[go: up one dir, main page]

JP2023176899A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2023176899A
JP2023176899A JP2022089469A JP2022089469A JP2023176899A JP 2023176899 A JP2023176899 A JP 2023176899A JP 2022089469 A JP2022089469 A JP 2022089469A JP 2022089469 A JP2022089469 A JP 2022089469A JP 2023176899 A JP2023176899 A JP 2023176899A
Authority
JP
Japan
Prior art keywords
region
semiconductor device
gate
common wiring
carrier injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022089469A
Other languages
Japanese (ja)
Inventor
翼 森塚
Tsubasa MORITSUKA
正樹 白石
Masaki Shiraishi
宰豪 山住
Saigo Yamazumi
智之 三好
Tomoyuki Miyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Power Semiconductor Device Inc
Original Assignee
Hitachi Power Semiconductor Device Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Semiconductor Device Ltd filed Critical Hitachi Power Semiconductor Device Ltd
Priority to JP2022089469A priority Critical patent/JP2023176899A/en
Priority to PCT/JP2023/013892 priority patent/WO2023233807A1/en
Priority to CN202380040708.7A priority patent/CN119213569A/en
Priority to DE112023001688.7T priority patent/DE112023001688T5/en
Priority to TW112113969A priority patent/TWI846427B/en
Publication of JP2023176899A publication Critical patent/JP2023176899A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/01Manufacture or treatment
    • H10D12/031Manufacture or treatment of IGBTs
    • H10D12/032Manufacture or treatment of IGBTs of vertical IGBTs
    • H10D12/038Manufacture or treatment of IGBTs of vertical IGBTs having a recessed gate, e.g. trench-gate IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/411Insulated-gate bipolar transistors [IGBT]
    • H10D12/415Insulated-gate bipolar transistors [IGBT] having edge termination structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/411Insulated-gate bipolar transistors [IGBT]
    • H10D12/441Vertical IGBTs
    • H10D12/461Vertical IGBTs having non-planar surfaces, e.g. having trenches, recesses or pillars in the surfaces of the emitter, base or collector regions
    • H10D12/481Vertical IGBTs having non-planar surfaces, e.g. having trenches, recesses or pillars in the surfaces of the emitter, base or collector regions having gate structures on slanted surfaces, on vertical surfaces, or in grooves, e.g. trench gate IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/106Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/141Anode or cathode regions of thyristors; Collector or emitter regions of gated bipolar-mode devices, e.g. of IGBTs
    • H10D62/142Anode regions of thyristors or collector regions of gated bipolar-mode devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/111Field plates
    • H10D64/117Recessed field plates, e.g. trench field plates or buried field plates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/411Insulated-gate bipolar transistors [IGBT]
    • H10D12/417Insulated-gate bipolar transistors [IGBT] having a drift region having a doping concentration that is higher at the collector side relative to other parts of the drift region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/393Body regions of DMOS transistors or IGBTs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/50Physical imperfections
    • H10D62/53Physical imperfections the imperfections being within the semiconductor body 

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

To provide a semiconductor device capable of ensuring turn-off tolerance by suppressing carrier concentration in an active region near a gate common wiring region or a gate pad region.SOLUTION: In a semiconductor device including a plurality of switching elements, gate common wiring 1 commonly connected to gates of the plurality of switching elements, and a gate pad that supplies power to the gate common wiring 1, a carrier injection suppression region 18 is provided in a gate common wiring region 6 that overlaps with the gate common wiring 1 and in a gate pad region that overlaps with the gate pad.SELECTED DRAWING: Figure 5

Description

本発明は、半導体装置に関する。 The present invention relates to a semiconductor device.

IGBTなどのパワー半導体では、ターンオフ耐量(RBSOA(Reverse Bias Safe Operating Area)耐量)を十分に確保する必要がある。 In power semiconductors such as IGBTs, it is necessary to ensure sufficient turn-off tolerance (RBSOA (Reverse Bias Safe Operating Area) tolerance).

IGBTのターンオフ時の遮断能力を向上する技術としては、例えば特許文献1がある。特許文献1の段落0120~0123、図32A、図32Bに示す構造は、IGBTの中間領域(2)からエッジターミネーション領域(5)のコレクタ側からのキャリアの注入を抑制する構造となっており、図32Aには、アクティブセル領域(1)ではコレクタ層(16)とメタル(29)が接し、中間領域(2)とエッジターミネーション領域(5)ではnバッファ層(15)がメタル(29)に接するIGBTが示されており、図32Bには、アクティブセル領域(1)ではpコレクタ層(16)がメタル(29)に接し、中間領域(2)とエッジターミネーション領域(5)ではpコレクタ層(16)より不純物濃度が低い低濃度pコレクタ層(16’)がメタル(29)と接するIGBTが示されており、その結果、ターンオフ動作時に中間領域(2)に存在する主接合pn接合部の電界強度を緩和し、局所的な電界強度の上昇を抑制しインパクトイオン化による電流集中起因の局所的な温度上昇による熱破壊を抑制する作用があることが記載されている。 For example, Patent Document 1 is known as a technique for improving the blocking ability of an IGBT at turn-off. The structure shown in paragraphs 0120 to 0123, FIGS. 32A, and 32B of Patent Document 1 is a structure that suppresses injection of carriers from the intermediate region (2) of the IGBT to the collector side of the edge termination region (5), In FIG. 32A, the collector layer (16) and metal (29) are in contact with each other in the active cell region (1), and the n-buffer layer (15) is in contact with the metal (29) in the intermediate region (2) and edge termination region (5). The contacting IGBTs are shown in FIG. 32B, with the p-collector layer (16) contacting the metal (29) in the active cell region (1), and the p-collector layer (16) contacting the metal (29) in the intermediate region (2) and edge termination region (5). (16) An IGBT is shown in which a low concentration p collector layer (16') with a lower impurity concentration is in contact with a metal (29), and as a result, the main junction p-n junction exists in the intermediate region (2) during turn-off operation. It is described that it has the effect of moderating the electric field strength of , suppressing a local increase in electric field strength, and suppressing thermal breakdown due to a local temperature rise caused by current concentration due to impact ionization.

国際公開第2017/115434号International Publication No. 2017/115434

IGBTがターンオフ時に破壊する一つの要因として、ターンオフ時にターミネーション領域から大量のホールなどのキャリアが注入されるため、アクティブ領域の周辺部(特にコーナー領域)でキャリア集中が発生し、電界が集中することで、破壊に至ることが考えられる。 One of the reasons why IGBTs break down during turn-off is that a large amount of carriers such as holes are injected from the termination region during turn-off, resulting in carrier concentration in the periphery of the active region (particularly in the corner region), resulting in concentration of the electric field. This may lead to destruction.

特許文献1の技術によれば、ターミネーション領域からのキャリアの注入が抑制されるため、アクティブ領域の周辺部におけるターンオフ時の破壊を抑制することができる。 According to the technique disclosed in Patent Document 1, since the injection of carriers from the termination region is suppressed, destruction at the time of turn-off in the peripheral portion of the active region can be suppressed.

しかしながら、本願の発明者の検討によって、ゲートフィンガーとも呼ばれるゲート共通配線とゲートパッドの下部からもキャリアの注入が発生し、ゲート共通配線領域やゲートパッド領域の近傍のアクティブ領域でキャリア集中が発生し、破壊に至ることがあることが分かった。 However, studies conducted by the inventor of the present application have revealed that carrier injection also occurs from the lower part of the gate common wiring, also called gate finger, and the gate pad, and carrier concentration occurs in the active region near the gate common wiring area and gate pad area. It has been found that this can lead to destruction.

特許文献1では、ゲート共通配線に相当する特許文献1の図1の表面ゲート配線部(3)にはコレクタ側からのキャリアの注入を抑制する構造を採用しておらず、この問題を解決できていない。 In Patent Document 1, a structure that suppresses carrier injection from the collector side is not adopted in the front gate wiring portion (3) in FIG. 1 of Patent Document 1, which corresponds to the gate common wiring, and this problem cannot be solved. Not yet.

また、本願の発明者の検討によって、ターミネーション領域にキャリアの注入を抑制する構造の有無にかかわらず、例えばスイッチングスピードが速い場合にはアクティブ領域の周辺部よりも先にゲート共通配線領域やゲートパッド領域の近傍のアクティブ領域でキャリア集中が発生し、破壊に至ることがあることが分かった。 In addition, the inventor of this application found that regardless of the presence or absence of a structure that suppresses carrier injection into the termination region, for example, when the switching speed is high, the gate common wiring region or gate pad is It was found that carrier concentration occurs in the active region near the active region, which can lead to destruction.

この理由を、図1、図2、図10から図12を用いて説明する。 The reason for this will be explained using FIGS. 1, 2, and 10 to 12.

図1は、半導体装置の平面図であり、図2は、図1の半導体装置のA部拡大図であり、図10は、従来の半導体装置のB-B’断面図であり、図11は、従来の半導体装置のD-D’断面図であり、図12は、従来の半導体装置のB-B’断面図である。 1 is a plan view of a semiconductor device, FIG. 2 is an enlarged view of part A of the semiconductor device in FIG. 1, FIG. 10 is a BB' cross-sectional view of a conventional semiconductor device, and FIG. 12 is a DD' cross-sectional view of a conventional semiconductor device, and FIG. 12 is a BB' cross-sectional view of a conventional semiconductor device.

図10に示すように、スイッチングスピードが遅い場合は、ゲート共通配線1に重なるゲート共通配線領域6とターミネーション領域4とにおけるホール20が、アクティブ領域3に注入され、アクティブ領域3の周辺部でキャリア集中が発生する。図11に示すように、アクティブ領域3に挟まれたゲート共通配線領域6においても、ホール20がアクティブ領域3に注入され、ゲート共通配線領域6の近傍のアクティブ領域3でキャリア集中が発生する。しかし、図10に示すように、スイッチングスピードが遅い場合は、アクティブ領域3の周辺部の方がホール20が注入される量が多いので、アクティブ領域3の周辺部の方で破壊に至りやすい。 As shown in FIG. 10, when the switching speed is slow, holes 20 in the gate common wiring region 6 overlapping the gate common wiring 1 and the termination region 4 are injected into the active region 3, and carriers are generated in the peripheral part of the active region 3. Concentration occurs. As shown in FIG. 11, holes 20 are also injected into the active region 3 in the gate common wiring region 6 sandwiched between the active regions 3, and carrier concentration occurs in the active region 3 near the gate common wiring region 6. However, as shown in FIG. 10, when the switching speed is slow, a larger amount of holes 20 are injected at the periphery of the active region 3, so destruction is more likely to occur at the periphery of the active region 3.

一方、図12に示すように、スイッチングスピードが速い場合は、ゲート共通配線領域6とターミネーション領域4とにおけるホール20の一部が到達する前に、図11に示すように、アクティブ領域3に挟まれたゲート共通配線領域6からのホール20が注入される量が支配的になる場合があり、ゲート共通配線領域6の近傍のアクティブ領域3の方で破壊に至る可能性がある。また、図示しないゲートパッド領域の構造は、ゲート共通配線領域6と同様であるため、同様にゲートパッド領域の近傍のアクティブ領域3の方で破壊に至る可能性がある。 On the other hand, as shown in FIG. 12, when the switching speed is high, some of the holes 20 in the gate common wiring region 6 and the termination region 4 may be sandwiched between the active regions 3 as shown in FIG. The amount of holes 20 injected from the gate common wiring region 6 may become dominant, and there is a possibility that destruction may occur in the active region 3 near the gate common wiring region 6. Furthermore, since the structure of the gate pad region (not shown) is similar to that of the gate common wiring region 6, there is a possibility that the active region 3 near the gate pad region will be destroyed as well.

したがって、ターンオフ耐量を確保するためには、ゲート共通配線領域6やゲートパッド領域においてもキャリアの注入を抑制する構造が必要であることが分かった。 Therefore, it has been found that in order to ensure turn-off tolerance, a structure that suppresses carrier injection is required also in the gate common wiring region 6 and the gate pad region.

本発明が解決しようとする課題は、ゲート共通配線領域やゲートパッド領域の近傍のアクティブ領域におけるキャリア集中を抑制してターンオフ耐量を確保することができる半導体装置を提供することである。 The problem to be solved by the present invention is to provide a semiconductor device that can suppress carrier concentration in an active region near a gate common wiring region or a gate pad region and ensure turn-off tolerance.

上記課題を解決するために、本発明の半導体装置は、例えば、複数のスイッチング素子と、前記複数のスイッチング素子のゲートに共通に接続されたゲート共通配線と、前記ゲート共通配線に給電をするゲートパッドとを有する半導体装置において、前記ゲート共通配線に重なるゲート共通配線領域と、ゲートパッドに重なるゲートパッド領域とに、キャリア注入抑制領域を有することを特徴とする。 In order to solve the above problems, a semiconductor device of the present invention includes, for example, a plurality of switching elements, a gate common wiring commonly connected to the gates of the plurality of switching elements, and a gate that supplies power to the gate common wiring. The semiconductor device has a carrier injection suppressing region in a gate common wiring region overlapping the gate common wiring and in a gate pad region overlapping the gate pad.

本発明の半導体装置によれば、ゲート共通配線領域やゲートパッド領域の近傍のアクティブ領域におけるキャリア集中を抑制してターンオフ耐量を確保することができる。 According to the semiconductor device of the present invention, turn-off tolerance can be ensured by suppressing carrier concentration in the active region near the gate common wiring region and the gate pad region.

半導体装置の平面図。FIG. 2 is a plan view of a semiconductor device. 図1の半導体装置のA部拡大図。2 is an enlarged view of part A of the semiconductor device in FIG. 1. FIG. 実施例1の半導体装置のB-B’断面図。3 is a sectional view taken along line B-B' of the semiconductor device of Example 1. FIG. 実施例1の半導体装置のC-C’断面図。FIG. 2 is a cross-sectional view taken along line CC' of the semiconductor device of Example 1. 実施例1の半導体装置のD-D’断面図。FIG. 3 is a cross-sectional view taken along line DD' of the semiconductor device of Example 1. 実施例2の半導体装置のB-B’断面図。FIG. 3 is a cross-sectional view taken along line B-B' of the semiconductor device of Example 2. 実施例2の半導体装置のD-D’断面図。FIG. 3 is a cross-sectional view taken along line DD' of the semiconductor device of Example 2. 実施例3の半導体装置のB-B’断面図。FIG. 3 is a cross-sectional view taken along line B-B' of the semiconductor device of Example 3. 実施例3の半導体装置のD-D’断面図。FIG. 4 is a cross-sectional view taken along line DD' of the semiconductor device of Example 3. 従来の半導体装置のB-B’断面図。B-B' cross-sectional view of a conventional semiconductor device. 従来の半導体装置のD-D’断面図。FIG. 3 is a cross-sectional view taken along line D-D' of a conventional semiconductor device. 従来の半導体装置のB-B’断面図。B-B' cross-sectional view of a conventional semiconductor device.

以下、図面を用いて本発明の実施例を説明する。各図、各実施例において、同一または類似の構成要素については同じ符号を付け、重複する説明は省略する。 Embodiments of the present invention will be described below with reference to the drawings. In each figure and each embodiment, the same or similar components are denoted by the same reference numerals, and overlapping explanations will be omitted.

図1は、半導体装置の平面図であり、図2は、図1の半導体装置のA部拡大図であり、図3は、実施例1の半導体装置のB-B’断面図であり、図4は、実施例1の半導体装置のC-C’断面図であり、図5は、実施例1の半導体装置のD-D’断面図である。 1 is a plan view of the semiconductor device, FIG. 2 is an enlarged view of section A of the semiconductor device of FIG. 1, and FIG. 4 is a CC' cross-sectional view of the semiconductor device of Example 1, and FIG. 5 is a DD' cross-sectional view of the semiconductor device of Example 1.

図1および図2に示すように、半導体装置100は、複数のスイッチング素子が形成されたアクティブ領域3と、複数のスイッチング素子のゲート5に共通に接続されたゲート共通配線1と、ゲート共通配線1に給電をするゲートパッド2とを有する。ゲート共通配線1は、アクティブ領域3を分割する部分と、アクティブ領域3とターミネーション領域4との境界に形成された部分とを有する。 As shown in FIGS. 1 and 2, the semiconductor device 100 includes an active region 3 in which a plurality of switching elements are formed, a gate common wiring 1 commonly connected to gates 5 of the plurality of switching elements, and a gate common wiring 1 and a gate pad 2 that supplies power to the gate pad 1 . The gate common wiring 1 has a portion that divides the active region 3 and a portion formed at the boundary between the active region 3 and the termination region 4.

なお、図1ではゲート5の図示は省略しており、図1および図2では、ゲート電極13、エミッタ電極14、フィールドプレート15の図示は省略している。 Note that the gate 5 is not shown in FIG. 1, and the gate electrode 13, emitter electrode 14, and field plate 15 are not shown in FIGS. 1 and 2.

実施例1の半導体装置は、図3に示すように、アクティブ領域3にスイッチング素子としてIGBTを有している。具体的には、実施例1の半導体装置は、第1導電型(図3ではn型)のドリフト層7と、ドリフト層7の表面側に設けられた第2導電型(図3ではp型)のボディ層8と、トレンチ内に形成されたゲート5およびゲート絶縁膜10と、ボディ層8の表面側に設けられた第1導電型のエミッタ層9と、ドリフト層7よりも裏面側に設けられた第2導電型のコレクタ層17とを有している。 The semiconductor device of Example 1 has an IGBT as a switching element in the active region 3, as shown in FIG. Specifically, the semiconductor device of Example 1 includes a drift layer 7 of a first conductivity type (n type in FIG. 3) and a drift layer 7 of a second conductivity type (p type in FIG. 3) provided on the surface side of the drift layer 7. ), the gate 5 and gate insulating film 10 formed in the trench, the emitter layer 9 of the first conductivity type provided on the front side of the body layer 8, and the back side of the drift layer 7. A collector layer 17 of the second conductivity type is provided.

ここでは第1導電型をn型、第2導電型をp型として説明しているが、第1導電型をp型、第2導電型をn型としてもよい。その場合、キャリアはホール20ではなく電子となる。 Although the description is given here assuming that the first conductivity type is n type and the second conductivity type is p type, the first conductivity type may be p type and the second conductivity type may be n type. In that case, the carriers are not holes 20 but electrons.

また、実施例1の半導体装置は、ドリフト層7とコレクタ層17との間に設けられた第1導電型のバッファ層16と、コレクタ層17の裏面側に設けられたコレクタ電極19と、ボディ層8およびエミッタ層9の表面側に設けられた層間絶縁膜12と、層間絶縁膜12に設けられたコンタクトホールを介してエミッタ層9及びボディ層8とコンタクトするエミッタ電極14とを有する。 Further, the semiconductor device of Example 1 includes a first conductivity type buffer layer 16 provided between the drift layer 7 and the collector layer 17, a collector electrode 19 provided on the back side of the collector layer 17, and a body. It has an interlayer insulating film 12 provided on the surface side of the layer 8 and the emitter layer 9, and an emitter electrode 14 that contacts the emitter layer 9 and the body layer 8 through a contact hole provided in the interlayer insulating film 12.

実施例1の半導体装置は、ターミネーション領域4において、ドリフト層7の表面側に設けられた第2導電型のウェル層11と、層間絶縁膜12に設けられたコンタクトホールを介してウェル層11とコンタクトするフィールドプレート15とを有する。 In the semiconductor device of the first embodiment, in the termination region 4, the well layer 11 is connected to the well layer 11 of the second conductivity type provided on the surface side of the drift layer 7 through the contact hole provided in the interlayer insulating film 12. It has a field plate 15 in contact with the field plate 15.

実施例1の半導体装置は、ゲート共通配線1に重なるゲート共通配線領域6において、ウェル層11と、ゲート共通配線1と、層間絶縁膜12に設けられたコンタクトホールを介してゲート共通配線1とコンタクトするゲート電極13とを有する。図示しないが、ゲートパッド2に重なるゲートパッド領域の構造もゲート共通配線領域6とほぼ同様の構成になっている。 In the semiconductor device of the first embodiment, in the gate common wiring region 6 overlapping the gate common wiring 1, the gate common wiring 1 is connected to the well layer 11, the gate common wiring 1, and the gate common wiring 1 through the contact hole provided in the interlayer insulating film 12. It has a gate electrode 13 in contact with it. Although not shown, the structure of the gate pad region overlapping the gate pad 2 is also substantially the same as that of the gate common wiring region 6.

図4に示すように、ゲート共通配線1とゲート5は接続されており、ゲート共通配線1とゲート5とゲートパッド2は例えばポリシリコンで形成されている。 As shown in FIG. 4, the gate common wiring 1 and the gate 5 are connected, and the gate common wiring 1, the gate 5, and the gate pad 2 are made of polysilicon, for example.

ここで、実施例1の半導体装置は、図3から図5に示すように、ゲート共通配線領域6と、図示しないゲートパッド領域とに、キャリア注入抑制領域18を有する。これによって、ゲート共通配線領域6やゲートパッド領域の近傍のアクティブ領域3におけるキャリア集中を抑制してターンオフ耐量を確保することができる。 Here, as shown in FIGS. 3 to 5, the semiconductor device of Example 1 has carrier injection suppressing regions 18 in the gate common wiring region 6 and in the gate pad region (not shown). Thereby, carrier concentration in the active region 3 near the gate common wiring region 6 and the gate pad region can be suppressed, and turn-off tolerance can be ensured.

図4および図5に示すように、キャリア注入抑制領域18は、分割されたアクティブ領域3に挟まれたゲート共通配線領域6においても形成することが望ましい。これによって、分割されたアクティブ領域3に挟まれたゲート共通配線領域6の近傍のアクティブ領域3におけるキャリア集中を抑制してターンオフ耐量を確保することができる。 As shown in FIGS. 4 and 5, the carrier injection suppressing region 18 is preferably formed also in the gate common wiring region 6 sandwiched between the divided active regions 3. As a result, carrier concentration in the active region 3 near the gate common wiring region 6 sandwiched between the divided active regions 3 can be suppressed, and turn-off tolerance can be ensured.

また、図3に示すように、キャリア注入抑制領域18は、ターミネーション領域4においても形成することが望ましい。これによって、アクティブ領域3の周辺部におけるキャリア集中を抑制してターンオフ耐量を確保することができる。なお、例えばスイッチングスピードが速い場合など、ターミネーション領域4からのホール注入が支配的ではない場合には、ターミネーション領域4についてはキャリア注入抑制領域18を設けないようにしてもよい。 Further, as shown in FIG. 3, the carrier injection suppressing region 18 is preferably formed also in the termination region 4. This makes it possible to suppress carrier concentration in the periphery of the active region 3 and ensure turn-off tolerance. Note that if hole injection from the termination region 4 is not dominant, such as when the switching speed is high, for example, the carrier injection suppression region 18 may not be provided in the termination region 4.

実施例1では、キャリア注入抑制領域18として、コレクタ層17と同じ導電型でコレクタ層17より低濃度の層を用いる例を示した。 In Example 1, an example is shown in which a layer having the same conductivity type as the collector layer 17 and having a lower concentration than the collector layer 17 is used as the carrier injection suppressing region 18 .

なお、各半導体層の不純物濃度は、例えば、ドリフト層は低濃度のn-型、エミッタ層9は高濃度のn+型、キャリア注入抑制領域18は低濃度のp-型である。 Note that the impurity concentration of each semiconductor layer is, for example, a low concentration n-type in the drift layer, a high concentration n+ type in the emitter layer 9, and a low concentration p-type in the carrier injection suppressing region 18.

実施例2は、実施例1の変形例であり、実施例1と異なる点は、キャリア注入抑制領域18の構造である。これ以外は実施例1と同じであるため、重複する説明は省略する。 Example 2 is a modification of Example 1, and differs from Example 1 in the structure of the carrier injection suppression region 18. Other than this, the second embodiment is the same as the first embodiment, so redundant explanation will be omitted.

図6は、実施例2の半導体装置のB-B’断面図であり、図7は、実施例2の半導体装置のD-D’断面図である。 6 is a sectional view taken along line B-B' of the semiconductor device of Example 2, and FIG. 7 is a sectional view taken along line DD' of the semiconductor device of example 2.

実施例2のキャリア注入抑制領域18は、コレクタ層17が無く、コレクタ層17とは導電型の異なる層(ここではバッファ層16)がコレクタ電極19と直接接する領域となっている。 In the carrier injection suppressing region 18 of Example 2, there is no collector layer 17, and a layer having a different conductivity type from the collector layer 17 (here, the buffer layer 16) is in direct contact with the collector electrode 19.

実施例1と比較すると、裏面側に低濃度のp-型の層を形成する必要がないので、製造が容易であるという利点がある。それ以外は実施例1と同様の効果を得ることができる。 Compared with Example 1, there is an advantage that manufacturing is easy because there is no need to form a low concentration p-type layer on the back side. Other than that, the same effects as in Example 1 can be obtained.

実施例3は、実施例1の変形例であり、実施例1と異なる点は、キャリア注入抑制領域18の構造である。これ以外は実施例1と同じであるため、重複する説明は省略する。 Example 3 is a modification of Example 1, and differs from Example 1 in the structure of the carrier injection suppression region 18. Other than this, the second embodiment is the same as the first embodiment, so redundant explanation will be omitted.

図8は、実施例3の半導体装置のB-B’断面図であり、図9は、実施例3の半導体装置のD-D’断面図である。 8 is a sectional view taken along line B-B' of the semiconductor device of Example 3, and FIG. 9 is a sectional view taken along line DD' of the semiconductor device of Example 3.

実施例3のキャリア注入抑制領域18は、軽イオン照射による低ライフタイム領域となっている。軽イオンとしては、例えばプロトンやヘリウムなどを用いることができる。 The carrier injection suppression region 18 of Example 3 is a low lifetime region due to light ion irradiation. As light ions, protons, helium, etc. can be used, for example.

実施例3においても、実施例1と同様の効果を得ることができる。 In the third embodiment as well, the same effects as in the first embodiment can be obtained.

以上、本発明の実施例を説明したが、本発明は実施例に記載された構成に限定されず、本発明の技術的思想の範囲内で種々の変更が可能である。また、各実施例で説明した構成の一部または全部を組み合わせて適用してもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations described in the embodiments, and various changes can be made within the scope of the technical idea of the present invention. Further, some or all of the configurations described in each embodiment may be combined and applied.

1 ゲート共通配線
2 ゲートパッド
3 アクティブ領域
4 ターミネーション領域
5 ゲート
6 ゲート共通配線領域
7 ドリフト層
8 ボディ層
9 エミッタ層
10 ゲート絶縁膜
11 ウェル層
12 層間絶縁膜
13 ゲート電極
14 エミッタ電極
15 フィールドプレート
16 バッファ層
17 コレクタ層
18 キャリア注入抑制領域
19 コレクタ電極
20 ホール
100 半導体装置
1 Gate common wiring 2 Gate pad 3 Active region 4 Termination region 5 Gate 6 Gate common wiring region 7 Drift layer 8 Body layer 9 Emitter layer 10 Gate insulating film 11 Well layer 12 Interlayer insulating film 13 Gate electrode 14 Emitter electrode 15 Field plate 16 Buffer layer 17 Collector layer 18 Carrier injection suppression region 19 Collector electrode 20 Hole 100 Semiconductor device

Claims (7)

複数のスイッチング素子と、前記複数のスイッチング素子のゲートに共通に接続されたゲート共通配線と、前記ゲート共通配線に給電をするゲートパッドとを有する半導体装置において、
前記ゲート共通配線に重なるゲート共通配線領域と、ゲートパッドに重なるゲートパッド領域とに、キャリア注入抑制領域を有することを特徴とする半導体装置。
In a semiconductor device having a plurality of switching elements, a gate common wiring commonly connected to the gates of the plurality of switching elements, and a gate pad supplying power to the gate common wiring,
A semiconductor device comprising a carrier injection suppression region in a gate common wiring region overlapping the gate common wiring and in a gate pad region overlapping the gate pad.
請求項1において、
前記複数のスイッチング素子を有するアクティブ領域を有し、
前記ゲート共通配線領域は、前記アクティブ領域を分割する部分を有し、
前記キャリア注入抑制領域は、分割された前記アクティブ領域に挟まれた前記ゲート共通配線領域に形成されていることを特徴とする半導体装置。
In claim 1,
an active region having the plurality of switching elements;
The gate common wiring region has a portion that divides the active region,
The semiconductor device characterized in that the carrier injection suppression region is formed in the gate common wiring region sandwiched between the divided active regions.
請求項1において、
ターミネーション領域を有し、
前記ターミネーション領域にも前記キャリア注入抑制領域を有することを特徴とする半導体装置。
In claim 1,
has a termination area,
A semiconductor device characterized in that the termination region also has the carrier injection suppression region.
請求項1において、
裏面側に設けられたコレクタ層を有し、
前記キャリア注入抑制領域は、前記コレクタ層と同じ導電型で前記コレクタ層より低濃度の層を有することを特徴とする半導体装置。
In claim 1,
It has a collector layer provided on the back side,
A semiconductor device, wherein the carrier injection suppression region has a layer having the same conductivity type as the collector layer and having a lower concentration than the collector layer.
請求項1において、
裏面側に設けられたコレクタ層と、前記コレクタ層に接続されたコレクタ電極とを有し、
前記キャリア注入抑制領域は、前記コレクタ層が無く、前記コレクタ層とは導電型の異なる層が前記コレクタ電極と直接接する領域であることを特徴とする半導体装置。
In claim 1,
It has a collector layer provided on the back side and a collector electrode connected to the collector layer,
The semiconductor device is characterized in that the carrier injection suppressing region is a region where the collector layer is absent and a layer having a different conductivity type from the collector layer is in direct contact with the collector electrode.
請求項1において、
前記キャリア注入抑制領域は、軽イオン照射による低ライフタイム領域であることを特徴とする半導体装置。
In claim 1,
A semiconductor device, wherein the carrier injection suppression region is a low lifetime region formed by light ion irradiation.
請求項1において、
前記キャリア注入抑制領域はホール注入抑制領域であることを特徴とする半導体装置。
In claim 1,
A semiconductor device characterized in that the carrier injection suppression region is a hole injection suppression region.
JP2022089469A 2022-06-01 2022-06-01 Semiconductor device Pending JP2023176899A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022089469A JP2023176899A (en) 2022-06-01 2022-06-01 Semiconductor device
PCT/JP2023/013892 WO2023233807A1 (en) 2022-06-01 2023-04-04 Semiconductor device
CN202380040708.7A CN119213569A (en) 2022-06-01 2023-04-04 Semiconductor devices
DE112023001688.7T DE112023001688T5 (en) 2022-06-01 2023-04-04 SEMICONDUCTOR DEVICE
TW112113969A TWI846427B (en) 2022-06-01 2023-04-14 Semiconductor Devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022089469A JP2023176899A (en) 2022-06-01 2022-06-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2023176899A true JP2023176899A (en) 2023-12-13

Family

ID=89026243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022089469A Pending JP2023176899A (en) 2022-06-01 2022-06-01 Semiconductor device

Country Status (5)

Country Link
JP (1) JP2023176899A (en)
CN (1) CN119213569A (en)
DE (1) DE112023001688T5 (en)
TW (1) TWI846427B (en)
WO (1) WO2023233807A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2025013034A (en) * 2023-07-14 2025-01-24 ミネベアパワーデバイス株式会社 Semiconductor device and power conversion device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176772A (en) * 2008-01-21 2009-08-06 Denso Corp Semiconductor device
US9287391B2 (en) * 2012-03-05 2016-03-15 Mitsubishi Electric Corporation Semiconductor device
JP6165271B2 (en) * 2014-01-29 2017-07-19 三菱電機株式会社 Power semiconductor device
JP2016029685A (en) * 2014-07-25 2016-03-03 株式会社東芝 Semiconductor device
JP6662393B2 (en) 2015-12-28 2020-03-11 三菱電機株式会社 Semiconductor device and method of manufacturing semiconductor device
WO2018135147A1 (en) * 2017-01-17 2018-07-26 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
WO2019098271A1 (en) * 2017-11-16 2019-05-23 富士電機株式会社 Semiconductor device
JP7302285B2 (en) * 2019-05-23 2023-07-04 富士電機株式会社 semiconductor equipment

Also Published As

Publication number Publication date
WO2023233807A1 (en) 2023-12-07
TW202349716A (en) 2023-12-16
TWI846427B (en) 2024-06-21
DE112023001688T5 (en) 2025-01-23
CN119213569A (en) 2024-12-27

Similar Documents

Publication Publication Date Title
US9214535B2 (en) Semiconductor device
JP6777244B2 (en) Semiconductor device
US9543405B2 (en) Method of manufacturing a reduced free-charge carrier lifetime semiconductor structure
JPH1074959A (en) Power semiconductor device
US20120299054A1 (en) Power semiconductor device
US11967638B2 (en) Segmented power diode structure with improved reverse recovery
JP7581472B2 (en) Semiconductor Device
WO2023233807A1 (en) Semiconductor device
WO2024219047A1 (en) Semiconductor device
JP6020317B2 (en) Semiconductor element
JP7488778B2 (en) Semiconductor Device
JP7754223B2 (en) Semiconductor Devices
JP7524589B2 (en) Semiconductor Device
CN119050128B (en) SJ-LIGBT device structure combined with HK collector grid
JP2024157085A (en) Semiconductor Device
TWI858634B (en) Semiconductor device and power conversion device using the same
JP2024075220A (en) Semiconductor Device
JP2024148753A (en) Semiconductor Device
JP2024163409A (en) Semiconductor Device
JP2024089750A (en) Semiconductor Device
KR20250040521A (en) Semiconductor device
JP2025020741A (en) Semiconductor Device
WO2024209777A1 (en) Semiconductor device
JP2023172272A (en) Semiconductor device and electric power conversion equipment
JP2024071984A (en) Semiconductor Device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20250508