactivity of the radionuclide 55Cs134/135 decreases to 0.16 mBq/23.3 μBq after 8 irradiations and 71.4 nBq/2.73 nBq after 9 irradiations. However, the radioactivity of the radionuclide 71Lu177m/177 increases to 18.3PBq/4.08PBq after 8 irradiations and to 20.0PBq/4.46PBq after 9 irradiations, but the latter is a reusable nuclide, so this example So I set it to 9 times.
In the refractory tank, 40Zr96 (2β, 3.9E + 19y) with a σp of 0.18 weighs 53.4 kg after 6 years without countermeasures, and after 12 neutron irradiations it weighs 28.5 kg, and its radioactivity is also over 0.1 Bq. However, after 13 irradiations, the weight of the nuclide was reduced to 23.5 kg and the radioactivity was reduced to 83 mBq, and in this example, the number of irradiations was 13 times.
Up to now, we have described nuclides whose nuclide weight remains 1E-40g or more after 6 years in each tank due to countermeasures, but in order to evaluate the effect of implementing the present invention on nuclides that remain after 6 years without countermeasures. Radionuclides whose arrival time of 0.1Bq is 10 years or more and radionuclides whose radioactivity is 0.1Bq or less but have a long life are summarized in Tables 5-1 and 5-2 for each tank.
The table shows the radionuclide, decay type, half-life, neutron capture probability, the weight (in grams) generated in each tank after 6 years of unmeasured neglect and after 6 years of countermeasures, and the weight (unit: g) of radionuclides, decay type, half-life, neutron capture probability, after 6 years of unmeasured neglect and after 6 years of countermeasures, and after 6 years of unmeasured neglect and after 6 years of countermeasures. It shows the radioactivity [in Bq] after 20 years and the time to reach 0.1 Bq.
〔表5.1〕~〔表5.2〕
[Table 5.1] - [Table 5.2]
未対策で0.1Bq到達時間が10年以上で半減期が50日以上の長い46核種と、半減期は短いが親核種の半減期が長い娘核種10種は、中性子照射による対策で、6年後には53Te125m〔9.1年〕を除く53核種の放射能は0Bqとなる。
半減期が長い放射性の可溶性核種は34Se79、37Rb87、47Ag108m/110m、48Cd109/113m/113、52Te123m/125、55Cs134/135/137、56Ba133、57La138、58Ce139/144、60Nd150、61Pm146/147、62Sm146/147/148、63Eu150/152、64Gd152/153、65Tb160、67Ho166m、69Tm170/171の30種で、半減期が短く親核種の半減期が長い娘核種は47Ag108/109m/110、56Ba137m、59Pr144m/144の6種であり、0.1Bq以下ではあるが長寿命の放射性核種3種Te123/128/130は使用済み核燃料取り出し180日後にはほぼ0gとなり放射能は無視できる。
半減期が長い放射性の難溶性核種は40Zr93/95、41Nb92/93m/94/95、42Mo100、43Tc98/99、44Ru106、45Rh102、49In115、50Sn119m/121m/123/126の16種で、半減期が短く親核種の半減期が長い娘核種は45Rh106、50Sn121、51Sb126m/126の4種である。未対策で半減期が長くσpが0.62の50Sn126と、これを親核種とする半減期の短い51Sb126m/126の3種は親核種50Sn126の未対策放置6年後の重量1.41kgは対策により4.87mgに減少し、0.1Bq到達時間は979万年から低減するが561万年と長い。
46 nuclides with long half-lives of 50 days or more with a time to reach 0.1Bq of 10 years or more without countermeasures, and 10 daughter nuclides with short half-lives but with long half-lives of their parent nuclides, can be reduced by countermeasures using neutron irradiation. After a year, the radioactivity of 53 nuclides except 53Te125m [9.1 years] will be 0Bq.
Radioactive soluble nuclides with long half-lives are 34Se79, 37Rb87, 47Ag108m/110m, 48Cd109/113m/113, 52Te123m/125, 55Cs134/135/137, 56Ba133, 57La138, 58Ce139/144, 60Nd1 50, 61Pm146/147, 62Sm146/147 There are 30 types: /148, 63Eu150/152, 64Gd152/153, 65Tb160, 67Ho166m, and 69Tm170/171, and the daughter nuclides with short half-lives and long half-lives of the parent nuclide are 47Ag108/109m/110, 56Ba137m, and 59Pr144m/144. The three long-lived radionuclides Te123/128/130, which are 0.1Bq or less, have a concentration of almost 0g 180 days after removal of spent nuclear fuel, and their radioactivity can be ignored.
There are 16 radioactive poorly soluble nuclides with long half-lives: 40Zr93/95, 41Nb92/93m/94/95, 42Mo100, 43Tc98/99, 44Ru106, 45Rh102, 49In115, 50Sn119m/121m/123/126, which have short half-lives. There are four daughter nuclides with long half-lives of the parent nuclide: 45Rh106, 50Sn121, and 51Sb126m/126. 50Sn126, which has a long half-life and a σp of 0.62, is unmeasured, and 51Sb126m/126, which uses this as its parent nuclide and has a short half-life, is the parent nuclide. It decreased to 4.87 mg, and the time to reach 0.1 Bq was reduced from 9.79 million years, but it was still long at 5.61 million years.
使用済み核燃料取出し180日後、可溶物槽は30日間隔で冷中性子照射を9回、難溶物槽は13回繰り返した後、6年後までに放射性核種の壊変で生じた固体核種は可溶物槽(難溶物槽Aの難溶性核種と気体槽に付属の固体槽で発生した可溶性核種を含む)、難溶物槽(可溶物槽Bの可溶性核種を含む)に回収され、前者の回収した核種および硝酸溶液は塩化物槽1に、後者の回収した核種および硝酸溶液は塩化物槽2に移送し、別々に加熱して硝酸を追い出し、核種を酸化物とする。
これらの発生した酸化物核種を沸点の違いを利用して元素を分離するが、これらの酸化物の沸点は極めて高温であり、省エネルギーの観点から沸点の低い塩化物に変換する。本実施例では6年後に塩化物槽1及び2に移送された酸化物は可溶物槽と気体槽に付属の固体槽及び難溶物槽で生じる核種重量(いずれも酸化物重量ではなく核種単体の重量)で、夫々1091.3kgと623g及び762.0kgであり、これらを塩化物にするため、塩化物槽1では塩酸で塩化物化されないゲルマニウム、ジルコニウム、パラジウム、ハフニウムの核種重量624.5kgを除く467.4kgに、塩化物槽2では塩酸で塩化物化されないホウ素、ジルコニウム、ルテニウム、パラジウムの核種重量38.6kgを除く723.4kgに、濃度6モル/Lの塩酸溶液を夫々50L、40Lを加えて塩化物とし、塩酸では塩化物化されない核種で、塩化物槽1の核種597.1kgと塩化物槽2の核種46.81kgに対し塩素ガス(1気圧、20℃換算)を夫々180m3、15m3注入し塩化物に変換する。塩素ガス使用の場合は適量の炭素を投入する。
対策により、重量が1E-40g以上の固体核種は可溶物槽で48種、難溶物槽で35種、気体槽で2種存在する。これらの核種を槽毎に塩化物の沸点の昇順に、核種、崩壊形式、半減期、中性子捕獲確率σp、塩化物の沸点〔単位℃〕、6年後の未対策放置と対策後の槽別の重量〔単位g〕、未対策と対策後の放射能〔単位Bq〕、未対策と対策後の0.1Bq到達時間を表6.1~6.3に纏めた。尚、核種重量は塩化物ではなく核種単体としての重量である。
180 days after spent nuclear fuel was removed, the soluble material tank was irradiated with cold neutrons nine times at 30-day intervals, and the refractory material tank was irradiated 13 times. Collected in the soluble tank (including the poorly soluble nuclides in the poorly soluble tank A and the soluble nuclides generated in the solid tank attached to the gas tank) and the hardly soluble tank (including the soluble nuclides in the soluble tank B), The former recovered nuclides and nitric acid solution are transferred to a chloride tank 1, and the latter recovered nuclides and nitric acid solution are transferred to a chloride tank 2, where they are heated separately to drive out nitric acid and turn the nuclides into oxides.
The elements of these generated oxide nuclides are separated using differences in their boiling points, but since the boiling points of these oxides are extremely high, they are converted to chlorides with a lower boiling point from the viewpoint of energy conservation. In this example, the oxides transferred to chloride tanks 1 and 2 after 6 years are calculated by the nuclide weight (not the oxide weight but the nuclide weight) generated in the solid tank and refractory tank attached to the soluble tank and gas tank. The weights of germanium, zirconium, palladium, and hafnium, which are not chlorinated with hydrochloric acid, are 1091.3 kg, 623 g, and 762.0 kg, respectively, in chloride tank 1. In the chloride tank 2, 50 L and 40 L of hydrochloric acid solution with a concentration of 6 mol/L were added to 723.4 kg excluding the weight of 38.6 kg of boron, zirconium, ruthenium, and palladium nuclides that are not chlorinated with hydrochloric acid in the chloride tank 2. Chlorine gas (1 atm, 20°C conversion) was added to 597.1 kg of nuclides in chloride tank 1 and 46.81 kg of nuclides in chloride tank 2, each with 180 m 3 of nuclides that are not chlorinated with hydrochloric acid. , 15 m 3 is injected and converted to chloride. When using chlorine gas, add an appropriate amount of carbon.
As a result of the measures, there are 48 kinds of solid nuclides weighing 1E-40g or more in the soluble matter tank, 35 kinds in the hardly soluble matter tank, and 2 kinds in the gas tank. These nuclides are listed in ascending order of the boiling point of chloride for each tank: nuclide, decay type, half-life, neutron capture probability σp, boiling point of chloride [unit: °C], untreated after 6 years, and tank after taking measures. Tables 6.1 to 6.3 summarize the weight [unit: g], radioactivity (unit: Bq) between unmeasured and after countermeasures, and time to reach 0.1 Bq between unmeasured and after countermeasures. Note that the nuclide weight is the weight of the nuclide itself, not the chloride.
〔表6.1〕~〔表6.3〕
[Table 6.1] ~ [Table 6.3]
(塩化物槽1の固体核種)
塩化物槽1に存在する可溶物槽と気体槽で発生した塩化物(実施例では60核種)を気化槽に投入し、塩化物沸点の昇順に加熱し、沸点毎に精留塔で気化させ凝縮器で塩化物気体として分留し、安定核種あるいは安定同位体は冷却装置を介して核種回収槽に、放射性核種あるいは放射性同位体および放射性核種と安定核種の混在する同位体はガラス固化核種回収槽に回収する。さらに資源として再利用できる放射性核種と安定核種の2種類だけの同位体は、ウラン燃料製造時に使用される質量差を利用したガス遠心分離装置で同位体分離を行い、安定で質量数の小さい軽核種と、放射性で質量数の大きい重核種に分離し、夫々軽核種回収槽、重核種回収槽に回収する。沸点昇順で回収工程を記述すると、冗長になるので回収方法毎に記述する。
(Solid nuclide in chloride tank 1)
Chlorides (60 nuclides in the example) generated in the soluble matter tank and gas tank existing in chloride tank 1 are put into the vaporization tank, heated in ascending order of chloride boiling point, and vaporized in a rectification column for each boiling point. Stable nuclides or stable isotopes are transferred to a nuclide recovery tank via a cooling device, and radionuclides or radioisotopes and isotopes containing a mixture of radionuclides and stable nuclides are collected as vitrified nuclides. Collect in the collection tank. Furthermore, the only two types of isotopes that can be reused as resources, radionuclides and stable nuclides, are separated using a gas centrifugal separator that takes advantage of the mass difference used in the production of uranium fuel. It is separated into nuclides and radioactive heavy nuclides with a large mass number, and collected into a light nuclide recovery tank and a heavy nuclide recovery tank, respectively. Describing the recovery steps in ascending order of boiling point would be redundant, so each recovery method will be described.
(塩化物槽1の安定核種の回収、気体槽に付属の固体槽を含む)
塩化物槽1を87℃に加熱して塩化ゲルマニウム(安定同位体32Ge70/72;76.7mg)を、196℃に加熱して塩化セレン(34Se82;22.7g)を、331℃に加熱して塩化ジルコニウム(安定同位体40Zr90~92;62.8kg)を、432℃に加熱して塩化ハフニウム(放射性核種72Hf177mは可溶性の親核種から分離され短時間で安定なHf177に壊変、安定同位体Hf177~178;561.7kg)を、623℃に加熱して塩化スズ(放射性核種50Sn117m;3E-37gは無視でき、安定核種Sn117;9.75kg)を、1388℃に加熱して塩化ルビジウム(気体槽の37Rb85;623g)、1453℃に加熱して塩化イッテルビウム(安定同位体70Yb172/173;172.4kg)を、1500℃に加熱して塩化ホルミウム(67Ho165;14.5kg)と塩化エルビウム(68Er167;108.3kg)を、1530℃に加熱して塩化ジスプロシウム(66Dy161/162;77.1kg)を、1580℃に加熱して塩化ガドリニウム(64Gd154/155/158;27.5kg)を気化・分留させ、冷却装置を介して核種回収槽に回収する。回収槽を個別にすればこれらの安定な核種の塩化物が回収できる。
塩化物槽1で、塩化物の沸点が201℃のガリウム、675℃のパラジウム、732℃の亜鉛、1560℃のバリウム、1600℃以上のプロメチウムの重量は、いずれも1μg以下で回収は困難である。尚、前述の沸点が同一の1500℃の塩化エルビウムと塩化ホルミウムは、その融点の違いで分離できる。
(Recovery of stable nuclides in chloride tank 1, including solid tank attached to gas tank)
The chloride tank 1 was heated to 87°C, germanium chloride (stable isotope 32Ge70/72; 76.7mg) was heated to 196°C, and selenium chloride (34Se82; 22.7g) was heated to 331°C. Zirconium chloride (stable isotope 40Zr90-92; 62.8 kg) is heated to 432°C to form hafnium chloride (radioactive nuclide 72Hf177m is separated from the soluble parent nuclide and decays into stable Hf177 in a short time, stable isotope Hf177- 178; 561.7 kg) was heated to 623°C and tin chloride (radioactive nuclide 50Sn117m; 3E-37g is negligible, stable nuclide Sn117; 9.75kg) was heated to 1388°C and rubidium chloride (gas bath 37Rb85; 623g), heated to 1453°C to produce ytterbium chloride (stable isotope 70Yb172/173; 172.4kg), and heated to 1500°C to produce holmium chloride (67Ho165; 14.5kg) and erbium chloride (68Er167; 108. 3kg) is heated to 1530°C to vaporize and fractionate dysprosium chloride (66Dy161/162; 77.1kg), heated to 1580°C to vaporize and fractionate gadolinium chloride (64Gd154/155/158; 27.5kg), and then cooled. Collected into a nuclide recovery tank via a device. If separate recovery tanks are used, the chlorides of these stable nuclides can be recovered.
In chloride tank 1, the weight of gallium whose chloride boiling point is 201°C, palladium at 675°C, zinc at 732°C, barium at 1560°C, and promethium whose boiling point is 1600°C or higher is less than 1 μg, making it difficult to recover. . Note that erbium chloride and holmium chloride, which have the same boiling point of 1500° C., can be separated based on the difference in their melting points.
(塩化物槽1のガラス固化核種の回収)
塩化物槽1を632℃に加熱して塩化ユウロピウム(放射性同位体63Eu154/155;552gと安定核種Eu151;11.9mgが混在)を、682℃に加熱して塩化サマリウム(放射性核種62Sm151;0.3gと安定同位体Sm152/154;65μgが混在)を、960℃に加熱して塩化カドミウム(放射性核種46Cd116;14.2g)を、1480℃に加熱して塩化ルテチウム(放射性同位体71Lu177m/177;119g)を、1507℃に加熱して塩化イットリウム(放射性同位体39Y90/91;6.1g)を気化・分留させ、冷却装置を介してガラス固化核種回収槽に回収する。尚、放射性核種である沸点が1600℃以上の塩化ネオジム;0.53pg、塩化セリウム;2.7ngは微量で放射能は0.2pBq以下で無視できる。
放射性核種Cd116の放射能は49.2μBqで、地球存在確率7.5%であり、ガラス固化の必要性は無いと考えられる。また塩化ルテチウムは放射性医薬品に利用できるので回収する。
(Recovery of vitrified nuclides in chloride tank 1)
The chloride tank 1 is heated to 632°C and europium chloride (radioactive isotope 63Eu154/155; 552g and stable nuclide Eu151; 11.9mg are mixed) is heated to 682°C and samarium chloride (radioactive nuclide 62Sm151; 0. Cadmium chloride (radioactive nuclide 46Cd116; 14.2g) was heated to 960°C, and lutetium chloride (radioactive isotope 71Lu177m/177) was heated to 1480°C. 119 g) is heated to 1507° C. to vaporize and fractionate yttrium chloride (radioactive isotope 39Y90/91; 6.1 g), which is recovered into a vitrified nuclide recovery tank via a cooling device. The radioactive nuclides, neodymium chloride (0.53 pg) and cerium chloride (2.7 ng), which have a boiling point of 1600°C or higher, are trace amounts and their radioactivity is 0.2 pBq or less and can be ignored.
The radioactivity of the radionuclide Cd116 is 49.2 μBq, and the probability of its existence on Earth is 7.5%, so it is considered that there is no need for vitrification. Lutetium chloride will also be recovered as it can be used as a radiopharmaceutical.
(塩化物槽1の安定核種と放射性核種を分別して資源回収できる核種)
塩化物槽1を1250℃に加熱して塩化ストロンチウム(放射性核種38Sr90;23.9kgと安定核種Sr88;32.7kgが混在)を気化・分留させた後、冷却装置を介して分留し、質量差を利用したガス遠心分離装置で核種分離を行い、質量数の小さい安定核種と質量数の大きい放射性核種に分離し、それぞれ安定核種は軽核種回収槽に、放射性核種は重核種回収槽に回収できる。
(Nuclide that can be separated into stable nuclides and radionuclides in chloride tank 1 and recovered as resources)
After heating the chloride tank 1 to 1250° C. to vaporize and fractionally distill strontium chloride (radioactive nuclide 38Sr90; 23.9 kg and stable nuclide Sr88; 32.7 kg), fractional distillation is performed via a cooling device. Nuclide separation is performed using a gas centrifugal separator that utilizes mass differences, separating stable nuclides with a small mass number and radionuclides with a large mass number. The stable nuclides are sent to a light nuclide recovery tank, and the radionuclides are sent to a heavy nuclide recovery tank. It can be recovered.
(塩化物槽2に存在する固体核種)
次に塩化物槽2に存在する塩化物(実施例では36核種)を気化槽に投入し、前記と同様に、塩化物の沸点の昇順に加熱し、沸点毎に精留塔で気化した塩化物を凝縮器で塩化物気体として取出し、安定核種あるいは安定同位体であれば、冷却装置を介して核種回収槽に回収し、放射性核種あるいは放射性同位体および放射性核種と安定核種の混在する同位体はガラス固化核種回収槽に回収する。可溶物槽で発生した核種と難溶物槽で発生した核種を別々に処理するので、ガラス固化する廃棄核種重量を低減できる。
(Solid nuclides present in chloride tank 2)
Next, the chlorides present in the chloride tank 2 (36 nuclides in the example) are charged into the vaporization tank, and heated in the ascending order of the boiling point of the chloride in the same manner as above. The substance is taken out as chloride gas in a condenser, and if it is a stable nuclide or stable isotope, it is collected in a nuclide recovery tank via a cooling device, and it is collected as a radionuclide or radioisotope and an isotope containing a mixture of radionuclides and stable nuclides. is collected in the vitrified nuclide recovery tank. Since the nuclides generated in the soluble matter tank and the nuclides generated in the refractory tank are treated separately, the weight of waste nuclides to be vitrified can be reduced.
(塩化物槽2の安定核種の回収)
塩化物槽2を131℃に加熱して塩化ヒ素(33As75;5.5g)を、196℃に加熱して塩化セレン(34Se77;32.4g)を、268℃に加熱して塩化モリブデン(安定同位体42Mo97/98;5.26kg)を、500℃に加熱して塩化ルテニウム(安定核種44Ru101;6.39kg)を、960℃に加熱して塩化カドミウム(安定同位体48Cd111/114;2.38kg)を、1550℃に加熱して塩化銀(安定同位体47Ag107/109;712.5kg)を気化・分留させ、冷却装置を介して核種回収槽に回収する。塩化ルテニウムは沸点で熱分解するので金属として回収できる。尚、沸点12.6℃の塩化ホウ素、201℃の塩化ガリウムは1μg以下の微量で回収困難である。
(Recovery of stable nuclides in chloride tank 2)
Chloride tank 2 was heated to 131°C to collect arsenic chloride (33As75; 5.5g), heated to 196°C to collect selenium chloride (34Se77; 32.4g), and heated to 268°C to collect molybdenum chloride (stable isotope). Ruthenium chloride (stable nuclide 44Ru101; 6.39 kg) was heated to 500°C, and cadmium chloride (stable isotope 48Cd111/114; 2.38 kg) was heated to 960°C. is heated to 1550° C. to vaporize and fractionate silver chloride (stable isotope 47Ag107/109; 712.5 kg), which is recovered into a nuclide recovery tank via a cooling device. Ruthenium chloride decomposes thermally at its boiling point, so it can be recovered as metal. Note that boron chloride, which has a boiling point of 12.6°C, and gallium chloride, which has a boiling point of 201°C, are difficult to recover because they are in trace amounts of 1 μg or less.
(塩化物槽2のガラス固化核種の回収)
塩化物槽2では、380℃に加熱して塩化テルル(放射性同位体52Te125m/127m/127/128;58.3gと安定同位体Te122/124/125/126;3.15kgが混在)を、547℃に加熱して塩化ベリリウム(放射性核種4Be10;9.8mgと安定核種Be9;6μgが混在)を、623℃に加熱して塩化スズ(放射性核種50Sn126;4.9mgと安定同位体Sn114/116/122;71pgが混在)を、675℃に加熱して塩化パラジウム(放射性核種46Pd107;7.76kg)を、気化・分留させ、冷却装置を介してガラス固体化核種回収槽に回収する。
なお、224℃の塩化アンチモン(放射性同位体51Sb124~126/126m;0.25ngと安定同位体Sb123;0.7ngが混在)は微量で回収できず、昇華点が331℃のジルコニウムは放射性核種40Zr96(天然存在比2.8%)23.5kgと安定同位体Zr90/94が931g混在するが、その放射能は82.9mBqであり、ガラス固化せずに放射性廃棄物として処理できる。また、後述するが46Pd107のσpは熱中性子に対しても大きいので、熱中性子照射によりPd109m(IT,4.7m)に核種変換し、安定な47Ag109として回収できる。
(Recovery of vitrified nuclides in chloride tank 2)
In chloride tank 2, tellurium chloride (radioactive isotope 52Te125m/127m/127/128; 58.3g and stable isotope Te122/124/125/126; 3.15kg are mixed) is heated to 380°C. By heating to 623°C, beryllium chloride (a mixture of radionuclide 4Be10; 9.8 mg and stable nuclide Be9; 6 μg) was heated to 623°C to form tin chloride (radioactive nuclide 50Sn126; 4.9mg and stable isotope Sn114/116/ 122; 71 pg) is heated to 675° C. to vaporize and fractionate palladium chloride (radioactive nuclide 46Pd107; 7.76 kg), and collect it in a glass solidification nuclide recovery tank via a cooling device.
In addition, antimony chloride at 224°C (radioactive isotope 51Sb124-126/126m; 0.25ng and stable isotope Sb123; 0.7ng mixed) is a trace amount and cannot be recovered, and zirconium, whose sublimation point is 331°C, is radionuclide 40Zr96. (Natural abundance ratio: 2.8%) 23.5 kg and 931 g of stable isotope Zr90/94 are mixed, but its radioactivity is 82.9 mBq, and it can be treated as radioactive waste without vitrification. Further, as will be described later, since σp of 46Pd107 is large even with respect to thermal neutrons, the nuclide can be converted to Pd109m (IT, 4.7m) by thermal neutron irradiation and recovered as stable 47Ag109.
(気体槽と可溶物槽及び難溶物槽で発生した気体核種)
燃料取出し180日後、発生した気体核種を元素の沸点順に核種、崩壊形式、半減期、元素の沸点、σp(熱中性子エネルギー0.0253eVの値)、未対策6年後の放置した場合の重量と槽毎の重量と各槽の合計重量〔単位g〕、未対策6年後と対策後の放射能〔単位Bq〕、対策後と未対策時の0.1Bq到達時間を表7に示す。なお、炭素の沸点は酸化物として存在するのでCO2の沸点とした。
(Gas nuclides generated in the gas tank, soluble material tank, and hardly soluble material tank)
180 days after fuel removal, the generated gas nuclides are listed in order of boiling point of the element, decay type, half-life, boiling point of the element, σp (value of thermal neutron energy 0.0253 eV), and weight if left untreated after 6 years. Table 7 shows the weight of each tank and the total weight of each tank [unit: g], the radioactivity after 6 years without countermeasures and after countermeasures [unit: Bq], and the time to reach 0.1 Bq after countermeasures and when no countermeasures were taken. Note that the boiling point of carbon is the boiling point of CO 2 since it exists as an oxide.
使用済み核燃料取出し180日後の気体核種の重量と体積(1気圧/20℃の値を[
]内に示す)は、放射性核種が158.1kg[27.3m3]、安定核種が227.3kg[43.5m3]で、6年放置後の気体は対策により、放射性核種が157.5kg[27.1m3]から146.0kg[26.0m3]に減少し、安定核種が227.3kg[43.5m3]から238.8kg[47.3m3]に増加する。放射性核種54Xe136の重量[体積]は未対策放置6年後に144.5kg[25.6m3]で全放射性核種の91.7%[体積比94.5%]を占めるが、対策後の重量は同じであるが放射性核種の99.0%[同98.5%]を占め、2番目に多いI129の重量は11.5kg[1.1m3]は7.3%[同4.1%]を占めるが、対策後には0%となる。
本実施例では、発生した安定な臭素(可溶物槽で発生した35Br79/81を含む)3.0kgとヨウ素(難溶物槽で発生した53I127を含む)1.4kgを常温で夫々液体と固体として回収でき、長寿命の放射性ヨウ素(53I129)11.5kgは安定なキセノン(54Xe130)に核種変換できる。気体槽を常温から沸点の降順に冷却すれば、気体元素別に分離できるが、放射性気体と安定気体が混在するので同位体分離は困難で、冷却エネルギー使用による回収コストにも課題があり、沸点が常温以下の気体核種はほぼ従来通りの廃棄となる。
非記載の放射性気体核種で、対策により0.1Bq到達時間が長くなるのが8種で、35Br83(β,2.4h)の427日と36Kr83m(IT,1.8h)の425日、53I130(β,12.4h)の247日と53I130m(IT/β,8.84m)の211日、53I132(β,2.3h)の331日、53I133(β,20.8h)の281日、54Xe133(β,5.3d)の372日、54Xe133m(IT,2.2d)の357日が該当し、対策により53I131(β,8.03d)の0.1Bq到達時間が210日に短くなる。半減期の短い12種の35Br80(β/ec,17.7m)/Br80m(IT,4.42h)/Br82m(IT/β,6.1m)/Br82(β,35.3h)、36Kr79(ε,35h)/Kr81m(IT/β,13s)/Kr85m(β/IT,4.5h)、53I128(β/ec,25m)/I134(β,52.5m)、54Xe135(β,9.1h)/Xe135m(IT,15.3m)/Xe137(β,3.8m)は使用済み核燃料取り出し180日後に、その核種重量は0gとなり、放射能も0Bqとなる。
Weight and volume of gaseous nuclides 180 days after spent nuclear fuel removal (value at 1 atm/20°C [
]) contains 158.1 kg [27.3 m 3 ] of radionuclides and 227.3 kg [43.5 m 3 ] of stable nuclides. [27.1 m 3 ] to 146.0 kg [26.0 m 3 ], and stable nuclides increase from 227.3 kg [43.5 m 3 ] to 238.8 kg [47.3 m 3 ]. The weight [volume] of the radionuclide 54Xe136 is 144.5 kg [25.6 m 3 ] after 6 years without countermeasures, accounting for 91.7% [volume ratio 94.5%] of the total radionuclide, but the weight after countermeasures is Although they are the same, they account for 99.0% [98.5%] of radionuclides, and the weight of the second largest I129 is 11.5 kg [1.1 m 3 ], which accounts for 7.3% [4.1%]. However, after the measures are taken, it will become 0%.
In this example, 3.0 kg of generated stable bromine (including 35Br79/81 generated in the solubles tank) and 1.4 kg of iodine (including 53I127 generated in the hardly solubles tank) were converted into liquids at room temperature. 11.5 kg of long-lived radioactive iodine (53I129), which can be recovered as a solid, can be transmuted into stable xenon (54Xe130). If the gas tank is cooled from room temperature in descending order of boiling point, it is possible to separate gases by element, but isotope separation is difficult because radioactive gases and stable gases coexist, and there is also an issue with the recovery cost due to the use of cooling energy. Gaseous nuclides at temperatures below room temperature will be disposed of in the conventional manner.
Among the unlisted radioactive gas nuclides, there are eight types whose 0.1Bq arrival time becomes longer due to countermeasures: 427 days for 35Br83 (β, 2.4h), 425 days for 36Kr83m (IT, 1.8h), and 425 days for 53I130 ( β, 12.4h) 247 days, 53I130m (IT/β, 8.84m) 211 days, 53I132 (β, 2.3h) 331 days, 53I133 (β, 20.8h) 281 days, 54Xe133 ( This corresponds to 372 days for β, 5.3d) and 357 days for 54Xe133m (IT, 2.2d), and the countermeasure shortens the 0.1Bq arrival time of 53I131 (β, 8.03d) to 210 days. Twelve species with short half-lives, 35Br80 (β/ec, 17.7m)/Br80m (IT, 4.42h)/Br82m (IT/β, 6.1m)/Br82 (β, 35.3h), 36Kr79 (ε , 35h)/Kr81m (IT/β, 13s)/Kr85m (β/IT, 4.5h), 53I128 (β/ec, 25m)/I134 (β, 52.5m), 54Xe135 (β, 9.1h) /Xe135m (IT, 15.3m) /Xe137 (β, 3.8m) has a nuclide weight of 0g and radioactivity of 0Bq 180 days after the spent nuclear fuel is removed.
表6.1~表6.3で示した中性子照射による対策後の可溶物槽、難溶物槽、気体槽で発生した高レベル放射性固体核種の重量と放射能および安定な固体核種の重量を計算で求め、各槽で発生した核種を塩化物として、その沸点により元素分離を行い、安定な核種あるいは同位体の場合は回収し、また再利用可能な放射性核種も回収し、放射性の核種あるいは同位体の場合および放射性の核種あるいは同位体と安定な核種あるいは同位体が混在する場合、その合計した放射能が0.1Bq以下であれば放射性廃棄物として処理し、0.1Bq以上であればキャニスター(内容量150L、許容重量550kg以下)に収容しガラス固化体にして処理する。対策により回収できる安定固体、放射性固体、廃棄する固体、ガラス固化して廃棄する固体の重量、放射能を回収率、廃棄ガラス固化率で評価した結果を表8.1に示す。
なお、この重量は核種単体の値であり、塩化物の値ではない。
The weight of high-level radioactive solid nuclides and the weight of radioactive and stable solid nuclides generated in the soluble material tank, hardly soluble material tank, and gas tank after countermeasures by neutron irradiation shown in Tables 6.1 to 6.3. The nuclide generated in each tank is treated as chloride, and the elements are separated according to their boiling point. Stable nuclides or isotopes are recovered, and reusable radionuclides are also recovered. Alternatively, in the case of isotopes or when radioactive nuclides or isotopes and stable nuclides or isotopes are mixed, if the total radioactivity is 0.1Bq or less, it is treated as radioactive waste, and if it is 0.1Bq or more, it is treated as radioactive waste. It is stored in a canister (inner capacity 150 L, allowable weight 550 kg or less) and processed as a vitrified material. Table 8.1 shows the results of evaluating the stable solids that can be recovered through countermeasures, radioactive solids, solids to be disposed of, weights of solids to be vitrified and disposed of, and radioactivity in terms of recovery rate and waste vitrification rate.
Note that this weight is the value of a single nuclide, not the value of chloride.
使用済み核燃料取出し180日後のFPは、固体核種が1861kg(安定核種;1228kg、放射性核種;633kg)、気体核種が385.4kg(安定核種;227.3kg、放射性核種;158.1kg)であり、未対策で6年間放置すると固体核種が1861kg(安定核種;1254kg、放射性核種;607kg)、気体核種が384.8kg(安定核種;227.3kg、放射性核種;157.5kg)となるが、本発明の実施により6年後に固体核種は1853.5kg(安定核種;1797.6kg、放射性核種;55.9kg)、気体核種は392.6kg(安定核種;246.2kg、放射性核種;146.4kg)となり、固体重量は99.6%に減少し、気体重量は102%に増加する。固体の安定核種は143.3%に増加し、放射性核種は9.2%に減少しており、気体の安定核種は108.3%に増加し、放射性核種は93%に減少している。未対策で使用済み核燃料取出し6年放置後の核種1861kgに沸点の違いを利用して元素分離をした場合に廃棄するガラス固化核種の重量は未記載の重量を加えて1504kgで廃棄率は80.8%となるが、対策により可溶物槽(気体槽含む)と難溶物槽に存在する固体の核種単体の重量1092kg、762kgの合計重量1854kgのうちガラス固化体にする核種の単体重量はそれぞれ559gと10.97kgの合計11.52kgであり、ガラス固化体で廃棄する重量は0.62%に低減できる。これを塩化物に換算すると、可溶物槽(気体槽含む)と難溶物槽に存在する固体の重量は1920kgと1027kgで、それぞれ76.0%、34.8%増加し、ガラス固化する廃棄核種の塩化物重量は945gと19.8kgとなり、それぞれ1.7倍、1.8倍に増加するが、合計しても20.7kgであり、ガラス固化体として廃棄するキャニスターは1本以内である。
尚、可溶物槽で発生するカドミウムの放射性核種46Cd116(2β,3.3E+19y)14.2gの放射能は49.2μBqで天然存在比が7.49%であり廃棄ガラス固化体に含めず廃棄処理固体に含めてある。同様に難溶物槽で発生するジルコニウム(放射性核種40Zr96;23.5kgと安定同位体40Zr90/94;0.9kgが混在)24.4kgの放射性核種Zr96(2β,3.9E+19y)の放射能は82.9mBqであり天然存在比が2.80%なので、廃棄ガラス固化体に含めず廃棄処理固体に含めてある。
使用済み核燃料から発生するFPで未対策放置6年後の廃棄放射性気体核種の放射能は22.1PBqであり、対策による増減は無いが、放射性固体核種の放射能957.3PBqは対策により、再利用放射性核種の放射能146.5PBqと廃棄ガラス固化する放射性核種の放射能153.2PBqとなり、放射性廃棄物として処理するのはジルコニウム(放射性核種40Zr96;23.5kgと安定同位体Zr90/94;931gが混在)24.4kgの放射能83mBqとカドミウムの放射性核種(46Cd116)14.2gの放射能49.2μBqのみとなる。
The FP after 180 days of spent nuclear fuel removal contains 1861 kg of solid nuclides (1228 kg of stable nuclides, 633 kg of radionuclides) and 385.4 kg of gas nuclides (227.3 kg of stable nuclides, 158.1 kg of radionuclides). If left untreated for 6 years, solid nuclides will be 1861 kg (stable nuclides; 1254 kg, radionuclides; 607 kg) and gaseous nuclides will be 384.8 kg (stable nuclides; 227.3 kg, radionuclides; 157.5 kg). After six years, the solid nuclides were 1853.5 kg (stable nuclides; 1797.6 kg, radionuclides; 55.9 kg), and the gaseous nuclides were 392.6 kg (stable nuclides; 246.2 kg, radionuclides; 146.4 kg). , the solid weight decreases to 99.6% and the gas weight increases to 102%. Solid stable nuclides increased to 143.3%, radionuclides decreased to 9.2%, gaseous stable nuclides increased to 108.3%, and radionuclides decreased to 93%. If spent nuclear fuel is removed without countermeasures and left unused for 6 years, 1,861 kg of nuclides are separated by element using the difference in boiling point.The weight of the vitrified nuclides to be disposed of is 1,504 kg, including the unspecified weight, and the disposal rate is 80. However, due to countermeasures, the single weight of solid nuclides present in the soluble matter tank (including gas tank) and the hardly soluble matter tank is 1092 kg, and the total weight of 762 kg is 1854 kg, and the single weight of the nuclide to be vitrified is The total weight is 11.52 kg (559 g and 10.97 kg, respectively), and the weight to be discarded by vitrification can be reduced to 0.62%. If this is converted into chloride, the weight of the solids present in the soluble matter tank (including the gas tank) and the hardly soluble matter tank is 1920 kg and 1027 kg, which is an increase of 76.0% and 34.8%, respectively, and becomes vitrified. The weight of chloride of the waste nuclide is 945 g and 19.8 kg, which is an increase of 1.7 times and 1.8 times, respectively, but the total is 20.7 kg, and the number of canisters to be disposed of as vitrified material is less than one. It is.
In addition, the radioactivity of 14.2 g of cadmium radionuclide 46Cd116 (2β, 3.3E + 19y) generated in the solubles tank is 49.2 μBq, and the natural abundance ratio is 7.49%, so it will not be included in the waste vitrified material and will be discarded. Included in treated solids. Similarly, the radioactivity of 24.4 kg of radionuclide Zr96 (2β, 3.9E + 19y) of zirconium (23.5 kg of radionuclide 40Zr96 and 0.9 kg of stable isotope 40Zr90/94) generated in the refractory tank is Since it is 82.9 mBq and the natural abundance ratio is 2.80%, it is not included in the waste vitrified material but is included in the waste treatment solid.
The radioactivity of discarded radioactive gas nuclides of FP generated from spent nuclear fuel after 6 years of uncountermeasures is 22.1 PBq, and there is no increase or decrease due to countermeasures, but the radioactivity of radioactive solid nuclides of 957.3 PBq has increased due to countermeasures. The radioactivity of the used radionuclide is 146.5PBq, and the radioactivity of the waste vitrified radionuclide is 153.2PBq.The radioactivity of the waste radionuclide is 153.2PBq, and the radioactivity to be treated as radioactive waste is zirconium (radionuclide 40Zr96; 23.5kg and stable isotope Zr90/94; 931g). The radioactivity of 24.4 kg (mixed with 46Cd116) is 83 mBq, and the radioactivity of 14.2 g of cadmium radionuclide (46Cd116) is 49.2 μBq.
(可溶物槽で再利用できる回収核種とガラス固化体にする核種)
可溶物槽で回収できる可溶性核種の安定塩化物とその重量(核種単体)は、セレン(34Se82)が22.7g、ルビジウム(気体槽37Rb85)が623.3g、ストロンチウム(38Sr88)が32.7kg、ガドリニウム(64Gd154/155/158)が27.5kg、ジスプロシウム(66Dy161/162)が77.1kg、ホルミウム(67Ho165)が14.5kg、エルビウム(68Er167)が108.3kg、イッテルビウム(70Yb172/173)が172.4kg、難溶性核種の安定塩化物とその重量(核種単体)はゲルマニウム(32Ge70/72/73)が76.7mg、ジルコニウム(40Zr90/91/92)が62.8kg、スズ(50Sn117)が9.75kg、ハフニウム(72Hf177/178)が561.6kgで、可溶物槽(気体槽を含む)では合計1067kgであり、これらの塩化物を還元して金属として再利用可能である。
回収できる放射性核種とその重量(核種単体)は、ストロンチウム(38Sr90)の23.9kgとルテチウム(71Lu177m/177)の118.6g、合計で24.0kgであり、38Sr90(β,28.8y)は無人機械の動力用エネルギー源の原子力電池に利用でき、71Lu177(β,6.65d)は神経内分泌腫瘍の放射性核種療法に利用でき、放射性医薬品「一般名:ルテチウムオキソドトレオチド(177Lu)」に使用される。(出典:日本核医学会)
ガラス固化体にする核種とその重量はイットリウム(放射性同位体39Y90/91)が6.08g、サマリウム(放射性核種62Sm151;0.3gと安定同位体62Sm152/154;65μg)が0.3g、ユウロピウム(放射性同位体63Eu154/155;552.1gと安定核種Eu151;12mg)が552.1g、合計で558.5gである。
ガラス固化せず放射性廃棄物として廃棄するのは放射能が49.2μBqのカドミウム(48Cd116)の14.2gである。
(Recovered nuclides that can be reused in the solubles tank and nuclides that can be vitrified)
The stable chlorides of soluble nuclides that can be recovered in the solubles tank and their weight (nuclide alone) are 22.7g for selenium (34Se82), 623.3g for rubidium (gas tank 37Rb85), and 32.7kg for strontium (38Sr88). , gadolinium (64Gd154/155/158) is 27.5kg, dysprosium (66Dy161/162) is 77.1kg, holmium (67Ho165) is 14.5kg, erbium (68Er167) is 108.3kg, ytterbium (70Yb172/173) is 172.4 kg, stable chlorides of poorly soluble nuclides and their weights (nuclide alone) are 76.7 mg for germanium (32Ge70/72/73), 62.8 kg for zirconium (40Zr90/91/92), and 62.8 kg for tin (50Sn117). 9.75 kg, hafnium (72Hf177/178) is 561.6 kg, and the total weight in the solubles tank (including the gas tank) is 1067 kg, and these chlorides can be reduced and reused as metal.
The radionuclides that can be recovered and their weight (nuclide alone) are 23.9 kg of strontium (38Sr90) and 118.6 g of lutetium (71Lu177m/177), a total of 24.0 kg, and 38Sr90 (β, 28.8y) is It can be used in nuclear batteries as an energy source for powering unmanned machines, and 71Lu177 (β, 6.65d) can be used in radionuclide therapy for neuroendocrine tumors, and is used in the radiopharmaceutical "generic name: lutetium oxodotreotide (177Lu)". be done. (Source: Japanese Society of Nuclear Medicine)
The nuclides to be vitrified and their weights are 6.08 g for yttrium (radioactive isotope 39Y90/91), 0.3 g for samarium (radioactive nuclide 62Sm151; 0.3 g and stable isotope 62Sm152/154; 65 μg), and europium ( The radioactive isotope 63Eu154/155; 552.1g and the stable nuclide Eu151; 12mg) were 552.1g, for a total of 558.5g.
What is disposed of as radioactive waste without being vitrified is 14.2 g of cadmium (48Cd116) with a radioactivity of 49.2 μBq.
(難溶物槽で再利用できる回収同位体とガラス固化体にする核種)
難溶物槽で回収できる可溶性の安定核種の塩化物とその重量(核種単体)は、ヒ素(33As75)が5.5g、セレン(34Se77)が32.4g、銀(47Ag107/109)が712.5kg、カドミウム(48Cd111/114)が2.38kg、難溶性の安定塩化物とその重量(核種単体)は、モリブデン(42Mo97/98)が5.26kg、ルテニウム(44Ru101)が6.39kgで、合計726.6kgであり、これらの塩化物を還元して金属として再利用可能である。
回収できる放射性核種は無い。
ガラス固化体にする核種と、その重量(核種単体)はパラジウム(放射性核種46Pd107)が7.76kg、スズ(放射性核種50Sn126;4.9mgと安定同位体Sn114/116/122/124;71pg)が4.9mg、アンチモン(放射性同位体51Sb124/125/126m/126;0.25ngと安定核種Sb123;0.7ng)が0.95ng、テルル(放射性同位体52Te125m/127/127m/128;58.3gと安定同位体52Te122/124/125/126;3.15kg)が3.21kgで、合計10.97kgである。
また、前述した様に、ガラス固化せず放射性廃棄物として廃棄するのは放射能が83mBqのジルコニウム(48Cd116)の24.4kgである。
なお、ガラス固化体にする46Pd107のσpは熱中性子(0.0253eV)に対して9.9と大きいので熱中性子照射により46Pd109mに核種変換すれば、Pd109m(IT,3.1s)→Pd109(β,13.6h)→47Ag109m(IT,39.8s)→Ag109(安定)と壊変し、照射41.2日後に放射性核種の放射能が0.1Bq以下となり、安定な47Ag109の7.76kgとして回収され、対策後の安定固体回収率は98.1%から98.5%に、廃棄ガラス固化比率が0.62%から0.20%に向上する。
(Recovered isotopes that can be reused in the refractory tank and nuclides for vitrification)
The chlorides of soluble stable nuclides that can be recovered in the refractory tank and their weight (nuclide alone) are 5.5 g for arsenic (33As75), 32.4 g for selenium (34Se77), and 712 g for silver (47Ag107/109). 5kg, cadmium (48Cd111/114) is 2.38kg, poorly soluble stable chloride and its weight (nuclide alone) is molybdenum (42Mo97/98) 5.26kg, ruthenium (44Ru101) 6.39kg, total. It weighs 726.6 kg, and these chlorides can be reduced and reused as metal.
There are no radionuclides that can be recovered.
The nuclides to be vitrified and their weight (nuclide alone) are palladium (radionuclide 46Pd107) of 7.76 kg, tin (radionuclide 50Sn126; 4.9 mg and stable isotope Sn114/116/122/124; 71 pg). 4.9mg, antimony (radioisotope 51Sb124/125/126m/126; 0.25ng and stable nuclide Sb123; 0.7ng) 0.95ng, tellurium (radioisotope 52Te125m/127/127m/128; 58.3g and the stable isotope 52Te122/124/125/126; 3.15kg) are 3.21kg, for a total of 10.97kg.
Furthermore, as mentioned above, 24.4 kg of zirconium (48Cd116) with a radioactivity of 83 mBq is disposed of as radioactive waste without being vitrified.
Note that the σp of 46Pd107 to be vitrified is as large as 9.9 with respect to thermal neutrons (0.0253eV), so if the nuclide is converted to 46Pd109m by thermal neutron irradiation, Pd109m (IT, 3.1s) → Pd109(β , 13.6h) → 47Ag109m (IT, 39.8s) → Ag109 (stable), and after 41.2 days of irradiation, the radioactivity of the radionuclide decreased to 0.1Bq or less, and it was recovered as 7.76kg of stable 47Ag109. After the measures were taken, the stable solid recovery rate improved from 98.1% to 98.5%, and the waste vitrification ratio improved from 0.62% to 0.20%.
使用済み核燃料1tからガラス固化体(高レベル放射性廃棄物)が約1.25本作られる。(中国電力ホームページhttps://www.enerugia.co.jp)一般的に100万kWの原子力発電からウラン235の濃度が3.7%(5%)の場合、年間約31.5t(22.6t)の使用済み核燃料が出され、これから約15.8m3(11.3m3)の高レベル放射性廃液を生じ、約32本(23本)のガラス固化体が作られるといわれている。(日本原子力研究開発機構 原子力百科事典 ATOMICA)
福島第一原発の2号機(電気出力78.4万kW)の核燃料はU235濃度が3.7%であり、1年間の発電に必要な核燃料は24.7tであるので、ガラス固化体を求めると前者からは31本、後者からは25本となる。核燃料取り出し180日後のFPで固体核種単体の重量1.86t(硝酸化物換算で3.4t、酸化物換算で2.3tで一般的には核種単体の1.6倍あるといわれているので固体核種の重量を約3tとした)は、本発明の実施によりガラス固化体にする核種単体の重量を11.52kg(塩化物換算で20.7kg)と低減でき、ガラス固化体とするキャニスターは前者の計算では0.21本、後者の計算で0.17本となる。
さらに、核燃料取り出しから数年以上放置される場合を考慮して、核燃料取出し10年後の核種について本発明の方法を適用して同様に処理した場合、すなわち核燃料取り出しから16年間放置された場合と対策16年後の計算した結果を表8.2に示す。
Approximately 1.25 bottles of vitrified material (high-level radioactive waste) are produced from 1 ton of spent nuclear fuel. (Chugoku Electric Power Home Page https://www.enerugia.co.jp) Generally speaking, if the concentration of uranium-235 from 1 million kW of nuclear power generation is 3.7% (5%), it will be approximately 31.5 tons (22.5 tons) per year. It is said that 6 tons) of spent nuclear fuel will be discharged, from which approximately 15.8 m 3 (11.3 m 3 ) of high-level radioactive waste liquid will be produced, and approximately 32 (23 bottles) of vitrified waste will be produced. (Japan Atomic Energy Agency Atomic Energy Encyclopedia ATOMICA)
The nuclear fuel from Unit 2 of the Fukushima Daiichi Nuclear Power Plant (electrical output: 784,000 kW) has a U235 concentration of 3.7%, and the nuclear fuel required to generate electricity for one year is 24.7 tons, so we will seek vitrified material. 31 from the former and 25 from the latter. In the FP after 180 days of nuclear fuel removal, the weight of the solid nuclide alone is 1.86t (3.4t in terms of nitrate, 2.3t in terms of oxide, which is generally said to be 1.6 times that of the nuclide alone, so it is solid.) By implementing the present invention, the weight of the nuclide alone to be vitrified can be reduced to 11.52 kg (20.7 kg in terms of chloride), and the canister for vitrifying the former The calculation results in 0.21 lines, and the latter calculation results in 0.17 lines.
Furthermore, considering the case where the nuclear fuel is left unused for several years or more after removal, the method of the present invention is applied to the
核種重量について未対策で放置16年後と放置6年後を比較すると、固体では、放射性核種では96.4%に減少し、安定核種では101.8%と増加し、放射性核種から安定核種への壊変が進み、気体では、放射性核種は99.6%に減少するが、安定核種は100%と変化しない。気体の放射性核種は壊変で安定な気体には壊変せず、固体に壊変していると考えられる。対策により、10年間放置後の使用済み核燃料から回収する安定固体の重量は1794kgで殆ど変わらず、回収放射性固体の重量が20.96kgで13%ほど低下し、廃棄ガラス固化体の重量は11.49kgと30g減少しただけで殆ど変わらず、廃棄処理固体の重量が28.28kgで15.8%増加する。使用済み核燃料を10年間放置した場合でも、廃棄ガラス固化体化率は使用済み核燃料取り出し180日後の対策後の値と同じであり、本発明の効果はあると考えられる。 Comparing the weight of nuclides after 16 years of being left without countermeasures and after 6 years of being left untreated, in solids, radionuclides decreased to 96.4%, stable nuclides increased to 101.8%, and the weight changed from radionuclides to stable nuclides. As the decay progresses, the radioactive nuclides in the gas decrease to 99.6%, but the stable nuclides remain at 100%. It is thought that gaseous radionuclides do not decay into stable gases, but instead decay into solids. As a result of the measures, the weight of stable solids recovered from spent nuclear fuel after being left unused for 10 years remains almost unchanged at 1,794 kg, the weight of recovered radioactive solids decreases by about 13% to 20.96 kg, and the weight of waste vitrified solids decreases to 11.9 kg. There is almost no change, only a decrease of 30g to 49kg, and the weight of the solid waste to be disposed of is 28.28kg, an increase of 15.8%. Even when spent nuclear fuel is left for 10 years, the waste vitrification rate is the same as the value after taking measures 180 days after the spent nuclear fuel was removed, and it is considered that the present invention is effective.
〔参考文献〕および〔データ引用元〕
〔参考文献1〕桜井勉、高橋昭「再処理中のヨウ素の挙動」JAERI-Review 97-002日本原子力研究所、
https://doi.org/10.11484/jaeri-review-97-002
〔参考文献2〕特開平05―072390号公報 14CO2の処理方法 財団法人産業創造研究所
〔参考文献3〕田川博章「硝酸塩の熱分解」横浜国大環境研紀要 14:p.41-57 (1987)
https://ynu.repo.nii.ac.jp/
〔参考文献4〕木下賢介、倉田正輝「高レベル廃液からの超ウラン元素の分離技術」電力中央研究所レビューNo.37、p49-58
https://criepi.denken.or.jp/koho/review/No37/chap-6.pdf
〔データ引用元1〕IAEA Nuclear Structure and Decay Data;IAEA Nuclear Data Section,Vienna International Centre,PO Box100 A-1400 Vienna,Austria
https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html
〔データ引用元2〕日本原子力研究開発機構 核データ研究グループ JENDL-5
https://wwwndc.jaea.go.jp/jendl
〔データ引用元3〕西原 健司、岩元 大樹、須山 賢也「福島第一原子力発電所の燃料組成評価」JAEA-Data/Code 2012-018,日本原子力研究開発機構
https://jopss.jaea.go.jp/pdfdata/JAEA-Data-Code-2012-018.pdf
[References] and [Data source]
[Reference 1] Tsutomu Sakurai, Akira Takahashi “Behavior of iodine during reprocessing” JAERI-Review 97-002 Japan Atomic Energy Research Institute,
https://doi. org/10.11484/jaeri-review-97-002
[Reference 2] Japanese Patent Application Laid-open No. 05-072390 14 CO2 treatment method Industrial Creation Research Institute [Reference 3] Hiroaki Tagawa, "Pyrolysis of nitrates" Bulletin of the Institute of Environmental Studies, Yokohama National University 14: p. 41-57 (1987) )
https://ynu. repo. niii. ac. jp/
[Reference 4] Kensuke Kinoshita, Masaki Kurata “Separation technology for transuranium elements from high-level waste liquid” Central Research Institute of Electric Power Industry Review No. 37, p49-58
https://criepi. denken. or. jp/koho/review/No37/chap-6. pdf
[Data source 1] IAEA Nuclear Structure and Decay Data; IAEA Nuclear Data Section, Vienna International Center, PO Box100 A-1400 Vi Enna, Austria
https://www-nds. iaea. org/relnsd/vcharthml/VChartHTML. html
[Data source 2] Japan Atomic Energy Agency, Nuclear Data Research Group, JENDL-5
https://wwwndc. jaea. go. jp/jendl
[Data source 3] Kenji Nishihara, Daiki Iwamoto, Kenya Suyama “Evaluation of fuel composition for Fukushima Daiichi Nuclear Power Plant” JAEA-Data/Code 2012-018, Japan Atomic Energy Agency https://jopss. jaea. go. jp/pdfdata/JAEA-Data-Code-2012-018. pdf
本実施例では、東京電力福島第一発電所の第二号機の使用済み核燃料の取出し180日後と、10年後のFPのうち固体核種についてガラス固化する核種重量を計算したが、他の原子力発電所で生じる使用済み核燃料で発生するFPの重量が与えられれば、本実施例のワークシートを適用して、ガラス固化する核種重量を求めることができる。さらに、本発明の実施により、原子力発電で発生した使用済み核燃料の高レベル放射性廃棄物のガラス固化体の割合を1%以下に低減できるので高レベル放射性廃棄物貯蔵場の必要面積が減り、保管管理が容易となり、廃棄物貯蔵場所の選択肢を広げ、更に、供給電力に占める原子力発電の比率を高めるための布石となり、地球温暖化の抑止に寄与できると考える。 In this example, we calculated the weight of solid nuclides that will become vitrified in the FP 180 days after the removal of spent nuclear fuel from Unit 2 of TEPCO's Fukushima Daiichi Nuclear Power Station and 10 years later. If the weight of FP generated from spent nuclear fuel is given, the worksheet of this example can be applied to determine the weight of the nuclide that will be vitrified. Furthermore, by implementing the present invention, the proportion of vitrified high-level radioactive waste from spent nuclear fuel generated in nuclear power generation can be reduced to 1% or less, reducing the area required for high-level radioactive waste storage sites and storage. We believe that it will be easier to manage, expand the options for waste storage locations, and serve as a stepping stone to increasing the proportion of nuclear power generation in the electricity supply, contributing to the prevention of global warming.
1 気体槽
2 固体槽
3 可溶物槽
4 難溶物槽A
5 難溶物槽
6 可溶物槽B
7 熱中性子源装置
8 冷中性子源装置
9 中性子照射シャッター
10 固液分離装置
11 ろ過装置
12 液体ヨウ素受け皿
13 冷却装置
14 ヨウ化物槽
15 塩化物槽1(固化装置付き)
16 塩化物槽2(固化装置付き)
17 気化装置
18 精留塔
19 凝縮器
20 加熱装置
21 硝酸溶液注入口
22 塩酸溶液注入口
23 塩素ガス注入口
24 バルブ(液体用)
25 逆流防止付きバルブ(液体用)
26 逆流防止付きバルブ(気体用)
27 真空ポンプ
28 液体還流ポンプ
29 放射線量モニター
30 気体放出バルブ
31 流路切替えバルブ
32 温度制御付き加熱装置
33 硝酸回収装置
34 冷却装置
35 安定核種回収槽
36 ガラス固化核種回収槽
37 液化ヨウ素取出し管
38 ガス遠心分離装置
39 重核種回収槽
40 軽核種回収槽
1 Gas tank 2
5
7 Thermal neutron source device 8 Cold
16 Chloride tank 2 (with solidification device)
17
25 Valve with backflow prevention (for liquid)
26 Valve with backflow prevention (for gas)
27
難溶物槽の安定核種で180日後の重量と、未対策で6年間放置した場合と本発明を適用した場合の重量変化を計算した結果を表3B-1に示す。未対策6年放置後の安定固体核種141種;重量450.9kg(可溶性核種が77種;7.57kg、難溶性核種が47種;443.4kg、気体核種が17種;0g)は、対策により核種数は24種(可溶性核種が12種、難溶性核種が11種、気体核種が1種)に減少し、重量は732.1kg(可溶性核種が718.1kg、難溶性核種が12.6kg、気体核種が1.41kg)に増加する。但し、これらの核種の重量は全て核種単体の重量である。
非記載の難溶性安定核種36核種は全てσpが1以上で、中性子照射により核種変換されて重量は0gとなり、核種変換された親核種となる放射性核種が長寿命でもσpが1より大きい難溶性核種となり、中性子照射により核種変換され0gとなる。例を挙げると、安定な49In113は1回目の中性子照射で核種変換され、49In115m(IT/β,4.5h)→In115(β,4.4E+14y)→50Sn115(安定)と壊変し、σpが1より大きいIn115は2回目の中性子照射でIn116mに核種変換され0gとなり、49In116m(β,54.3m)→50Sn116(安定)と壊変しIn113は0gとなり、安定な50Sn116の重量が増えるが、該核種もσpが0.9で中性子照射の照射回数と共に重量は減少する。また、安定な46Pd108は中性子照射で46Pd109mに核種変換され46Pd109m(IT,4.7m)→Pd109(β,13.6h)→47Ag109m(IT,39.8s)→Ag109(安定)と壊変し、Pd107は0gとなり安定な可溶性核種の47Ag109が増加する。
Table 3B-1 shows the weight of stable nuclides in the refractory tank after 180 days, and the calculated weight changes when left untreated for 6 years and when the present invention is applied. 141 stable solid nuclides; weight 450.9 kg (77 soluble nuclides; 7.57 kg; 47 poorly soluble nuclides; 443.4 kg; 17 gaseous nuclides; 0 g) after being left untreated for 6 years. The number of nuclides was reduced to 24 (12 soluble nuclides, 11 poorly soluble nuclides, 1 gas nuclide), and the weight was 732.1 kg (718.1 kg soluble nuclides, 12.6 kg poorly soluble nuclides). , gaseous nuclide increases to 1.41 kg). However, all the weights of these nuclides are the weights of individual nuclides.
Unlisted poorly soluble stable nuclides All 36 nuclides have a σp of 1 or more, and their weight becomes 0 g after nuclide conversion by neutron irradiation.Even if the converted parent nuclide radionuclide has a long life, it is a poorly soluble one with σp greater than 1. It becomes a nuclide and undergoes nuclide conversion by neutron irradiation to become 0g. For example, stable 49In113 undergoes nuclide transmutation by the first neutron irradiation and decays as 49In115m (IT/β, 4.5h) → In115 (β, 4.4E+14y) → 50Sn115 (stable), and σp is 1. The larger In115 is converted into In116m by the second neutron irradiation and becomes 0g, and decays as 49In116m (β, 54.3m) → 50Sn116 (stable), and In113 becomes 0g, and the weight of stable 50Sn116 increases, but the nuclide Also, when σp is 0.9, the weight decreases with the number of neutron irradiations. In addition, stable 46Pd108 is converted into 46Pd109m by neutron irradiation and decays as 46Pd109m (IT, 4.7m) → Pd109 (β, 13.6h) → 47Ag109m (IT, 39.8s) → Ag109 (stable), and Pd107 becomes 0g, and stable soluble nuclide 47Ag109 increases.
対策後の重量が1E-40g以上の安定な難溶性核種11種と、中性子照射で発生した安定な可溶性核種12種と気体核種1種について中性子捕獲確率σp(0.353meV)、燃料取出し180日後と、未対策放置6年後と対策後の核種重量〔単位g〕を表3B-2に示す。
難溶性の安定核種は11種全てが対策6年後の重量は未対策放置6年後の重量より減少している。σpが1以下の核種は7種(σpの値を[]内に示す。)で、そのうち4種、4Be9[0.34]、40Zr90[0.09]、Zr94[0.42]、50Sn124[0.94]は親核種が無いので中性子照射回数と共に重量は漸次減少する。他の3種50Sn114[0.92]/Sn116[0.91]/Sn122[0.98]は、中性子照射で核種変換されずに一部が残存し、中性子照射2回目以降、それぞれの親核種49In114(β/ε)、49In116m(β)、51Sb122m(IT)→Sb122(β/ε)は発生しないので娘核種の重量は0gとなり、13回目の中性子照射で一部が中性子捕獲で核種変換され、残された娘核種の重量は減少し未対策放置6年後より少ない。残り4種42Mo97/98と44Ru101および51Sb123はσpが1以上で、中性子照射13回で核種変換され0gとなるが、親核種40Zr97(β)/98(β)と42Mo101(β)および50Sn123m(β)のβ崩壊で発生する娘核種の重量は未対策放置6年後より少なくなる。
難溶物槽で発生する12種の可溶性核種には中性子を照射しない。このうち4種、31Ga71、33As75、34Se77、48Cd114は、それぞれの親核種32Ge71m(IT)→Ge71(ec)、32Ge75m(IT)、32Ge77m(β/IT)、49In114m(IT/ε)のσpは0で、中性子照射による親核種の発生が3回までで、発生する娘核種の重量は未対策放置6年後より少ない。52Te125は13回の中性子照射で毎回核種変換で生じた親核種50Sn125m(β)の崩壊で発生するが照射回数と共に重量は漸次減少し、未対策放置6年後より少ない。残りの7種、5B10,47Ag107/109、48Cd111、52Te122/124/126は、それぞれの親核種4Be10(β)、44Ru107(β)、46Pd109m(IT)、46Pd111m(IT/β)、51Sb122m(IT)/124m(IT/β)/126m(β/IT)のσpが0で、13回の中性子照射で発生した親核種のβ、IT崩壊で生じ、これらの娘核種の重量は未対策放置6年後の重量より多くなる。
難溶物槽で発生する安定気体核種は53I127の1.41kgだけで、中性子捕獲で核種変換された50Sn127m(β)を親核種として51Sb127(β,3.85d)→52Te127m(IT/β,106.1d)→52Te127(β,9.35h)→53I127(安定)と壊変することによる。放射線量モニターで安全を確認後、放出できる。尚、対策6年以降に難溶物槽に付属の可溶槽Bで生じる放射性のテルルが52Te127m(IT/β,106.1d)→Te127(β,9.35h)→53I127(安定)と壊変しI127が20℃で0.63mL(3.35mg)発生するので、テルルのガラス固化の際、銀を加えヨウ化銀として固化する。
対策6年以後に安定核種で重量が増加する核種があるが〔〕内に示した半減期の長い放射性親核種の崩壊によるもので、難溶性核種では無く、可溶性核種では5B10〔4Be10〕、47Ag107〔46Pd107〕、52Te124〔51Sb124m〕、52Te125〔51Sb125〕が該当する。これらの親核種の難溶性の放射性核種はガラス固化する。但し、σpが大きい46Pd107は、後述するが6年後の核種分離で単独で存在するので熱中性子照射により核種変換し、46Pd109m(IT,3.1s)→Pd109(β,13.59h)→47Ag109m(IT,39.8s)→Ag109(安定)の壊変で41.2日以降に安定なAg109に変換して回収できる。
Neutron capture probability σp (0.353 meV) for 11 stable poorly soluble nuclides with a weight of 1E-40 g or more after countermeasures, 12 stable soluble nuclides generated by neutron irradiation, and 1 gas nuclide, 180 days after fuel removal Table 3B-2 shows the nuclide weight (in g) after 6 years without countermeasures and after countermeasures.
The weight of all 11 poorly soluble stable nuclides after 6 years of countermeasures was lower than the weight after 6 years of no countermeasures. There are seven types of nuclides with σp of 1 or less (the value of σp is shown in brackets), and four of them are 4Be9[0.34], 40Zr90[0.09], Zr94[0.42], and 50Sn124[ 0.94] has no parent nuclide, so its weight gradually decreases with the number of neutron irradiations. The other three types of 50Sn114[0.92]/Sn116[0.91]/Sn122[0.98] partially remain without being converted by neutron irradiation, and after the second neutron irradiation, their respective parent nuclides 49In114 (β/ε), 49In116m (β), 51Sb122m (IT) → Sb122 (β/ε) are not generated, so the weight of the daughter nuclide is 0 g, and in the 13th neutron irradiation, some of it is converted by neutron capture. , the weight of the remaining daughter nuclides has decreased and is less than after 6 years without countermeasures. The remaining four types, 42Mo97/98, 44Ru101, and 51Sb123, have σp of 1 or more and undergo nuclide conversion to 0g after 13 neutron irradiations, but the parent nuclides 40Zr97(β)/98(β), 42Mo101(β), and 50Sn123m(β ) The weight of daughter nuclides generated by β-decay will be less than after 6 years if no countermeasures are taken.
The 12 types of soluble nuclides generated in the refractory tank are not irradiated with neutrons. Four of these, 31Ga71, 33As75, 34Se77, and 48Cd114, have parent nuclides of 32Ge71m (IT) → Ge71 (ec), 32Ge75m (IT), 32Ge77m (β/IT), and 49In114m (IT/ε) whose σp is 0. In this case, the parent nuclide is generated up to three times due to neutron irradiation, and the weight of the daughter nuclide generated is less than after 6 years of no countermeasures. 52Te125 is generated by the decay of the parent nuclide 50Sn125m (β) generated by nuclide transmutation each time after 13 neutron irradiations, but its weight gradually decreases with the number of irradiations, and is less than after 6 years of no countermeasures. The remaining seven species, 5B10, 47Ag107/109, 48Cd111, 52Te122/124/126, have their respective parent nuclides 4Be10 (β), 44Ru107 (β), 46Pd109m (IT), 46Pd111m (IT/β), and 51Sb122m (IT). /124m(IT/β)/126m(β/IT) σp is 0, β of the parent nuclide generated by 13 neutron irradiations, produced by IT decay, and the weight of these daughter nuclides has been left untreated for 6 years. The weight will be more than the latter.
The stable gas nuclide generated in the refractory tank is only 1.41 kg of 53I127, and 51Sb127 (β, 3.85d) → 52Te127m (IT/β, 106 .1d) → 52Te127 (β, 9.35h) → 53I127 (stable). It can be released after confirming safety with a radiation dose monitor. In addition, after the 6th year of countermeasures, the radioactive tellurium generated in the soluble tank B attached to the refractory tank decayed as 52Te127m (IT/β, 106.1d) → Te127 (β, 9.35h) → 53I127 (stable). Since 0.63 mL (3.35 mg) of I127 is generated at 20°C, when tellurium is vitrified, silver is added and solidified as silver iodide.
Countermeasures There are stable nuclides whose weight increases after 6 years, but this is due to the decay of the radioactive parent nuclides with long half-lives shown in [ ], and they are not sparingly soluble nuclides, but soluble nuclides such as 5B10 [4Be10] and 47Ag107. [46Pd107], 52Te124 [51Sb124m], and 52Te125 [51Sb125] are applicable. The poorly soluble radionuclides of these parent nuclides are vitrified. However, as will be described later, 46Pd107 with a large σp exists alone after 6 years of nuclide separation, so the nuclide is converted by thermal neutron irradiation, and 46Pd109m (IT, 3.1s) → Pd109 (β, 13.59h) → 47Ag109m (IT, 39.8s) → Ag109 (stable) decays and can be converted to stable Ag109 and recovered after 41.2 days.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023131725A JP7691459B2 (en) | 2023-08-12 | 2023-08-12 | Rational methods for disposing of spent nuclear fuel |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023131725A JP7691459B2 (en) | 2023-08-12 | 2023-08-12 | Rational methods for disposing of spent nuclear fuel |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2023168643A true JP2023168643A (en) | 2023-11-27 |
| JP2023168643A5 JP2023168643A5 (en) | 2024-03-11 |
| JP7691459B2 JP7691459B2 (en) | 2025-06-11 |
Family
ID=88917377
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2023131725A Active JP7691459B2 (en) | 2023-08-12 | 2023-08-12 | Rational methods for disposing of spent nuclear fuel |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP7691459B2 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS56125698A (en) * | 1979-12-05 | 1981-10-02 | Perm Inc | Method of reducing amount of long life fission product |
| JPH1048390A (en) * | 1996-08-07 | 1998-02-20 | Toshiba Corp | Method for extinguishing radioactive iodine and its neutron irradiation device |
-
2023
- 2023-08-12 JP JP2023131725A patent/JP7691459B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS56125698A (en) * | 1979-12-05 | 1981-10-02 | Perm Inc | Method of reducing amount of long life fission product |
| JPH1048390A (en) * | 1996-08-07 | 1998-02-20 | Toshiba Corp | Method for extinguishing radioactive iodine and its neutron irradiation device |
Also Published As
| Publication number | Publication date |
|---|---|
| JP7691459B2 (en) | 2025-06-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Saling | Radioactive waste management | |
| Croff et al. | Actinide partitioning-transmutation program final report. I. Overall assessment | |
| Nagasaki et al. | Radioactive waste engineering and management | |
| Till | Source terms for technetium-99 from nuclear fuel cycle facilities | |
| Laidler et al. | Chemical partitioning technologies for an ATW system | |
| Meleshyn et al. | Radionuclide inventory of vitrified waste after spent nuclear fuel reprocessing at La Hague | |
| Butterworth et al. | Some radiological limitations on the compositions of low-activation materials for power reactors | |
| Mushtaq et al. | Management of radioactive waste from molybdenum-99 production using low enriched uranium foil target and modified CINTICHEM process | |
| JP7691459B2 (en) | Rational methods for disposing of spent nuclear fuel | |
| Mani | Reactor-produced radionuclides | |
| Flowers et al. | Characteristics and quantities of radioactive wastes | |
| Verhoef et al. | Waste families in OPERA | |
| Simpson et al. | Management of salt waste from electrochemical processing of used nuclear fuel | |
| Yim | Generation of Nuclear Waste from Nuclear Power | |
| Blomeke et al. | Nuclear waste partitioning and transmutation | |
| Okoshi et al. | Generation and characteristics of radioactive wastes | |
| Yim | Spent fuel reprocessing and nuclear waste transmutation | |
| Chuvilin et al. | Low-waste and proliferation-free production of medical radioisotopes in solution and molten-salt reactors | |
| Rupp | Radioisotope-oriented view of nuclear waste management | |
| Rachmadetin et al. | Radiation emission of radioactive waste generated from 99Mo production by irradiation of uranium target in GA Siwabessy research reactor | |
| McKee | Implementation of vented fuel assemblies in the supercritical CO₂-cooled fast reactor | |
| Wisnubroto et al. | The challenges of managing radioactive waste from the production of Molybdenum-99 in Indonesia | |
| Lewis et al. | Idaho National Engineering and Environmental Laboratory Site Report on the Production and Use of Recycled Uranium | |
| Kessler | Radioactive releases from nuclear power plants and fuel cycle facilities during normal operation | |
| National Research Council et al. | Evaluation of the US Department of Energy's alternatives for the removal and disposition of molten salt reactor experiment fluoride salts |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230922 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240220 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240301 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20250114 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20250311 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20250405 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20250513 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20250515 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250527 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250530 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7691459 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |