[go: up one dir, main page]

JP2024159179A - Deformation measurement method and sensor - Google Patents

Deformation measurement method and sensor Download PDF

Info

Publication number
JP2024159179A
JP2024159179A JP2023075011A JP2023075011A JP2024159179A JP 2024159179 A JP2024159179 A JP 2024159179A JP 2023075011 A JP2023075011 A JP 2023075011A JP 2023075011 A JP2023075011 A JP 2023075011A JP 2024159179 A JP2024159179 A JP 2024159179A
Authority
JP
Japan
Prior art keywords
deformation
strain
longitudinal direction
row
measuring sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023075011A
Other languages
Japanese (ja)
Inventor
周介 金澤
Shusuke Kanazawa
淳 武居
Atsushi Takei
聖 植村
Sei Uemura
友亮 駒▲崎▼
Yusuke Komazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2023075011A priority Critical patent/JP2024159179A/en
Publication of JP2024159179A publication Critical patent/JP2024159179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)

Abstract

【課題】 切り紙構造を与えたシート体を用いた変形計測センサを用いて被測定部の大変形による変形状態の計測を精度良く与える測定方法及びそのセンサの提供。【解決手段】 センサは、可撓性を有する略矩形の樹脂フィルムからなり長手方向の両端部の間で幅方向に伸びる切り込みを長手方向に周期的に設けられ、樹脂フィルムの同一面且つ長手方向に隣接する切り込み同士の間部分のそれぞれにひずみ応答性抵抗膜を与えられる。この両端部について被計測部を跨いで固定しておき、被計測部の変形に伴って両端部を長手方向に沿って離間させたときに切り込みが開口し間部分を回転変形させるとともに、間部分の圧縮変形又は引っ張り変形のいずれかとなる位置にのみ与えられたひずみ応答性抵抗膜の抵抗変化から被計測部の変形状態の計測を与える。【選択図】図1[Problem] To provide a measurement method and sensor that uses a deformation measurement sensor using a sheet body with a kirigami structure to accurately measure the state of deformation due to large deformation of a measured part. [Solution] The sensor is made of a flexible, approximately rectangular resin film, with notches extending in the width direction between both longitudinal ends periodically provided in the longitudinal direction, and a strain-responsive resistive film is provided in each of the spaces between adjacent notches on the same surface of the resin film in the longitudinal direction. These both ends are fixed across the measured part, and when the both ends are moved apart in the longitudinal direction as the measured part deforms, the notches open, causing rotational deformation of the spaces, and the deformation state of the measured part is measured from the resistance change of the strain-responsive resistive film provided only at the positions where the spaces are either compressed or tensilely deformed. [Selected Figure] Figure 1

Description

本発明は、切り紙構造を与えたシート体を用いた変形計測方法及びそのセンサに関する。 The present invention relates to a deformation measurement method and a sensor using a sheet body with a kirigami structure.

紙に規則的な切り込みを入れて引き延ばすことで切り込みが開くとともに、回転を含む変形が部分的に生じて立体構造を得られる。このような、いわゆる「切り紙構造」と称される構造は、ボトルなどを保護するための緩衝材として用いられている。また、回転を含む立体部分の立ち上がり構造をデバイスに利用することや、切り込みの開口による大変形をばねとして利用した力学センサなども提案されている。 By making regular cuts in paper and stretching it, the cuts open and deformation, including rotation, occurs in some parts, resulting in a three-dimensional structure. This type of structure, known as a "kirigami structure," is used as a cushioning material to protect bottles and other items. In addition, proposals have been made to use the rising structure of the three-dimensional part, including rotation, in devices, as well as mechanical sensors that use the large deformation caused by the opening of the cuts as a spring.

例えば、特許文献1では、切り紙構造を用いた力学センサが開示されている。幅方向に延びる切り込みをシートの長さ方向に沿って互い違いとなるように与えて、シートに荷重を負荷して切り込みが開口したときの引き延ばし荷重をひずみゲージで測定するとしている。所定の切り込みを与えた場合のシートの変形を荷重に対して求めておくことでシートの特定箇所のひずみの計測値から荷重を求めることが出来る。 For example, Patent Document 1 discloses a mechanical sensor that uses a paper cutting structure. Alternating cuts extending in the width direction are made along the length of the sheet, and a load is applied to the sheet, and the stretching load when the cuts open is measured with a strain gauge. By determining the deformation of the sheet relative to the load when a specified cut is made, the load can be found from the measured strain at a specific point on the sheet.

国際公開第2017/179716号International Publication No. 2017/179716

切り込みの開口による大変形をばねとして利用した切り紙構造を与えたシート体からなる力学センサは、被測定部の大変形に対応して変形する。かかる変形を例えば正負いずれのひずみに対しても抵抗値を変化させ得るひずみ応答性抵抗膜の如きひずみセンサをシート体表面に与えておくことで抵抗値変化から該被計測部の変形状態の計測を与え得る。一方で、大変形による切り込みの開口は安定せず、結果として、シート体表面のひずみセンサからの信号も安定せず、十分に被計測部の大変形による変形状態の計測を精度良く得られなかった。 A mechanical sensor made of a sheet body with a paper-cutting structure that uses the large deformation caused by the opening of the slits as a spring will deform in response to the large deformation of the part to be measured. By providing a strain sensor, such as a strain-responsive resistive film that can change resistance value in response to either positive or negative strain, on the surface of the sheet body, it is possible to measure the deformation state of the part to be measured from the change in resistance value. However, the opening of the slits due to the large deformation is not stable, and as a result, the signal from the strain sensor on the surface of the sheet body is also not stable, making it difficult to accurately measure the deformation state of the part to be measured due to the large deformation.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、切り紙構造を与えたシート体を用いた変形計測センサを用いて被測定部の大変形による変形状態の計測を精度良く与える測定方法及びそのセンサを提供することにある。 The present invention was made in consideration of the above situation, and its purpose is to provide a measurement method and a sensor that can accurately measure the state of deformation caused by large deformation of the measured part using a deformation measurement sensor that uses a sheet body with a kirigami structure.

本発明による計測方法は、被計測部の変形に対応して変形し該被計測部の変形状態の計測を与える変形計測センサを用いた変形計測方法であって、前記変形計測センサは、可撓性を有する略矩形の樹脂フィルムからなり長手方向の両端部の間において幅方向に伸びる切り込みを前記長手方向に周期的に設けられ、前記樹脂フィルムの同一面且つ前記長手方向に隣接する前記切り込み同士の間部分のそれぞれにひずみ応答性抵抗膜を与えられており、前記変形計測センサの前記両端部について前記被計測部を跨いで固定しておき、前記被計測部の変形に伴って前記両端部を前記長手方向に沿って離間させたときに前記切り込みが開口し前記間部分を回転変形させるとともに、前記間部分のそれぞれの圧縮変形又は引っ張り変形のいずれかとなる位置にのみ与えられた前記ひずみ応答性抵抗膜の抵抗変化から前記被計測部の変形状態の計測を与えることを特徴とする。 The measurement method according to the present invention is a deformation measurement method using a deformation measurement sensor that deforms in response to deformation of a measured part and measures the deformation state of the measured part, the deformation measurement sensor is made of a flexible, approximately rectangular resin film, and has notches extending in the width direction between both ends in the longitudinal direction, periodically provided in the longitudinal direction, and a strain-responsive resistive film is provided in each of the spaces between the notches that are adjacent to each other on the same surface of the resin film in the longitudinal direction, and the both ends of the deformation measurement sensor are fixed across the measured part, and when the both ends are moved apart along the longitudinal direction in response to deformation of the measured part, the notches open and cause rotational deformation of the spaces, and the deformation state of the measured part is measured from the resistance change of the strain-responsive resistive film provided only at the positions of the spaces that are either compressively deformed or tensilely deformed.

かかる特徴によれば、被測定部の大変形による変形状態の計測を精度良く与え得るのである。 This feature makes it possible to accurately measure the deformation state of the part being measured due to large deformation.

上記した発明において、前記切り込みは、前記幅方向の中心線へ向けて両側端部から切り込んだ2つの切断部からなる第1列と、前記中心線から前記樹脂フィルムの両側端部へ向けて切り込んだ1つの切断部からなる第2列と、を前記長手方向に交互に等間隔で与えてなることを特徴としてもよい。かかる特徴によれば、被測定部の大変形による変形状態の計測を精度良く与え得るのである。かかる特徴によれば、シート体全体を比較的均一に大変形させ得て、被測定部の大変形による変形状態の計測を精度良く与え得るのである。 In the above-mentioned invention, the cuts may be arranged so that a first row of two cuts cut from both side ends toward the center line in the width direction and a second row of one cut from the center line toward both side ends of the resin film are alternately provided at equal intervals in the longitudinal direction. This feature makes it possible to accurately measure the deformation state due to large deformation of the measured portion. This feature makes it possible to relatively uniformly deform the entire sheet body and accurately measure the deformation state due to large deformation of the measured portion.

また、本発明による変形計測センサは、被計測部の変形に対応して変形し該被計測部の変形状態の計測を与える変形計測センサであって、前記変形計測センサは、可撓性を有する略矩形の樹脂フィルムからなり長手方向の両端部の間において幅方向に伸びる切り込みを前記長手方向に周期的に設けられ、前記樹脂フィルムの同一面且つ前記長手方向に隣接する前記切り込み同士の間部分のそれぞれにひずみ応答性抵抗膜を与えられており、前記変形計測センサの前記両端部について前記被計測部を跨いで固定しておき、前記被計測部の変形に伴って前記両端部を前記長手方向に沿って離間させたときに前記切り込みが開口し前記間部分を回転変形させるとともに、前記間部分のそれぞれの圧縮変形又は引っ張り変形のいずれかとなる位置にのみ前記ひずみ応答性抵抗膜を与えられていることを特徴とする。 The deformation measuring sensor according to the present invention is a deformation measuring sensor that deforms in response to deformation of a measured part and measures the deformation state of the measured part, and the deformation measuring sensor is made of a flexible, approximately rectangular resin film, and has notches extending in the width direction between both ends in the longitudinal direction, periodically arranged in the longitudinal direction, and a strain-responsive resistive film is provided in each of the spaces between the notches that are adjacent to each other on the same surface of the resin film in the longitudinal direction, and the both ends of the deformation measuring sensor are fixed across the measured part, and when the both ends are moved apart along the longitudinal direction in response to deformation of the measured part, the notches open and cause rotational deformation of the spaces, and the strain-responsive resistive film is provided only at positions where the spaces are either compressed or tensilely deformed.

かかる特徴によれば、被測定部の大変形による変形状態の計測を精度良く与え得るのである。 This feature makes it possible to accurately measure the deformation state of the part being measured due to large deformation.

上記した特徴において、前記切り込みは、前記幅方向の中心線へ向けて両側端部から切り込んだ2つの切断部からなる第1列と、前記中心線から前記樹脂フィルムの両側端部へ向けて切り込んだ1つの切断部からなる第2列と、を前記長手方向に交互に等間隔で与えてなることを特徴としてもよい。 In the above-mentioned features, the cuts may be arranged alternately at equal intervals in the longitudinal direction, with a first row consisting of two cuts cut from both side edges toward the center line in the width direction, and a second row consisting of one cut from the center line toward both side edges of the resin film.

上記した特徴において、前記ひずみ応答性抵抗膜は、前記長手方向に沿って前記第1列から前記第2列への前記間部分であって前記中心線上に、又は、前記長手方向に沿って前記第2列から前記第1列への前記間部分であって前記中心線上に、与えられていることを特徴としてもよい。ここで、それぞれの前記間部分に与えられた前記ひずみ応答性抵抗膜は、並列接続されていることを特徴としてもよい。 In the above-mentioned features, the strain-responsive resistive film may be provided on the center line in the intermediate portion from the first row to the second row along the longitudinal direction, or on the center line in the intermediate portion from the second row to the first row along the longitudinal direction. Here, the strain-responsive resistive film provided in each intermediate portion may be connected in parallel.

上記した特徴において、前記ひずみ応答性抵抗膜は、前記長手方向に沿って前記第1列から前記第2列への前記間部分であって前記中心線を挟んだ幅方向両側のそれぞれに、又は、前記長手方向に沿って前記第2列から前記第1列への前記間部分であって前記中心線を挟んだ幅方向両側のそれぞれに、与えられていることを特徴としてもよい。もしくは、前記ひずみ応答性抵抗膜は、前記長手方向に沿って前記第1列から前記第2列への前記間部分であって前記中心線上に、且つ、前記長手方向に沿って前記第2列から前記第1列への前記間部分であって前記中心線を挟んだ幅方向両側のそれぞれに、与えられていることを特徴としてもよい。ここで、前記間部分で前記中心線を挟んだ幅方向両側のそれぞれに与えられた前記ひずみ応答性抵抗膜は直列接続され、それぞれの前記間部分に与えられた前記ひずみ応答性抵抗膜は並列接続されていることを特徴としてもよい。 In the above-mentioned features, the strain-responsive resistive film may be provided on both sides of the center line in the width direction of the gap between the first row and the second row along the longitudinal direction, or on both sides of the center line in the width direction of the gap between the second row and the first row along the longitudinal direction. Alternatively, the strain-responsive resistive film may be provided on the center line in the gap between the first row and the second row along the longitudinal direction, and on both sides of the center line in the gap between the second row and the first row along the longitudinal direction. Here, the strain-responsive resistive film provided on both sides of the center line in the width direction in the gap may be connected in series, and the strain-responsive resistive film provided in each gap may be connected in parallel.

本発明による実施例としての変形計測センサの外観写真である。1 is a photograph showing the appearance of a deformation measuring sensor according to an embodiment of the present invention. 両端部を離間させて変形を与えた変形計測センサの外観写真である。13 is a photograph showing the appearance of a deformation measuring sensor in which both ends are separated and deformation is applied. 変形計測センサ10aの平面図である。FIG. 2 is a plan view of the deformation measuring sensor 10a. 変形計測センサ10aの変形状態を示す斜視図である。FIG. 2 is a perspective view showing a deformed state of the deformation measuring sensor 10a. 変形計測センサ10aの配線例を示す平面図である。4 is a plan view showing an example of wiring of the deformation measuring sensor 10a. FIG. 変形計測センサ10bの変形状態を示す斜視図である。10 is a perspective view showing a deformed state of the deformation measuring sensor 10b. FIG. 変形計測センサ10cの平面図である。FIG. 4 is a plan view of the deformation measuring sensor 10c. 変形計測センサ10cの変形状態を示す斜視図である。10 is a perspective view showing a deformed state of the deformation measuring sensor 10c. FIG. 変形計測センサ10cの配線例を示す平面図である。10 is a plan view showing an example of wiring of the deformation measuring sensor 10c. FIG. 変形計測センサ10dの変形状態を示す斜視図である。10 is a perspective view showing a deformed state of the deformation measuring sensor 10d. FIG. (a)変形計測センサ10e、(b)変形計測センサ10fの配線を含む平面図である。1A is a plan view including wiring of a deformation measuring sensor 10e, and FIG. 1B is a plan view including wiring of a deformation measuring sensor 10f. 変形計測センサ10gの平面図である。FIG. 2 is a plan view of the deformation measuring sensor 10g. 製造試験に用いた変形計測センサ(実施例1~3)の平面図である。FIG. 2 is a plan view of a deformation measuring sensor (Examples 1 to 3) used in a manufacturing test. 製造試験に用いた変形計測センサ(比較例1及び2)の平面図である。FIG. 2 is a plan view of a deformation measuring sensor (Comparative Examples 1 and 2) used in a manufacturing test. 変形計測センサを伸張させたときの伸張率と抵抗変化率との関係を示すグラフである。11 is a graph showing the relationship between the elongation rate and the rate of change in resistance when the deformation measuring sensor is elongated. (a)実施例及び(b)比較例の変形計測センサを伸張させさらに収縮させたときの伸張率と抵抗変化率との関係を示すグラフである。10A is a graph showing the relationship between the extension rate and the rate of change in resistance when the deformation measuring sensor of the example (a) and the comparative example (b) is extended and then contracted.

以下に、本発明による1つの実施例である変形計測センサ及び同センサを用いた変形計測方法について、図1乃至図12を用いて説明する。 Below, a deformation measurement sensor according to one embodiment of the present invention and a deformation measurement method using the same sensor will be described with reference to Figures 1 to 12.

図1に示すように、変形計測センサ10は、可撓性を有する略矩形の樹脂フィルム1からなり、長手方向の両端部2a及び2bの間において幅方向に伸びる切り込み3を長手方向に周期的に設けられる。切り込み3によって、変形計測センサ10は比較的均一に大変形することの可能な切り紙構造を付与される。樹脂フィルム1としては、それ自体での伸縮性は必要なく、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタラート(PET)、ポリカーボネート、ポリイミドを好適に使用し得る。なお、可撓性を有するものであれば伸縮性を不要とするため、絶縁被覆された金属箔や極薄ガラスなどであってもよい。また、切り込み3は、レーザーカットやパンチング等の樹脂フィルム1の材料に応じた適切な機械加工によって設けることができる。 As shown in FIG. 1, the deformation measuring sensor 10 is made of a flexible, approximately rectangular resin film 1, and has notches 3 extending in the width direction between both longitudinal ends 2a and 2b, which are periodically provided in the longitudinal direction. The notches 3 give the deformation measuring sensor 10 a paper-cut structure that allows for relatively uniform large deformation. The resin film 1 does not need to be stretchable by itself, and for example, polyethylene, polypropylene, polyethylene terephthalate (PET), polycarbonate, and polyimide can be suitably used. Note that any flexible material that does not need to be stretchable may be used, such as an insulating-coated metal foil or ultra-thin glass. The notches 3 can be provided by appropriate machining according to the material of the resin film 1, such as laser cutting or punching.

変形計測センサ10は、また、樹脂フィルム1の変形に対応してひずむことで電気抵抗を変化させるひずみ応答性抵抗膜5を備え、ひずみ応答性抵抗膜5の電気抵抗を検出するための配線6や電極7a及び7bが設けられる。ひずみ応答性抵抗膜5としては、ひずみに対する抵抗変化の大きい材料を用いることが好ましく、例えば、ミクロンオーダーの比較的大きな粒径を有する導電粒子を含む導電ペーストによるものが好ましい。配線6については、ひずみに対する抵抗変化の小さな材料を用いることが好ましく、スパッタ、蒸着、めっきなどにより形成された金属薄膜や、金属ナノ粒子を緻密に含有する導電ペーストの印刷膜を好適に用い得る。なお、ひずみ応答性抵抗膜5、配線6及び電極7a、7bの配置については後述する。 The deformation measuring sensor 10 also includes a strain-responsive resistive film 5 that changes its electrical resistance by straining in response to the deformation of the resin film 1, and is provided with wiring 6 and electrodes 7a and 7b for detecting the electrical resistance of the strain-responsive resistive film 5. The strain-responsive resistive film 5 is preferably made of a material that exhibits a large change in resistance to strain, such as a conductive paste containing conductive particles with a relatively large particle size on the order of microns. The wiring 6 is preferably made of a material that exhibits a small change in resistance to strain, such as a thin metal film formed by sputtering, vapor deposition, plating, or the like, or a printed film of a conductive paste that contains dense metal nanoparticles. The arrangement of the strain-responsive resistive film 5, wiring 6, and electrodes 7a and 7b will be described later.

図2に示すように、変形計測センサ10は、両端部2a及び2bを長手方向に沿って離間させたときに、切り込み3が開口し、長手方向に隣接する切り込み3同士の間部分4を回転変形させる。換言すれば、切り込み3は、両端部2a及び2bに引っ張られて開口したときに、間部分4を回転変形させるように配置されている。ここで、回転変形は、両端部2a及び2bを離間させる前の樹脂フィルム1の平面に垂直で長手方向を含む平面内の回転を生じつつ、さらに、樹脂フィルム1の部分ごとに表及び裏がそれぞれ引張及び圧縮又は圧縮及び引張となる曲げを生じる変形である。 As shown in FIG. 2, the deformation measuring sensor 10 rotates and deforms the space 4 between the adjacent notches 3 in the longitudinal direction when the notches 3 are opened by pulling the notches 3 between the ends 2a and 2b when the deformation measuring sensor 10 is moved away from the ends 2a and 2b. In other words, the notches 3 are arranged so that the space 4 is rotated and deformed when the notches 3 are pulled away from the ends 2a and 2b and opened. Here, the rotational deformation is a deformation that generates a rotation in a plane that is perpendicular to the plane of the resin film 1 before the ends 2a and 2b are moved away from the ends and includes the longitudinal direction, and further generates a bending in which the front and back of each part of the resin film 1 are respectively tensile and compressed, or compressed and tensile.

また、変形計測センサ10は、樹脂フィルム1の同一面且つ間部分4のそれぞれにひずみ応答性抵抗膜5を与えられている。特に、ひずみ応答性抵抗膜5は、回転変形を生じた間部分4の圧縮変形又は引っ張り変形のいずれか一方となる位置にのみ与えられる。同図の例であれば、引っ張り変形となる部分のみにひずみ応答性抵抗膜5が形成されている。 The deformation measuring sensor 10 is provided with a strain-responsive resistive film 5 on the same surface of the resin film 1 and in each of the gaps 4. In particular, the strain-responsive resistive film 5 is provided only in the positions of the gaps 4 that are subject to either compressive deformation or tensile deformation due to rotational deformation. In the example shown in the figure, the strain-responsive resistive film 5 is formed only in the portions that are subject to tensile deformation.

このような変形計測センサ10は、変形状態を計測しようとする対象の被計測部を跨いで両端部2a及び2bで固定される。すると、被計測部の変形によって両端部2a及び2bの離間した距離に対応して間部分4の回転変形を生じる。そして、回転変形による樹脂フィルム1の曲げのうち、表面側(ひずみ応答性抵抗膜5を配置した側)の面の圧縮変形のみ又は引っ張り変形のみをひずみ応答性抵抗膜5の電気抵抗から検出できる。このような変形計測方法によれば、圧縮変形のみ又は引っ張り変形のみを検出することで、圧縮及び引っ張りの両者を混在させるようなひずみ応答性抵抗膜を配置したセンサを用いる方法に比べて、被計測部の変形状態を精度よく計測できる。 Such a deformation measuring sensor 10 is fixed at both ends 2a and 2b across the measured part of the object whose deformation state is to be measured. Then, the deformation of the measured part causes a rotational deformation of the intermediate part 4 corresponding to the distance between the both ends 2a and 2b. Then, of the bending of the resin film 1 caused by the rotational deformation, only the compressive deformation or the tensile deformation of the surface on the front side (the side on which the strain-responsive resistive film 5 is arranged) can be detected from the electrical resistance of the strain-responsive resistive film 5. According to such a deformation measuring method, by detecting only the compressive deformation or only the tensile deformation, the deformation state of the measured part can be measured more accurately than a method using a sensor with a strain-responsive resistive film arranged to mix both compression and tension.

なお、変形計測センサ10は両端部2a及び2bが離間されることで被計測部の変形状態を計測できる。そのため、被計測部の変形は、単純な1軸方向の延伸だけでなく、ゴム風船の膨張のような変形であってもよい。すなわち、変形計測センサ10は、被計測部の変形に完全に追従せずともよく、長手方向の両端部2a及び2bを固定した部位の変位に追従させつつ、被計測部の変形状態に対応して全体として変形できればよい。 The deformation measuring sensor 10 can measure the deformation state of the measured part by separating both ends 2a and 2b. Therefore, the deformation of the measured part may not only be a simple stretching in one axial direction, but also a deformation like the expansion of a rubber balloon. In other words, the deformation measuring sensor 10 does not have to completely follow the deformation of the measured part, but only needs to be able to deform as a whole in response to the deformation state of the measured part while following the displacement of the part to which both ends 2a and 2b in the longitudinal direction are fixed.

さらに、切り込み3とひずみ応答性抵抗膜5のより具体的な配置例について説明する。 Furthermore, we will explain more specific examples of the arrangement of the notches 3 and the strain-responsive resistive film 5.

例えば、図3に示すように、変形計測センサ10aにおいて、切り込み3は2つの切断部3aによる第1列と1つの切断部3bによる第2列とからなる。切断部3aは、幅方向の中心線Cへ向けて幅方向の両側端部から切り込まれている。また、切断部3bは、中心線Cから樹脂フィルムの両側端部へ向けて切り込まれている。切り込み3は、これらの第1列と第2列とを長手方向に交互に等間隔で配置されたものとすることができる。このとき、ひずみ応答性抵抗膜5は、長手方向に沿って紙面上から下へ向けて、第1列から第2列への間部分4aであり、中心線C上の樹脂フィルム1の表側(紙面手前側)に配置させる。一方、第2列から第1列への間部分4bの中心線C上にはひずみ応答性抵抗膜5を配置していない。なお、以降においても第1列から第2列への間部分4aというように、切断部による列の順番は、長手方向に沿って紙面上から下へ(端部2aから端部2bへ)向けて表現するものとする。 For example, as shown in FIG. 3, in the deformation measuring sensor 10a, the cut 3 is composed of a first row of two cut portions 3a and a second row of one cut portion 3b. The cut portions 3a are cut from both ends in the width direction toward the center line C in the width direction. The cut portions 3b are cut from the center line C toward both ends of the resin film. The cuts 3 can be arranged such that the first and second rows are alternately arranged at equal intervals in the longitudinal direction. In this case, the strain-responsive resistive film 5 is arranged on the front side of the resin film 1 on the center line C, which is the portion 4a between the first row and the second row from the top to the bottom of the paper along the longitudinal direction. On the other hand, the strain-responsive resistive film 5 is not arranged on the center line C of the portion 4b between the second row and the first row. In the following, the order of the rows due to the cuts, such as the section 4a between the first row and the second row, will be expressed in the longitudinal direction from the top to the bottom of the page (from end 2a to end 2b).

図4を併せて参照すると、上記したように切り込み3及びひずみ応答性抵抗膜5を配置したときに、両端部2a及び2bを離間させると、例えば、第1列から第2列への間部分4aが幅方向中央で上に盛り上がるように曲がり、その上面に配置したひずみ応答性抵抗膜5が樹脂フィルム1の曲がりの外側に位置している。つまり、このひずみ応答性抵抗膜5は、引っ張り変形を受ける。他方、第2列から第1列への間部分4bでは幅方向中央で下に窪むように曲がる。このように切り込み3及びひずみ応答性抵抗膜5を配置することで、引っ張り変形のみを検出できるようになる。なお、同図において、間部分4a及び4bの回転変形のうち回転については図示を省略している。実際には、間部分4aの紙面左下側端部を上方向に移動させて、ひずみ応答性抵抗膜5を樹脂フィルム1の紙面奥側に隠すように回転する。これによって、樹脂フィルム1によるシート体全体を比較的均一に大変形させ得ることになる。 Referring also to FIG. 4, when the notch 3 and the strain-responsive resistive film 5 are arranged as described above, if the two ends 2a and 2b are separated, for example, the portion 4a between the first row and the second row bends so as to rise upward at the center in the width direction, and the strain-responsive resistive film 5 arranged on the upper surface is located outside the bending of the resin film 1. In other words, this strain-responsive resistive film 5 undergoes tensile deformation. On the other hand, the portion 4b between the second row and the first row bends so as to sink downward at the center in the width direction. By arranging the notch 3 and the strain-responsive resistive film 5 in this manner, it becomes possible to detect only the tensile deformation. Note that in the figure, the rotation of the rotational deformation of the portions 4a and 4b is omitted. In reality, the lower left end of the portion 4a on the paper is moved upward, and the strain-responsive resistive film 5 is rotated so as to be hidden on the back side of the paper of the resin film 1. This makes it possible to relatively uniformly deform the entire sheet body made of the resin film 1 to a large extent.

なお、両端部2a及び2bを離間させたときの間部分4a及び4bの回転移動については、上記と逆方向になる場合もあるが、その場合は、ひずみ応答性抵抗膜5は圧縮変形のみを検出するように配置されていることになる。また、この回転移動の方向については、両端部2a及び2bの主面の向きや樹脂フィルムのくせ、配線などによって変化し得るが、回転変形を生じた場合には間部分4a及び4bの全てにおいて同じ方向の回転移動となる。そして、曲げについては、第1列から第2列への間部分4aで中央を上に凸とする場合、第2列から第1列への間部分4bでは中央を下に凸とする。つまり、間部分4aと間部分4bとでは逆方向の曲げとなりこれによって切り込み3が開口する。 When both ends 2a and 2b are separated, the rotational movement of the intermediate portions 4a and 4b may be in the opposite direction to that described above, but in that case, the strain-responsive resistive film 5 is arranged to detect only compressive deformation. The direction of this rotational movement may vary depending on the orientation of the main surfaces of both ends 2a and 2b, the quirks of the resin film, wiring, etc., but when rotational deformation occurs, the rotational movement occurs in the same direction in all of the intermediate portions 4a and 4b. As for bending, if the center of the intermediate portion 4a from the first row to the second row is convex upward, the center of the intermediate portion 4b from the second row to the first row is convex downward. In other words, the intermediate portions 4a and 4b are bent in opposite directions, which opens the notch 3.

図5に示すように、上記した切り込み3及びひずみ応答性抵抗膜5の配置に対し、配線6によって全てのひずみ応答性抵抗膜5を並列接続することができる。例えば、変形計測センサ10a-1(同図(a))は、電極7a及び7bを共に端部2aに配置した例である。また、変形計測センサ10a-2(同図(b))は、対となる電極7a及び7bのうち、電極7aを端部2aに、電極7bを端部2bに配置した例である。 As shown in FIG. 5, with respect to the arrangement of the notches 3 and strain-responsive resistive films 5 described above, all of the strain-responsive resistive films 5 can be connected in parallel by wiring 6. For example, the deformation measuring sensor 10a-1 (FIG. 5(a)) is an example in which both electrodes 7a and 7b are arranged at the end 2a. Moreover, the deformation measuring sensor 10a-2 (FIG. 5(b)) is an example in which, of the pair of electrodes 7a and 7b, electrode 7a is arranged at the end 2a and electrode 7b is arranged at the end 2b.

また、図6に示すように、変形計測センサ10bでは、第2列から第1列への間部分4bであり、中心線C上にひずみ応答性抵抗膜5を配置さている。一方、第1列から第2列への間部分4aの中心線C上にはひずみ応答性抵抗膜5を配置していない。このとき、上記した変形計測センサ10a(図4参照)と同様に回転変形したとすれば、ひずみ応答性抵抗膜5では圧縮変形のみを検出することができる。 As shown in FIG. 6, in the deformation measuring sensor 10b, the strain-responsive resistive film 5 is disposed on the center line C of the portion 4b between the second row and the first row. On the other hand, the strain-responsive resistive film 5 is not disposed on the center line C of the portion 4a between the first row and the second row. In this case, if rotational deformation occurs as in the above-mentioned deformation measuring sensor 10a (see FIG. 4), the strain-responsive resistive film 5 can detect only compressive deformation.

次に、図7に示すように、ひずみ応答性抵抗膜5の配置をさらに変えることもできる。上記したように、ひずみ応答性抵抗膜5は、回転変形を生じた間部分4の圧縮変形又は引っ張り変形のいずれか一方となる位置にのみ与えられればよい。そこで、変形計測センサ10cでは、第1列から第2列への間部分4aであって、中心線Cを挟んだ幅方向両側のそれぞれにひずみ応答性抵抗膜5を配置している。 Next, as shown in FIG. 7, the arrangement of the strain-responsive resistive film 5 can be further changed. As described above, the strain-responsive resistive film 5 only needs to be provided at positions where the rotationally deformed gap 4 undergoes either compressive deformation or tensile deformation. Therefore, in the deformation measurement sensor 10c, the strain-responsive resistive film 5 is disposed at the gap 4a between the first and second rows, on both sides of the center line C in the width direction.

図8を併せて参照すると、上記したように切り込み3及びひずみ応答性抵抗膜5を配置したときに、両端部2a及び2bを離間させると、例えば、第1列から第2列への間部分4aが幅方向の左右の部分で下に窪むように曲がり、その上面に配置したひずみ応答性抵抗膜5が樹脂フィルム1の曲がりの内側に位置している。つまり、このひずみ応答性抵抗膜5は、圧縮変形を受ける。他方、第2列から第1列への間部分4bでは幅方向の左右の部分で上に盛り上がるように曲がる。このように切り込み3及びひずみ応答性抵抗膜5を配置することで、圧縮変形のみを検出できるようになる。 Referring also to FIG. 8, when the notches 3 and the strain-responsive resistive film 5 are arranged as described above, and the two ends 2a and 2b are separated, for example, the portion 4a between the first and second rows bends downward at the left and right portions in the width direction, and the strain-responsive resistive film 5 arranged on its upper surface is located inside the bend of the resin film 1. In other words, this strain-responsive resistive film 5 undergoes compressive deformation. On the other hand, the portion 4b between the second and first rows bends upward at the left and right portions in the width direction. By arranging the notches 3 and the strain-responsive resistive film 5 in this way, it becomes possible to detect only compressive deformation.

図9に示すように、上記した切り込み3及びひずみ応答性抵抗膜5の配置に対し、配線6によって全てのひずみ応答性抵抗膜5を接続することができる。なお、中心線Cを挟んだ左右のひずみ応答性抵抗膜5は直列接続接続された対となり、これらの対が並列接続されている。例えば、変形計測センサ10c-1(同図(a))は、電極7a及び7bを共に端部2aに配置した例である。また、変形計測センサ10c-2(同図(b))は、対となる電極7a及び7bのうち、電極7aを端部2aに、電極7bを端部2bに配置した例である。 As shown in FIG. 9, all of the strain-responsive resistive films 5 can be connected by wiring 6 to the arrangement of the notches 3 and strain-responsive resistive films 5 described above. The strain-responsive resistive films 5 on the left and right sides of the center line C are connected in series as pairs, and these pairs are connected in parallel. For example, the deformation measuring sensor 10c-1 (FIG. 9(a)) is an example in which both electrodes 7a and 7b are arranged at the end 2a. The deformation measuring sensor 10c-2 (FIG. 9(b)) is an example in which, of the pair of electrodes 7a and 7b, electrode 7a is arranged at the end 2a and electrode 7b is arranged at the end 2b.

また、図10に示すように、変形計測センサ10dでは、第2列から第1列への間部分4bであり、中心線Cを挟んだ幅方向両側のそれぞれにひずみ応答性抵抗膜5を配置している。一方、第1列から第2列への間部分4aの中心線Cを挟んだ幅方向の左右両側にはひずみ応答性抵抗膜5を配置していない。このとき、上記した変形計測センサ10c(図8参照)と同様に回転変形したとすれば、ひずみ応答性抵抗膜5では引っ張り変形のみを検出することができる。 As shown in FIG. 10, in the deformation measuring sensor 10d, a strain-responsive resistive film 5 is arranged on both sides of the center line C in the portion 4b between the second row and the first row. On the other hand, a strain-responsive resistive film 5 is not arranged on both the left and right sides of the center line C in the portion 4a between the first row and the second row. In this case, if a rotational deformation occurs as in the above-mentioned deformation measuring sensor 10c (see FIG. 8), the strain-responsive resistive film 5 can detect only tensile deformation.

さらに図11に示すように、上記したひずみ応答性抵抗膜5の配置を応用した異なる配置とすることもできる。 Furthermore, as shown in FIG. 11, a different arrangement can be used that utilizes the arrangement of the strain-responsive resistive film 5 described above.

例えば、同図(a)に示すように、変形計測センサ10eにおいて、ひずみ応答性抵抗膜5は、長手方向に沿って第1列から第2列への間部分4aであって中心線C上に、且つ、長手方向に沿って第2列から第1列への間部分4bであって中心線Cを挟んだ幅方向両側のそれぞれに配置されている。つまり、上記した変形計測センサ10a(図4参照)及び10d(図10参照)のひずみ応答性抵抗膜5の配置を合わせたものとなっている。これによっても、変形計測センサ10aと同様に回転変形したとすれば、ひずみ応答性抵抗膜5では引っ張り変形のみを検出することができる。また、回転変形により凹凸が逆になった場合は、圧縮変形のみを検出することができる。 For example, as shown in FIG. 1A, in the deformation measuring sensor 10e, the strain-responsive resistive film 5 is arranged on the center line C in the longitudinal portion 4a between the first and second rows, and on both sides of the center line C in the longitudinal portion 4b between the second and first rows. In other words, the arrangement of the strain-responsive resistive film 5 of the deformation measuring sensor 10a (see FIG. 4) and 10d (see FIG. 10) described above is combined. With this, if the deformation measuring sensor 10a is subjected to rotational deformation in the same way as the deformation measuring sensor 10a, the strain-responsive resistive film 5 can detect only tensile deformation. Also, if the unevenness is reversed due to rotational deformation, only compressive deformation can be detected.

一方、同図(b)に示すように、ひずみ応答性抵抗膜5は、第1列から第2列への間部分4aであって中心線C上の一箇所のみに配置されている。これによっても、ひずみ応答性抵抗膜5では、圧縮変形のみ又は引っ張り変形のみを検出することができる。 On the other hand, as shown in FIG. 1B, the strain-responsive resistive film 5 is disposed only at one location on the center line C, in the portion 4a between the first and second rows. This also allows the strain-responsive resistive film 5 to detect only compressive deformation or only tensile deformation.

なお、図12に示すように、切り込み3についても他の形態とすることもできる。例えば、変形計測センサ10gでは、上記した変形計測センサ10aを幅方向に2つ並べて接続したような切り込み3を備えている。 As shown in FIG. 12, the notch 3 can also be in another form. For example, the deformation measuring sensor 10g has a notch 3 in which two of the above-mentioned deformation measuring sensors 10a are connected side by side in the width direction.

詳細には、まず、略矩形の樹脂フィルム1の幅方向の中心線C1と、左右のそれぞれからおよそ幅の4等分の距離の位置にある左側中心線CL及び右側中心線CRとを想定する。そして、紙面上側の切り込み3の第1列では、中心線C1へ向けて幅方向の両側端部から切りこまれた切断部3cと中心線C1から両側端部へ向けて切りこまれた切断部3dとを有する。切断部3c及び切断部3dは左側中心線CLと右側中心線CRに対しては一定の距離を空けて設けられる。そして、切り込み3の第2列では、左側中心線CLと右側中心線CRのそれぞれから幅方向の両側端部へ向けて延びる切断部3eを有する。切断部3eは、中心線C1に対して一定の距離を空けるとともに、左右両側端部に対しても一定の距離を空けて設けられる。切り込み3は、これらの第1列と第2列とを長手方向に交互に等間隔で配置されたものとされている。 In detail, first, assume a center line C1 in the width direction of the approximately rectangular resin film 1, and a left center line CL and a right center line CR located at a distance of approximately four equal parts of the width from the left and right sides. The first row of cuts 3 on the upper side of the paper has cut parts 3c cut from both side ends in the width direction toward the center line C1, and cut parts 3d cut from the center line C1 toward both side ends. The cut parts 3c and 3d are provided at a fixed distance from the left center line CL and the right center line CR. The second row of cuts 3 has cut parts 3e extending from the left center line CL and the right center line CR toward both side ends in the width direction. The cut parts 3e are provided at a fixed distance from the center line C1 and at a fixed distance from both left and right side ends. The first and second rows of cuts 3 are arranged alternately at equal intervals in the longitudinal direction.

そして、ひずみ応答性抵抗膜5は、第1列から第2列への間部分4aであり左側中心線CL及び右側中心線CR上と、第2列から第1列への間部分4bであり中心線C1上との樹脂フィルム1の表側(紙面手前側)に配置される。 The strain-responsive resistive film 5 is disposed on the front side (the front side of the page) of the resin film 1 in the area 4a between the first and second rows, on the left center line CL and the right center line CR, and in the area 4b between the second and first rows, on the center line C1.

このような変形計測センサ10gであっても、両端部2a及び2bを長手方向(紙面上下方向)に離間させると切り込み3が開口し、長手方向に隣接する切り込み3同士の間部分4a及び4bを回転変形させる。そして、間部分4a及び4bを回転変形させたときに上に凸(又は凹)となる部分のみにひずみ応答性抵抗膜5が配置されており、引っ張り変形のみ(又は圧縮変形のみ)を検出することができる。 Even with this type of deformation measuring sensor 10g, when both ends 2a and 2b are separated in the longitudinal direction (up and down on the paper), the notches 3 open, causing rotational deformation of the intermediate portions 4a and 4b between the longitudinally adjacent notches 3. The strain-responsive resistive film 5 is disposed only in the portions that become upwardly convex (or concave) when the intermediate portions 4a and 4b are rotationally deformed, making it possible to detect only tensile deformation (or only compressive deformation).

[製造試験]
次に、変形計測センサを実際に製造して行った試験について図13乃至図16を用いて説明する。なお、樹脂フィルムとしては、厚み0.1mmのポリエチレンテレフタラート(PET、東洋紡株式会社製、商品名:コスモシャイン)を用いた。また、ひずみ応答性抵抗膜としては、導電性カーボンを主とする導電膜形成用インク(ナミックス株式会社製、商品コード:XKT10400)、配線としては銀粒子を主とする導電膜形成用インク(東洋インキ株式会社製、商品コード:RAFS059S)をそれぞれスクリーン印刷し、乾燥及び硬化させたものを使用した。
[Production testing]
Next, the deformation measuring sensor was actually manufactured and the test was performed will be described with reference to Fig. 13 to Fig. 16. The resin film used was polyethylene terephthalate (PET, manufactured by Toyobo Co., Ltd., product name: Cosmoshine) with a thickness of 0.1 mm. The strain-responsive resistive film was made of a conductive film forming ink mainly made of conductive carbon (manufactured by Namics Corporation, product code: XKT10400), and the wiring was made of a conductive film forming ink mainly made of silver particles (manufactured by Toyo Ink Co., Ltd., product code: RAFS059S), which was screen-printed, dried, and cured.

図13に示すように、実施例1の変形計測センサ10e-1は、上記した変形計測センサ10eと電極7bを紙面下側の端部2bに配置した点で異なるが、他は同様としたものである。すなわち、変形計測センサ10e-1は、ひずみ応答性抵抗膜5を、長手方向に沿って第1列から第2列への間部分4aであって中心線C上に、且つ、長手方向に沿って第2列から第1列への間部分4bであって中心線Cを挟んだ幅方向両側のそれぞれに配置したものである。 As shown in FIG. 13, the deformation measuring sensor 10e-1 of Example 1 differs from the above-mentioned deformation measuring sensor 10e in that the electrode 7b is placed at the end 2b on the lower side of the paper surface, but is otherwise similar. That is, the deformation measuring sensor 10e-1 has the strain-responsive resistive film 5 placed on the center line C in the portion 4a between the first row and the second row along the longitudinal direction, and on both sides of the center line C in the portion 4b between the second row and the first row along the longitudinal direction.

また、実施例2の変形計測センサ10a-2は、上記した通り(図5参照)、ひずみ応答性抵抗膜5を、第1列から第2列への間部分4aであり、中心線C上の樹脂フィルムの表側(紙面手前側)に配置したものである。 As described above (see FIG. 5), the deformation measuring sensor 10a-2 of Example 2 has the strain-responsive resistive film 5 disposed in the portion 4a between the first and second rows, on the front side of the resin film on the center line C (the front side of the page).

さらに、実施例3の変形計測センサ10d-1は、上記した変形計測センサ10dと同様にひずみ応答性抵抗膜を配置した上で、配線を施したものである。すなわち、変形計測センサ10d-1は、第2列から第1列への間部分4bであり、中心線Cを挟んだ幅方向両側のそれぞれにひずみ応答性抵抗膜5を配置したものである。 Furthermore, the deformation measuring sensor 10d-1 of Example 3 is configured by disposing a strain-responsive resistive film and then wiring it in the same manner as the deformation measuring sensor 10d described above. That is, the deformation measuring sensor 10d-1 is configured in the portion 4b between the second row and the first row, with strain-responsive resistive films 5 disposed on both sides of the center line C in the width direction.

図14に示すように、比較例1及び比較例2となる変形計測センサも併せて作製した。 As shown in Figure 14, deformation measurement sensors were also fabricated as Comparative Example 1 and Comparative Example 2.

比較例1の変形計測センサは、間部分4a及び4bの幅方向の両側端部を除いて全面にひずみ応答性抵抗膜5を配置したものである。また、比較例2の変形計測センサは、第1列から第2列への間部分4a及び第2列から第1列への間部分4bのいずれにおいても、中心線C上にひずみ応答性抵抗膜5を配置したものである。 The deformation measuring sensor of Comparative Example 1 has a strain-responsive resistive film 5 disposed over the entire surface, except for both ends in the width direction of the intermediate portions 4a and 4b. The deformation measuring sensor of Comparative Example 2 has a strain-responsive resistive film 5 disposed on the center line C in both the intermediate portion 4a between the first row and the second row, and the intermediate portion 4b between the second row and the first row.

図15に示すように、実施例1~3、比較例1及び比較例2について、両端部2a及び2bを互いに離間させたときの変形計測センサとしての伸張率と抵抗変化率との関係を調べた。その結果、実施例1~3は比較例に対して大きな抵抗変化率を示した。実施例の中では、実施例1において抵抗変化率を最大とし、以下、実施例2、実施例3と続いた。比較例1及び比較例2において抵抗変化率が小さいのは、引っ張り変形に伴う伸張ひずみによる抵抗増加と、圧縮変形に伴う圧縮ひずみによる抵抗減少とが混在しているためと考えられる。 As shown in Figure 15, the relationship between the elongation rate and the resistance change rate as a deformation measuring sensor when both ends 2a and 2b are separated from each other was investigated for Examples 1 to 3 and Comparative Example 1 and Comparative Example 2. As a result, Examples 1 to 3 showed a large resistance change rate compared to the Comparative Examples. Among the Examples, Example 1 had the largest resistance change rate, followed by Examples 2 and 3. The reason why the resistance change rates are small in Comparative Examples 1 and 2 is thought to be due to a mixture of an increase in resistance due to elongation strain accompanying tensile deformation and a decrease in resistance due to compression strain accompanying compressive deformation.

図16に示すように、実施例1~3、比較例1及び比較例2について、両端部2a及び2bを互いに離間させさらにもとの位置にもどす操作をしたときの変形計測センサとしての伸張率と抵抗変化率との関係を調べた。その結果、実施例1~3は、高い直線性と、小さいヒステリシスを示した(同図(a))が、比較例1及び比較例2は、共に比較的低い直線性を示し、比較例1においては、さらに、比較的大きなヒステリシスを示した(同図(b))。比較例1では、ひずみ応答性抵抗膜を全面に配置したため、局所的に非常に大きなひずみを生じて塑性変形や残留応力の影響を受けたものと考えられる。 As shown in Figure 16, the relationship between the elongation rate and the rate of resistance change as a deformation measuring sensor was investigated for Examples 1 to 3 and Comparative Example 1 and Comparative Example 2 when both ends 2a and 2b were moved away from each other and then returned to their original positions. As a result, Examples 1 to 3 showed high linearity and small hysteresis (Figure 16(a)), while Comparative Example 1 and Comparative Example 2 both showed relatively low linearity, and Comparative Example 1 also showed relatively large hysteresis (Figure 16(b)). In Comparative Example 1, the strain-responsive resistive film was placed over the entire surface, which is thought to have caused very large strains locally and was affected by plastic deformation and residual stress.

これらのように、実施例1~3の変形計測センサによれば、伸張に対するリニアな抵抗変化を高精度に高い感度で得ることができる。 As described above, the deformation measurement sensors of Examples 1 to 3 can obtain linear resistance changes in response to stretching with high accuracy and high sensitivity.

以上、本発明による代表的な実施例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 Although the above describes representative embodiments of the present invention, the present invention is not necessarily limited thereto, and a person skilled in the art will be able to find various alternative embodiments and modifications without departing from the spirit of the present invention or the scope of the appended claims.

1 樹脂フィルム
2a、2b 端部
3 切り込み
3a~3e 切断部
4(4a、4b) 間部分
5 ひずみ応答性抵抗膜
6 配線
7a、7b 電極
10 変形計測センサ
REFERENCE SIGNS LIST 1 resin film 2a, 2b end portion 3 incisions 3a to 3e cut portion 4 (4a, 4b) space between them 5 strain-responsive resistive film 6 wiring 7a, 7b electrode 10 deformation measuring sensor

Claims (9)

被計測部の変形に対応して変形し該被計測部の変形状態の計測を与える変形計測センサを用いた変形計測方法であって、
前記変形計測センサは、可撓性を有する略矩形の樹脂フィルムからなり長手方向の両端部の間において幅方向に伸びる切り込みを前記長手方向に周期的に設けられ、前記樹脂フィルムの同一面且つ前記長手方向に隣接する前記切り込み同士の間部分のそれぞれにひずみ応答性抵抗膜を与えられており、
前記変形計測センサの前記両端部について前記被計測部を跨いで固定しておき、前記被計測部の変形に伴って前記両端部を前記長手方向に沿って離間させたときに前記切り込みが開口し前記間部分を回転変形させるとともに、前記間部分のそれぞれの圧縮変形又は引っ張り変形のいずれかとなる位置にのみ与えられた前記ひずみ応答性抵抗膜の抵抗変化から前記被計測部の変形状態の計測を与えることを特徴とする変形計測方法。
A deformation measurement method using a deformation measurement sensor that deforms in response to deformation of a measurement target portion and provides a measurement of the deformation state of the measurement target portion,
the deformation measuring sensor is made of a flexible, substantially rectangular resin film, and has notches extending in a width direction between both ends in the longitudinal direction, the notches being periodically provided in the longitudinal direction, and a strain-responsive resistive film being provided in each of the portions between the notches adjacent to each other in the longitudinal direction on the same surface of the resin film;
A deformation measurement method characterized in that both ends of the deformation measuring sensor are fixed across the measured portion, and when the both ends are moved apart along the longitudinal direction as the measured portion deforms, the notch opens and causes rotational deformation of the intermediate portion, and the deformation state of the measured portion is measured from the resistance change of the strain-responsive resistive film that is provided only at positions of the intermediate portion that are either compressively deformed or tensilely deformed.
前記切り込みは、前記幅方向の中心線へ向けて両側端部から切り込んだ2つの切断部からなる第1列と、前記中心線から前記樹脂フィルムの両側端部へ向けて切り込んだ1つの切断部からなる第2列と、を前記長手方向に交互に等間隔で与えてなることを特徴とする請求項1記載の変形計測方法。 The deformation measurement method according to claim 1, characterized in that the cuts are made in a first row consisting of two cuts cut from both side ends toward the center line in the width direction, and a second row consisting of one cut from the center line toward both side ends of the resin film, which are alternately made at equal intervals in the longitudinal direction. 被計測部の変形に対応して変形し該被計測部の変形状態の計測を与える変形計測センサであって、
前記変形計測センサは、可撓性を有する略矩形の樹脂フィルムからなり長手方向の両端部の間において幅方向に伸びる切り込みを前記長手方向に周期的に設けられ、前記樹脂フィルムの同一面且つ前記長手方向に隣接する前記切り込み同士の間部分のそれぞれにひずみ応答性抵抗膜を与えられており、
前記変形計測センサの前記両端部について前記被計測部を跨いで固定しておき、前記被計測部の変形に伴って前記両端部を前記長手方向に沿って離間させたときに前記切り込みが開口し前記間部分を回転変形させるとともに、前記間部分のそれぞれの圧縮変形又は引っ張り変形のいずれかとなる位置にのみ前記ひずみ応答性抵抗膜を与えられていることを特徴とする変形計測センサ。
A deformation measuring sensor that deforms in response to deformation of a measurement target portion and provides a measurement of the deformation state of the measurement target portion,
the deformation measuring sensor is made of a flexible, substantially rectangular resin film, and has notches extending in a width direction between both ends in the longitudinal direction, the notches being periodically provided in the longitudinal direction, and a strain-responsive resistive film being provided in each of the portions between the notches adjacent to each other in the longitudinal direction on the same surface of the resin film;
The deformation measuring sensor is characterized in that both ends of the deformation measuring sensor are fixed across the measured portion, and when the both ends are moved apart along the longitudinal direction as the measured portion deforms, the notch opens and causes rotational deformation of the intervening portion, and the strain-responsive resistive film is provided only at positions where each of the intervening portions is either compressively deformed or tensilely deformed.
前記切り込みは、前記幅方向の中心線へ向けて両側端部から切り込んだ2つの切断部からなる第1列と、前記中心線から前記樹脂フィルムの両側端部へ向けて切り込んだ1つの切断部からなる第2列と、を前記長手方向に交互に等間隔で与えてなることを特徴とする請求項3記載の変形計測センサ。 The deformation measuring sensor according to claim 3, characterized in that the cuts are arranged alternately at equal intervals in the longitudinal direction, with a first row consisting of two cuts cut from both side ends toward the center line in the width direction, and a second row consisting of one cut from the center line toward both side ends of the resin film. 前記ひずみ応答性抵抗膜は、前記長手方向に沿って前記第1列から前記第2列への前記間部分であって前記中心線上に、又は、前記長手方向に沿って前記第2列から前記第1列への前記間部分であって前記中心線上に、与えられていることを特徴とする請求項4記載の変形計測センサ。 The deformation measuring sensor according to claim 4, characterized in that the strain-responsive resistive film is provided on the center line in the intermediate portion between the first row and the second row along the longitudinal direction, or on the center line in the intermediate portion between the second row and the first row along the longitudinal direction. それぞれの前記間部分に与えられた前記ひずみ応答性抵抗膜は、並列接続されていることを特徴とする請求項5記載の変形計測センサ。 The deformation measuring sensor according to claim 5, characterized in that the strain-responsive resistive films provided in each of the intervening portions are connected in parallel. 前記ひずみ応答性抵抗膜は、前記長手方向に沿って前記第1列から前記第2列への前記間部分であって前記中心線を挟んだ幅方向両側のそれぞれに、又は、前記長手方向に沿って前記第2列から前記第1列への前記間部分であって前記中心線を挟んだ幅方向両側のそれぞれに、与えられていることを特徴とする請求項4記載の変形計測センサ。 The deformation measuring sensor according to claim 4, characterized in that the strain-responsive resistive film is provided on both sides of the center line in the width direction in the intermediate portion from the first row to the second row along the longitudinal direction, or on both sides of the center line in the width direction in the intermediate portion from the second row to the first row along the longitudinal direction. 前記ひずみ応答性抵抗膜は、前記長手方向に沿って前記第1列から前記第2列への前記間部分であって前記中心線上に、且つ、前記長手方向に沿って前記第2列から前記第1列への前記間部分であって前記中心線を挟んだ幅方向両側のそれぞれに、与えられていることを特徴とする請求項4記載の変形計測センサ。 The deformation measuring sensor according to claim 4, characterized in that the strain-responsive resistive film is provided on the center line in the intermediate portion between the first row and the second row along the longitudinal direction, and on both sides of the center line in the intermediate portion between the second row and the first row along the longitudinal direction. 前記間部分で前記中心線を挟んだ幅方向両側のそれぞれに与えられた前記ひずみ応答性抵抗膜は直列接続され、それぞれの前記間部分に与えられた前記ひずみ応答性抵抗膜は並列接続されていることを特徴とする請求項7又は8に記載の変形計測センサ。

The deformation measuring sensor according to claim 7 or 8, characterized in that the strain-responsive resistive films provided on both sides of the center line in the width direction in the space between the electrodes are connected in series, and the strain-responsive resistive films provided in each of the space between the electrodes are connected in parallel.

JP2023075011A 2023-04-28 2023-04-28 Deformation measurement method and sensor Pending JP2024159179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023075011A JP2024159179A (en) 2023-04-28 2023-04-28 Deformation measurement method and sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023075011A JP2024159179A (en) 2023-04-28 2023-04-28 Deformation measurement method and sensor

Publications (1)

Publication Number Publication Date
JP2024159179A true JP2024159179A (en) 2024-11-08

Family

ID=93336411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023075011A Pending JP2024159179A (en) 2023-04-28 2023-04-28 Deformation measurement method and sensor

Country Status (1)

Country Link
JP (1) JP2024159179A (en)

Similar Documents

Publication Publication Date Title
KR102081892B1 (en) Resistive pressure sensor including piezo-resistive electrode
CN104246460B (en) pressure sensor
KR101066672B1 (en) Array type capacitive sensor
JP5467322B2 (en) Pressure sensitive sheet
CN109870254B (en) A highly sensitive capacitive sliding tactile sensor
CN105224129A (en) A kind of pressure-sensing input media
US10591272B2 (en) Strain sensor with improved sensitivity
WO2017057598A1 (en) Capacitive sensor
JP2024159179A (en) Deformation measurement method and sensor
KR101850484B1 (en) Highly sensitive pressure sensor and input device using the highly sensitive pressure sensor
KR101840114B1 (en) Highly sensitive sensor comprising cracked transparent conductive thin film and process for preparing same
US11378478B2 (en) Sensor element for measuring pressure and temperature
KR101990196B1 (en) Sensor for Measuring Strain and Pressure And Method for Manufacturing the Same
KR102239323B1 (en) Pressure sensor including arranged carbon nanotube sheet and method of manufacturing the same
JP2022076057A (en) Stress sensor
EP3009822B1 (en) A deformable apparatus and method
JP6082856B1 (en) Capacitive sensor
JP2022009270A (en) Pressure distribution sensor
US10697753B2 (en) Strain sensing device and manufacturing method thereof
JPH0943081A (en) Pressure sensitive sensor
JP2018013339A (en) Strain sensor, crack detection sensor and crack detection device
Katageri et al. Design and simulation of carbon nanotube based piezoresistive pressure sensor for patient monitoring application
JP7331557B2 (en) tactile sensor
KR102041087B1 (en) A pressure measuring capacitor And fabricating method of the same
JPH04286928A (en) Measuring apparatus for pressure distribution