[go: up one dir, main page]

JP2024060900A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2024060900A
JP2024060900A JP2022168470A JP2022168470A JP2024060900A JP 2024060900 A JP2024060900 A JP 2024060900A JP 2022168470 A JP2022168470 A JP 2022168470A JP 2022168470 A JP2022168470 A JP 2022168470A JP 2024060900 A JP2024060900 A JP 2024060900A
Authority
JP
Japan
Prior art keywords
light
film
layer
sealing member
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022168470A
Other languages
Japanese (ja)
Inventor
尚嗣 溝渕
Yoshitsugu Mizobuchi
孝輔 矢羽田
Kosuke Yabaneta
欣司 林
Kinji Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2022168470A priority Critical patent/JP2024060900A/en
Publication of JP2024060900A publication Critical patent/JP2024060900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

To provide a light-emitting device with superior light extraction efficiency that is suppressed from decreasing in reflectivity owing to a crack of an Al film provided on silicone resin and reaction products.SOLUTION: There is provided a light-emitting device that comprises a light-emitting element 10, a sealing member 11 which seals the light-emitting element 10 and is formed silicone resin as a base material, a contact layer 12 which is formed of an SiO2 film on the sealing member 11, and a reflection layer 13 which is formed of an Al film on the contact layer 12.SELECTED DRAWING: Figure 1

Description

本発明は、発光装置に関する。 The present invention relates to a light-emitting device.

従来、発光素子から発せられる光を反射する金属膜を備えた発光装置が知られている(特許文献1を参照)。特許文献1に記載の発光装置においては、発光素子の上にシリコーン樹脂などからなる透光部が設けられ、その上に金属膜からなる光反射部が設けられている。 Conventionally, light-emitting devices equipped with a metal film that reflects light emitted from a light-emitting element are known (see Patent Document 1). In the light-emitting device described in Patent Document 1, a light-transmitting portion made of silicone resin or the like is provided on the light-emitting element, and a light-reflecting portion made of a metal film is provided on the light-transmitting portion.

特開2020-174196号公報JP 2020-174196 A

しかしながら、特許文献1に記載の発光装置のように、樹脂層の上に金属膜が設けられる場合であって、樹脂層の材料として特許文献1にも初めに挙げられている代表的な樹脂材料であるシリコーン樹脂が用いられ、金属膜の材料として反射率に優れるAlが用いられる場合、樹脂層と金属膜との熱膨張率の差によってクラックが発生しやすい。また、この場合、シリコーン樹脂とAlの間に反応が生じ、界面に反応による生成物が生成される。このようなAl膜のクラックや反応による生成物が発生すると、Al膜の反射率が低下し、発光装置の光取り出し効率が低下する。 However, when a metal film is provided on a resin layer as in the light-emitting device described in Patent Document 1, and silicone resin, a typical resin material first mentioned in Patent Document 1, is used as the material for the resin layer, and Al, which has excellent reflectivity, is used as the material for the metal film, cracks are likely to occur due to the difference in thermal expansion coefficient between the resin layer and the metal film. In this case, a reaction occurs between the silicone resin and Al, and a reaction product is generated at the interface. When such cracks or reaction products occur in the Al film, the reflectivity of the Al film decreases, and the light extraction efficiency of the light-emitting device decreases.

本発明の目的は、シリコーン樹脂上に設けられたAl膜のクラックや反応生成物による反射率の低下が抑えられた、光取出効率に優れる発光装置を提供することにある。 The objective of the present invention is to provide a light-emitting device with excellent light extraction efficiency that suppresses the decrease in reflectance caused by cracks and reaction products in the Al film provided on the silicone resin.

本発明の一態様は、上記目的を達成するために、下記の発光装置を提供する。 In order to achieve the above object, one aspect of the present invention provides the following light-emitting device.

[1]発光素子と、前記発光素子を封止する、シリコーン樹脂を母材とする封止部材と、前記封止部材上のSiO膜からなる密着層と、前記密着層上のAl膜からなる反射層と、を備えた、発光装置。
[2]前記密着層の厚さが10nm以上、300nm以下の範囲内にある、上記[1]に記載の発光装置。
[3]前記反射層の厚さが50nm以上、300nm以下の範囲内にある、上記[1]又は[2]に記載の発光装置。
[4]前記反射層の上のSiO膜、Ti膜、Ta膜、又はCr膜からなる保護層を備えた、上記[1]又は[2]に記載の発光装置。
[1] A light emitting device comprising: a light emitting element; a sealing member having a silicone resin as a base material for sealing the light emitting element; an adhesion layer made of a SiO2 film on the sealing member; and a reflective layer made of an Al film on the adhesion layer.
[2] The light emitting device according to the above [1], wherein the thickness of the adhesion layer is in the range of 10 nm or more and 300 nm or less.
[3] The light-emitting device according to the above [1] or [2], wherein the thickness of the reflective layer is in the range of 50 nm or more and 300 nm or less.
[4] The light emitting device according to the above [1] or [2], further comprising a protective layer made of a SiO 2 film, a Ti film, a Ta film, or a Cr film on the reflective layer.

本発明によれば、シリコーン樹脂上に設けられたAl膜のクラックや反応生成物による反射率の低下が抑えられた、光取出効率に優れる発光装置を提供することができる。 The present invention provides a light-emitting device with excellent light extraction efficiency that suppresses the decrease in reflectance caused by cracks and reaction products in the Al film provided on the silicone resin.

図1は、本発明の実施の形態に係る発光装置の垂直断面図である。FIG. 1 is a vertical cross-sectional view of a light emitting device according to an embodiment of the present invention. 図2は、本発明の実施の形態に係るフリップチップ型である発光素子の構造の一例を示す下面図である。FIG. 2 is a bottom view showing an example of the structure of a flip-chip type light-emitting element according to an embodiment of the present invention. 図3(a)、(b)は、本発明の実施の形態に係る発光装置の配光角と発光強度の関係を示すグラフである。3A and 3B are graphs showing the relationship between the light distribution angle and the emission intensity of the light emitting device according to the embodiment of the present invention.

(発光装置の構成)
図1は、本発明の実施の形態に係る発光装置1の垂直断面図である。発光装置1は、発光素子10と、発光素子10を封止する、シリコーン樹脂を母材とする封止部材11と、封止部材11上のSiO膜からなる密着層12と、密着層12上のAl膜からなる反射層13と、反射層13の上の保護層14を備える。
(Configuration of the Light Emitting Device)
1 is a vertical cross-sectional view of a light emitting device 1 according to an embodiment of the present invention. The light emitting device 1 includes a light emitting element 10, a sealing member 11 made of silicone resin as a base material for sealing the light emitting element 10, an adhesion layer 12 made of a SiO2 film on the sealing member 11, a reflective layer 13 made of an Al film on the adhesion layer 12, and a protective layer 14 on the reflective layer 13.

発光素子10は、典型的にはLEDチップである。また、発光素子10は、典型的にはフリップチップ型の素子であるが、フェイスアップ型の素子であってもよい。発光素子10がフリップチップ型である場合、図1に示されるp側パッド電極101aとn側パッド電極101bが、プリント基板などの実装対象の電極に接続される。 The light-emitting element 10 is typically an LED chip. The light-emitting element 10 is typically a flip-chip type element, but may be a face-up type element. When the light-emitting element 10 is a flip-chip type, the p-side pad electrode 101a and the n-side pad electrode 101b shown in FIG. 1 are connected to electrodes of an object to be mounted, such as a printed circuit board.

図2は、フリップチップ型である発光素子10の構造の一例を示す下面図である。図2に示される例においては、発光素子10は、p側パッド電極101aに接続されるp側コンタクト電極102aと、n側パッド電極101bに接続されるn側コンタクト電極102bを有する。また、発光素子10は、発光層及びそれを上下方向から挟むp型コンタクト層とn型コンタクト層を含む半導体層をサファイア基板などの基板104上に有する。p側コンタクト電極102aは、p型コンタクト層に電流を均一に拡散させるためのITOなどからなる透明電極103を介してp型コンタクト層に接続され、n側コンタクト電極102bは、n型コンタクト層に接続される。 Figure 2 is a bottom view showing an example of the structure of a flip-chip type light-emitting element 10. In the example shown in Figure 2, the light-emitting element 10 has a p-side contact electrode 102a connected to a p-side pad electrode 101a and an n-side contact electrode 102b connected to an n-side pad electrode 101b. The light-emitting element 10 also has a semiconductor layer including a light-emitting layer and a p-type contact layer and an n-type contact layer sandwiching the light-emitting layer from above and below, on a substrate 104 such as a sapphire substrate. The p-side contact electrode 102a is connected to the p-type contact layer via a transparent electrode 103 made of ITO or the like for uniformly diffusing current to the p-type contact layer, and the n-side contact electrode 102b is connected to the n-type contact layer.

また、発光素子10の下面は図示されない保護膜に覆われており、その保護膜の表面上にp側パッド電極101aとn側パッド電極101bが設けられている。保護膜は、発光素子10を分割しやすくするためや、半導体層の端部を保護するために設けられる。なお、図2においては、p側パッド電極101aとn側パッド電極101bの下に位置するp側コンタクト電極102a、n側コンタクト電極102b、及び透明電極103の輪郭を点線で示しているが、これらの線はp側パッド電極101aとn側パッド電極101bの上から段差として視認できる。 The underside of the light-emitting element 10 is covered with a protective film (not shown), and a p-side pad electrode 101a and an n-side pad electrode 101b are provided on the surface of the protective film. The protective film is provided to make it easier to divide the light-emitting element 10 and to protect the ends of the semiconductor layer. In FIG. 2, the outlines of the p-side contact electrode 102a, the n-side contact electrode 102b, and the transparent electrode 103 located below the p-side pad electrode 101a and the n-side pad electrode 101b are shown by dotted lines, but these lines can be seen as steps from above the p-side pad electrode 101a and the n-side pad electrode 101b.

封止部材11は、上述のように、シリコーン樹脂を母材とし、例えば、発光素子10が発する光を変換する蛍光体を含む。例えば、発光素子10の発する光が青色光、例えば波長が430~470nmの光であって、封止部材11がYAG蛍光体などの黄色蛍光体を含む場合、発光装置1は白色の光を発する。 As described above, the sealing member 11 has a silicone resin as a base material and contains, for example, a phosphor that converts the light emitted by the light-emitting element 10. For example, if the light emitted by the light-emitting element 10 is blue light, e.g., light with a wavelength of 430 to 470 nm, and the sealing member 11 contains a yellow phosphor such as a YAG phosphor, the light-emitting device 1 emits white light.

封止部材11は、通常、発光素子10の側面と上面を覆い、また、封止部材11の平面方向の中心に発光素子10が位置するように設けられる。封止部材11の形状は特に限定されないが、典型的には直方体である。この場合、封止部材11の側面が直方体の発光素子10の側面に平行になるように設けられる。 The sealing member 11 usually covers the side and top of the light-emitting element 10, and is arranged so that the light-emitting element 10 is located at the center of the sealing member 11 in the planar direction. The shape of the sealing member 11 is not particularly limited, but is typically a rectangular parallelepiped. In this case, the side of the sealing member 11 is arranged so that it is parallel to the side of the rectangular parallelepiped light-emitting element 10.

密着層12は、封止部材11と反射層13の間に設けられる膜であり、密着層12を設けることにより、反射層13のクラックの発生による反射率の低下を抑えることができる。 The adhesion layer 12 is a film provided between the sealing member 11 and the reflective layer 13. By providing the adhesion layer 12, it is possible to suppress a decrease in reflectance due to the occurrence of cracks in the reflective layer 13.

シリコーン樹脂の線膨張係数はおよそ200×10-6~400×10-6ppm、Alの線膨張係数はおよそ23.6×10-6ppmであるため、Al膜からなる反射層13の線膨張係数とシリコーン樹脂を母材とする封止部材11の線膨張係数の差はかなり大きい。このため、封止部材11の上に反射層13を直接形成した場合、反射層13の形成時の昇温による封止部材11と反射層13の膨張、その後の降温による収縮を経て金属膜である反射層13にクラックが発生しやすい。 Since the linear expansion coefficient of silicone resin is approximately 200×10 -6 to 400×10 -6 ppm and that of Al is approximately 23.6×10 -6 ppm, there is a considerable difference between the linear expansion coefficient of the reflective layer 13 made of an Al film and that of the sealing member 11 made of silicone resin as a base material. For this reason, if the reflective layer 13 is formed directly on the sealing member 11, cracks are likely to occur in the reflective layer 13, which is a metal film, due to the expansion of the sealing member 11 and the reflective layer 13 caused by the temperature rise during the formation of the reflective layer 13, and the subsequent contraction caused by the temperature drop.

封止部材11上にSiO膜からなる密着層12を介して反射層13が形成された発光装置1においては、Alの線膨張係数とおよそ0.5×10-6ppmであるSiOの線膨張係数の差が、Alの線膨張係数とシリコーン樹脂の線膨張係数の差よりも格段に小さいために、反射層13の形成時の昇温とその後の降温を経ても反射層13にクラックが生じ難い。 In the light-emitting device 1 in which the reflective layer 13 is formed on the sealing member 11 via the adhesion layer 12 made of a SiO2 film, the difference between the linear expansion coefficient of Al and that of SiO2 , which is approximately 0.5× 10−6 ppm, is much smaller than the difference between the linear expansion coefficient of Al and that of silicone resin, and therefore cracks are unlikely to occur in the reflective layer 13 even after the temperature is increased during formation of the reflective layer 13 and then decreased.

また、密着層12を設けることにより、封止部材11と反射層13の界面に生成される生成物による反射層13の反射率の低下を抑えることができる。 In addition, by providing the adhesion layer 12, it is possible to suppress a decrease in the reflectance of the reflective layer 13 due to products generated at the interface between the sealing member 11 and the reflective layer 13.

封止部材11の上に反射層13を直接形成した場合、封止部材11を構成するシリコーン樹脂と反射層13を構成するAlの間に反応(Alの酸化などが考えられる)が生じ、封止部材11と反射層13の界面に反応による生成物が生成される。この生成物の反射率がAlの反射率よりも低いために、この生成物の発生が反射層13の反射率を低下させることになる。 When the reflective layer 13 is formed directly on the sealing member 11, a reaction (possibly oxidation of Al) occurs between the silicone resin that constitutes the sealing member 11 and the Al that constitutes the reflective layer 13, and a reaction product is generated at the interface between the sealing member 11 and the reflective layer 13. Because the reflectance of this product is lower than that of Al, the generation of this product reduces the reflectance of the reflective layer 13.

封止部材11上にSiO膜からなる密着層12を介して反射層13が形成された発光装置1においては、封止部材11と反射層13が接触していないため、両者の反応による生成物の発生が抑えられる。なお、反射層13と密着層12との間では反応は生じず、また、密着層12の上に高品質の反射層13を形成できることが確認されている。 In the light emitting device 1 in which the reflective layer 13 is formed on the sealing member 11 via the adhesive layer 12 made of SiO2 film, the sealing member 11 and the reflective layer 13 are not in contact with each other, so that the generation of products due to the reaction between them is suppressed. Note that no reaction occurs between the reflective layer 13 and the adhesive layer 12, and it has been confirmed that a high-quality reflective layer 13 can be formed on the adhesive layer 12.

密着層12の厚さは、密着層12がアイランド状に形成されて反射層13と封止部材11が部分的に接触することを防ぐため、10nm以上であることが好ましい。また、SiO膜からなる密着層12は、Al膜からなる反射層13よりもクラックが生じ難いが、厚さが大きすぎると応力により割れやすくなるため、封止部材11との熱膨張率の差によりクラックが発生するおそれがある。このため、密着層12の厚さは300nm以下であることが好ましい。密着層12は、例えば、スパッタや蒸着により形成される。 The thickness of the adhesion layer 12 is preferably 10 nm or more in order to prevent the adhesion layer 12 from being formed in an island shape and causing partial contact between the reflective layer 13 and the sealing member 11. The adhesion layer 12 made of a SiO2 film is less likely to crack than the reflective layer 13 made of an Al film, but if the adhesion layer 12 is too thick, it is more likely to break due to stress, and there is a risk of cracks occurring due to the difference in thermal expansion coefficient with the sealing member 11. For this reason, the thickness of the adhesion layer 12 is preferably 300 nm or less. The adhesion layer 12 is formed by, for example, sputtering or vapor deposition.

反射層13は密着層12の上に形成されるため、上述のクラックや封止部材11との反応による生成物の発生による反射率の低下が抑えられている。例えば、封止部材11の上に密着層12を介して形成され、表面を保護層14で保護された反射層13の500nmの波長を有する光に対する反射率がおよそ78%であり、ガラスの上に成膜されたクラックや反応による生成物のないAl膜の反射率と同等であることが実験により確かめられている。一方で、封止部材11の上に直接形成した反射層13の500nmの波長を有する光に対する反射率はおよそ37%であり、クラックや封止部材11との反応による生成物によると考えられる著しい低下がみられた。 Because the reflective layer 13 is formed on the adhesive layer 12, the decrease in reflectance due to the above-mentioned cracks and the generation of products due to reaction with the sealing member 11 is suppressed. For example, it has been confirmed through experiments that the reflectance of the reflective layer 13 formed on the sealing member 11 via the adhesive layer 12 and having its surface protected by the protective layer 14 for light having a wavelength of 500 nm is approximately 78%, which is equivalent to the reflectance of an Al film formed on glass without cracks or products due to reaction. On the other hand, the reflectance of the reflective layer 13 formed directly on the sealing member 11 for light having a wavelength of 500 nm is approximately 37%, and a significant decrease was observed that is thought to be due to cracks and products due to reaction with the sealing member 11.

反射層13は、厚さが小さすぎると発光素子10が発する光の一部を透過するおそれがあり、具体的には、およそ90nm以下になると透過が生じ始める。このため、光の透過を抑えるために、反射層13の厚さは50nm以上であることが好ましく、100nm以上であることがより好ましい。また、反射層13は、厚さが大きすぎると応力により割れやすくなるため、密着層12との熱膨張率の差によりクラックが発生するおそれがある。このため、反射層13の厚さは300nm以下であることが好ましい。反射層13は、例えば、スパッタや蒸着により形成される。 If the reflective layer 13 is too thin, it may transmit part of the light emitted by the light emitting element 10; specifically, transmission begins to occur when the thickness is approximately 90 nm or less. For this reason, in order to suppress light transmission, the thickness of the reflective layer 13 is preferably 50 nm or more, and more preferably 100 nm or more. Furthermore, if the reflective layer 13 is too thick, it is prone to cracking due to stress, and there is a risk of cracks occurring due to the difference in thermal expansion coefficient with the adhesion layer 12. For this reason, the thickness of the reflective layer 13 is preferably 300 nm or less. The reflective layer 13 is formed, for example, by sputtering or vapor deposition.

なお、Al膜からなる反射層13の厚さは、TiOなどの反射材を含む樹脂膜からなる反射層の厚さ(例えば60μm以上)と比較して、格段に小さい。このため、反射層13を用いることにより、樹脂膜からなる反射層を用いる場合と比較して、発光装置1を薄くすることができる。 The thickness of the reflective layer 13 made of an Al film is significantly smaller than the thickness (e.g., 60 μm or more) of a reflective layer made of a resin film containing a reflective material such as TiO 2. Therefore, by using the reflective layer 13, the light emitting device 1 can be made thinner than when a reflective layer made of a resin film is used.

保護層14は、反射層13の表面を保護するための層である。保護層14を設けることにより、反射層13の形成後のクラック、傷、酸化の発生を抑えることができる。保護層14は、例えばSiO膜、Ti膜、Ta膜、又はCr膜からなる。保護層14の厚さは、保護層14がアイランド状に形成されて反射層13の表面が部分的に露出することを防ぐため、10nm以上であることが好ましい。また、保護層14の厚さが大きすぎると応力により割れやすくなるため、反射層13との熱膨張率の差によりクラックが発生するおそれがある。このため、保護層14の厚さは300nm以下であることが好ましい。保護層14は、例えば、スパッタや蒸着により形成される。 The protective layer 14 is a layer for protecting the surface of the reflective layer 13. By providing the protective layer 14, it is possible to suppress the occurrence of cracks, scratches, and oxidation after the formation of the reflective layer 13. The protective layer 14 is made of, for example, a SiO 2 film, a Ti film, a Ta film, or a Cr film. The thickness of the protective layer 14 is preferably 10 nm or more in order to prevent the protective layer 14 from being formed in an island shape and the surface of the reflective layer 13 from being partially exposed. In addition, if the thickness of the protective layer 14 is too large, it is likely to crack due to stress, and there is a risk of cracks occurring due to the difference in thermal expansion coefficient with the reflective layer 13. For this reason, the thickness of the protective layer 14 is preferably 300 nm or less. The protective layer 14 is formed, for example, by sputtering or vapor deposition.

発光装置1は、典型的には、CSP(チップスケールパッケージ)と呼ばれる、そのサイズを光源である発光素子のサイズにできる限り合わせたパッケージである。 The light emitting device 1 is typically a package called a CSP (chip scale package), the size of which is matched as closely as possible to the size of the light emitting element that serves as the light source.

封止部材11の外形は、典型的には直方体であり、この場合の厚さは、例えば50~400μmであり、平面形状である正方形又は長方形の一辺の長さは、例えば150~1200μmである。密着層12、反射層13、及び保護層14は、典型的には、封止部材11の上面と同じ形状、面積を有する。すなわち、発光装置1の典型的な形状は、厚さが50~400μm、平面形状である正方形又は長方形の一辺の長さが150~1200μmの直方体である。 The outer shape of the sealing member 11 is typically a rectangular parallelepiped, with a thickness of, for example, 50 to 400 μm, and a square or rectangular planar shape with a side length of, for example, 150 to 1200 μm. The adhesion layer 12, reflective layer 13, and protective layer 14 typically have the same shape and area as the top surface of the sealing member 11. In other words, the light-emitting device 1 typically has a rectangular parallelepiped shape with a thickness of 50 to 400 μm and a square or rectangular planar shape with a side length of 150 to 1200 μm.

(発光装置の配光特性)
発光装置1においては、発光素子10が発する光が反射層13や発光装置1が実装される基板に反射されて、封止部材11の側面から斜め上方に取り出される。このため、発光装置1は、上方向の発光強度が比較的小さく、広角側に発光強度のピークを有する、いわゆるバットウィング形状の配光特性を有する。すなわち、配光角と発光強度の関係において、配光角が0°よりも大きい範囲に発光強度のピークが存在する。
(Light distribution characteristics of light emitting device)
In the light emitting device 1, light emitted by the light emitting element 10 is reflected by the reflective layer 13 and the substrate on which the light emitting device 1 is mounted, and is extracted obliquely upward from the side surface of the sealing member 11. For this reason, the light emitting device 1 has a so-called batwing-shaped light distribution characteristic in which the light emission intensity in the upward direction is relatively small and the light emission intensity has a peak on the wide-angle side. In other words, in the relationship between the light distribution angle and the light emission intensity, the peak of the light emission intensity exists in a range where the light distribution angle is larger than 0°.

図3(a)、(b)は、発光装置1の配光角と発光強度の関係を示すグラフである。図3(a)、(b)は、発光素子10の中心を含み、発光素子10の平面方向に垂直な面内の配光曲線を示している。図3(a)の配光曲線を含む面と図3(b)の配光曲線を含む面とは互いに直交しており、いずれも直方体の封止部材11の一側面に平行である。図3(a)、(b)に示される配光角は、発光装置1の高さ方向(図1における上方向)を0°、高さ方向に直交する方向(図1における水平方向)を90°としている。 Figures 3(a) and (b) are graphs showing the relationship between the light distribution angle and the light emission intensity of the light-emitting device 1. Figures 3(a) and (b) show light distribution curves in a plane that includes the center of the light-emitting element 10 and is perpendicular to the planar direction of the light-emitting element 10. The plane including the light distribution curve in Figure 3(a) and the plane including the light distribution curve in Figure 3(b) are mutually orthogonal, and both are parallel to one side of the rectangular sealing member 11. The light distribution angles shown in Figures 3(a) and (b) are 0° in the height direction of the light-emitting device 1 (upward in Figure 1) and 90° in the direction perpendicular to the height direction (horizontal in Figure 1).

図3(a)、(b)の発光特性を有する発光装置1の構成は以下の通りである。発光素子10は、平面形状が一辺の長さが218μmの正方形であり、厚さが100μmである、フリップチップ実装された青色発光のLEDチップである。封止部材11は、YAG蛍光体を含むシリコーン樹脂からなり、その外形は厚さ200μmの直方体である。発光素子10は、その側面と上面を封止部材11に覆われ、封止部材11の平面方向の中心に、側面が封止部材11の側面と平行になるように設置されている。密着層12は、厚さ210nmのSiO膜である。反射層13は、厚さ155nmのAl膜である。保護層14は、厚さ190nmのSiO膜である。また、封止部材11、密着層12、反射層13、及び保護層14の平面形状は、一辺が600μmの正方形である。 The light emitting device 1 having the light emitting characteristics of Figures 3(a) and (b) has the following configuration. The light emitting element 10 is a flip-chip mounted blue light emitting LED chip whose planar shape is a square with a side length of 218 μm and a thickness of 100 μm. The sealing member 11 is made of silicone resin containing YAG phosphor, and its outer shape is a rectangular parallelepiped with a thickness of 200 μm. The light emitting element 10 is covered on its side and top with the sealing member 11, and is installed in the center of the planar direction of the sealing member 11 so that its side is parallel to the side of the sealing member 11. The adhesion layer 12 is a SiO 2 film with a thickness of 210 nm. The reflective layer 13 is an Al film with a thickness of 155 nm. The protective layer 14 is a SiO 2 film with a thickness of 190 nm. The planar shape of the sealing member 11, the adhesion layer 12, the reflective layer 13, and the protective layer 14 is a square with a side length of 600 μm.

図3(a)、(b)は、配光角がおよそ70°~90°の範囲内に発光強度のピークが存在し、発光装置1がバットウィング形状の配光特性を有することを示している。 Figures 3(a) and (b) show that the emission intensity peaks within the light distribution angle range of approximately 70° to 90°, and that the light-emitting device 1 has batwing-shaped light distribution characteristics.

(発光装置の製造方法)
以下に、発光装置1の製造工程の一例について説明する。まず、支持基板上にチップ固定用テープを張り、その上に複数の発光素子10としてのLEDチップを配列する。次に、複数の発光素子10が固定されたチップ固定用テープの上に蛍光体入りシリコーン樹脂を塗布して硬化させ、封止部材11を形成する。次に、封止部材11の上に密着層12としてのSiO膜、反射層13としてのAl膜、保護層14としてのSiO膜を順に積層する。次に、積層された封止部材11、密着層12、反射層13、保護層14をCSPサイズにダイシングして、発光装置1を個片化する。その後、個片化された複数の発光装置1を支持基板及びチップ固定用テープから剥離する。
(Method of manufacturing a light-emitting device)
An example of a manufacturing process of the light emitting device 1 will be described below. First, a chip fixing tape is applied on a support substrate, and LED chips as a plurality of light emitting elements 10 are arranged on the chip fixing tape. Next, a silicone resin containing phosphor is applied on the chip fixing tape on which the plurality of light emitting elements 10 are fixed, and cured to form a sealing member 11. Next, a SiO 2 film as an adhesion layer 12, an Al film as a reflective layer 13, and a SiO 2 film as a protective layer 14 are laminated in this order on the sealing member 11. Next, the laminated sealing member 11, adhesion layer 12, reflective layer 13, and protective layer 14 are diced to a CSP size to separate the light emitting device 1. Then, the separated plurality of light emitting devices 1 are peeled off from the support substrate and the chip fixing tape.

(実施の形態の効果)
上記の本発明の実施の形態によれば、封止部材11の上に密着層12を介して反射層13を形成することにより、封止部材11と反射層13の熱膨張率の差に起因する反射層13のクラックの発生や、封止部材11と反射層13の反応による生成物の生成を抑え、それらに起因する反射層13の反射率の低下を抑えることができる。これにより、光取出効率に優れる発光装置1を提供することができる。
(Effects of the embodiment)
According to the above embodiment of the present invention, by forming the reflective layer 13 on the sealing member 11 via the adhesion layer 12, it is possible to suppress the occurrence of cracks in the reflective layer 13 due to the difference in thermal expansion coefficient between the sealing member 11 and the reflective layer 13, and the generation of products due to the reaction between the sealing member 11 and the reflective layer 13, and to suppress the decrease in reflectance of the reflective layer 13 due to these. This makes it possible to provide a light emitting device 1 with excellent light extraction efficiency.

以上、本発明の実施の形態を説明したが、本発明は、上記の実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。また、発明の主旨を逸脱しない範囲内において上記実施の形態の構成要素を任意に組み合わせることができる。 Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications are possible without departing from the spirit of the invention. Furthermore, the components of the above embodiment can be combined in any manner without departing from the spirit of the invention.

また、上記の実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 Furthermore, the above-mentioned embodiments do not limit the invention according to the claims. It should be noted that not all of the combinations of features described in the embodiments are necessarily essential to the means for solving the problems of the invention.

1 発光装置
10 発光素子
11 封止部材
12 密着層
13 反射層
14 保護層
Reference Signs List 1 Light emitting device 10 Light emitting element 11 Sealing member 12 Adhesion layer 13 Reflection layer 14 Protection layer

Claims (4)

発光素子と、
前記発光素子を封止する、シリコーン樹脂を母材とする封止部材と、
前記封止部材上のSiO膜からなる密着層と、
前記密着層上のAl膜からなる反射層と、
を備えた、
発光装置。
A light-emitting element;
a sealing member having a silicone resin as a base material for sealing the light emitting element;
An adhesion layer made of a SiO2 film on the sealing member;
a reflective layer formed of an Al film on the adhesive layer;
Equipped with
Light emitting device.
前記密着層の厚さが10nm以上、300nm以下の範囲内にある、
請求項1に記載の発光装置。
The thickness of the adhesion layer is in the range of 10 nm or more and 300 nm or less.
The light emitting device according to claim 1 .
前記反射層の厚さが50nm以上、300nm以下の範囲内にある、
請求項1又は2に記載の発光装置。
The thickness of the reflective layer is in the range of 50 nm or more and 300 nm or less.
3. A light emitting device according to claim 1 or 2.
前記反射層の上のSiO膜、Ti膜、Ta膜、又はCr膜からなる保護層を備えた、
請求項1に記載の発光装置。
A protective layer made of a SiO2 film, a Ti film, a Ta film, or a Cr film on the reflective layer is provided;
The light emitting device according to claim 1 .
JP2022168470A 2022-10-20 2022-10-20 Light-emitting device Pending JP2024060900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022168470A JP2024060900A (en) 2022-10-20 2022-10-20 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022168470A JP2024060900A (en) 2022-10-20 2022-10-20 Light-emitting device

Publications (1)

Publication Number Publication Date
JP2024060900A true JP2024060900A (en) 2024-05-07

Family

ID=90925550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022168470A Pending JP2024060900A (en) 2022-10-20 2022-10-20 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2024060900A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257381A (en) * 2000-03-13 2001-09-21 Sharp Corp Light emitting diode, method of manufacturing the same, and lighting device
JP2006165326A (en) * 2004-12-08 2006-06-22 Stanley Electric Co Ltd Light emitting diode and manufacturing method thereof
JP2012015437A (en) * 2010-07-05 2012-01-19 Citizen Holdings Co Ltd Semiconductor light-emitting device
JP2013149711A (en) * 2012-01-18 2013-08-01 Citizen Holdings Co Ltd Semiconductor light-emitting device
WO2014141691A1 (en) * 2013-03-15 2014-09-18 パナソニック株式会社 Light-emitting module
JP2015032621A (en) * 2013-07-31 2015-02-16 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP2016051731A (en) * 2014-08-28 2016-04-11 日亜化学工業株式会社 Method for manufacturing light-emitting device
US20180358520A1 (en) * 2015-10-26 2018-12-13 Lg Innotek Co., Ltd. Light emitting device package and lighting system comprising same
CN114628550A (en) * 2020-12-14 2022-06-14 日亚化学工业株式会社 Manufacturing method of light-emitting device and manufacturing method of light-emitting component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257381A (en) * 2000-03-13 2001-09-21 Sharp Corp Light emitting diode, method of manufacturing the same, and lighting device
JP2006165326A (en) * 2004-12-08 2006-06-22 Stanley Electric Co Ltd Light emitting diode and manufacturing method thereof
JP2012015437A (en) * 2010-07-05 2012-01-19 Citizen Holdings Co Ltd Semiconductor light-emitting device
JP2013149711A (en) * 2012-01-18 2013-08-01 Citizen Holdings Co Ltd Semiconductor light-emitting device
WO2014141691A1 (en) * 2013-03-15 2014-09-18 パナソニック株式会社 Light-emitting module
JP2015032621A (en) * 2013-07-31 2015-02-16 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP2016051731A (en) * 2014-08-28 2016-04-11 日亜化学工業株式会社 Method for manufacturing light-emitting device
US20180358520A1 (en) * 2015-10-26 2018-12-13 Lg Innotek Co., Ltd. Light emitting device package and lighting system comprising same
CN114628550A (en) * 2020-12-14 2022-06-14 日亚化学工业株式会社 Manufacturing method of light-emitting device and manufacturing method of light-emitting component

Similar Documents

Publication Publication Date Title
KR102554232B1 (en) Light emitting diode having side reflection layer
JP6374564B2 (en) Light emitting diode chip with distributed Bragg reflector and light emitting diode package with distributed Bragg reflector
EP3958020B1 (en) Light emitting diode chip
TWI613839B (en) LED array with distributed Bragg reflector
JP5669940B2 (en) Optoelectronic semiconductor module
US10141480B2 (en) Light emitting diode chip having distributed Bragg reflector and method of fabricating the same
JP6306842B2 (en) LIGHT EMITTING ELEMENT AND LIGHTING SYSTEM HAVING THE SAME
CN111120962B (en) Light-emitting diode with multiple light-emitting units
US9496458B2 (en) Semiconductor light emitting diodes with crack-tolerant barrier structures and methods of fabricating the same
US20120025244A1 (en) Light emitting diode having distributed bragg reflector
JP6087096B2 (en) Semiconductor light emitting device and manufacturing method thereof
TWI627767B (en) Light-emitting diode with distributed Bragg mirror and manufacturing method thereof
KR101916131B1 (en) Light emitting device, method for fabricating the same and lighting system
JP5855344B2 (en) Light emitting diode chip having distributed Bragg reflector and method of manufacturing the same
JP2016219743A5 (en)
KR20120036982A (en) Optoelectronic semiconductor component
US20120286309A1 (en) Semiconductor light emitting diode chip and light emitting device using the same
US20130240937A1 (en) Semiconductor light-emitting diode chip, light-emitting device, and manufacturing method thereof
US20100230702A1 (en) Light emitting device, method of manufacturing the same, light emitting apparatus, and lighting system
JP2009295909A (en) Light emitting device
KR20110053064A (en) LED Chips and LED Packages with Distribution Bragg Reflectors
JP7117136B2 (en) Light-emitting element and light-emitting device
US7956379B2 (en) Light emitting device, method of manufacturing the same, light emitting device package, and lighting system
KR102673667B1 (en) Flip chip type light emitting diode chip
JP5849602B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20241029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20250730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20250805