[go: up one dir, main page]

JP2024001224A - Defect estimation device, defect estimation method and program - Google Patents

Defect estimation device, defect estimation method and program Download PDF

Info

Publication number
JP2024001224A
JP2024001224A JP2023178980A JP2023178980A JP2024001224A JP 2024001224 A JP2024001224 A JP 2024001224A JP 2023178980 A JP2023178980 A JP 2023178980A JP 2023178980 A JP2023178980 A JP 2023178980A JP 2024001224 A JP2024001224 A JP 2024001224A
Authority
JP
Japan
Prior art keywords
laminate
defect
temperature
estimation
temperature change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023178980A
Other languages
Japanese (ja)
Other versions
JP7471031B2 (en
Inventor
佑太 児嶋
Yuta Kojima
健太 平山
Kenta Hirayama
克浩 遠藤
Katsuhiro Endo
眞由 村松
Mayu Muramatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2023178980A priority Critical patent/JP7471031B2/en
Publication of JP2024001224A publication Critical patent/JP2024001224A/en
Application granted granted Critical
Publication of JP7471031B2 publication Critical patent/JP7471031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

【課題】繊維強化プラスチックの積層体が有する内部欠陥の3次元位置を推定する。【解決手段】欠陥推定装置は、繊維強化プラスチックの積層体の表面に生じた温度変化に基づく特徴データを測定した画像の入力を受け付けるように構成された特徴量受付部と、特徴データと内部欠陥の3次元位置を表す位置情報との関係を学習したモデルに、特徴量受付部が受け付けた特徴データを入力することで、積層体が有する内部欠陥の3次元位置を推定するように構成された欠陥位置推定部と、を備える。位置情報は、積層体の各層を所定数のメッシュに分割し、メッシュそれぞれに内部欠陥が存在するか否かを表す情報である。【選択図】図5An object of the present invention is to estimate the three-dimensional position of internal defects in a fiber-reinforced plastic laminate. [Solution] A defect estimating device includes a feature receiving unit configured to receive an input of an image obtained by measuring feature data based on temperature changes occurring on the surface of a fiber-reinforced plastic laminate, and a feature data and internal defect The feature data received by the feature reception unit is input to the model that has learned the relationship with position information representing the three-dimensional position of the laminate, thereby estimating the three-dimensional position of the internal defect in the stack. A defect position estimator. The position information is information that divides each layer of the laminate into a predetermined number of meshes and indicates whether or not each mesh has an internal defect. [Selection diagram] Figure 5

Description

新規性喪失の例外適用申請有り There is an application for exception to loss of novelty.

この発明は、欠陥推定装置、欠陥推定方法及びプログラムに関する。 The present invention relates to a defect estimation device, a defect estimation method, and a program.

炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastic; CFRP)は、樹脂を母材とし、炭素繊維を強化材とする複合材料である。一般的に、CFRPは、強度及び剛性が一方向に強化されているプリプレグを積層して使用する。以下、積層構造を有するCFRPを、「CFRP積層体」と呼ぶ。 Carbon Fiber Reinforced Plastic (CFRP) is a composite material that uses resin as a base material and carbon fiber as a reinforcing material. Generally, CFRP is used by laminating prepregs whose strength and rigidity are reinforced in one direction. Hereinafter, CFRP having a laminate structure will be referred to as a "CFRP laminate."

CFRP積層体が有する内部欠陥を検出するために、例えば、超音波測定(非特許文献1参照)又は放射線透過法(非特許文献2参照)等の非破壊検査が、従来から行われている。また、従来の非破壊検査の欠点を解決するために、例えば、赤外線サーモグラフィによる応力解析(非特許文献3参照)及び機械学習モデルを用いた手法(非特許文献4参照)等の研究がなされている。 In order to detect internal defects in CFRP laminates, non-destructive testing such as ultrasonic measurements (see Non-Patent Document 1) or radiographic techniques (see Non-Patent Document 2) has been conventionally performed. In addition, in order to solve the shortcomings of conventional non-destructive testing, research has been conducted, for example, on stress analysis using infrared thermography (see Non-Patent Document 3) and methods using machine learning models (see Non-Patent Document 4). There is.

三上修一, 大島俊之, 菅原登, 山崎智之, "エコー波形の詳細解析による超音波探傷法の欠陥検出の定量的評価", 土木学会論文集, vol. 501, pp. 103-112, 1994.Shuichi Mikami, Toshiyuki Oshima, Noboru Sugawara, Tomoyuki Yamazaki, "Quantitative evaluation of defect detection by ultrasonic flaw detection method by detailed analysis of echo waveforms", Proceedings of the Japan Society of Civil Engineers, vol. 501, pp. 103-112, 1994. Sultan, M., Worden, K., Pierce, S., Hickey, D., Staszewski,W., Dulieu-Barton, J., and Hodzic, A., "On impact damage detection and quantification for CFRP laminates", Mechanical Systems and Signal Processing, vol. 25, pp. 3135-3152, 2011.Sultan, M., Worden, K., Pierce, S., Hickey, D., Staszewski,W., Dulieu-Barton, J., and Hodzic, A., "On impact damage detection and quantification for CFRP laminates", Mechanical Systems and Signal Processing, vol. 25, pp. 3135-3152, 2011. Sakagami, T., Mizokami, Y., Shiozawa, D., Fujimoto, T., Izumi, Y., Hanai, T., and Moriyama, A., "Verification of the repair effect for fatigue cracks in members of steel bridges based on thermoelastic stress measurement", Engineering Fracture Mechanics, vol. 183, pp. 1-12, 2017.Sakagami, T., Mizokami, Y., Shiozawa, D., Fujimoto, T., Izumi, Y., Hanai, T., and Moriyama, A., "Verification of the repair effect for fatigue cracks in members of steel bridges based on thermoelastic stress measurement", Engineering Fracture Mechanics, vol. 183, pp. 1-12, 2017. 邉吾ー, 西恭一, 黄ー正, 藤川由美, "ニューラルネットワークと実験データによるCFRP積層材の損傷同定", 日本機械学会論文集 A編, vol. 62, pp. 2338-2343, 1996.Go Bei, Kyoichi Nishi, Tadashi Huang, Yumi Fujikawa, "Damage Identification of CFRP Laminated Materials Using Neural Networks and Experimental Data," Proceedings of the Japan Society of Mechanical Engineers, A edition, vol. 62, pp. 2338-2343, 1996.

しかしながら、非特許文献3及び非特許文献4に記載の技術では、CFRP積層体が有する内部欠陥の位置を詳細に特定することができない、という課題がある。 However, the techniques described in Non-Patent Document 3 and Non-Patent Document 4 have a problem in that the positions of internal defects in the CFRP laminate cannot be specified in detail.

本発明は、上記のような技術的課題に鑑みて、繊維強化プラスチックの積層体が有する内部欠陥の3次元位置を推定することを目的とする。 In view of the above technical problems, an object of the present invention is to estimate the three-dimensional position of an internal defect in a fiber-reinforced plastic laminate.

上記の課題を解決するために、本発明の一態様の欠陥推定装置は、繊維強化プラスチックの積層体の表面に温度変化が生じる前の温度分布と温度変化が生じた後の温度分布との差分に基づく特徴データの入力を受け付けるように構成された特徴量受付部と、特徴データと内部欠陥の3次元位置を表す位置情報との関係を学習したモデルに、特徴量受付部が受け付けた特徴データを入力することで、積層体が有する内部欠陥の3次元位置を推定するように構成された欠陥位置推定部と、を備える。位置情報は、積層体の各層を所定数のメッシュに分割し、メッシュそれぞれに内部欠陥が存在するか否かを表す情報である。 In order to solve the above problems, a defect estimating device according to one aspect of the present invention calculates the difference between the temperature distribution before a temperature change occurs on the surface of a fiber-reinforced plastic laminate and the temperature distribution after the temperature change occurs. The feature data reception unit is configured to receive input of feature data based on and a defect position estimating unit configured to estimate a three-dimensional position of an internal defect in the stack by inputting the following information. The position information is information that divides each layer of the laminate into a predetermined number of meshes and indicates whether or not each mesh has an internal defect.

本発明の一態様によれば、繊維強化プラスチックの積層体が有する内部欠陥の3次元位置を推定することができる。 According to one aspect of the present invention, it is possible to estimate the three-dimensional position of an internal defect in a fiber-reinforced plastic laminate.

欠陥推定システムの全体構成の一例を示す図である。FIG. 1 is a diagram showing an example of the overall configuration of a defect estimation system. コンピュータのハードウェア構成の一例を示す図である。1 is a diagram showing an example of a hardware configuration of a computer. 温度測定装置のハードウェア構成の一例を示す図である。It is a diagram showing an example of the hardware configuration of a temperature measuring device. CFRP積層体の一例を示す図である。It is a figure showing an example of a CFRP laminate. 第1実施形態における欠陥推定システムの機能構成の一例を示す図である。1 is a diagram illustrating an example of a functional configuration of a defect estimation system according to a first embodiment; FIG. 第1実施形態における学習方法の処理手順の一例を示す図である。It is a figure showing an example of a processing procedure of a learning method in a 1st embodiment. 第1実施形態における推定方法の処理手順の一例を示す図である。It is a figure showing an example of a processing procedure of an estimation method in a 1st embodiment. 変形例1における欠陥推定システムの機能構成の一例を示す図である。7 is a diagram illustrating an example of a functional configuration of a defect estimation system in Modification 1. FIG. 変形例1における学習方法の処理手順の一例を示す図である。7 is a diagram illustrating an example of a processing procedure of a learning method in Modification 1. FIG. 変形例1における推定方法の処理手順の一例を示す図である。7 is a diagram illustrating an example of a processing procedure of an estimation method in Modification 1. FIG. 第3実施形態における欠陥推定システムの機能構成の一例を示す図である。It is a figure showing an example of functional composition of a defect estimation system in a 3rd embodiment. 試験結果を示す図である。It is a figure showing a test result.

以下、本発明の各実施形態について添付の図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省略する。 Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that, in this specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, thereby omitting redundant explanation.

[第1実施形態]
炭素繊維強化プラスチック(CFRP)は、高い比弾性率特性を持ち、宇宙・航空分野等で広く使用されている。また、今後は、自動車の電動化が進展するに連れて、自動車分野でも使用が拡大することが見込まれている。
[First embodiment]
Carbon fiber reinforced plastic (CFRP) has high specific modulus characteristics and is widely used in the space and aviation fields. Further, in the future, as the electrification of automobiles progresses, its use is expected to expand in the automobile field.

積層構造を有するCFRP(CFRP積層体)は、使用時又は製造時に内部欠陥が生じることがある。使用時に生じる内部欠陥には、例えば、層間剥離、繊維破断、母材割れ等がある。製造時に生じる内部欠陥には、例えば、異物混入等がある。 CFRP (CFRP laminate) having a laminate structure may have internal defects during use or manufacturing. Internal defects that occur during use include, for example, delamination, fiber breakage, and base material cracking. Internal defects that occur during manufacturing include, for example, foreign matter contamination.

CFRP積層体に生じた内部欠陥を検出するために、従来から超音波測定(非特許文献1参照)又は放射線透過法(非特許文献2参照)等の非破壊検査が行われている。しかしながら、超音波測定では、水又は油等の接触部材が必要であり、検査技術者の技量が検査結果の精度に与える影響が大きい。また、放射線透過法では、管理区域の設定等の安全管理が必要であり、現像時間が必要となるため、経済的及び時間的コストが大きい。 In order to detect internal defects occurring in CFRP laminates, non-destructive inspections such as ultrasonic measurements (see Non-Patent Document 1) or radiographic techniques (see Non-Patent Document 2) have been conventionally performed. However, ultrasonic measurement requires a contact member such as water or oil, and the skill of the inspection engineer has a large effect on the accuracy of the inspection results. Furthermore, the radiographic method requires safety management such as setting of controlled areas and requires development time, resulting in large economic and time costs.

そこで、赤外線サーモグラフィによる応力解析(非特許文献3参照)が注目されている。赤外線サーモグラフィは、物体表面から放出される赤外線エネルギ分布を赤外線センサにより計測し、温度分布に換算する装置である。非特許文献3では、赤外線サーモグラフィによる欠陥探査が、橋等の構造物に対して有用であることが開示されている。しかしながら、非特許文献3に開示された技術では、内部欠陥の位置の詳細を特定することができない。 Therefore, stress analysis using infrared thermography (see Non-Patent Document 3) is attracting attention. Infrared thermography is a device that measures the distribution of infrared energy emitted from the surface of an object using an infrared sensor and converts it into temperature distribution. Non-Patent Document 3 discloses that defect detection using infrared thermography is useful for structures such as bridges. However, the technique disclosed in Non-Patent Document 3 cannot specify the details of the position of the internal defect.

また、機械学習モデルを用いた手法(非特許文献4参照)の研究がなされている。非特許文献4では、1次から3次の固有振動数を入力データとし、損傷の位置及び量を求めるニューラルネットワークを作成している。しかしながら、非特許文献4では、CFRP積層板を長手方向に10分割し、先端の2要素を除いた8要素において損傷の位置及び量を求めている。したがって、非特許文献4に開示された技術では、出力される位置情報の分解能が低く、内部欠陥の位置の詳細を特定することができない。 Further, research is being conducted on a method using a machine learning model (see Non-Patent Document 4). In Non-Patent Document 4, a neural network for determining the position and amount of damage is created using first to third order natural frequencies as input data. However, in Non-Patent Document 4, the CFRP laminate is divided into ten parts in the longitudinal direction, and the position and amount of damage are determined in eight elements excluding the two elements at the tip. Therefore, in the technique disclosed in Non-Patent Document 4, the resolution of the output position information is low, and the details of the position of the internal defect cannot be specified.

本実施形態における欠陥推定装置は、赤外線サーモグラフィによりCFRP積層体の表面温度を測定した画像から、当該積層体が有する内部欠陥の3次元位置を推定する。推定には、CFRP積層体の表面温度変化分布と、当該積層体が有する内部欠陥の3次元位置との関係を学習した、畳み込みニューラルネットワーク(Convolutional Neural Network; CNN)を用いる。 The defect estimating device in this embodiment estimates the three-dimensional position of an internal defect in the CFRP laminate from an image obtained by measuring the surface temperature of the CFRP laminate using infrared thermography. For estimation, a convolutional neural network (CNN) is used that has learned the relationship between the surface temperature change distribution of the CFRP laminate and the three-dimensional position of an internal defect in the CFRP laminate.

本実施形態における欠陥推定装置によれば、CFRP積層体の表面温度を表す画像(2次元データ)から、当該積層体が有する内部欠陥の位置情報(3次元データ)の推定値を得ることができる。すなわち、CFRP積層体が有する内部欠陥の3次元位置を精細に推定することができる。 According to the defect estimating device in this embodiment, it is possible to obtain an estimated value of positional information (three-dimensional data) of an internal defect that the CFRP laminate has from an image (two-dimensional data) representing the surface temperature of the CFRP laminate. . That is, it is possible to precisely estimate the three-dimensional position of an internal defect in the CFRP laminate.

<欠陥推定システムの全体構成>
まず、本実施形態における欠陥推定システムの全体構成を、図1を参照しながら説明する。図1は、本実施形態における欠陥推定システムの全体構成の一例を示すブロック図である。
<Overall configuration of defect estimation system>
First, the overall configuration of the defect estimation system in this embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing an example of the overall configuration of a defect estimation system in this embodiment.

図1に示されているように、本実施形態における欠陥推定システム100は、温度測定装置1及び欠陥推定装置2を含む。温度測定装置1及び欠陥推定装置2は、LAN(Local Area Network)又はインターネット等の通信ネットワークN1を介してデータ通信可能に接続されている。 As shown in FIG. 1, a defect estimation system 100 in this embodiment includes a temperature measurement device 1 and a defect estimation device 2. The temperature measurement device 1 and the defect estimation device 2 are connected to enable data communication via a communication network N1 such as a LAN (Local Area Network) or the Internet.

温度測定装置1は、学習対象又は推定対象とするCFRP積層体の表面温度を測定する電子機器である。温度測定装置1は、CFRP積層体の表面温度を変化させ、表面温度が変化する前と後に、赤外線カメラによりCFRP積層体の表面温度を測定する。また、温度測定装置1は、表面温度が変化する前と後に測定した表面温度の分布を表す2枚の画像(以下、「表面温度画像」とも呼ぶ)に基づいて、表面温度の変化を表す画像(以下、「温度変化画像」とも呼ぶ)を計算する。 The temperature measuring device 1 is an electronic device that measures the surface temperature of a CFRP laminate that is a learning target or an estimation target. The temperature measuring device 1 changes the surface temperature of the CFRP laminate and measures the surface temperature of the CFRP laminate using an infrared camera before and after the surface temperature changes. The temperature measuring device 1 also generates an image representing a change in surface temperature based on two images representing the distribution of surface temperature (hereinafter also referred to as "surface temperature images") measured before and after the surface temperature changes. (hereinafter also referred to as a "temperature change image").

CFRP積層体の表面温度を変化させる方法は、CFRP積層体の形状及び用途等によって異なる。本実施形態では、CFRP積層体に固定外力を加えることで、表面温度を変化させる。具体的には、板状に形成されたCFRP積層体の両端を支持し、互いに逆方向に引っ張る。 The method of changing the surface temperature of the CFRP laminate differs depending on the shape and use of the CFRP laminate. In this embodiment, the surface temperature is changed by applying a fixed external force to the CFRP laminate. Specifically, both ends of a plate-shaped CFRP laminate are supported and pulled in opposite directions.

CFRP積層体の表面温度を変化させる方法は、固定外力を加える方法に限定されない。例えば、CFRP積層体に熱を加えることで、表面温度を変化させてもよい。この場合、CFRP積層体の表面に赤外線を照射して表面温度を上昇させた後、時間変化に伴う温度変化を測定すればよい。 The method of changing the surface temperature of the CFRP laminate is not limited to the method of applying a fixed external force. For example, the surface temperature may be changed by applying heat to the CFRP laminate. In this case, what is necessary is to irradiate the surface of the CFRP laminate with infrared rays to raise the surface temperature, and then measure the temperature change over time.

欠陥推定装置2は、CFRP積層体が有する内部欠陥の位置を推定するPC(Personal Computer)、ワークステーション、サーバ等の情報処理装置である。欠陥推定装置2は、学習対象とするCFRP積層体の温度変化を測定した温度変化画像と、ユーザにより入力された内部欠陥の位置情報とに基づいて、温度変化画像に基づく特徴データを入力とし、内部欠陥の位置情報の推定値を出力する推定モデルを学習する。また、欠陥推定装置2は、学習済みの推定モデルを用いて、推定対象とするCFRP積層体の温度変化を測定した温度変化画像から内部欠陥の位置を推定する。 The defect estimating device 2 is an information processing device such as a PC (Personal Computer), a workstation, or a server that estimates the position of an internal defect in the CFRP laminate. The defect estimating device 2 inputs feature data based on the temperature change image based on the temperature change image obtained by measuring the temperature change of the CFRP laminate to be studied and the position information of the internal defect input by the user. Learn an estimation model that outputs estimated values of position information of internal defects. Furthermore, the defect estimating device 2 uses the learned estimation model to estimate the position of the internal defect from a temperature change image obtained by measuring the temperature change of the CFRP laminate to be estimated.

なお、図1に示した欠陥推定システム100の全体構成は一例であって、用途や目的に応じて様々なシステム構成例があり得る。例えば、欠陥推定装置2は、複数台のコンピュータにより実現してもよいし、クラウドコンピューティングのサービスとして実現してもよい。 Note that the overall configuration of the defect estimation system 100 shown in FIG. 1 is one example, and there may be various system configuration examples depending on the use and purpose. For example, the defect estimation device 2 may be realized by a plurality of computers, or may be realized as a cloud computing service.

<欠陥推定システムのハードウェア構成>
次に、本実施形態における欠陥推定システムのハードウェア構成を、図2及び図3を参照しながら説明する。
<Hardware configuration of defect estimation system>
Next, the hardware configuration of the defect estimation system in this embodiment will be explained with reference to FIGS. 2 and 3.

≪コンピュータのハードウェア構成≫
本実施形態における欠陥推定装置2は、例えばコンピュータにより実現される。図2は、本実施形態におけるコンピュータ500のハードウェア構成の一例を示すブロック図である。
≪Computer hardware configuration≫
The defect estimating device 2 in this embodiment is realized by, for example, a computer. FIG. 2 is a block diagram showing an example of the hardware configuration of the computer 500 in this embodiment.

図2に示されているように、コンピュータ500は、CPU(Central Processing Unit)501、ROM(Read Only Memory)502、RAM(Random Access Memory)503、HDD(Hard Disk Drive)504、入力装置505、表示装置506、通信I/F(Interface)507及び外部I/F508を有する。CPU501、ROM502及びRAM503は、いわゆるコンピュータを形成する。コンピュータ500の各ハードウェアは、バスライン509を介して相互に接続されている。なお、入力装置505及び表示装置506は外部I/F508に接続して利用する形態であってもよい。 As shown in FIG. 2, the computer 500 includes a CPU (Central Processing Unit) 501, a ROM (Read Only Memory) 502, a RAM (Random Access Memory) 503, an HDD (Hard Disk Drive) 504, an input device 505, It has a display device 506, a communication I/F (Interface) 507, and an external I/F 508. CPU501, ROM502, and RAM503 form what is called a computer. Each piece of hardware in the computer 500 is interconnected via a bus line 509. Note that the input device 505 and the display device 506 may be connected to an external I/F 508 for use.

CPU501は、ROM502又はHDD504等の記憶装置からプログラムやデータをRAM503上に読み出し、処理を実行することで、コンピュータ500全体の制御や機能を実現する演算装置である。 The CPU 501 is an arithmetic unit that implements control and functions of the entire computer 500 by reading programs and data from a storage device such as the ROM 502 or the HDD 504 onto the RAM 503 and executing processing.

ROM502は、電源を切ってもプログラムやデータを保持することができる不揮発性の半導体メモリ(記憶装置)の一例である。ROM502は、HDD504にインストールされている各種プログラムをCPU501が実行するために必要な各種プログラム、データ等を格納する主記憶装置として機能する。具体的には、ROM502には、コンピュータ500の起動時に実行されるBIOS(Basic Input/Output System)、EFI(Extensible Firmware Interface)等のブートプログラムや、OS(Operating System)設定、ネットワーク設定等のデータが格納されている。 The ROM 502 is an example of a nonvolatile semiconductor memory (storage device) that can retain programs and data even when the power is turned off. The ROM 502 functions as a main storage device that stores various programs, data, etc. necessary for the CPU 501 to execute various programs installed on the HDD 504 . Specifically, the ROM 502 stores data such as boot programs such as BIOS (Basic Input/Output System) and EFI (Extensible Firmware Interface) that are executed when the computer 500 is started, OS (Operating System) settings, and network settings. is stored.

RAM503は、電源を切るとプログラムやデータが消去される揮発性の半導体メモリ(記憶装置)の一例である。RAM503は、例えば、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)等である。RAM503は、HDD504にインストールされている各種プログラムがCPU501によって実行される際に展開される作業領域を提供する。 The RAM 503 is an example of a volatile semiconductor memory (storage device) whose programs and data are erased when the power is turned off. The RAM 503 is, for example, DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory). The RAM 503 provides a work area where various programs installed on the HDD 504 are expanded when the CPU 501 executes them.

HDD504は、プログラムやデータを格納している不揮発性の記憶装置の一例である。HDD504に格納されるプログラムやデータには、コンピュータ500全体を制御する基本ソフトウェアであるOS、及びOS上において各種機能を提供するアプリケーション等がある。なお、コンピュータ500はHDD504に替えて、記憶媒体としてフラッシュメモリを用いる記憶装置(例えばSSD:Solid State Drive等)を利用するものであってもよい。 The HDD 504 is an example of a nonvolatile storage device that stores programs and data. The programs and data stored in the HDD 504 include an OS, which is basic software that controls the entire computer 500, and applications that provide various functions on the OS. Note that, instead of the HDD 504, the computer 500 may use a storage device (for example, SSD: Solid State Drive) that uses flash memory as a storage medium.

入力装置505は、ユーザが各種信号を入力するために用いるタッチパネル、操作キーやボタン、キーボードやマウス、音声等の音データを入力するマイクロホン等である。 The input device 505 is a touch panel used by the user to input various signals, operation keys or buttons, a keyboard or mouse, a microphone used to input sound data such as voice, or the like.

表示装置506は、画面を表示する液晶や有機EL(Electro-Luminescence)等のディスプレイ、音声等の音データを出力するスピーカ等で構成されている。 The display device 506 includes a display such as a liquid crystal or organic EL (Electro-Luminescence) that displays a screen, a speaker that outputs sound data such as audio, and the like.

通信I/F507は、通信ネットワークに接続し、コンピュータ500がデータ通信を行うためのインタフェースである。 The communication I/F 507 is an interface that connects to a communication network and allows the computer 500 to perform data communication.

外部I/F508は、外部装置とのインタフェースである。外部装置には、ドライブ装置510等がある。 External I/F 508 is an interface with an external device. The external device includes a drive device 510 and the like.

ドライブ装置510は、記録媒体511をセットするためのデバイスである。ここでいう記録媒体511には、CD-ROM、フレキシブルディスク、光磁気ディスク等のように情報を光学的、電気的あるいは磁気的に記録する媒体が含まれる。また、記録媒体511には、ROM、フラッシュメモリ等のように情報を電気的に記録する半導体メモリ等が含まれていてもよい。これにより、コンピュータ500は外部I/F508を介して記録媒体511の読み取り及び/又は書き込みを行うことができる。 The drive device 510 is a device for setting the recording medium 511. The recording medium 511 here includes a medium that records information optically, electrically, or magnetically, such as a CD-ROM, a flexible disk, and a magneto-optical disk. Further, the recording medium 511 may include a semiconductor memory or the like that electrically records information, such as a ROM or a flash memory. Thereby, the computer 500 can read and/or write to the recording medium 511 via the external I/F 508.

なお、HDD504にインストールされる各種プログラムは、例えば、配布された記録媒体511が外部I/F508に接続されたドライブ装置510にセットされ、記録媒体511に記録された各種プログラムがドライブ装置510により読み出されることでインストールされる。あるいは、HDD504にインストールされる各種プログラムは、通信I/F507を介して、通信ネットワークとは異なる他のネットワークよりダウンロードされることでインストールされてもよい。 Note that the various programs installed on the HDD 504 are, for example, when the distributed recording medium 511 is set in the drive device 510 connected to the external I/F 508, and the various programs recorded on the recording medium 511 are read by the drive device 510. It is installed by Alternatively, various programs to be installed on the HDD 504 may be installed by being downloaded from a network different from the communication network via the communication I/F 507.

≪温度測定装置のハードウェア構成≫
図3は、本実施形態における温度測定装置1のハードウェア構成の一例を示すブロック図である。図3に示されているように、本実施形態における温度測定装置1は、制御装置101、一対の支持部102、駆動制御部103及び赤外線カメラ104を有する。
≪Hardware configuration of temperature measurement device≫
FIG. 3 is a block diagram showing an example of the hardware configuration of the temperature measuring device 1 in this embodiment. As shown in FIG. 3, the temperature measuring device 1 in this embodiment includes a control device 101, a pair of support sections 102, a drive control section 103, and an infrared camera 104.

支持部102は、CFRP積層体1000の一端を支持する第1支持部102Aと、他の一端を支持する第2支持部102Bとからなる。駆動制御部103は、第1支持部102A及び第2支持部102Bを、第1支持部102Aと第2支持部102Bとを結ぶ線に沿ってそれぞれ直進運動させる制御を行う。 The support section 102 includes a first support section 102A that supports one end of the CFRP laminate 1000, and a second support section 102B that supports the other end. The drive control section 103 controls the first support section 102A and the second support section 102B to move linearly along the line connecting the first support section 102A and the second support section 102B.

第1支持部102A及び第2支持部102Bが、CFRP積層体1000の両端を支持した状態で、駆動制御部103が第1支持部102A及び第2支持部102Bを互いに逆方向に移動させることで、CFRP積層体1000に引張応力を作用させることができる。これにより、応力変動に比例した温度降下がCFRP積層体1000に生じ、CFRP積層体1000の表面温度が変化する。 With the first support section 102A and the second support section 102B supporting both ends of the CFRP laminate 1000, the drive control section 103 moves the first support section 102A and the second support section 102B in mutually opposite directions. , tensile stress can be applied to the CFRP laminate 1000. This causes a temperature drop in the CFRP laminate 1000 that is proportional to the stress fluctuation, and the surface temperature of the CFRP laminate 1000 changes.

赤外線カメラ104は、CFRP積層体1000の表面から放出される赤外線を受光し、赤外線解析によりCFRP積層体1000の表面温度画像を生成する。 The infrared camera 104 receives infrared rays emitted from the surface of the CFRP laminate 1000, and generates a surface temperature image of the CFRP laminate 1000 through infrared analysis.

制御装置101は、例えばコンピュータにより実現される。制御装置101は、CPU501、ROM502、RAM503、入力装置505、表示装置506、及び外部I/F508を有する。CPU501、ROM502及びRAM503は、いわゆるコンピュータを形成する。制御装置101の各ハードウェアは、バスライン509を介して相互に接続されている。なお、入力装置505及び表示装置506は外部I/F508に接続して利用する形態であってもよい。 Control device 101 is realized by, for example, a computer. The control device 101 includes a CPU 501, a ROM 502, a RAM 503, an input device 505, a display device 506, and an external I/F 508. CPU501, ROM502, and RAM503 form what is called a computer. Each piece of hardware in the control device 101 is interconnected via a bus line 509. Note that the input device 505 and the display device 506 may be connected to an external I/F 508 for use.

駆動制御部103及び赤外線カメラ104は、外部I/F508に接続されており、制御装置101により制御される。また、赤外線カメラ104が取得した表面温度画像は、外部I/F508を介して制御装置101に入力される。 The drive control unit 103 and the infrared camera 104 are connected to an external I/F 508 and are controlled by the control device 101. Further, the surface temperature image acquired by the infrared camera 104 is input to the control device 101 via the external I/F 508.

ここで、本実施形態におけるCFRP積層体の構造について、図4を参照しながら説明する。図4は、本実施形態におけるCFRP積層体の一例を示す概念図である。 Here, the structure of the CFRP laminate in this embodiment will be explained with reference to FIG. 4. FIG. 4 is a conceptual diagram showing an example of a CFRP laminate in this embodiment.

図4に示されているように、本実施形態におけるCFRP積層体1000は複数のプリプレグ1001を積層して構成される。各プリプレグ1001は、樹脂である母材1002を、炭素繊維である強化繊維1003により、一方向に強度及び剛性を強化されている。CFRP積層体1000は、プリプレグ1001を積層する際に、各層で繊維配向を等角度に回転させることで、全体として等方性を示すように構成されている。 As shown in FIG. 4, the CFRP laminate 1000 in this embodiment is constructed by laminating a plurality of prepregs 1001. In each prepreg 1001, the strength and rigidity of a base material 1002, which is a resin, is reinforced in one direction by reinforcing fibers 1003, which are carbon fibers. The CFRP laminate 1000 is configured to exhibit isotropy as a whole by rotating the fiber orientation in each layer by an equal angle when stacking the prepregs 1001.

図4では、各プリプレグを90°ずつ回転させた例を示しているが、例えば、30°、45°、60°等で回転させてもよい。また、図4では、10層に積層した例を示しているが、2層以上であれば層数は限定されない。本実施形態では、CFRP積層体を想定しているが、強化繊維及び樹脂の種類は適宜変更しても構わない。 Although FIG. 4 shows an example in which each prepreg is rotated by 90 degrees, it may be rotated by 30 degrees, 45 degrees, 60 degrees, etc., for example. Further, although FIG. 4 shows an example in which ten layers are laminated, the number of layers is not limited as long as it is two or more layers. In this embodiment, a CFRP laminate is assumed, but the types of reinforcing fibers and resin may be changed as appropriate.

<欠陥推定システムの機能構成>
続いて、本実施形態における欠陥推定システムの機能構成を、図5を参照しながら説明する。図5は本実施形態における欠陥推定システムの機能構成の一例を示すブロック図である。
<Functional configuration of defect estimation system>
Next, the functional configuration of the defect estimation system in this embodiment will be described with reference to FIG. 5. FIG. 5 is a block diagram showing an example of the functional configuration of the defect estimation system in this embodiment.

≪温度測定装置の機能構成≫
図5に示されているように、本実施形態における温度測定装置1は、温度変化部11、温度測定部12及び画像生成部13を備える。
≪Functional configuration of temperature measurement device≫
As shown in FIG. 5, the temperature measurement device 1 in this embodiment includes a temperature change section 11, a temperature measurement section 12, and an image generation section 13.

温度変化部11は、図3に示されている支持部102及び駆動制御部103によって実現される。温度測定部12は、図3に示されている赤外線カメラ104によって実現される。画像生成部13は、図3に示されているROM502からRAM503上に展開されたプログラムがCPU501に実行させる処理によって実現される。 The temperature change section 11 is realized by the support section 102 and the drive control section 103 shown in FIG. The temperature measuring section 12 is realized by an infrared camera 104 shown in FIG. The image generation unit 13 is realized by processing that causes the CPU 501 to execute a program loaded from the ROM 502 onto the RAM 503 shown in FIG.

温度変化部11は、駆動制御部103が支持部102を駆動させることによって、学習対象及び推定対象とするCFRP積層体の表面温度を変化させる。 The temperature change unit 11 changes the surface temperature of the CFRP laminate, which is a learning target and an estimation target, by causing the drive control unit 103 to drive the support unit 102 .

温度測定部12は、赤外線カメラ104によって、学習対象及び推定対象とするCFRP積層体の表面温度を測定する。また、温度測定部12は、CFRP積層体の表面温度画像を生成する。さらに、温度測定部12は、生成した表面温度画像を画像生成部13に送る。 The temperature measurement unit 12 uses an infrared camera 104 to measure the surface temperature of the CFRP laminate, which is a learning target and an estimation target. Furthermore, the temperature measurement unit 12 generates a surface temperature image of the CFRP laminate. Furthermore, the temperature measurement section 12 sends the generated surface temperature image to the image generation section 13.

画像生成部13は、温度変化部11がCFRP積層体の表面温度を変化させる前と後に生成された2枚の表面温度画像に基づいて、温度変化画像を生成する。また、画像生成部13は、生成した温度変化画像を欠陥推定装置2に送信する。 The image generation unit 13 generates a temperature change image based on two surface temperature images generated before and after the temperature change unit 11 changes the surface temperature of the CFRP laminate. Further, the image generation unit 13 transmits the generated temperature change image to the defect estimation device 2.

≪欠陥推定装置の機能構成≫
図5に示されているように、本実施形態における欠陥推定装置2は、画像受付部21、位置情報受付部22、特徴量計算部23、モデル学習部24、モデル記憶部25、欠陥位置推定部26及び結果出力部27を備える。
≪Functional configuration of defect estimation device≫
As shown in FIG. 5, the defect estimating device 2 in this embodiment includes an image receiving section 21, a position information receiving section 22, a feature calculation section 23, a model learning section 24, a model storage section 25, a defect position estimation It includes a section 26 and a result output section 27.

画像受付部21、位置情報受付部22、特徴量計算部23、モデル学習部24、欠陥位置推定部26及び結果出力部27は、図2に示されているHDD504からRAM503上に展開されたプログラムがCPU501に実行させる処理によって実現される。モデル記憶部25は、図2に示されているHDD504によって実現される。 The image reception unit 21, the position information reception unit 22, the feature amount calculation unit 23, the model learning unit 24, the defect position estimation unit 26, and the result output unit 27 execute the program developed on the RAM 503 from the HDD 504 shown in FIG. is realized by the processing executed by the CPU 501. The model storage unit 25 is realized by the HDD 504 shown in FIG.

画像受付部21は、温度測定装置1から温度変化画像を受信する。また、画像受付部21は、温度変化画像を特徴量計算部23に送る。 The image reception unit 21 receives the temperature change image from the temperature measurement device 1 . Further, the image reception unit 21 sends the temperature change image to the feature amount calculation unit 23.

位置情報受付部22は、ユーザの操作に応じて、学習対象とするCFRP積層体が有する内部欠陥の位置情報の入力を受け付ける。また、位置情報受付部22は、受け付けた内部欠陥の位置情報をモデル学習部24に送る。 The position information receiving unit 22 receives input of position information of an internal defect that a CFRP laminate that is a learning target has in response to a user's operation. Further, the position information receiving unit 22 sends the received position information of the internal defect to the model learning unit 24 .

特徴量計算部23は、画像受付部21から受け取った温度変化画像に基づいて特徴データを計算する。本実施形態における特徴データは、CFRP積層体の表面主応力和分布である。 The feature calculation unit 23 calculates feature data based on the temperature change image received from the image reception unit 21. The characteristic data in this embodiment is the surface principal stress sum distribution of the CFRP laminate.

特徴量計算部23は、学習対象とするCFRP積層体に関する温度変化画像に基づいて特徴データを計算した場合、当該特徴データをモデル学習部24に送る。また、特徴量計算部23は、推定対象とするCFRP積層体に関する温度変化画像に基づいて特徴データを計算した場合、当該特徴データを欠陥位置推定部26に送る。 When the feature value calculation unit 23 calculates feature data based on the temperature change image regarding the CFRP laminate to be studied, it sends the feature data to the model learning unit 24 . Furthermore, when the feature value calculation unit 23 calculates feature data based on the temperature change image regarding the CFRP laminate to be estimated, it sends the feature data to the defect position estimation unit 26 .

モデル学習部24は、位置情報受付部22が受け付けた内部欠陥の位置情報と、特徴量計算部23が計算した特徴データとを関連付けることで、学習データを生成する。また、モデル学習部24は、生成した学習データを用いて、推定モデルを学習する。 The model learning unit 24 generates learning data by associating the internal defect position information received by the position information receiving unit 22 with the feature data calculated by the feature value calculation unit 23. Furthermore, the model learning unit 24 uses the generated learning data to learn the estimated model.

モデル記憶部25は、モデル学習部24が生成した学習済みの推定モデルを記憶する。 The model storage unit 25 stores the learned estimated model generated by the model learning unit 24.

欠陥位置推定部26は、モデル記憶部25から推定モデルを読み出し、特徴量計算部23から受け取った特徴データを推定モデルに入力することで、推定対象とするCFRP積層体が有する内部欠陥の位置情報の推定値を計算する。 The defect position estimating unit 26 reads out the estimated model from the model storage unit 25 and inputs the feature data received from the feature calculation unit 23 into the estimated model, thereby obtaining position information of internal defects in the CFRP laminate to be estimated. Compute an estimate of .

結果出力部27は、内部欠陥の推定結果を表示装置506等に出力する。当該推定結果は、欠陥位置推定部26が計算した内部欠陥の位置情報の推定値を含む。 The result output unit 27 outputs the internal defect estimation results to the display device 506 or the like. The estimation result includes the estimated value of the position information of the internal defect calculated by the defect position estimation unit 26.

<欠陥推定システムの処理手順>
次に、本実施形態における欠陥推定システムが実行する欠陥推定方法の処理手順を、図6及び図7を参照しながら説明する。本実施形態における欠陥推定方法は、推定モデルを学習する学習方法(図6参照)、及び学習済みの推定モデルを用いて内部欠陥の3次元位置を推定する推定方法(図7参照)からなる。
<Defect estimation system processing procedure>
Next, the processing procedure of the defect estimation method executed by the defect estimation system in this embodiment will be explained with reference to FIGS. 6 and 7. The defect estimation method in this embodiment includes a learning method for learning an estimation model (see FIG. 6), and an estimation method for estimating the three-dimensional position of an internal defect using the learned estimation model (see FIG. 7).

≪学習方法≫
図6は本実施形態における学習方法の処理手順の一例を示すフローチャートである。
≪Learning method≫
FIG. 6 is a flowchart showing an example of the processing procedure of the learning method in this embodiment.

ステップS12-1において、温度測定装置1が備える温度測定部12は、学習対象とするCFRP積層体の表面温度を変化させる前に、当該積層体の表面温度を測定する。次に、温度測定部12は、測定した表面温度の分布を表す表面温度画像(以下、「温度変化前画像」とも呼ぶ)を生成する。続いて、温度測定部12は、温度変化前画像を画像生成部13に送る。 In step S12-1, the temperature measurement unit 12 included in the temperature measurement device 1 measures the surface temperature of the CFRP laminate to be studied, before changing the surface temperature of the CFRP laminate. Next, the temperature measuring unit 12 generates a surface temperature image (hereinafter also referred to as "image before temperature change") representing the distribution of the measured surface temperature. Subsequently, the temperature measurement section 12 sends the image before temperature change to the image generation section 13.

ステップS11において、温度測定装置1が備える温度変化部11は、学習対象とするCFRP積層体の温度を変化させる。具体的には、学習対象とするCFRP積層体に所定の固定外力を与える。 In step S11, the temperature change unit 11 included in the temperature measuring device 1 changes the temperature of the CFRP laminate to be studied. Specifically, a predetermined fixed external force is applied to the CFRP laminate to be studied.

ステップS12-2において、温度測定装置1が備える温度測定部12は、学習対象とするCFRP積層体の表面温度を変化させた後に、当該積層体の表面温度を測定する。次に、温度測定部12は、測定した表面温度の分布を表す表面温度画像(以下、「温度変化後画像」とも呼ぶ)を生成する。続いて、温度測定部12は、温度変化後画像を画像生成部13に送る。 In step S12-2, the temperature measuring unit 12 included in the temperature measuring device 1 changes the surface temperature of the CFRP laminate to be studied, and then measures the surface temperature of the laminate. Next, the temperature measuring unit 12 generates a surface temperature image (hereinafter also referred to as a "temperature change image") representing the distribution of the measured surface temperature. Subsequently, the temperature measurement unit 12 sends the image after the temperature change to the image generation unit 13.

ステップS13において、温度測定装置1が備える画像生成部13は、温度測定部12から温度変化前画像及び温度変化後画像を受け取る。次に、画像生成部13は、温度変化前画像及び温度変化後画像に基づいて、学習対象とするCFRP積層体の表面温度変化を表す温度変化画像を生成する。続いて、画像生成部13は、温度変化画像を欠陥推定装置2に送信する。 In step S13, the image generation unit 13 included in the temperature measurement device 1 receives the image before temperature change and the image after temperature change from the temperature measurement unit 12. Next, the image generation unit 13 generates a temperature change image representing a change in surface temperature of the CFRP laminate to be studied, based on the image before temperature change and the image after temperature change. Subsequently, the image generation unit 13 transmits the temperature change image to the defect estimation device 2.

具体的には、画像生成部13は、温度変化前画像と温度変化後画像との差分を計算する。すなわち、各画像の画素毎に、温度変化後画像が表す表面温度から温度変化前画像が表す表面温度を減算する。 Specifically, the image generation unit 13 calculates the difference between the image before the temperature change and the image after the temperature change. That is, for each pixel of each image, the surface temperature represented by the image before temperature change is subtracted from the surface temperature represented by the image after temperature change.

ステップS21において、欠陥推定装置2が備える画像受付部21は、温度測定装置1から学習対象とするCFRP積層体に関する温度変化画像を受信する。次に、画像受付部21は、温度測定装置1から受信した温度変化画像を特徴量計算部23に送る。 In step S21, the image receiving unit 21 included in the defect estimating device 2 receives a temperature change image regarding the CFRP laminate to be studied from the temperature measuring device 1. Next, the image reception unit 21 sends the temperature change image received from the temperature measurement device 1 to the feature quantity calculation unit 23.

ステップS22において、欠陥推定装置2が備える位置情報受付部22は、ユーザの操作に応じて、学習対象とするCFRP積層体が有する内部欠陥の3次元位置を表す位置情報の入力を受け付ける。次に、位置情報受付部22は、受け付けた内部欠陥の位置情報をモデル学習部24に送る。 In step S22, the position information receiving unit 22 included in the defect estimating device 2 receives input of position information representing the three-dimensional position of an internal defect in the CFRP laminate to be studied, in response to a user's operation. Next, the position information receiving unit 22 sends the received position information of the internal defect to the model learning unit 24 .

本実施形態における内部欠陥の位置情報は、CFRP積層体における内部欠陥が存在する3次元座標及び内部欠陥のサイズを含む。なお、内部欠陥のサイズとは、CFRP積層体の各層における内部欠陥が存在する範囲である。 The position information of the internal defect in this embodiment includes the three-dimensional coordinates where the internal defect exists in the CFRP laminate and the size of the internal defect. Note that the size of the internal defect is the range in which the internal defect exists in each layer of the CFRP laminate.

具体的には、内部欠陥の位置情報は、CFRP積層体の各層を所定数のメッシュに分割し、各メッシュに内部欠陥が存在するか否かを表すチャンネルを設定した情報である。当該チャンネルは、例えば、内部欠陥が存在する場合は1、存在しない場合には0が設定される。すなわち、各メッシュの位置は、CFRP積層体の表面からみた2次元座標に、層の深さを加えた3次元座標を表している。また、各層においてチャンネルの値が1である範囲が、内部欠陥のサイズを表している。 Specifically, the internal defect position information is information in which each layer of the CFRP laminate is divided into a predetermined number of meshes, and a channel is set in each mesh to indicate whether or not an internal defect exists. For example, the channel is set to 1 when an internal defect exists, and 0 when there is no internal defect. That is, the position of each mesh represents a three-dimensional coordinate obtained by adding the depth of the layer to the two-dimensional coordinate seen from the surface of the CFRP laminate. Furthermore, the range in which the channel value is 1 in each layer represents the size of the internal defect.

なお、本実施形態では、メッシュは、直交等間隔に分割するものとする。ただし、欠陥が生じやすい位置が判明している場合等には、当該位置の近傍領域は細かく、その他の領域は粗く分割してもよい。 Note that in this embodiment, the mesh is divided into orthogonal equal intervals. However, if a position where defects are likely to occur is known, the area near the position may be finely divided, and the other areas may be coarsely divided.

ステップS23において、欠陥推定装置2が備える特徴量計算部23は、画像受付部21から温度変化画像を受け取る。次に、特徴量計算部23は、温度変化画像に基づいて表面主応力和分布を計算する。続いて、特徴量計算部23は、計算した表面主応力和分布をモデル学習部24に送る。 In step S<b>23 , the feature calculation unit 23 included in the defect estimation device 2 receives the temperature change image from the image reception unit 21 . Next, the feature calculation unit 23 calculates the surface principal stress sum distribution based on the temperature change image. Subsequently, the feature calculation section 23 sends the calculated surface principal stress sum distribution to the model learning section 24.

具体的には、特徴量計算部23は、温度変化画像を所定数のメッシュに分割し、各メッシュに対応する温度変化量を計算することで、表面温度変化分布を得る。メッシュの温度変化量は、当該メッシュの代表点(中心等)の温度変化量でもよいし、メッシュ内の温度変化量の平均でもよい。メッシュの分割方法は、内部欠陥の位置情報と同様である。 Specifically, the feature calculation unit 23 divides the temperature change image into a predetermined number of meshes, and calculates the amount of temperature change corresponding to each mesh, thereby obtaining the surface temperature change distribution. The amount of temperature change in the mesh may be the amount of temperature change at a representative point (such as the center) of the mesh, or may be the average amount of temperature change within the mesh. The mesh division method is the same as the internal defect position information.

次に、特徴量計算部23は、表面温度変化分布に対してケルビンの理論(参考文献1参照)を適用することで、表面主応力和分布を計算する。ケルビンの理論は、熱弾性効果による温度の変化量ΔTと主応力和の変化量Δσとの関係を、ΔT = -kTΔσで与える。ただし、kは熱弾性係数、Tは絶対温度である。 Next, the feature calculation unit 23 calculates the surface principal stress sum distribution by applying Kelvin's theory (see Reference 1) to the surface temperature change distribution. Kelvin's theory gives the relationship between the amount of change in temperature ΔT due to the thermoelastic effect and the amount of change Δσ in the sum of principal stresses as ΔT = -kTΔσ. However, k is the thermoelastic coefficient and T is the absolute temperature.

〔参考文献1〕W. Thomson (Lord Kelvin), "On the Dynamical Theory of Heat", Trans. Roy. Soc., Vol.20, pp.261-283, 1853. [Reference 1] W. Thomson (Lord Kelvin), "On the Dynamical Theory of Heat", Trans. Roy. Soc., Vol.20, pp.261-283, 1853.

ステップS12-1からステップS23までは、学習対象とするCFRP積層体それぞれについて、繰り返し実行する。これにより、学習対象とするCFRP積層体それぞれに対応する表面主応力分布及び内部欠陥の位置情報がモデル学習部24に入力される。 Steps S12-1 to S23 are repeatedly executed for each CFRP laminate to be studied. Thereby, the surface principal stress distribution and internal defect position information corresponding to each CFRP laminate to be studied are input to the model learning unit 24.

ステップS24において、欠陥推定装置2が備えるモデル学習部24は、位置情報受付部22から内部欠陥の位置情報を受け取る。また、モデル学習部24は、特徴量計算部23から表面主応力分布を受け取る。 In step S24, the model learning unit 24 included in the defect estimating device 2 receives the position information of the internal defect from the position information receiving unit 22. Furthermore, the model learning section 24 receives the surface principal stress distribution from the feature calculation section 23.

次に、モデル学習部24は、表面主応力分布と内部欠陥の位置情報とを関連付けることで、学習データを生成する。このとき、モデル学習部24は、学習データに含まれる表面主応力和分布を、学習データ全体に対して標準化してもよい。 Next, the model learning unit 24 generates learning data by associating the surface principal stress distribution with the position information of the internal defect. At this time, the model learning unit 24 may standardize the surface principal stress sum distribution included in the learning data with respect to the entire learning data.

続いて、モデル学習部24は、生成した学習データを用いて、推定モデルを学習する。本実施形態における推定モデルは、CFRP積層体の表面主応力和分布を入力とし、当該積層体が有する内部欠陥の位置情報の推定値を出力する畳み込みニューラルネットワークである。 Subsequently, the model learning unit 24 uses the generated learning data to learn the estimated model. The estimation model in this embodiment is a convolutional neural network that inputs the surface principal stress sum distribution of a CFRP laminate and outputs an estimated value of positional information of an internal defect that the CFRP laminate has.

畳み込みニューラルネットワークは、格子状の構造を持つデータの処理に使われる特殊なニューラルネットワークである。格子状の構造を持つデータの例としては、等時間間隔で取得したサンプルが1次元に配列された時系列データ、又は、ピクセルが2次元に配列された画像データ等である。 A convolutional neural network is a special type of neural network used to process data that has a grid-like structure. Examples of data having a grid-like structure include time series data in which samples acquired at equal time intervals are arranged in one dimension, or image data in which pixels are arranged in two dimensions.

本実施形態における畳み込みニューラルネットワークは、以下のように構成する。損失関数は、バイナリ交差誤差を用いる。最適化手法は、Adamを用いる。このとき、学習率は0.00003に設定する。ミニバッチサイズは16とし、訓練回数は1000回とする。なお、L2正則化もしくはバッチノーマライゼーション等の正則化手法は用いなくともよい。 The convolutional neural network in this embodiment is configured as follows. The loss function uses binary cross error. Adam is used as the optimization method. At this time, the learning rate is set to 0.00003. The mini-batch size is 16 and the number of trainings is 1000. Note that regularization methods such as L2 regularization or batch normalization may not be used.

ステップS25において、欠陥推定装置2が備えるモデル学習部24は、学習済みの推定モデルをモデル記憶部25に記憶する。 In step S25, the model learning unit 24 included in the defect estimation device 2 stores the learned estimation model in the model storage unit 25.

≪推定方法≫
図7は本実施形態における推定方法の処理手順の一例を示すフローチャートである。
≪Estimation method≫
FIG. 7 is a flowchart showing an example of the processing procedure of the estimation method in this embodiment.

ステップS12-1において、温度測定装置1が備える温度測定部12は、推定対象とするCFRP積層体の表面温度を変化させる前に、当該積層体の表面温度を測定する。次に、温度測定部12は、測定した表面温度の分布を表す温度変化前画像を生成する。続いて、温度測定部12は、温度変化前画像を画像生成部13に送る。 In step S12-1, the temperature measurement unit 12 included in the temperature measurement device 1 measures the surface temperature of the CFRP laminate to be estimated, before changing the surface temperature of the CFRP laminate. Next, the temperature measuring unit 12 generates a pre-temperature change image representing the distribution of the measured surface temperature. Subsequently, the temperature measurement section 12 sends the image before temperature change to the image generation section 13.

ステップS11において、温度測定装置1が備える温度変化部11は、推定対象とするCFRP積層体の温度を変化させる。具体的には、推定対象とするCFRP積層体に、学習処理と同様の固定外力を与える。 In step S11, the temperature change unit 11 included in the temperature measuring device 1 changes the temperature of the CFRP laminate to be estimated. Specifically, a fixed external force similar to that in the learning process is applied to the CFRP laminate to be estimated.

ステップS12-2において、温度測定装置1が備える温度測定部12は、推定対象とするCFRP積層体の表面温度を変化させた後に、当該積層体の表面温度を測定する。次に、温度測定部12は、測定した表面温度の分布を表す温度変化後画像を生成する。続いて、温度測定部12は、温度変化後画像を画像生成部13に送る。 In step S12-2, the temperature measurement unit 12 included in the temperature measurement device 1 changes the surface temperature of the CFRP laminate to be estimated, and then measures the surface temperature of the CFRP laminate. Next, the temperature measuring unit 12 generates a post-temperature-change image representing the distribution of the measured surface temperature. Subsequently, the temperature measurement unit 12 sends the image after the temperature change to the image generation unit 13.

ステップS13において、温度測定装置1が備える画像生成部13は、温度測定部12から温度変化前画像及び温度変化後画像を受け取る。次に、画像生成部13は、温度変化前画像及び温度変化後画像に基づいて、推定対象とするCFRP積層体の表面温度変化を表す温度変化画像を生成する。続いて、画像生成部13は、温度変化画像を欠陥推定装置2に送信する。 In step S13, the image generation unit 13 included in the temperature measurement device 1 receives the image before temperature change and the image after temperature change from the temperature measurement unit 12. Next, the image generation unit 13 generates a temperature change image representing a surface temperature change of the CFRP laminate to be estimated, based on the image before temperature change and the image after temperature change. Subsequently, the image generation unit 13 transmits the temperature change image to the defect estimation device 2.

ステップS21において、欠陥推定装置2が備える画像受付部21は、温度測定装置1から推定対象とするCFRP積層体に関する温度変化画像を受信する。次に、画像受付部21は、温度測定装置1から受信した温度変化画像を特徴量計算部23に送る。 In step S21, the image receiving unit 21 included in the defect estimating device 2 receives a temperature change image regarding the CFRP laminate to be estimated from the temperature measuring device 1. Next, the image reception unit 21 sends the temperature change image received from the temperature measurement device 1 to the feature quantity calculation unit 23.

ステップS23において、欠陥推定装置2が備える特徴量計算部23は、画像受付部21から温度変化画像を受け取る。次に、特徴量計算部23は、温度変化画像に基づいて表面主応力和分布を計算する。続いて、特徴量計算部23は、計算した表面主応力和分布をモデル学習部24に送る。 In step S<b>23 , the feature calculation unit 23 included in the defect estimation device 2 receives the temperature change image from the image reception unit 21 . Next, the feature calculation unit 23 calculates the surface principal stress sum distribution based on the temperature change image. Subsequently, the feature calculation section 23 sends the calculated surface principal stress sum distribution to the model learning section 24.

ステップS26において、欠陥推定装置2が備える欠陥位置推定部26は、特徴量計算部23から表面主応力和分布を受け取る。次に、欠陥位置推定部26は、モデル記憶部25から推定モデルを読み出す。続いて、欠陥位置推定部26は、受け取った表面主応力和分布を、読み出した推定モデルに入力することで、推定対象とするCFRP積層体が有する内部欠陥の位置情報の推定値を計算する。そして、欠陥位置推定部26は、内部欠陥の位置情報の推定値を結果出力部27に送る。 In step S26, the defect position estimation unit 26 included in the defect estimation device 2 receives the surface principal stress sum distribution from the feature value calculation unit 23. Next, the defect position estimation section 26 reads the estimated model from the model storage section 25. Subsequently, the defect position estimating unit 26 inputs the received surface principal stress sum distribution into the read estimation model to calculate an estimated value of the position information of the internal defect of the CFRP laminate to be estimated. Then, the defect position estimation section 26 sends the estimated value of the position information of the internal defect to the result output section 27 .

ステップS27において、欠陥推定装置2が備える結果出力部27は、欠陥位置推定部26から内部欠陥の位置情報の推定値を受け取る。次に、結果出力部27は、内部欠陥の3次元位置の推定結果を表示装置506等に出力する。当該推定結果は、欠陥位置推定部26が計算した内部欠陥の位置情報の推定値を含む。 In step S27, the result output unit 27 included in the defect estimating device 2 receives the estimated value of the internal defect position information from the defect position estimating unit 26. Next, the result output unit 27 outputs the estimation result of the three-dimensional position of the internal defect to the display device 506 or the like. The estimation result includes the estimated value of the position information of the internal defect calculated by the defect position estimation unit 26.

<第1実施形態の効果>
本実施形態における欠陥推定システムは、学習対象とするCFRP積層体の表面主応力和分布を入力とし、内部欠陥の3次元位置を表す位置情報の推定値を出力する推定モデルを学習する。また、本実施形態における欠陥推定システムは、推定対象とするCFRP積層体の表面温度の変化を表す画像に基づく表面主応力和分布を、学習済みの推定モデルに入力することで、当該積層体が有する内部欠陥の3次元位置を推定する。したがって、本実施形態における欠陥推定システムによれば、CFRP積層体が有する内部欠陥の3次元位置を推定することができる。
<Effects of the first embodiment>
The defect estimation system in this embodiment receives as input the surface principal stress sum distribution of the CFRP laminate to be learned, and learns an estimation model that outputs an estimated value of position information representing the three-dimensional position of an internal defect. In addition, the defect estimation system in this embodiment inputs the surface principal stress sum distribution based on an image representing a change in surface temperature of a CFRP laminate to be estimated into a trained estimation model. The three-dimensional position of the internal defect is estimated. Therefore, according to the defect estimation system in this embodiment, it is possible to estimate the three-dimensional position of an internal defect that the CFRP laminate has.

また、本実施形態における位置情報は、CFRP積層体の内部欠陥が存在する層の深さ及び当該層における内部欠陥が存在する範囲を含む。したがって、本実施形態における欠陥推定システムによれば、CFRP積層体が有する内部欠陥の3次元座標及びサイズが精細に推定することができる。 Further, the position information in this embodiment includes the depth of the layer in which the internal defect exists in the CFRP laminate and the range in which the internal defect exists in the layer. Therefore, according to the defect estimation system in this embodiment, the three-dimensional coordinates and size of internal defects in the CFRP laminate can be precisely estimated.

[第2実施形態]
第1実施形態における欠陥推定装置2は、特徴データとして表面主応力和分布を用いて、推定モデルを学習し、内部欠陥の3次元位置を推定した。第2実施形態における欠陥推定装置2は、特徴データとして表面温度変化分布を用いるように構成する。
[Second embodiment]
The defect estimating device 2 in the first embodiment learned an estimation model using the surface principal stress sum distribution as feature data, and estimated the three-dimensional position of the internal defect. The defect estimating device 2 in the second embodiment is configured to use surface temperature change distribution as feature data.

<欠陥推定システムの機能構成>
本実施形態における特徴量計算部23は、画像受付部21から受け取った温度変化画像に基づいて表面温度変化分布を計算する。第1実施形態における特徴量計算部23は、温度変化画像に基づいて表面温度変化分布を計算し、その表面温度変化分布にケルビンの理論を適用することで、表面主応力和分布を計算した。本実施形態における特徴量計算部23は、ケルビンの理論を適用する前の表面温度変化分布を特徴データとして利用する。
<Functional configuration of defect estimation system>
The feature calculation unit 23 in this embodiment calculates the surface temperature change distribution based on the temperature change image received from the image reception unit 21. The feature quantity calculation unit 23 in the first embodiment calculated the surface temperature change distribution based on the temperature change image, and calculated the surface principal stress sum distribution by applying Kelvin's theory to the surface temperature change distribution. The feature calculation unit 23 in this embodiment uses the surface temperature change distribution before applying Kelvin's theory as feature data.

本実施形態におけるモデル学習部24は、位置情報受付部22が受け付けた内部欠陥の位置情報と、特徴量計算部23が計算した表面温度変化分布とを関連付けることで、学習データを生成する。また、本実施形態におけるモデル学習部24は、生成した学習データを用いて、CFRP積層体の表面温度変化分布を入力とし、当該積層体が有する内部欠陥の位置情報の推定値を出力する畳み込みニューラルネットワーク(推定モデル)を学習する。 The model learning unit 24 in this embodiment generates learning data by associating the internal defect position information received by the position information receiving unit 22 with the surface temperature change distribution calculated by the feature value calculation unit 23. In addition, the model learning unit 24 in this embodiment uses the generated learning data to create a convolution neural network that inputs the surface temperature change distribution of the CFRP laminate and outputs an estimated value of position information of an internal defect that the laminate has. Learn the network (estimation model).

本実施形態における欠陥位置推定部26は、モデル記憶部25から推定モデルを読み出し、特徴量計算部23から受け取った表面温度変化分布を推定モデルに入力することで、推定対象とするCFRP積層体が有する内部欠陥の位置情報の推定値を計算する。 The defect position estimation unit 26 in this embodiment reads the estimation model from the model storage unit 25 and inputs the surface temperature change distribution received from the feature value calculation unit 23 into the estimation model, thereby determining the CFRP laminate to be estimated. Calculate an estimate of the location information of the internal defect.

<第2実施形態の効果>
本実施形態における欠陥推定システムは、温度変化画像に基づいて計算した表面温度変化分布を用いて、推定モデルを学習し、内部欠陥の位置を推定する。これにより、表面温度変化分布から表面主応力和分布を計算する必要がないため、特徴量計算部23の処理速度が向上する。
<Effects of the second embodiment>
The defect estimation system in this embodiment uses a surface temperature change distribution calculated based on a temperature change image to learn an estimation model and estimate the position of an internal defect. Thereby, there is no need to calculate the surface principal stress sum distribution from the surface temperature change distribution, so the processing speed of the feature value calculation unit 23 is improved.

[変形例1]
第1実施形態及び第2実施形態では、欠陥推定装置2が、温度測定装置1により生成された温度変化画像から特徴データ(すなわち、表面主応力和分布又は表面温度変化分布)を計算するように構成した。変形例1では、温度測定装置1が温度変化前画像及び温度変化後画像に基づいて特徴データを計算し、欠陥推定装置2に送信するように構成する。
[Modification 1]
In the first and second embodiments, the defect estimating device 2 calculates feature data (i.e., surface principal stress sum distribution or surface temperature change distribution) from the temperature change image generated by the temperature measurement device 1. Configured. In the first modification, the temperature measurement device 1 is configured to calculate characteristic data based on the image before the temperature change and the image after the temperature change and send it to the defect estimation device 2.

以下、本変形例について、第1実施形態との相違点を中心に説明する。なお、本変形例の構成は、第2実施形態に対しても同様に適用することができる。第2実施形態に適用する場合、本変形例中の表面主応力和分布を表面温度変化分布に読み替えればよい。 Hereinafter, this modified example will be explained focusing on the differences from the first embodiment. Note that the configuration of this modification can be similarly applied to the second embodiment. When applied to the second embodiment, the surface principal stress sum distribution in this modification may be read as the surface temperature change distribution.

<欠陥推定システムの機能構成>
まず、本変形例における欠陥推定システムの機能構成を、図8を参照しながら説明する。図8は本変形例における欠陥推定システムの機能構成の一例を示すブロック図である。
<Functional configuration of defect estimation system>
First, the functional configuration of the defect estimation system in this modification will be described with reference to FIG. 8. FIG. 8 is a block diagram showing an example of the functional configuration of the defect estimation system in this modification.

≪温度測定装置の機能構成≫
図8に示されているように、本変形例における温度測定装置1は、第1実施形態と同様に、温度変化部11及び温度測定部12を備え、特徴量計算部14をさらに備える。なお、本変形例における温度測定装置1は、第1実施形態における温度測定装置1が備えていた画像生成部13を備えない。
≪Functional configuration of temperature measurement device≫
As shown in FIG. 8, the temperature measurement device 1 in this modification includes a temperature change section 11 and a temperature measurement section 12, and further includes a feature value calculation section 14, as in the first embodiment. Note that the temperature measuring device 1 in this modification does not include the image generation unit 13 that the temperature measuring device 1 in the first embodiment had.

特徴量計算部14は、温度変化部11がCFRP積層体の表面温度を変化させる前と後に生成された2枚の表面温度画像に基づいて、表面主応力和分布を計算する。また、特徴量計算部14は、計算した表面主応力和分布を欠陥推定装置2に送信する。 The feature calculation unit 14 calculates the surface principal stress sum distribution based on two surface temperature images generated before and after the temperature change unit 11 changes the surface temperature of the CFRP laminate. Further, the feature calculation unit 14 transmits the calculated surface principal stress sum distribution to the defect estimation device 2.

≪欠陥推定装置の機能構成≫
図8に示されているように、本変形例における欠陥推定装置2は、第1実施形態と同様に、位置情報受付部22、モデル学習部24、モデル記憶部25、欠陥位置推定部26及び結果出力部27を備え、画像受付部21の代わりに特徴量受付部31を備える。なお、本変形例における欠陥推定装置2は、第1実施形態における欠陥推定装置2が備えていた特徴量計算部23を備えない。
≪Functional configuration of defect estimation device≫
As shown in FIG. 8, the defect estimating device 2 in this modified example includes a position information receiving unit 22, a model learning unit 24, a model storage unit 25, a defect position estimating unit 26, and A result output section 27 is provided, and a feature amount reception section 31 is provided in place of the image reception section 21. Note that the defect estimating device 2 in this modification does not include the feature value calculation unit 23 that the defect estimating device 2 in the first embodiment had.

特徴量受付部31は、温度測定装置1から表面主応力和分布を受信する。特徴量受付部31は、学習対象とするCFRP積層体に関する表面主応力和分布を受信した場合、当該表面主応力和分布をモデル学習部24に送る。また、特徴量受付部31は、推定対象とするCFRP積層体に関する表面主応力和分布を受信した場合、当該表面主応力和分布を欠陥位置推定部26に送る。 The feature receiving unit 31 receives the surface principal stress sum distribution from the temperature measuring device 1 . When the feature receiving unit 31 receives the surface principal stress sum distribution regarding the CFRP laminate to be studied, it sends the surface principal stress sum distribution to the model learning unit 24 . Further, when the feature receiving unit 31 receives the surface principal stress sum distribution regarding the CFRP laminate to be estimated, it sends the surface principal stress sum distribution to the defect position estimating unit 26 .

<欠陥推定システムの処理手順>
次に、本変形例における欠陥推定システムが実行する欠陥推定方法の処理手順を、図9及び図10を参照しながら説明する。
<Defect estimation system processing procedure>
Next, the processing procedure of the defect estimation method executed by the defect estimation system in this modification will be described with reference to FIGS. 9 and 10.

≪学習方法≫
図9は本変形例における学習方法の処理手順の一例を示すフローチャートである。
≪Learning method≫
FIG. 9 is a flowchart showing an example of the processing procedure of the learning method in this modification.

ステップS14において、温度測定装置1が備える特徴量計算部14は、温度測定部12から温度変化前画像及び温度変化後画像を受け取る。次に、特徴量計算部14は、温度変化前画像及び温度変化後画像に基づいて、学習対象とするCFRP積層体の表面主応力和分布を計算する。そして、特徴量計算部14は、計算した表面主応力和分布を欠陥推定装置2に送信する。 In step S<b>14 , the feature calculation unit 14 included in the temperature measurement device 1 receives the image before temperature change and the image after temperature change from the temperature measurement unit 12 . Next, the feature calculation unit 14 calculates the surface principal stress sum distribution of the CFRP laminate to be studied, based on the image before the temperature change and the image after the temperature change. Then, the feature calculation unit 14 transmits the calculated surface principal stress sum distribution to the defect estimation device 2.

ステップS31において、欠陥推定装置2が備える特徴量受付部31は、温度測定装置1から学習対象とするCFRP積層体に関する表面主応力和分布を受信する。次に、特徴量受付部31は、温度測定装置1から受信した表面主応力和分布をモデル学習部24に送る。 In step S31, the feature receiving unit 31 included in the defect estimating device 2 receives the surface principal stress sum distribution regarding the CFRP laminate to be learned from the temperature measuring device 1. Next, the feature receiving unit 31 sends the surface principal stress sum distribution received from the temperature measuring device 1 to the model learning unit 24.

≪推定方法≫
図10は本変形例における推定方法の処理手順の一例を示すフローチャートである。
≪Estimation method≫
FIG. 10 is a flowchart showing an example of the processing procedure of the estimation method in this modification.

ステップS14において、温度測定装置1が備える特徴量計算部14は、温度測定部12から温度変化前画像及び温度変化後画像を受け取る。次に、特徴量計算部14は、温度変化前画像及び温度変化後画像に基づいて、推定対象とするCFRP積層体の表面主応力和分布を計算する。そして、特徴量計算部14は、計算した表面主応力和分布を欠陥推定装置2に送信する。 In step S<b>14 , the feature calculation unit 14 included in the temperature measurement device 1 receives the image before temperature change and the image after temperature change from the temperature measurement unit 12 . Next, the feature calculation unit 14 calculates the surface principal stress sum distribution of the CFRP laminate to be estimated, based on the image before the temperature change and the image after the temperature change. Then, the feature calculation unit 14 transmits the calculated surface principal stress sum distribution to the defect estimation device 2.

ステップS31において、欠陥推定装置2が備える特徴量受付部31は、温度測定装置1から推定対象とするCFRP積層体に関する表面主応力和分布を受信する。次に、特徴量受付部31は、温度測定装置1から受信した表面主応力和分布を欠陥位置推定部26に送る。 In step S31, the feature receiving unit 31 included in the defect estimating device 2 receives the surface principal stress sum distribution regarding the CFRP laminate to be estimated from the temperature measuring device 1. Next, the feature receiving unit 31 sends the surface principal stress sum distribution received from the temperature measuring device 1 to the defect position estimating unit 26.

<変形例1の効果>
本実施形態における欠陥推定システムは、画像取得装置が表面主応力和分布を計算し、欠陥推定装置に送信する。赤外線サーモグラフィから表面主応力和分布を計算するプログラムを搭載可能な画像取得装置は実現している。そのような画像取得装置と組み合わせることで、欠陥推定装置が特徴データを計算する負荷を軽減することができる。
<Effects of modification 1>
In the defect estimation system in this embodiment, an image acquisition device calculates a surface principal stress sum distribution and transmits it to a defect estimation device. An image acquisition device that can be equipped with a program that calculates the surface principal stress sum distribution from infrared thermography has been realized. By combining with such an image acquisition device, the load on the defect estimation device to calculate feature data can be reduced.

[第3実施形態]
第1実施形態における欠陥推定装置2は、学習対象とするCFRP積層体の表面温度変化を実際に測定した温度変化画像を用いて学習データを生成した。第3実施形態における欠陥推定装置2は、数値解析により、CFRP積層体の表面温度変化を測定することなく、学習データを生成するように構成する。
[Third embodiment]
The defect estimating device 2 in the first embodiment generated learning data using a temperature change image obtained by actually measuring a change in surface temperature of a CFRP laminate as a learning target. The defect estimating device 2 in the third embodiment is configured to generate learning data through numerical analysis without measuring changes in surface temperature of the CFRP laminate.

<欠陥推定システムの機能構成>
本実施形態における欠陥推定システムの機能構成を、図11を参照しながら説明する。図11は本実施形態における欠陥推定システムの機能構成の一例を示すブロック図である。
<Functional configuration of defect estimation system>
The functional configuration of the defect estimation system in this embodiment will be described with reference to FIG. 11. FIG. 11 is a block diagram showing an example of the functional configuration of the defect estimation system in this embodiment.

図11に示されているように、本実施形態における欠陥推定システムは、第1実施形態における欠陥推定システムと比較して、以下の点が異なる。第1に、欠陥推定装置2が位置情報受付部22を備えない。第2に、欠陥推定装置2が学習データ生成部28を備える。 As shown in FIG. 11, the defect estimation system according to the present embodiment differs from the defect estimation system according to the first embodiment in the following points. First, the defect estimating device 2 does not include the position information receiving section 22. Second, the defect estimation device 2 includes a learning data generation section 28 .

学習データ生成部28は、有限要素法(Finite Element Method; FEM)に基づく数値解析により、相異なる内部欠陥を有する複数のCFRP積層体における表面主応力和分布をそれぞれ計算する。また、学習データ生成部28は、各CFRP積層体が有する内部欠陥の位置情報と、計算した表面主応力和分布とを関連付けることで、学習データを生成する。さらに、学習データ生成部28は、生成した学習データをモデル学習部24に送る。 The learning data generation unit 28 calculates the surface principal stress sum distribution in each of a plurality of CFRP laminates having different internal defects by numerical analysis based on the finite element method (FEM). Further, the learning data generation unit 28 generates learning data by associating the position information of internal defects of each CFRP laminate with the calculated surface principal stress sum distribution. Further, the learning data generation section 28 sends the generated learning data to the model learning section 24.

学習データ生成部28は、内部欠陥を有さないCFRP積層体における表面主応力和分布を学習データに含めてもよい。内部欠陥を有さないCFRP積層体に関する学習データを含めることで、内部欠陥が小さい場合の推定精度を向上することができる。 The learning data generation unit 28 may include the surface principal stress sum distribution in the CFRP laminate having no internal defects in the learning data. By including learning data regarding CFRP laminates that do not have internal defects, it is possible to improve estimation accuracy when internal defects are small.

具体的には、学習データ生成部28は、以下のようにして表面主応力和分布を計算する。まず、学習対象とするCFRP積層体を有限要素のメッシュに離散化する。次に、要素剛性マトリックスと等価節点力ベクトルを要素毎に計算する。続いて、要素毎の要素剛性マトリックスと等価節点力ベクトルを全体座標系へ結合する。次に、連立一次方程式を解き、節点変位を計算する。そして、節点変位から要素毎のひずみと応力を計算する。 Specifically, the learning data generation unit 28 calculates the surface principal stress sum distribution as follows. First, a CFRP laminate to be studied is discretized into a finite element mesh. Next, the element stiffness matrix and equivalent nodal force vector are calculated for each element. Next, the element stiffness matrix and equivalent nodal force vector for each element are combined into the global coordinate system. Next, the simultaneous linear equations are solved and the nodal displacements are calculated. Then, strain and stress for each element are calculated from the nodal displacements.

なお、要素剛性マトリックス及び全体剛性マトリックスは、仮想仕事の原理を節点において離散化することで解くことができる。また、等価節点力ベクトルは、表面応力ベクトルを面積積分することにより導出できる(参考文献2参照)。 Note that the element stiffness matrix and the overall stiffness matrix can be solved by discretizing the principle of virtual work at nodes. Further, the equivalent nodal force vector can be derived by integrating the surface stress vector by area (see Reference 2).

〔参考文献2〕Onate, E. "Structural Analysis with the Finite Element Method", Artes Graficas Torres S.L., 2009. [Reference 2] Onate, E. "Structural Analysis with the Finite Element Method", Artes Graficas Torres S.L., 2009.

<第3実施形態の効果>
本実施形態における欠陥推定システムは、数値解析により生成した学習データを用いて、推定モデルを学習するように構成した。実測により学習データを用意するためには、様々な内部欠陥を有するCFRP積層体を収集し、それぞれについて温度測定装置1で温度変化を測定する必要がある。したがって、学習データの収集に膨大な時間を要する。
<Effects of the third embodiment>
The defect estimation system in this embodiment is configured to learn an estimation model using learning data generated by numerical analysis. In order to prepare learning data through actual measurements, it is necessary to collect CFRP laminates having various internal defects and measure temperature changes for each with the temperature measuring device 1. Therefore, it takes a huge amount of time to collect learning data.

数値解析により学習データを生成すれば、CFRP積層体の表面温度変化を実測することなく推定モデルを学習することが可能となる。したがって、本実施形態における欠陥推定装置2によれば、推定モデルを学習するための時間的及び経済的コストを大幅に低減することができる。 If learning data is generated by numerical analysis, it becomes possible to learn the estimation model without actually measuring the surface temperature change of the CFRP laminate. Therefore, according to the defect estimating device 2 in this embodiment, the time and economic costs for learning the estimation model can be significantly reduced.

[試験結果]
一実施形態における欠陥推定システムの性能を評価するために、評価試験を行った。本試験では、第3実施形態で説明した有限要素法に基づく数値解析により、学習対象とするCFRP積層体について表面主応力和分布を計算した。また、推定対象とするCFRP積層体についても、有限要素法に基づく数値解析により、表面主応力和分布を計算した。
[Test results]
An evaluation test was conducted to evaluate the performance of the defect estimation system in one embodiment. In this test, the surface principal stress sum distribution was calculated for the CFRP laminate to be studied by numerical analysis based on the finite element method described in the third embodiment. Furthermore, for the CFRP laminate to be estimated, the surface principal stress sum distribution was calculated by numerical analysis based on the finite element method.

具体的には、内部欠陥の位置及び大きさが異なる2496個の積層体モデル及び内部欠陥を有さない1個の積層体モデルを用意した。このうち、内部欠陥を有さない1個の積層体モデル及び内部欠陥を有する1996個の積層体モデルを学習データとして用い、残りの500個の積層体モデルを検証データとして用いた。 Specifically, 2496 laminate models with different positions and sizes of internal defects and one laminate model without internal defects were prepared. Among these, one laminate model without internal defects and 1996 laminate models with internal defects were used as learning data, and the remaining 500 laminate models were used as verification data.

本実験で用いた積層体モデルは、長さ140mm、幅50mm、厚さ2mmで、10層の積層板とした。この積層板において、長さ10~70mm、幅10~50mmの範囲で大きさを変化させ、かつ、中心座標を変化させながら、2層目から9層目のいずれかに内部欠陥が存在する積層体モデルを生成した。 The laminate model used in this experiment was a 10-layer laminate with a length of 140 mm, a width of 50 mm, and a thickness of 2 mm. In this laminate, the size varies in the range of 10 to 70 mm in length and 10 to 50 mm in width, and the internal defect exists in any of the 2nd to 9th layers while changing the center coordinates. A body model was generated.

上記の試験条件において、500組の検証データのうち、497組で内部欠陥の3次元位置を正確に推定した。推定に失敗した3組についても内部欠陥の概形及び層番号をほぼ特定できていた。 Under the above test conditions, the three-dimensional position of the internal defect was accurately estimated in 497 of the 500 sets of verification data. Even for the three sets for which estimation failed, the outline shape and layer number of the internal defect could almost be identified.

図12は、試験結果を示す図である。図12(A)は、推定に成功した成功例のうち3件を例示した図である。図12(B)は、推定に失敗した失敗例の3件を示した図である。各試験結果において、上段は推定結果であり、下段は正解である。1 channelから8 channelに対応する各矩形は、2層目から9層目における各メッシュの内部欠陥の有無を表している。なお、9 channelは、積層方向の総和が1となるように追加したチャンネルである。薄い領域は内部欠陥があること、濃い領域は内部欠陥がないことを表している。 FIG. 12 is a diagram showing the test results. FIG. 12(A) is a diagram illustrating three of the successful estimation cases. FIG. 12(B) is a diagram showing three failure examples in which estimation has failed. In each test result, the upper row is the estimated result, and the lower row is the correct answer. Each rectangle corresponding to channels 1 to 8 represents the presence or absence of internal defects in each mesh in the 2nd to 9th layers. Note that 9 channels are channels added so that the total sum in the stacking direction is 1. A thin region indicates that there is an internal defect, and a dark region indicates that there is no internal defect.

図12(A)に示されているように、成功例では内部欠陥の範囲及び層の深さを正確に推定していることがわかる。図12(B)に示されているように、失敗例であっても概ね内部欠陥の範囲及び層の深さを推定できていることがわかる。 As shown in FIG. 12A, it can be seen that in the successful example, the range of internal defects and the depth of the layer are accurately estimated. As shown in FIG. 12(B), it can be seen that even in the case of failure, the range of internal defects and the depth of the layer can be roughly estimated.

[応用例]
上述の実施形態における欠陥推定システムは、CFRPの製造施設又はCFRPを使用した製造物の整備点検施設等で利用することができる。
[Application example]
The defect estimation system in the embodiment described above can be used at a CFRP manufacturing facility or a maintenance inspection facility for products using CFRP.

CFRPの製造施設では、プリプレグを積層する際に、層間に異物が混入することにより、不良品が発生するおそれがある。異物混入は外観では判別できないため、超音波測定又は放射線透過法等の非破壊検査により、完成品の全数検査が行われている。しかしながら、上述のように、これらの検査手法は、経済的かつ時間的コストが大きく、生産性を低下させる一因となっている。 In CFRP manufacturing facilities, when prepregs are laminated, there is a risk that foreign matter may get mixed between the layers, resulting in defective products. Since contamination with foreign matter cannot be determined by appearance, all finished products are inspected by non-destructive testing such as ultrasonic measurement or radiography. However, as described above, these inspection methods have large economic and time costs, which is one reason for reducing productivity.

一実施形態における欠陥推定システムは、不良品の一次スクリーニングに利用することができる。すなわち、欠陥推定システムにより完成品全量に対して内部欠陥の推定を行い、内部欠陥の位置が推定された(言い替えると、内部欠陥を有する可能性が高い)完成品のみに対して、従来の非破壊検査を行えばよい。これにより、コストが大きい従来の非破壊検査を実施する回数を大幅に低減することができる。 The defect estimation system in one embodiment can be used for primary screening of defective products. In other words, internal defects are estimated for the entire quantity of finished products using a defect estimation system, and the conventional Destructive testing can be done. As a result, the number of times conventional non-destructive testing, which is costly, can be significantly reduced.

また、一実施形態における欠陥推定システムによれば、内部欠陥の詳細な三次元位置が推定できるため、従来の非破壊検査において、内部欠陥が存在する可能性が高い位置を重点的に検査すればよい。したがって、一実施形態における欠陥推定システムを、CFRPの製造施設に応用することで、完成品の不良品検査を低コストで実施することが可能となる。 Furthermore, according to the defect estimation system in one embodiment, it is possible to estimate the detailed three-dimensional position of an internal defect. good. Therefore, by applying the defect estimation system in one embodiment to a CFRP manufacturing facility, it is possible to inspect finished products for defects at low cost.

CFRPを使用した製造物では、使用時に発生する震動又は異物の衝突等により、層間剥離、繊維破断、母材割れ等の損傷が発生する。そのため、整備点検施設では、CFRPで形成されたすべての部材に対して、超音波測定等の非破壊検査が行われている。上述のように、超音波測定は、接触部材が必要であり、検査技術者の技量に検査結果が影響される。 In products using CFRP, damage such as delamination, fiber breakage, and base material cracking occurs due to vibrations or collisions with foreign objects during use. Therefore, at maintenance and inspection facilities, all members made of CFRP are subjected to non-destructive testing such as ultrasonic measurement. As mentioned above, ultrasonic measurement requires a contact member, and the test results are influenced by the skill of the test technician.

製造施設の場合と同様に、一実施形態における欠陥推定システムにより製造物全体に対して一次検査を行えば、内部欠陥が存在する可能性が高い位置を抽出することができる。また、これにより、超音波検査では、内部欠陥が存在する可能性が高い位置のみを重点的に超音波検査を行えばよい。したがって、一実施形態における欠陥推定システムを、CFRPを使用した製造物の整備点検施設に応用することで、製造物の損傷解析を低コストで実施することが可能となる。 As in the case of a manufacturing facility, if the defect estimation system in one embodiment performs a primary inspection on the entire product, it is possible to extract locations where internal defects are likely to exist. Further, in the ultrasonic inspection, it is only necessary to focus the ultrasonic inspection on positions where there is a high possibility that an internal defect exists. Therefore, by applying the defect estimation system in one embodiment to a maintenance inspection facility for products using CFRP, damage analysis of products can be performed at low cost.

[補足]
以上、本発明の実施の形態について詳述したが、本発明はこれらの実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形又は変更が可能である。
[supplement]
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to these embodiments, and various modifications or variations can be made within the scope of the gist of the present invention as described in the claims. Changes are possible.

100 欠陥推定システム
1 温度測定装置
2 欠陥推定装置
3 ユーザ端末
11 温度変化部
12 温度測定部
13 画像生成部
21 画像受付部
22 位置情報受付部
23 特徴量計算部
24 モデル学習部
25 モデル記憶部
26 欠陥位置推定部
27 結果出力部
28 学習データ生成部
31 特徴量受付部
100 Defect estimation system 1 Temperature measurement device 2 Defect estimation device 3 User terminal 11 Temperature change unit 12 Temperature measurement unit 13 Image generation unit 21 Image reception unit 22 Position information reception unit 23 Feature amount calculation unit 24 Model learning unit 25 Model storage unit 26 Defect position estimation unit 27 Result output unit 28 Learning data generation unit 31 Feature reception unit

Claims (10)

繊維強化プラスチックの積層体の表面に温度変化が生じる前の温度分布と前記温度変化が生じた後の温度分布との差分に基づく特徴データの入力を受け付けるように構成された特徴量受付部と、
前記特徴データと内部欠陥の3次元位置を表す位置情報との関係を学習したモデルに、前記特徴量受付部が受け付けた前記特徴データを入力することで、前記積層体が有する前記内部欠陥の3次元位置を推定するように構成された欠陥位置推定部と、
を備え、
前記位置情報は、前記積層体の各層を所定数のメッシュに分割し、前記メッシュそれぞれに前記内部欠陥が存在するか否かを表す情報である、
欠陥推定装置。
a feature reception unit configured to receive input of feature data based on a difference between a temperature distribution before a temperature change occurs on the surface of the fiber-reinforced plastic laminate and a temperature distribution after the temperature change occurs;
By inputting the feature data received by the feature amount receiving unit into a model that has learned the relationship between the feature data and position information representing the three-dimensional position of the internal defect, a defect position estimator configured to estimate a dimensional position;
Equipped with
The position information is information that divides each layer of the laminate into a predetermined number of meshes and indicates whether or not the internal defect exists in each of the meshes.
Defect estimation device.
請求項1に記載の欠陥推定装置であって、
前記メッシュは、直交等間隔に分割されている、
欠陥推定装置。
The defect estimating device according to claim 1,
The mesh is divided into orthogonal equal intervals,
Defect estimation device.
請求項1に記載の欠陥推定装置であって、
前記メッシュは、所定の位置の近傍領域は細かく、前記近傍領域とは異なる領域は粗く分割されている、
欠陥推定装置。
The defect estimating device according to claim 1,
The mesh is divided finely into a region near a predetermined position and coarsely into a region different from the neighboring region.
Defect estimation device.
コンピュータが、
繊維強化プラスチックの積層体の表面に温度変化が生じる前の温度分布と前記温度変化が生じた後の温度分布との差分に基づく特徴データの入力を受け付ける特徴量受付手順と、
前記特徴データと内部欠陥の3次元位置を表す位置情報との関係を学習したモデルに、前記特徴量受付手順で受け付けた前記特徴データを入力することで、前記積層体が有する前記内部欠陥の3次元位置を推定する欠陥位置推定手順と、
を実行し、
前記位置情報は、前記積層体の各層を所定数のメッシュに分割し、前記メッシュそれぞれに前記内部欠陥が存在するか否かを表す情報である、
欠陥推定方法。
The computer is
a feature value acceptance procedure for accepting input of feature data based on a difference between a temperature distribution before a temperature change occurs on the surface of a fiber-reinforced plastic laminate and a temperature distribution after the temperature change occurs;
By inputting the feature data received in the feature amount reception procedure into a model that has learned the relationship between the feature data and position information representing the three-dimensional position of the internal defect, a defect position estimation procedure for estimating a dimensional position;
Run
The position information is information that divides each layer of the laminate into a predetermined number of meshes and indicates whether or not the internal defect exists in each of the meshes.
Defect estimation method.
コンピュータに、
繊維強化プラスチックの積層体の表面に温度変化が生じる前の温度分布と前記温度変化が生じた後の温度分布との差分に基づく特徴データの入力を受け付ける特徴量受付手順と、
前記特徴データと内部欠陥の3次元位置を表す位置情報との関係を学習したモデルに、前記特徴量受付手順で受け付けた前記特徴データを入力することで、前記積層体が有する前記内部欠陥の3次元位置を推定する欠陥位置推定手順と、
を実行させ、
前記位置情報は、前記積層体の各層を所定数のメッシュに分割し、前記メッシュそれぞれに前記内部欠陥が存在するか否かを表す情報である、
プログラム。
to the computer,
a feature value acceptance procedure for accepting input of feature data based on a difference between a temperature distribution before a temperature change occurs on the surface of a fiber-reinforced plastic laminate and a temperature distribution after the temperature change occurs;
By inputting the feature data received in the feature amount reception procedure into a model that has learned the relationship between the feature data and position information representing the three-dimensional position of the internal defect, a defect position estimation procedure for estimating a dimensional position;
run the
The position information is information that divides each layer of the laminate into a predetermined number of meshes and indicates whether or not the internal defect exists in each of the meshes.
program.
学習対象積層体から生成される推定モデルによって、推定対象積層体の内部欠陥を推定する欠陥推定装置であって、
積層体を支持するとともに前記積層体に応力を作用させる支持部と、
前記積層体に応力を作用させる前後の温度とその温度差を測定する温度測定部と、
前記温度差を温度変化画像として画像化する画像生成部と、
前記温度変化画像の温度変化分布から特徴データを計算する特徴量計算部と、
前記温度差の測定、前記温度変化画像の画像化及び前記特徴データの計算を繰り返し実行することで得られた計算結果と前記積層体の各層を所定数のメッシュに分割して前記メッシュそれぞれに前記内部欠陥が存在するか否かを表す位置情報とから、積層体の内部欠陥の推定モデルを作成するモデル学習部と、
前記推定対象積層体の内部欠陥の3次元位置を推定する欠陥位置推定部と、
を備え、
前記支持部に前記推定対象積層体を支持し、
前記温度測定部が、前記推定対象積層体に応力を作用させる前後の温度とその温度差を推定対象積層体温度差として測定し、
前記画像生成部が、前記推定対象積層体温度差を推定対象積層体温度変化画像として画像化し、
前記特徴量計算部が、前記推定対象積層体温度変化画像の温度変化分布から推定対象積層体特徴データを計算し、
前記欠陥位置推定部が、前記推定対象積層体特徴データを前記推定モデルに入力することで前記推定対象積層体の内部欠陥の3次元位置を推定する、
欠陥推定装置。
A defect estimation device that estimates internal defects of an estimation target stack using an estimation model generated from the learning target stack,
a support part that supports the laminate and applies stress to the laminate;
a temperature measurement unit that measures the temperature before and after applying stress to the laminate and the temperature difference;
an image generation unit that images the temperature difference as a temperature change image;
a feature calculation unit that calculates feature data from the temperature change distribution of the temperature change image;
The calculation results obtained by repeatedly performing the measurement of the temperature difference, the imaging of the temperature change image, and the calculation of the characteristic data, and the calculation results obtained by dividing each layer of the laminate into a predetermined number of meshes, a model learning unit that creates a model for estimating internal defects in the laminate from position information indicating whether or not internal defects exist;
a defect position estimating unit that estimates a three-dimensional position of an internal defect in the estimation target laminate;
Equipped with
supporting the estimation target laminate on the support part;
The temperature measuring unit measures the temperature before and after applying stress to the estimation target laminate and the temperature difference thereof as an estimation target laminate temperature difference,
The image generation unit images the estimation target laminate temperature difference as an estimation target laminate temperature change image,
The feature amount calculation unit calculates estimation target laminate feature data from the temperature change distribution of the estimation target laminate temperature change image,
The defect position estimating unit estimates a three-dimensional position of an internal defect in the estimation target laminate by inputting the estimation target laminate feature data into the estimation model.
Defect estimation device.
請求項6に記載の欠陥推定装置であって、
前記特徴量計算部が計算する前記特徴データは、前記積層体の表面主応力和分布である、
欠陥推定装置。
The defect estimating device according to claim 6,
The feature data calculated by the feature amount calculation unit is a surface principal stress sum distribution of the laminate;
Defect estimation device.
請求項6に記載の欠陥推定装置であって、
前記特徴量計算部が計算する前記特徴データは、前記積層体の表面温度変化分布である、
欠陥推定装置。
The defect estimating device according to claim 6,
The feature data calculated by the feature calculation unit is a surface temperature change distribution of the laminate;
Defect estimation device.
コンピュータが、
積層体を支持した支持部に応力を作用させる手順と、
前記積層体に応力を作用させる前後の温度とその温度差を測定する手順と、
前記温度差を温度変化画像として画像化する手順と、
前記温度変化画像の温度変化分布から特徴データを計算する手順と、
前記温度差の測定、前記温度変化画像の画像化及び前記特徴データの計算を繰り返し実行することで得られた計算結果と前記積層体の各層を所定数のメッシュに分割して前記メッシュそれぞれに内部欠陥が存在するか否かを表す位置情報とから、積層体の内部欠陥の推定モデルを作成する手順と、
推定対象積層体に応力を作用させる前後の温度とその温度差を推定対象積層体温度差として測定する手順と、
前記推定対象積層体温度差を推定対象積層体温度変化画像として画像化する手順と、
前記推定対象積層体温度変化画像の温度変化分布から推定対象積層体特徴データを計算する手順と、
前記推定対象積層体特徴データを前記推定モデルに入力することで前記推定対象積層体の内部欠陥の3次元位置を推定する手順と、
を実行する欠陥推定方法。
The computer is
A procedure for applying stress to the support part that supported the laminate;
a step of measuring the temperature before and after applying stress to the laminate and the temperature difference;
a step of imaging the temperature difference as a temperature change image;
a step of calculating feature data from the temperature change distribution of the temperature change image;
The calculation results obtained by repeatedly performing the measurement of the temperature difference, the imaging of the temperature change image, and the calculation of the characteristic data, and the calculation results obtained by dividing each layer of the laminate into a predetermined number of meshes, a step of creating an estimation model of an internal defect in the laminate from position information indicating whether or not a defect exists;
a step of measuring the temperature before and after applying stress to the estimation target laminate and the temperature difference as the estimation target laminate temperature difference;
a step of imaging the temperature difference of the estimation target laminate as an estimation target laminate temperature change image;
a step of calculating estimation target laminate feature data from the temperature change distribution of the estimation target laminate temperature change image;
a step of estimating a three-dimensional position of an internal defect in the estimation target laminate by inputting the estimation target laminate feature data into the estimation model;
A defect estimation method that performs
コンピュータに、
積層体を支持した支持部に応力を作用させる手順と、
前記積層体に応力を作用させる前後の温度とその温度差を測定する手順と、
前記温度差を温度変化画像として画像化する手順と、
前記温度変化画像の温度変化分布から特徴データを計算する手順と、
前記温度差の測定、前記温度変化画像の画像化及び前記特徴データの計算を繰り返し実行することで得られた計算結果と前記積層体の各層を所定数のメッシュに分割して前記メッシュそれぞれに内部欠陥が存在するか否かを表す位置情報とから、積層体の内部欠陥の推定モデルを作成する手順と、
推定対象積層体に応力を作用させる前後の温度とその温度差を推定対象積層体温度差として測定する手順と、
前記推定対象積層体温度差を推定対象積層体温度変化画像として画像化する手順と、
前記推定対象積層体温度変化画像の温度変化分布から推定対象積層体特徴データを計算する手順と、
前記推定対象積層体特徴データを前記推定モデルに入力することで前記推定対象積層体の内部欠陥の3次元位置を推定する手順と、
を実行させるためのプログラム。
to the computer,
A procedure for applying stress to the support part that supported the laminate;
a step of measuring the temperature before and after applying stress to the laminate and the temperature difference;
a step of imaging the temperature difference as a temperature change image;
a step of calculating feature data from the temperature change distribution of the temperature change image;
The calculation results obtained by repeatedly performing the measurement of the temperature difference, the imaging of the temperature change image, and the calculation of the characteristic data, and the calculation results obtained by dividing each layer of the laminate into a predetermined number of meshes, a step of creating an estimation model of an internal defect in the laminate from position information indicating whether or not a defect exists;
a step of measuring the temperature before and after applying stress to the estimation target laminate and the temperature difference as the estimation target laminate temperature difference;
a step of imaging the temperature difference of the estimation target laminate as an estimation target laminate temperature change image;
a step of calculating estimation target laminate feature data from the temperature change distribution of the estimation target laminate temperature change image;
a step of estimating a three-dimensional position of an internal defect in the estimation target laminate by inputting the estimation target laminate feature data into the estimation model;
A program to run.
JP2023178980A 2022-02-08 2023-10-17 DEFECT ESTIMATION DEVICE, DEFECT ESTIMATION METHOD, AND PROGRAM Active JP7471031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023178980A JP7471031B2 (en) 2022-02-08 2023-10-17 DEFECT ESTIMATION DEVICE, DEFECT ESTIMATION METHOD, AND PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022017689A JP7554487B2 (en) 2022-02-08 2022-02-08 DEFECT ESTIMATION DEVICE, DEFECT ESTIMATION METHOD, AND PROGRAM
JP2023178980A JP7471031B2 (en) 2022-02-08 2023-10-17 DEFECT ESTIMATION DEVICE, DEFECT ESTIMATION METHOD, AND PROGRAM

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022017689A Division JP7554487B2 (en) 2022-02-08 2022-02-08 DEFECT ESTIMATION DEVICE, DEFECT ESTIMATION METHOD, AND PROGRAM

Publications (2)

Publication Number Publication Date
JP2024001224A true JP2024001224A (en) 2024-01-09
JP7471031B2 JP7471031B2 (en) 2024-04-19

Family

ID=87564258

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022017689A Active JP7554487B2 (en) 2022-02-08 2022-02-08 DEFECT ESTIMATION DEVICE, DEFECT ESTIMATION METHOD, AND PROGRAM
JP2023178980A Active JP7471031B2 (en) 2022-02-08 2023-10-17 DEFECT ESTIMATION DEVICE, DEFECT ESTIMATION METHOD, AND PROGRAM

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022017689A Active JP7554487B2 (en) 2022-02-08 2022-02-08 DEFECT ESTIMATION DEVICE, DEFECT ESTIMATION METHOD, AND PROGRAM

Country Status (2)

Country Link
JP (2) JP7554487B2 (en)
WO (1) WO2023153110A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116820A (en) * 1997-06-13 1999-01-12 Hitachi Constr Mach Co Ltd Method for ultrasonic probe imaging
JP2003139627A (en) * 2001-11-05 2003-05-14 Jeol Ltd How to determine physical quantities
JP2013061193A (en) * 2011-09-12 2013-04-04 Sharp Corp Wiring defect detection method, and wiring defect detection device
US20170356866A1 (en) * 2016-06-13 2017-12-14 Airbus Defence and Space GmbH Sensor skin comprising temperature sensors
JP2017227606A (en) * 2016-06-24 2017-12-28 株式会社東芝 Defect detection apparatus and defect detection method
JP2020527227A (en) * 2017-07-03 2020-09-03 サウジ アラビアン オイル カンパニー Equipment and methods for non-destructive inspection of fiberglass and non-metal pipes
JP2021128064A (en) * 2020-02-13 2021-09-02 富士フイルム株式会社 Printed matter defect inspection equipment, defect inspection methods and programs, and printing systems
WO2021192376A1 (en) * 2020-03-24 2021-09-30 日本電産株式会社 Visual inspection system and computer program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568888B2 (en) * 2005-02-09 2010-10-27 独立行政法人産業技術総合研究所 Stress analysis method and stress analysis apparatus
CN106093108B (en) 2016-05-19 2018-10-16 南京航空航天大学 Unidirectional fibre toughening composition Equivalent Thermal Conductivities predictor method based on interstitial defect identification
JP7030635B2 (en) * 2018-07-06 2022-03-07 株式会社東芝 Addition manufacturing method and addition manufacturing system
US11112349B2 (en) 2019-07-16 2021-09-07 Saudi Arabian Oil Company Metal loss determinations based on thermography machine learning approach for insulated structures

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116820A (en) * 1997-06-13 1999-01-12 Hitachi Constr Mach Co Ltd Method for ultrasonic probe imaging
JP2003139627A (en) * 2001-11-05 2003-05-14 Jeol Ltd How to determine physical quantities
JP2013061193A (en) * 2011-09-12 2013-04-04 Sharp Corp Wiring defect detection method, and wiring defect detection device
US20170356866A1 (en) * 2016-06-13 2017-12-14 Airbus Defence and Space GmbH Sensor skin comprising temperature sensors
JP2017227606A (en) * 2016-06-24 2017-12-28 株式会社東芝 Defect detection apparatus and defect detection method
JP2020527227A (en) * 2017-07-03 2020-09-03 サウジ アラビアン オイル カンパニー Equipment and methods for non-destructive inspection of fiberglass and non-metal pipes
JP2021128064A (en) * 2020-02-13 2021-09-02 富士フイルム株式会社 Printed matter defect inspection equipment, defect inspection methods and programs, and printing systems
WO2021192376A1 (en) * 2020-03-24 2021-09-30 日本電産株式会社 Visual inspection system and computer program

Also Published As

Publication number Publication date
JP7471031B2 (en) 2024-04-19
JP2023115465A (en) 2023-08-21
JP7554487B2 (en) 2024-09-20
WO2023153110A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
Khatir et al. Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm
Gomes et al. An efficient two-step damage identification method using sunflower optimization algorithm and mode shape curvature (MSDBI–SFO)
Seguel et al. Damage assessment in a sandwich panel based on full-field vibration measurements
Seon et al. Effects of defects on interlaminar tensile fatigue behavior of carbon/epoxy composites
Smits et al. Design of a cruciform specimen for biaxial testing of fibre reinforced composite laminates
Zhang et al. Vibration-based inverse algorithms for detection of delamination in composites
Reinoso et al. Experimental and three-dimensional global-local finite element analysis of a composite component including degradation process at the interfaces
Serra et al. Validation and modeling of aeronautical composite structures subjected to combined loadings: The VERTEX project. Part 1: Experimental setup, FE-DIC instrumentation and procedures
US8332165B1 (en) Analysis of ultrasonic images using a decomposition process
Montesano et al. Modeling fatigue damage evolution in polymer matrix composite structures and validation using in-situ digital image correlation
Seon et al. Assessing 3D shear stress–strain properties of composites using Digital Image Correlation and finite element analysis based optimization
Livani et al. Identification of multiple flaws in 2D structures using dynamic extended spectral finite element method with a universally enhanced meta-heuristic optimizer
Masood et al. Experimental and finite element numerical studies on the post-buckling behavior of composite stiffened panels
Kumar et al. Experimental validation of modal strain energies based damage identification method for a composite sandwich beam
Lu et al. Compression-after-impact effect on postbuckling behavior of thermoplastic composite laminated plates
CN113720907A (en) Composite material layered damage identification method for contour and depth sequence identification
Sarhadi et al. Machine learning based thermal imaging damage detection in glass-epoxy composite materials
Han et al. Fatigue damage diagnosis and prognosis for 2024 aluminum plates with center holes: a strain monitoring approach
CN113688544A (en) An active-passive combined damage quantitative identification method for composite materials
Ahmadi Soleimani et al. Nondestructive assessment of elastomeric bridge bearings using 3D digital image correlation
Castanié et al. Multiaxial loading of aeronautic composite structures at intermediate scale: A review of VERTEX developments
Nikishkov et al. In-situ measurements of fracture toughness properties in composite laminates
Gao et al. Concrete spalling damage detection and seismic performance evaluation for RC shear walls via 3D reconstruction technique and numerical model updating
Farnod et al. Displacement-based structural identification using differentiable physics
JP7471031B2 (en) DEFECT ESTIMATION DEVICE, DEFECT ESTIMATION METHOD, AND PROGRAM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231025

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240402

R150 Certificate of patent or registration of utility model

Ref document number: 7471031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150