[go: up one dir, main page]

JP2024521630A - Production of coated textiles using photoinitiated chemical vapor deposition. - Google Patents

Production of coated textiles using photoinitiated chemical vapor deposition. Download PDF

Info

Publication number
JP2024521630A
JP2024521630A JP2023567041A JP2023567041A JP2024521630A JP 2024521630 A JP2024521630 A JP 2024521630A JP 2023567041 A JP2023567041 A JP 2023567041A JP 2023567041 A JP2023567041 A JP 2023567041A JP 2024521630 A JP2024521630 A JP 2024521630A
Authority
JP
Japan
Prior art keywords
substrate
initiator
monomer
ultraviolet light
inlet port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023567041A
Other languages
Japanese (ja)
Inventor
トリシャ ライオネル アンドリュー
エイドリアン ジェイ. ビーチ
サヤンタニ ナンディー
Original Assignee
ソリヤーン エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソリヤーン エルエルシー filed Critical ソリヤーン エルエルシー
Publication of JP2024521630A publication Critical patent/JP2024521630A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0086Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/34Applying different liquids or other fluent materials simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0493Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/001Treatment with visible light, infrared or ultraviolet, X-rays
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/20Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/042Acrylic polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/045Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with polyolefin or polystyrene (co-)polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/30Form of the coating product, e.g. solution, water dispersion, powders or the like the coating being applied in other forms than involving eliminable solvent, diluent or dispersant
    • B05D2401/33Form of the coating product, e.g. solution, water dispersion, powders or the like the coating being applied in other forms than involving eliminable solvent, diluent or dispersant applied as vapours polymerising in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2205/00Condition, form or state of the materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Figure 2024521630000001

光開始化学気相成長を使用して被覆テキスタイルを製造するためのシステムが提示される。このシステムは、処理チャンバと、紫外光の光源とを含む。処理チャンバは、透明窓と、この透明窓の下方に配置された基材ステージと、複数のポートとを含む。これらのポートは、第1の入口ポート及び第2の入口ポートを含む。第1の入口ポートは気相モノマーを処理チャンバ内に輸送し、第2の入口ポートは気相開始剤を処理チャンバ内に輸送する。処理チャンバは、上記モノマー及び上記開始剤をテキスタイル基材上に堆積させるように制御される。紫外光の光源は、上記透明窓を介して処理チャンバ内に紫外光を導入するように位置決めされる。紫外光は、モノマー及び開始剤を重合させて基材をポリマーで被覆する。
【選択図】図1A

Figure 2024521630000001

A system for producing coated textiles using photoinitiated chemical vapor deposition is presented. The system includes a process chamber and a source of ultraviolet light. The process chamber includes a transparent window, a substrate stage disposed below the transparent window, and a plurality of ports. The ports include a first inlet port and a second inlet port. The first inlet port delivers a vapor phase monomer into the process chamber, and the second inlet port delivers a vapor phase initiator into the process chamber. The process chamber is controlled to deposit the monomer and the initiator on a textile substrate. A source of ultraviolet light is positioned to introduce ultraviolet light into the process chamber through the transparent window. The ultraviolet light polymerizes the monomer and initiator to coat the substrate with a polymer.
[Selected Figure] Figure 1A

Description

関連出願の相互参照
本出願は、2021年4月29日出願の米国仮出願第63/181,466号の利益を主張する。この米国仮出願は、その全体が参照により本明細書に組み込まれる。
CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No. 63/181,466, filed April 29, 2021, which is incorporated herein by reference in its entirety.

技術分野
本出願は、概して、糸、繊維及び布地を含む被覆テキスタイルの分野に、より詳細には、光開始化学気相成長を使用する被覆テキスタイルの製造に向けられる。
TECHNICAL FIELD This application is directed generally to the field of coated textiles, including yarns, fibers and fabrics, and more particularly to the manufacture of coated textiles using photoinitiated chemical vapor deposition.

繊維、糸(ヤーン)、及び布地等のテキスタイル(繊維製品)を製造するための従来のプロセスは、溶媒ベースである。これらのプロセスでは、原材料又は部分的に仕上げられた繊維及び糸を染料で着色し、色堅牢度、感触等について処理することができる。従来のプロセスでは、加工される物品は、溶媒中に処理化学物質、界面活性剤、乳化剤、及び潤滑剤を含有するバットに導入される。加工後、過剰の化学物質が廃棄され、これは汚染された河川及び地下水につながる。そのようなプロセスの環境影響は重大であるが、これらの従来の技術は、従来の繊維及び布地の高スループット生産を提供するため、広く使用されている。 Conventional processes for manufacturing textiles such as fibers, yarns, and fabrics are solvent-based. In these processes, raw or partially finished fibers and yarns can be colored with dyes and treated for color fastness, feel, etc. In conventional processes, the article to be processed is introduced into a vat containing processing chemicals, surfactants, emulsifiers, and lubricants in a solvent. After processing, excess chemicals are discarded, which leads to polluted rivers and groundwater. Although the environmental impact of such processes is significant, these conventional technologies are widely used because they provide high throughput production of conventional fibers and fabrics.

従来のプロセスの環境影響に加えて、これらのプロセスは、必然的に界面活性剤、乳化剤又は潤滑剤の一部が最終製品中に残るので、低アレルギー性のテキスタイルを製造するのにも不適切である。 In addition to the environmental impact of conventional processes, these processes are also unsuitable for producing hypoallergenic textiles, as inevitably some of the surfactants, emulsifiers or lubricants remain in the final product.

それゆえ、当該分野において、溶媒を使わず、アレルゲンを含まない製品をもたらすプロセスを含む、糸、繊維及び布地等のテキスタイルを製造するための改善されたプロセスの必要性が存在する。 Therefore, there is a need in the art for improved processes for producing textiles, such as yarns, fibers and fabrics, including processes that are solvent-free and result in allergen-free products.

それゆえ、1つの実施形態では、光開始化学気相成長を使用して被覆テキスタイルを製造するためのシステムが提示される。このシステムは、処理チャンバと、紫外線(UV)光の光源とを含む。処理チャンバは、透明窓と、この透明窓の下方に配置された基材ステージと、複数のポートとを含む。これらのポートは、第1の入口ポート及び第2の入口ポートを含む。第1の入口ポートは、気相モノマーを処理チャンバ内に輸送し、第2の入口ポートは、気相開始剤を処理チャンバ内に輸送する。処理チャンバは、モノマー及び開始剤をテキスタイル基材上に堆積させるように制御される。紫外光の光源は、上記透明窓を介して処理チャンバ内に紫外光を導入するように位置決めされる。紫外線は開始剤を光励起し、その開始剤はその励起状態エネルギーをモノマーに伝達し、モノマーを重合させて基材をポリマーで被覆(コーティング)する。 Therefore, in one embodiment, a system for producing coated textiles using photoinitiated chemical vapor deposition is presented. The system includes a process chamber and a source of ultraviolet (UV) light. The process chamber includes a transparent window, a substrate stage disposed below the transparent window, and a plurality of ports. The ports include a first inlet port and a second inlet port. The first inlet port transports a vapor phase monomer into the process chamber, and the second inlet port transports a vapor phase initiator into the process chamber. The process chamber is controlled to deposit the monomer and the initiator on the textile substrate. A source of ultraviolet light is positioned to introduce ultraviolet light into the process chamber through the transparent window. The ultraviolet light photoexcites the initiator, which transfers its excited state energy to the monomer, polymerizing the monomer and coating the substrate with a polymer.

別の実施形態では、光開始化学気相成長を使用して被覆テキスタイルを製造するためのシステムが提示される。このシステムは、処理チャンバと、紫外光の光源と、制御装置とを含む。処理チャンバは、透明窓と、透明窓の下方に配置された基材ステージと、基材ステージの下方に配置されたステージチラーと、複数のポートとを含む。これらのポートは、第1の入口ポートと、第2の入口ポートと、真空ポートとを含み、第1の入口ポートは、気相モノマーを処理チャンバ内に輸送し、第2の入口ポートは、気相開始剤を処理チャンバ内に輸送する。5種までの他の気相コモノマーのための追加の入口ポートも存在することができる。上記光源は、上記透明窓を介して処理チャンバ内に紫外光を導入するように位置決めされる。紫外線は開始剤を光励起し、その開始剤はその励起状態エネルギーをモノマーに伝達し、モノマーを重合させて基材をポリマーで被覆する。上記制御装置は、モノマー及び開始剤を基材上に堆積させるのと同時に光源からの紫外光によってそれらの重合が起こるように構成されている。 In another embodiment, a system for producing coated textiles using photoinitiated chemical vapor deposition is presented. The system includes a process chamber, a source of ultraviolet light, and a controller. The process chamber includes a transparent window, a substrate stage disposed below the transparent window, a stage chiller disposed below the substrate stage, and a plurality of ports. The ports include a first inlet port, a second inlet port, and a vacuum port, where the first inlet port transports a gas phase monomer into the process chamber and the second inlet port transports a gas phase initiator into the process chamber. There may also be additional inlet ports for up to five other gas phase comonomers. The light source is positioned to introduce ultraviolet light into the process chamber through the transparent window. The ultraviolet light photoexcites the initiator, which transfers its excited state energy to the monomer, polymerizing the monomer to coat the substrate with a polymer. The controller is configured to cause polymerization of the monomer and initiator by the ultraviolet light from the light source simultaneously with deposition of the monomer and initiator on the substrate.

上記の実施形態は例示にすぎない。本明細書に記載される他の実施形態は、開示される主題の範囲内にある。 The above embodiments are illustrative only. Other embodiments described herein are within the scope of the disclosed subject matter.

本開示の特徴を理解することができるように、特定の実施形態を参照することによって、詳細な説明がなされてもよく、実施形態のいくつかは添付の図面に示されている。しかしながら、図面は特定の実施形態のみを示し、それゆえ、本開示の範囲を限定するものと見なされるべきではないことに留意されたい。というのも、開示される主題の範囲は他の実施形態も同様に包含するためである。図面は必ずしも縮尺通りではなく、概して、特定の実施形態の特徴を例示すことに重点が置かれている。図面において、同様の数字は、様々な図を通して同様の部分を示すために使用される。 So that the features of the present disclosure can be understood, a detailed description may be given by referring to certain embodiments, some of which are illustrated in the accompanying drawings. It should be noted, however, that the drawings illustrate only certain embodiments and therefore should not be considered as limiting the scope of the present disclosure, since the scope of the disclosed subject matter encompasses other embodiments as well. The drawings are not necessarily to scale, with the emphasis generally being placed on illustrating the features of certain embodiments. In the drawings, like numerals are used to denote like parts throughout the various views.

図1Aは、本明細書に記載される1つ以上の態様に係る被覆チャンバの一実施形態を描く。FIG. 1A depicts one embodiment of a coating chamber according to one or more aspects described herein. 図1B~図1Eは、本明細書に記載される1つ以上の態様に係る気化物質送達システムの一実施形態を描く。1B-1E depict one embodiment of a vapor delivery system according to one or more aspects described herein. 図1B~図1Eは、本明細書に記載される1つ以上の態様に係る気化物質送達システムの一実施形態を描く。1B-1E depict one embodiment of a vapor delivery system according to one or more aspects described herein. 図1B~図1Eは、本明細書に記載される1つ以上の態様に係る気化物質送達システムの一実施形態を描く。1B-1E depict one embodiment of a vapor delivery system according to one or more aspects described herein. 図1B~図1Eは、本明細書に記載される1つ以上の態様に係る気化物質送達システムの一実施形態を描く。1B-1E depict one embodiment of a vapor delivery system according to one or more aspects described herein. 図1F及び図1Gは、本明細書に記載される1つ以上の態様に係る気化物質送達システムの一実施形態を描く。1F and 1G depict one embodiment of a vapor delivery system according to one or more aspects described herein. 図1F及び図1Gは、本明細書に記載される1つ以上の態様に係る気化物質送達システムの一実施形態を描く。1F and 1G depict one embodiment of a vapor delivery system according to one or more aspects described herein. 図2A及び図2Bは、テキスタイルの従来技術の被覆を描く。2A and 2B depict a prior art coating of a textile. 図2A及び図2Bは、テキスタイルの従来技術の被覆を描く。2A and 2B depict a prior art coating of a textile. 図3A及び図3Bは、本明細書に記載される1つ以上の態様に係る、テキスタイルの共形性(コンフォーマル、形状適応性)被覆を描く。3A and 3B depict a textile conformal covering according to one or more aspects described herein. 図3A及び図3Bは、本明細書に記載される1つ以上の態様に係る、テキスタイルの共形性被覆を描く。3A and 3B depict a conformal coating on a textile, according to one or more aspects described herein. 図4A~4Dは、本明細書に記載される1つ以上の態様に係る光開始化学気相成長反応を描く。4A-4D depict photoinitiated chemical vapor deposition reactions according to one or more aspects described herein. 図4A~4Dは、本明細書に記載される1つ以上の態様に係る光開始化学気相成長反応を描く。4A-4D depict photoinitiated chemical vapor deposition reactions according to one or more aspects described herein. 図4A~4Dは、本明細書に記載される1つ以上の態様に係る光開始化学気相成長反応を描く。4A-4D depict photoinitiated chemical vapor deposition reactions according to one or more aspects described herein. 図4A~4Dは、本明細書に記載される1つ以上の態様に係る光開始化学気相成長反応を描く。4A-4D depict photoinitiated chemical vapor deposition reactions according to one or more aspects described herein.

対応する参照符号は、いくつかの図を通して対応する部分を示す。本明細書に記載される実施例は、いくつかの実施形態を例示するが、いかなる様式でも範囲を限定するものとして解釈されるべきではない。 Corresponding reference characters indicate corresponding parts throughout the several views. The examples described herein illustrate some embodiments, but should not be construed as limiting the scope in any manner.

本開示は、テキスタイル及びプラスチックを含む平坦でパターン化された基材上にポリマー膜を生成する、単一工程の高スループット(1~100ft(約0.30m~約30.48m)/分)の光開始化学気相成長(PI-CVD)プロセスに関する。この二成分プロセスは、UV-C光によって開始される低真空圧(0.001~10Torr(約0.133~約1333Pa))下での化学気化物質(vapor)の導入直後に進行して、ポリ(アクリレート)、ポリ(スチレン)、及びポリ(ビニルエーテル)ポリマーを形成する。これらの被覆は、界面グラフト化、耐摩耗性、及び洗浄安定性の増加によって増強された機械的堅牢性を有する。ゼロ廃水及び非常にわずかな有害廃棄物しか製造中に生成されない。本技術は、防水被覆、抗ウイルス被覆、導電性被覆、又は必要とされる任意の他の被覆でテキスタイルを被覆するために使用されてもよい。 This disclosure relates to a single-step, high throughput (1-100 ft/min) photoinitiated chemical vapor deposition (PI-CVD) process that produces polymer films on flat and patterned substrates including textiles and plastics. This two-component process proceeds immediately upon introduction of a chemical vapor under low vacuum pressure (0.001-10 Torr) initiated by UV-C light to form poly(acrylate), poly(styrene), and poly(vinyl ether) polymers. These coatings have enhanced mechanical robustness through interfacial grafting, abrasion resistance, and increased washing stability. Zero wastewater and very little hazardous waste is generated during manufacture. This technology may be used to coat textiles with waterproof coatings, antiviral coatings, conductive coatings, or any other coating required.

有利には、本技術は、乳化剤又は界面活性剤、又はいずれの溶媒も必要とせず、廃水発生がない。具体的には、共役ポリマー生成を含むこれらの技術は、溶媒和シェル、非混和性、溶媒-基材相互作用、又は成長するポリマー鎖の溶解度に関する懸念を排除する。成長膜の膜厚及びナノ構造のリアルタイム制御は、モノマー及び開始剤の流量を制御することによって容易に達成することができる。 Advantageously, the techniques do not require emulsifiers or surfactants, or any solvents, and are wastewater-free. Specifically, these techniques involving conjugated polymer formation eliminate concerns regarding solvation shells, immiscibility, solvent-substrate interactions, or solubility of the growing polymer chains. Real-time control of the thickness and nanostructure of the growing film can be easily achieved by controlling the flow rates of the monomers and initiators.

本開示の利点は、簡潔さも含む。当該プロセスは、従来のプロセスと比較して界面活性剤及び乳化剤を使用しない。さらに、キャリアガスは不要である。1つの例では、光の導入は、フィラメントヒータ(フィラメント配線、ハーネス、及び電源を必要とする)よりも動作、固定、及び設計が簡単である。 Advantages of the present disclosure also include simplicity. The process does not use surfactants or emulsifiers compared to conventional processes. Additionally, no carrier gas is required. In one example, light introduction is easier to operate, fix, and design than filament heaters (which require filament wiring, harnesses, and power sources).

多数の反応器構造(幾何学形状)が、本技術において採用されてもよい。例えば、反応器の形状は、正方形、円形等であってもよい。全体的な寸法は、例えば10×10×10インチ(約25.4×約25.4×約25.4cm)から250×250×250インチ(約635×約635×約635cm)の間の目的を含む、必要な任意のサイズとすることができる。 A number of reactor configurations (geometry) may be employed in the present technology. For example, the reactor shape may be square, circular, etc. Overall dimensions may be any size required, including objectives between 10x10x10 inches (about 25.4xabout 25.4xabout 25.4 cm) and 250x250x250 inches (about 635xabout 635xabout 635 cm).

図1Aは、被覆処理チャンバ100及び光源150を含むシステムの一実施形態を描く。処理チャンバ100は、透明窓110と、透明窓110の下方に配置された基材ステージ120と、基材ステージ120の下方に配置されたステージチラー(stage chiller)130と、複数のポート142~146とを含む。ポート142~146は、第1の入口ポート142と、第2の入口ポート144と、真空ポート146とを含む。第1の入口ポート142は、気相モノマーを処理チャンバ内に輸送する。第2の入口ポート144は、気相開始剤を処理チャンバ内に輸送する。5種までの気相コモノマーを処理チャンバ内に輸送するための5つ以上の入口ポートも存在してもよい。 Figure 1A illustrates one embodiment of a system including a coating process chamber 100 and a light source 150. The process chamber 100 includes a transparent window 110, a substrate stage 120 disposed below the transparent window 110, a stage chiller 130 disposed below the substrate stage 120, and a number of ports 142-146. The ports 142-146 include a first inlet port 142, a second inlet port 144, and a vacuum port 146. The first inlet port 142 delivers a vapor phase monomer into the process chamber. The second inlet port 144 delivers a vapor phase initiator into the process chamber. There may also be five or more inlet ports for delivering up to five vapor phase comonomers into the process chamber.

光源150は、紫外光(波長<390nm)の光源である。図1Aに示すように、光源150は、透明窓110を介して処理チャンバ100内に紫外光を導入するように位置決めされる。UV光の導入後、UV光はモノマー及び開始剤を重合させて、基材125をポリマーで被覆する。反応は図4A~4Dに描かれている。反応速度に起因して、1~100ft(約0.30m~約30.48m)/分のスループット速度が達成されている。 Light source 150 is a source of ultraviolet light (wavelength < 390 nm). As shown in FIG. 1A, light source 150 is positioned to introduce ultraviolet light into process chamber 100 through transparent window 110. After introduction of the UV light, the UV light polymerizes the monomer and initiator to coat substrate 125 with polymer. The reaction is depicted in FIGS. 4A-4D. Due to the reaction rate, throughput speeds of 1-100 ft/min have been achieved.

加えて、モノマー及び開始剤の基材125上への堆積が光源150からの紫外光によるそれらの重合と同時であるように、制御装置(図示せず)を用いて、その堆積を制御してもよい。 In addition, a controller (not shown) may be used to control the deposition of the monomer and initiator onto the substrate 125 so that their polymerization is simultaneous with the ultraviolet light from the light source 150.

1つの実施形態では、ステージチラー130は、基材を-50℃~25℃の間の選択された温度に維持するように構成される。別の実施形態では、真空ポート146は、0.001~10Torr(約0.133~約1333Pa)の真空を維持するように構成される。さらなる実施形態では、第1の入口ポート142及び第2の入口ポート144はそれぞれ、0.1~10cm/秒の流量で構成される。1つの実施形態では、第1の入口ポート142は、第2の入口ポート144に直交する。任意選択で、追加の入口ポート、例えば、2~8個の追加の入口ポートが、互いに0~360°の間の角度で位置決めされてもよい。 In one embodiment, the stage chiller 130 is configured to maintain the substrate at a selected temperature between -50°C and 25°C. In another embodiment, the vacuum port 146 is configured to maintain a vacuum of 0.001 to 10 Torr (about 0.133 to about 1333 Pa). In a further embodiment, the first inlet port 142 and the second inlet port 144 are each configured with a flow rate of 0.1 to 10 cm3 /sec. In one embodiment, the first inlet port 142 is orthogonal to the second inlet port 144. Optionally, additional inlet ports, for example 2 to 8 additional inlet ports, may be positioned at angles between 0 to 360 degrees from one another.

1つの実施形態では、モノマー及び開始剤を含む試薬は、気化物質送達システム160を介して送達される。気化物質送達システム160は、図1B~図1Dに描かれるように、複数のパイプ166を含む。1つの実施形態では、モノマー、開始剤及び/又は他の試薬は、入口161及び162を介して気化物質送達システム160に入る。別の実施形態では、パイプ166は、Lコネクタ163、Tコネクタ164、及びXコネクタ165等のコネクタを使用して連結される。任意選択で、入口161及び/又は162は、例えば、図1Cに示されるように、キャップ167を使用して、密閉されてもよい。 In one embodiment, the reagents, including the monomer and initiator, are delivered via a vapor delivery system 160. The vapor delivery system 160 includes a number of pipes 166, as depicted in Figures 1B-1D. In one embodiment, the monomer, initiator, and/or other reagents enter the vapor delivery system 160 via inlets 161 and 162. In another embodiment, the pipes 166 are connected using connectors, such as an L connector 163, a T connector 164, and an X connector 165. Optionally, the inlets 161 and/or 162 may be sealed, for example, using a cap 167, as shown in Figure 1C.

図1Dは、気化物質送達システム160の拡大図であり、気化物質が処理チャンバ100内に出る際に通るパイプ166内の穴168を示す。穴168は、図1Eの気化物質送達システム160の拡大図にも示されている。さらなる実施形態では、気化物質送達システム160は、1つ以上のパイプ166の周囲に巻着される加熱要素169、例えば抵抗加熱テープを含む。 FIG. 1D is a close-up view of the vapor delivery system 160, showing holes 168 in the pipes 166 through which the vapor exits into the processing chamber 100. The holes 168 are also shown in the close-up view of the vapor delivery system 160 in FIG. 1E. In a further embodiment, the vapor delivery system 160 includes a heating element 169, e.g., a resistive heating tape, wrapped around one or more of the pipes 166.

さらなる実施形態では、気化物質送達システム170は、図1Fに示すように、入口穴171及び出口穴178を含む基材プラットフォームを含む。図1Gは、入口穴171からチャネル176を通って出口穴178(図1F)に到達する経路を示す気化物質送達システム170の断面図である。 In a further embodiment, the vapor delivery system 170 includes a substrate platform including an inlet hole 171 and an outlet hole 178, as shown in FIG. 1F. FIG. 1G is a cross-sectional view of the vapor delivery system 170 showing the path from the inlet hole 171 through the channel 176 to the outlet hole 178 (FIG. 1F).

有利には、このシステムは、新規な光開始重合プロセスに起因して、テキスタイル基材を被覆するために過酸化物の分解を含まず、又は必要としない。1つの実施形態では、テキスタイル基材125を被覆するポリマーは、ポリ(アクリレート)、ポリ(スチレン)、又はポリ(ビニルエーテル)ポリマーのうちの1つを含む。別の実施形態では、光源150からの紫外光は、390ナノメートル以下の波長を含む。別の実施形態では、テキスタイル基材125を被覆するポリマーは、pドープされたポリ(3,4-エチレンジオキシチオフェン)を含む。 Advantageously, the system does not include or require the decomposition of peroxides to coat the textile substrate due to the novel photoinitiated polymerization process. In one embodiment, the polymer coating the textile substrate 125 includes one of a poly(acrylate), poly(styrene), or poly(vinyl ether) polymer. In another embodiment, the ultraviolet light from the light source 150 includes a wavelength of 390 nanometers or less. In another embodiment, the polymer coating the textile substrate 125 includes p-doped poly(3,4-ethylenedioxythiophene).

この技術の以下の適用は、本開示の範囲内にある。 The following applications of this technology are within the scope of this disclosure:

耐水性被覆(コーティング) - テキスタイルを湿潤及び吸水から保護する被覆。 Water-resistant coating – a coating that protects textiles from wetting and water absorption.

PFCを含まない耐水性被覆:パーフルオロ化(全フッ素置換)化合物を含有しない防水被覆。 PFC-free water-resistant coating: A waterproof coating that does not contain perfluorinated (fully fluorinated) compounds.

防汚被覆:塵、血液、油、及び他の保護困難な物質による汚れからテキスタイルを保護する被覆。 Soil-resistant coating: A coating that protects textiles from stains caused by dust, blood, oil, and other difficult-to-protect substances.

SFM(Spatial fluid management、空間流体管理):疎水性チャネルと親水性チャネルとの組み合わせを使用して流体をテキスタイル全体に向け直す被覆。 Spatial fluid management (SFM): A coating that uses a combination of hydrophobic and hydrophilic channels to redirect fluids throughout the textile.

抗菌被覆:基材の表面上の微生物を能動的に死滅させる被覆。 Antimicrobial coating: A coating that actively kills microorganisms on the surface of a substrate.

防食膜:塩への曝露時に酸化又は腐食から基材を保護する被覆。 Anti-corrosion film: A coating that protects a substrate from oxidation or corrosion when exposed to salt.

次に図2A及び図2Bを参照すると、従来の被覆は、基材の周囲に非柔軟(可撓)性シェルを作り出し(図2A)、これは着用可能な衣類に必要とされる柔軟性に寄与しないという点で、従来技術の限界は明らかである。図2Bは、図2Aに描かれる非柔軟性シェル内に埋め込まれた基材繊維を示す。 2A and 2B, a limitation of the prior art is apparent in that conventional coatings create a non-compliant (flexible) shell around the substrate (FIG. 2A) that does not contribute to the flexibility required for a wearable garment. FIG. 2B shows the substrate fibers embedded within the non-compliant shell depicted in FIG. 2A.

対照的に、図3A及び図3Bに示すように、テキスタイル基材125は布地を含み、被覆は、布地の少なくともいくつかの繊維の周囲に共形的に堆積される。ここで、新規な被覆のいくつかの特性を説明する。図3A及び図3Bと図2A及び図2Bとの差異に留意されたい。1つの実施形態では、被覆(コーティング)は、図3Aに示す概略図に描かれるもの等のポリマーを含む。図3Bは、図3Aのポリマーの繊維表面への化学的グラフト化を示す。図3Bに示される被覆は、図2A及び2Bに示されるような嵩高い形態で表面上に位置する被覆層よりも優れた特性を発揮する。 In contrast, as shown in Figures 3A and 3B, the textile substrate 125 comprises a fabric and the coating is conformally deposited around at least some of the fibers of the fabric. Some properties of the novel coating are now described. Note the difference between Figures 3A and 3B and Figures 2A and 2B. In one embodiment, the coating comprises a polymer such as that depicted in the schematic diagram shown in Figure 3A. Figure 3B shows chemical grafting of the polymer of Figure 3A to the fiber surface. The coating shown in Figure 3B exhibits superior properties to a coating layer located on the surface in a bulky form as shown in Figures 2A and 2B.

次に図4A及び図4Bを参照すると、光開始剤及び共開始剤の一般的な構造が、その直下の重合の一般的なプロセスとともに示されている。ポリ(ビニルエーテル)、ポリ(アクリレート)及びポリ(スチレン)の3つの構造が示され、続いてR2及びR3の許容できる基が示されている。 Referring now to Figures 4A and 4B, the general structures of photoinitiators and coinitiators are shown along with the general process of polymerization directly below. Three structures are shown: poly(vinyl ether), poly(acrylate), and poly(styrene), followed by the permissible groups for R2 and R3.

別の実施形態では、図4C及び4Dに示すように、重合プロセスに共開始剤は含まれない。光開始剤の一般的な構造が、その直下の重合の一般的なプロセスとともに示されている。ポリ(ビニルエーテル)、ポリ(アクリレート)及びポリ(スチレン)の3つの構造が示され、続いてR2及びR3の許容できる基が示されている。 In another embodiment, no coinitiator is included in the polymerization process, as shown in Figures 4C and 4D. The general structure of a photoinitiator is shown with the general process of polymerization directly below it. Three structures are shown: poly(vinyl ether), poly(acrylate), and poly(styrene), followed by acceptable groups for R2 and R3.

堆積プロセスの間、被覆は、成長する膜と基材との間の多量の界面グラフト化-共有結合を含む、大きい有効性を有する。さらに、被覆の共形性に少なくとも部分的に起因して、高い耐摩耗性及び増加した洗浄安定性がある。 During the deposition process, the coating has great effectiveness, including a large amount of interfacial grafting-covalent bonding between the growing film and the substrate. In addition, there is high abrasion resistance and increased cleaning stability, due at least in part to the conformal nature of the coating.

第1に、被覆を形成するために溶媒を必要としないので、防水又は防油用途のための完全にフッ素を含まない被覆を得ることができる。本出願人は、本技術を用いて形成された被覆が高い接触角を有することを認めた。接触角は、被覆の疎外性を定量化するために使用される測定基準である。例えば、油又は水のいずれかの液滴を表面に置き、その液滴を側面から見ることによって表面法線に対する液滴の角度を計算する試験を行う。この接触角の値が高いほど、表面はその液滴に対してより疎外性である。油滴に対する高い接触角は防油性表面を示し、水滴に対する高い接触角は防水性材料を示す。従来の技術は、防油/防水表面のためのフッ素化又はパーフルオロ化した材料の使用(スプレー、電着、メルト等)を必要とする。対照的に、本PFCフリー処方は、撥水性(130°~180°の間の水接触角)、撥油性(80°~150°の間の油接触角)を生じ、かつ高度にテクスチャード加工された表面上のテキスタイルの元の多孔性を維持しながら吸水性を減少させる(非被覆物と比較して200倍少ない)グラフト化炭化水素ポリマー被覆である。当該被覆は、PFCを完全に含まず、市販の化学物質で作られた二成分のモノマー及び開始剤の配合物から構成される。この配合物は、環境への影響が低く、廃水をゼロにし、溶媒を含まない。 First, because no solvent is required to form the coating, completely fluorine-free coatings for waterproof or oil-repellent applications can be obtained. The applicant has observed that coatings formed using the present technology have high contact angles. Contact angle is a metric used to quantify the repellency of a coating. For example, a test is performed in which a droplet of either oil or water is placed on a surface and the angle of the droplet relative to the surface normal is calculated by viewing the droplet from the side. The higher the value of this contact angle, the more repellent the surface is to the droplet. A high contact angle for an oil droplet indicates an oil-repellent surface, and a high contact angle for a water droplet indicates a waterproof material. Conventional techniques require the use of fluorinated or perfluorinated materials (spray, electrodeposit, melt, etc.) for oil/water-repellent surfaces. In contrast, the PFC-free formulation is a grafted hydrocarbon polymer coating that produces water repellency (water contact angle between 130°-180°), oil repellency (oil contact angle between 80°-150°), and reduces water absorption (200 times less compared to the uncoated) while maintaining the original porosity of the textile on highly textured surfaces. The coating is completely free of PFCs and is composed of a two-component monomer and initiator blend made with commercially available chemicals. The formulation has a low environmental impact, produces zero wastewater, and is solvent-free.

次に、1つの実施形態の具体的な作業実施例が論じられる。 Next, a specific working example of one embodiment is discussed.

工程1:試料ステージに布地を装填し、布地がステージと密接かつ均一に物理的に接触することを確実にする。 Step 1: Load the fabric onto the sample stage, ensuring that the fabric is in close and uniform physical contact with the stage.

工程2:すべての弁を閉じ、ポンプをオンにし、ポンプ弁を完全に開く。 Step 2: Close all valves, turn on the pump, and fully open the pump valve.

工程3:5重量%の熱重合阻害剤で安定化した3mLのモノマーをSwagelok(スウェージロック)ステンレス鋼アンプルに加える。 Step 3: Add 3 mL of monomer stabilized with 5 wt. % thermal polymerization inhibitor to a Swagelok stainless steel ampoule.

工程4:2.7mLの光開始剤及び0.3mLのα-ハロエステルをSwagelokステンレス鋼アンプルに加える。 Step 4: Add 2.7 mL of photoinitiator and 0.3 mL of α-haloester to a Swagelok stainless steel ampoule.

工程5:自在スパナを用いてSwagelokアンプルを、アンプルが旋回しなくなるまでチャンバポートにねじ込む。 Step 5: Using the adjustable wrench, screw the Swagelok ampoule into the chamber port until the ampoule will not rotate.

工程6:100mTorr(約13.3Pa)未満のベース圧力が達成されると、ステージチラーをオンにし、ステージチラーを0℃未満に到達させる。 Step 6: Once a base pressure of less than 100 mTorr (approximately 13.3 Pa) is achieved, turn on the stage chiller and allow the stage chiller to reach less than 0°C.

工程7:ニードルバルブダイヤルをわずか1/8回転させることによって、開始剤アンプルを排出(vent)する。圧力が約20~30mTorr(約2.7~約4.0Pa)/チューブだけ増加し、次いでベース圧力に戻ると、排出が行われる。 Step 7: Vent the initiator ampoule by turning the needle valve dial a small 1/8 turn. Venting occurs when the pressure increases by approximately 20-30 mTorr (approximately 2.7-4.0 Pa)/tube and then returns to base pressure.

工程8:もしあれば、漏れを検出する。圧力が上昇し続けると、配管のどこかに漏れがある。漏れは、真空弁が閉鎖され、ニードルバルブが開放されている間に圧力を監視することによってチェックすることができる。 Step 8: Detect leaks, if any. If the pressure continues to rise, there is a leak somewhere in the piping. Leaks can be checked by monitoring the pressure while the vacuum valve is closed and the needle valve is open.

工程9:排出した後、ヒートラップ(heat wrap)を配管に巻き付ける。熱電対及び入口の巻き付けを二重チェックする。 Step 9: After draining, wrap the piping with heat wrap. Double check the thermocouple and inlet wraps.

工程10:ニードルバルブを閉じ、熱テープを稼働させ(plug in)、正しい温度まで加熱する:モノマー:120℃;開始剤:120℃。 Step 10: Close needle valve, plug in heat tape and heat to correct temperatures: Monomer: 120°C; Initiator: 120°C.

工程11:開始剤の加熱を開始する。加熱されると、モノマーの加熱を開始する。モノマー及び開始剤がそれらの温度に達したら、タイマーを10分間設定し、熱平衡に到達させる。ステージ温度は0℃未満であるべきである。 Step 11: Start heating the initiator. Once heated, start heating the monomer. Once the monomer and initiator have reached their temperature, set a timer for 10 minutes to allow for thermal equilibrium to be reached. The stage temperature should be below 0°C.

工程12:真空バルブを閉じる。 Step 12: Close the vacuum valve.

工程13:堆積:チャンバの上部にUVランプボックスを置き、そのUVランプをオンにする。 Step 13: Deposition: Place the UV lamp box on top of the chamber and turn on the UV lamp.

工程14:開始剤バルブを最初に1/8回転までゆっくりと開け、30秒後にモノマーバルブを1/8回転まで開ける。QCM速度は、各バルブが開かれた後に少なくとも5オングストローム(0.5nm)/秒までジャンプすべきである。 Step 14: Slowly open the initiator valve to 1/8 turn first, then after 30 seconds open the monomer valve to 1/8 turn. The QCM speed should jump to at least 5 Angstroms (0.5 nm)/sec after each valve is opened.

工程15:タイマーを30分間設定する。この30分間の後、堆積が完了する。 Step 15: Set the timer for 30 minutes. After this 30 minutes, deposition is complete.

工程16:堆積後:堆積時間に達すると、ポンプの開放を0%に設定し、ヒートラップを外し、熱電対を除去する。 Step 16: Post-deposition: When the deposition time is reached, set the pump to 0% open, remove the heat wrap, and remove the thermocouple.

工程17:モノマー及び開始剤のバルブを閉じる。 Step 17: Close the monomer and initiator valves.

工程18:UVランプをオフにする。 Step 18: Turn off the UV lamp.

工程19:ヒートラップの電源をオフにし、それらをSwagelokステンレス鋼バイアルから切り離す。 Step 19: Turn off the heat wraps and separate them from the Swagelok stainless steel vials.

工程20:モノマー及び開始剤を30℃に冷却した後に、残りのモノマー及び開始剤を測定する。 Step 20: After the monomers and initiator are cooled to 30°C, measure the remaining monomers and initiator.

工程21:最終圧力及び膜厚を記録する。ブランクバルブを開いてチャンバを大気に戻す。 Step 21: Record the final pressure and film thickness. Open the blank valve to vent the chamber to atmosphere.

さらなる詳細は、2019年7月25日に公開された、発明の名称「Electrically-heated fiber,fabric,or textile for heated apparel」の米国特許出願公開第2019/0230745A1号明細書(Andrew、Zhang及びBaima)、及び2018年9月20日に公開された、発明の名称「Polymeric capacitors for energy storage devices,method of manufacture thereof and articles comprising the same」の米国特許出願公開第2018/0269006A1号明細書(Andrew及びZhang)に見出すことができる。これらの文献は、それぞれ、その全体が本明細書に組み込まれる。 Further details are described in U.S. Patent Application Publication No. 2019/0230745A1 (Andrew, Zhang and Baima), entitled "Electrically-heated fiber, fabric, or textile for heated apparel," published on July 25, 2019, and U.S. Patent Application Publication No. 2019/0230745A1 (Andrew, Zhang and Baima), entitled "Polymeric capacitors for energy storage devices, method of manufacture thereof and articles comprising the The same can be found in U.S. Patent Application Publication No. 2018/0269006 A1 (Andrew and Zhang), each of which is incorporated herein in its entirety.

Claims (19)

光開始化学気相成長を使用して被覆テキスタイルを製造するためのシステムであって、
処理チャンバであって、
透明窓、
前記透明窓の下方に配置された基材ステージ、並びに
第1の入口ポート及び第2の入口ポートを含む複数のポート
を含み、前記第1の入口ポートは気相モノマーを前記処理チャンバ内に輸送し、前記第2の入口ポートは気相開始剤を前記処理チャンバ内に輸送し、前記処理チャンバは、前記モノマー及び前記開始剤をテキスタイル基材上に堆積させるように制御される、処理チャンバと、
紫外光の光源であって、前記光源は前記透明窓を介して前記処理チャンバ内に前記紫外光を導入するように位置決めされ、前記紫外光は前記モノマー及び前記開始剤を重合させて前記基材をポリマーで被覆する、光源と
を含むシステム。
1. A system for producing a coated textile using photoinitiated chemical vapor deposition, comprising:
A processing chamber comprising:
Transparent window,
a substrate stage disposed below the transparent window; and a treatment chamber including a plurality of ports including a first inlet port and a second inlet port, the first inlet port delivering a vapor phase monomer into the treatment chamber and the second inlet port delivering a vapor phase initiator into the treatment chamber, the treatment chamber being controlled to deposit the monomer and the initiator onto a textile substrate;
a source of ultraviolet light positioned to introduce the ultraviolet light into the processing chamber through the transparent window, the ultraviolet light polymerizing the monomer and the initiator to coat the substrate with a polymer.
前記処理チャンバは、前記基材ステージの下方に配置されたステージチラーをさらに含み、前記ステージチラーは、前記基材を-50℃~25℃の間の選択された温度に維持するように構成されている請求項1に記載のシステム。 The system of claim 1, wherein the processing chamber further includes a stage chiller disposed below the substrate stage, the stage chiller configured to maintain the substrate at a selected temperature between -50°C and 25°C. 前記複数のポートは真空ポートをさらに含み、前記真空ポートは、0.001~10Torr(約0.133~約1333Pa)の真空を維持するように構成されている請求項1に記載のシステム。 The system of claim 1, wherein the plurality of ports further includes a vacuum port, the vacuum port configured to maintain a vacuum of 0.001 to 10 Torr (approximately 0.133 to approximately 1333 Pa). 前記第1及び第2の入口ポートはそれぞれ、0.1~10cm/秒の流量で構成される請求項1に記載のシステム。 2. The system of claim 1, wherein the first and second inlet ports are each configured with a flow rate of 0.1 to 10 cm 3 /sec. 前記システムは、前記テキスタイル基材を被覆するために過酸化物の分解を含まない請求項1に記載のシステム。 The system of claim 1, wherein the system does not involve decomposition of a peroxide to coat the textile substrate. 前記処理チャンバは、前記モノマー及び前記開始剤を前記基材上に堆積させるのと同時に前記光源からの前記紫外光によって前記モノマー及び前記開始剤の重合が起こるように制御される請求項1に記載のシステム。 The system of claim 1, wherein the processing chamber is controlled to cause polymerization of the monomer and the initiator by the ultraviolet light from the light source simultaneously with deposition of the monomer and the initiator on the substrate. 前記テキスタイル基材は布地を含み、前記被覆は、前記布地の少なくともいくつかの繊維の周囲に共形的に堆積される請求項1に記載のシステム。 The system of claim 1, wherein the textile substrate comprises a fabric and the coating is conformally deposited around at least some fibers of the fabric. 前記テキスタイル基材を被覆する前記ポリマーは、アクリレート、ポリスチレン、又はポリ(ビニル)ポリマーのうちの1つを含む請求項1に記載のシステム。 The system of claim 1, wherein the polymer coating the textile substrate comprises one of an acrylate, a polystyrene, or a poly(vinyl) polymer. 前記光源からの前記紫外光は、390ナノメートル以下の波長を含む請求項1に記載のシステム。 The system of claim 1, wherein the ultraviolet light from the light source includes wavelengths of 390 nanometers or less. 前記テキスタイル基材を被覆する前記ポリマーはpドープされたポリ(3,4-エチレンジオキシチオフェン)を含む請求項1に記載のシステム。 The system of claim 1, wherein the polymer coating the textile substrate comprises p-doped poly(3,4-ethylenedioxythiophene). 光開始化学気相成長を使用して被覆テキスタイルを製造するためのシステムであって、
処理チャンバであって、
透明窓、
前記透明窓の下方に配置された基材ステージ、
前記基材ステージの下方に配置されたステージチラー、並びに
第1の入口ポート、第2の入口ポート及び真空ポートを含む複数のポートであって、前記第1の入口ポートは気相モノマーを前記処理チャンバ内に輸送し、前記第2の入口ポートは気相開始剤を前記処理チャンバ内に輸送する、複数のポート
を含む処理チャンバと、
紫外光の光源であって、前記光源は、前記透明窓を介して前記処理チャンバ内に前記紫外光を導入するように位置決めされ、前記紫外光は、前記モノマー及び前記開始剤を重合させて前記基材をポリマーで被覆する、光源と、
前記モノマー及び前記開始剤を前記基材上に堆積させるのと同時に前記光源からの前記紫外光によって前記モノマー及び前記開始剤の重合が起こるように構成されている制御装置と
を含むシステム。
1. A system for producing a coated textile using photoinitiated chemical vapor deposition, comprising:
A processing chamber comprising:
Transparent window,
A substrate stage disposed below the transparent window;
a stage chiller disposed below the substrate stage; and a process chamber including a plurality of ports including a first inlet port, a second inlet port, and a vacuum port, the first inlet port delivering a vapor phase monomer into the process chamber and the second inlet port delivering a vapor phase initiator into the process chamber;
a source of ultraviolet light positioned to introduce the ultraviolet light into the processing chamber through the transparent window, the ultraviolet light polymerizing the monomer and the initiator to coat the substrate with a polymer;
and a controller configured to cause polymerization of the monomer and the initiator by the ultraviolet light from the light source simultaneously with depositing the monomer and the initiator on the substrate.
前記ステージチラーは、前記基材を-50℃~25℃の間の選択された温度に維持するように構成されている請求項11に記載のシステム。 The system of claim 11, wherein the stage chiller is configured to maintain the substrate at a selected temperature between -50°C and 25°C. 前記真空ポートは、0.001~10Torr(約0.133~約1333Pa)の真空を維持するように構成されている請求項11に記載のシステム。 The system of claim 11, wherein the vacuum port is configured to maintain a vacuum of 0.001 to 10 Torr (approximately 0.133 to approximately 1333 Pa). 前記第1及び第2の入口ポートはそれぞれ、0.1~10cm/秒の流量で構成される請求項11に記載のシステム。 The system of claim 11, wherein the first and second inlet ports are each configured with a flow rate of 0.1 to 10 cm 3 /sec. 前記システムは、前記テキスタイル基材を被覆するために過酸化物の分解を含まない請求項11に記載のシステム。 The system of claim 11, wherein the system does not involve decomposition of a peroxide to coat the textile substrate. 前記テキスタイル基材は布地を含み、前記被覆は、前記布地の少なくともいくつかの繊維の周囲に共形的に堆積される請求項11に記載のシステム。 The system of claim 11, wherein the textile substrate comprises a fabric and the coating is conformally deposited around at least some fibers of the fabric. 前記テキスタイル基材を被覆する前記ポリマーは、アクリレート、ポリスチレン、又はポリ(ビニル)ポリマーのうちの1つを含む請求項11に記載のシステム。 The system of claim 11, wherein the polymer coating the textile substrate comprises one of an acrylate, a polystyrene, or a poly(vinyl) polymer. 前記光源からの前記紫外光は、390ナノメートル以下の波長を含む請求項11に記載のシステム。 The system of claim 11, wherein the ultraviolet light from the light source includes wavelengths of 390 nanometers or less. 前記テキスタイル基材を被覆する前記ポリマーはpドープされたポリ(3,4-エチレンジオキシチオフェン)を含む請求項11に記載のシステム。 The system of claim 11, wherein the polymer coating the textile substrate comprises p-doped poly(3,4-ethylenedioxythiophene).
JP2023567041A 2021-04-29 2022-04-29 Production of coated textiles using photoinitiated chemical vapor deposition. Pending JP2024521630A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163181466P 2021-04-29 2021-04-29
US63/181,466 2021-04-29
PCT/US2022/027041 WO2022232583A1 (en) 2021-04-29 2022-04-29 Producting coated textiles using photo-initiated chemical vapor deposition

Publications (1)

Publication Number Publication Date
JP2024521630A true JP2024521630A (en) 2024-06-04

Family

ID=83848728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023567041A Pending JP2024521630A (en) 2021-04-29 2022-04-29 Production of coated textiles using photoinitiated chemical vapor deposition.

Country Status (6)

Country Link
US (1) US20240209567A1 (en)
EP (1) EP4329948A4 (en)
JP (1) JP2024521630A (en)
KR (1) KR20240004773A (en)
CA (1) CA3217114A1 (en)
WO (1) WO2022232583A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024263930A1 (en) * 2023-06-23 2024-12-26 Soliyarn, Inc. Photo-initiated chemical vapor deposition systems and methods for continuous deposition of substances on substrates
WO2025155178A1 (en) * 2024-01-18 2025-07-24 단국대학교 산학협력단 Chemical vapor deposition apparatus for forming polyvinylidene fluoride and copolymer thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0155823B1 (en) * 1984-03-21 1989-07-26 Nihon Shinku Gijutsu Kabushiki Kaisha Improvements in or relating to the covering of substrates with synthetic resin films
US6403750B1 (en) * 1999-06-03 2002-06-11 Edward J. A. Pope Apparatus and process for making ceramic composites from photo-curable pre-ceramic polymers
US6628875B2 (en) * 2001-07-20 2003-09-30 Corning Incorporated Optical fibers possessing a primary coating with a higher degree of cure and methods of making
US7563734B2 (en) * 2005-04-11 2009-07-21 Massachusetts Institute Of Technology Chemical vapor deposition of antimicrobial polymer coatings
US10283476B2 (en) * 2017-03-15 2019-05-07 Immunolight, Llc. Adhesive bonding composition and electronic components prepared from the same
WO2021194931A1 (en) * 2020-03-25 2021-09-30 Soliyarn Llc Print heads and continuous processes for producing electrically conductive materials

Also Published As

Publication number Publication date
KR20240004773A (en) 2024-01-11
EP4329948A4 (en) 2025-03-26
EP4329948A1 (en) 2024-03-06
CA3217114A1 (en) 2022-11-03
US20240209567A1 (en) 2024-06-27
WO2022232583A8 (en) 2023-12-21
WO2022232583A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
JP7203144B2 (en) Surface modified substrate
JP2024521630A (en) Production of coated textiles using photoinitiated chemical vapor deposition.
Şakalak et al. Roll-to roll initiated chemical vapor deposition of super hydrophobic thin films on large-scale flexible substrates
Yoo et al. A stacked polymer film for robust superhydrophobic fabrics
CN1946488B (en) Coating Polymer Layers Using Low Power Pulsed Plasma in a Large Volume Plasma Chamber
Tenhaeff et al. Initiated and oxidative chemical vapor deposition of polymeric thin films: iCVD and oCVD
Alf et al. Chemical vapor deposition of conformal, functional, and responsive polymer films
US9340922B2 (en) Method of fabricating surface body having superhydrophobicity and hydrophilicity
US10543516B2 (en) Liquid-impregnated coatings and devices containing the same
Bahners et al. Recent approaches to highly hydrophobic textile surfaces
ES2429111T3 (en) Waterproof breathable membranes and manufacturing process
WO2013102011A2 (en) Coatings for electrowetting and electrofluidic devices
WO2007019495A2 (en) Chemical vapor deposition of hydrogel films
Gleason Overview of chemically vapor deposited (CVD) polymers
US20180009001A1 (en) Methods for the vapor phase deposition of polymer thin films
CN104947074B (en) A kind of textile surfaces high molecular film method based on chemical vapor deposition
Coplan et al. Anti-fogging surfaces produced by plasma polymerization of acrylic acid
Oh et al. A fully transparent, stretchable multi‐layered water barrier thin film for the passivation of underwater device applications
WO2024263930A1 (en) Photo-initiated chemical vapor deposition systems and methods for continuous deposition of substances on substrates
KR101746632B1 (en) Method of Preparing Ionic Crosslinked Polymer Thin Films Using Initiated Chemical Vapor Deposition
Zhang et al. Environment-responsive coatings with recoverable in-air superamphiphobicity and underwater superoleophobicity
Tuna et al. Anti-fogging properties of amphiphilic copolymer films deposited by chemical vapor deposition (CVD)
Edward et al. Plasma-based treatments of textiles for water repellency
JP2025500740A (en) Systems, methods and compositions for producing liquid repellent materials - Patents.com
White et al. Liquid-impregnated coatings and devices containing the same