JP2025071393A - Resin composition, resin-coated copper foil and composite material - Google Patents
Resin composition, resin-coated copper foil and composite material Download PDFInfo
- Publication number
- JP2025071393A JP2025071393A JP2022057710A JP2022057710A JP2025071393A JP 2025071393 A JP2025071393 A JP 2025071393A JP 2022057710 A JP2022057710 A JP 2022057710A JP 2022057710 A JP2022057710 A JP 2022057710A JP 2025071393 A JP2025071393 A JP 2025071393A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- weight
- resin composition
- less
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/088—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
【課題】銅箔とガラス基板のラミネート工法による接着を可能とし、かつ、耐熱性に優れる樹脂組成物を提供する。【解決手段】ポリアミド樹脂、ポリイミド樹脂及びポリアクリル樹脂からなる群から選択される、2種以上のポリマーと、1種以上のエポキシ樹脂と、硬化剤と、を含み、2種以上のポリマーのうち、少なくとも1種が、重量平均分子量50000以上のポリマーであり、少なくとも別の1種が、重量平均分子量50000未満のポリマーである、樹脂組成物。【選択図】なし[Problem] To provide a resin composition that enables bonding between copper foil and glass substrates by lamination and has excellent heat resistance. [Solution] The resin composition contains two or more polymers selected from the group consisting of polyamide resins, polyimide resins, and polyacrylic resins, one or more epoxy resins, and a curing agent, wherein at least one of the two or more polymers has a weight-average molecular weight of 50,000 or more, and at least one other polymer has a weight-average molecular weight of less than 50,000. [Selected Figures] None
Description
本発明は、樹脂組成物、樹脂付銅箔及び複合材料に関するものである。 The present invention relates to a resin composition, a resin-coated copper foil, and a composite material.
自動車用や建築物用のガラスにアンテナ機能を付与したガラスアンテナ、各種フラットパネルディスプレイ、ガラスインターポーザ等には、ガラス基板が用いられる。例えば、特許文献1(国際公開第2020/195661号)には、(a)引張弾性率が200MPa以下であるアクリルポリマーと、(b)25℃で固形の樹脂と、(c)(a)成分及び(b)成分の少なくとも1つと架橋可能な、25℃で液状の樹脂と、(d)重合開始剤とを含む樹脂組成物であって、(a)成分、(b)成分及び(c)成分の総量100重量部に対して、(a)成分の含有量が35重量部以上93重量部以下であり、(b)成分の含有量が3重量部以上60重量部以下であり、(c)成分の含有量が1重量部以上25重量部以下である、ガラス基板への適用を意図した樹脂組成物が開示されている。 Glass substrates are used for glass antennas that impart antenna functions to glass for automobiles and buildings, various flat panel displays, glass interposers, and the like. For example, Patent Document 1 (International Publication No. WO 2020/195661) discloses a resin composition intended for application to glass substrates, which comprises (a) an acrylic polymer having a tensile modulus of elasticity of 200 MPa or less, (b) a resin that is solid at 25°C, (c) a resin that is liquid at 25°C and can be crosslinked with at least one of the components (a) and (b), and (d) a polymerization initiator, and in which the content of the component (a) is 35 parts by weight or more and 93 parts by weight or less, the content of the component (b) is 3 parts by weight or more and 60 parts by weight or less, and the content of the component (c) is 1 part by weight or more and 25 parts by weight or less, relative to a total amount of 100 parts by weight of the components (a), (b), and (c).
また、樹脂組成物は、上述したガラス基板以外にも様々な用途に用いられており、例えばフレキシブルプリント配線板等の電子機器にも用いられている。例えば、特許文献2(特開2007-168123号公報)には、樹脂フィルムの少なくとも一方面上に金属箔が設けられた金属箔付フレキシブル基板の製造方法であって、樹脂フィルムに金属箔を300℃以上500℃以下で熱圧着する工程を備え、樹脂フィルムは非熱可塑性ポリイミド樹脂を含む、製造方法が開示されている。特許文献3(国際公開第2018/139559号)には、硬化性樹脂と、主鎖にイミド骨格、末端に架橋性官能基を有し、数平均分子量が4000以下であるイミドオリゴマーと、硬化促進剤とを含有し、硬化物のポリイミドに対する初期接着力が3.4N/cm以上であり、かつ、200℃で100時間保管した後の硬化物のポリイミドに対する接着力が初期接着力に対して0.8倍以上である硬化性樹脂組成物が開示されている。特許文献4(特開平5-179220号公報)には、(A)可溶性の芳香族ポリアミドイミド100重量部、(B)エポキシ樹脂25重量部以上300重量部以下、及び(C)エポキシ硬化剤が、樹脂成分として含有されている耐熱性の接着剤が開示されている。 In addition to the above-mentioned glass substrate, the resin composition is also used in various applications, for example, in electronic devices such as flexible printed wiring boards. For example, Patent Document 2 (JP 2007-168123 A) discloses a method for manufacturing a metal foil-attached flexible substrate in which a metal foil is provided on at least one side of a resin film, the method comprising a step of thermocompressing the metal foil to the resin film at 300°C or more and 500°C or less, the resin film containing a non-thermoplastic polyimide resin. Patent Document 3 (WO 2018/139559 A) discloses a curable resin composition that contains a curable resin, an imide oligomer having an imide skeleton in the main chain and a crosslinkable functional group at the end and a number average molecular weight of 4000 or less, and a curing accelerator, and in which the initial adhesive strength of the cured product to the polyimide is 3.4 N/cm or more, and the adhesive strength of the cured product to the polyimide after storage at 200°C for 100 hours is 0.8 times or more the initial adhesive strength. Patent Document 4 (JP Patent Publication 5-179220) discloses a heat-resistant adhesive that contains, as resin components, (A) 100 parts by weight of a soluble aromatic polyamideimide, (B) 25 to 300 parts by weight of an epoxy resin, and (C) an epoxy curing agent.
前述したように、樹脂組成物は様々な用途に用いられているが、特許文献2から4に開示されるようにプリント配線板の中でも、例えばプリプレグのような樹脂材料と金属箔の貼り合わせ等に適用する場合とは異なり、樹脂組成物を介して金属箔(例えば銅箔)とガラス基板を貼り合わせる場合にはそれ特有の問題が発生する。例えば、樹脂層としての樹脂組成物を介して銅箔とガラス基板を貼り合わせることで複合材料を作製する場合に、プレス工法を用いると、時間が掛かり複合材料自体のサイズも制限されるだけでなくガラス基板が割れてしまう可能性がある。一方で、ラミネート工法は、プレス工法よりも低い圧力でロール・トゥ・ロールにより2枚以上のシートを貼り合わせる工法であるため、連続的に生産が可能であり、ガラス基板が割れる可能性も低い。よって、樹脂層としての樹脂組成物を介して銅箔とガラス基板を貼り合わせる場合にはプレス工法に代わりラミネート工法を用いることが望ましい。しかしながら、ラミネート工法には上述した利点があるものの、プレス工法程圧力を高くすることは難しいため、銅箔とガラス基板のラミネート工法による接着を可能とする樹脂組成物が求められる。ところで、このような樹脂組成物を用いて所望の製品を製造する場合、その製造工程におけるラミネート時に、ボイド発生、樹脂の相分離、反りの発生、クラックの発生等の問題が起こりうる。そのため、これらの問題を解消できる樹脂組成物が求められる。また、そのような樹脂組成物には製品製造時の高温に耐えうる耐熱性も望まれる。 As mentioned above, resin compositions are used in various applications, but unlike applications such as laminating a resin material such as prepreg with a metal foil, as disclosed in Patent Documents 2 to 4, when laminating a metal foil (e.g., copper foil) with a glass substrate through a resin composition, problems specific to the application arise. For example, when a composite material is produced by laminating a copper foil with a glass substrate through a resin composition as a resin layer, if a press method is used, not only is it time-consuming and the size of the composite material itself is limited, but the glass substrate may also be broken. On the other hand, the lamination method is a method of laminating two or more sheets by roll-to-roll at a lower pressure than the press method, so continuous production is possible and the possibility of the glass substrate being broken is low. Therefore, when laminating a copper foil with a glass substrate through a resin composition as a resin layer, it is desirable to use the lamination method instead of the press method. However, although the lamination method has the above-mentioned advantages, it is difficult to increase the pressure to the same level as the press method, so a resin composition that enables adhesion of copper foil with a glass substrate by the lamination method is required. However, when a desired product is manufactured using such a resin composition, problems such as the generation of voids, phase separation of the resin, warping, and cracks may occur during lamination in the manufacturing process. Therefore, a resin composition that can solve these problems is required. In addition, such a resin composition is also required to have heat resistance that can withstand the high temperatures that are encountered during product manufacturing.
本発明者らは、今般、ポリアミド樹脂、ポリイミド樹脂及びポリアクリル樹脂から選択される2種以上のポリマー、エポキシ樹脂、及び硬化剤を含み、2種以上のポリマーのうち、少なくとも1種が重量平均分子量50000以上のポリマーであり、少なくとも別の1種が重量平均分子量50000未満のポリマーである樹脂組成物が、銅箔とガラス基板のラミネート工法による接着を可能とし、かつ、耐熱性にも優れるとの知見を得た。 The present inventors have now discovered that a resin composition containing two or more polymers selected from polyamide resin, polyimide resin, and polyacrylic resin, an epoxy resin, and a curing agent, at least one of which has a weight average molecular weight of 50,000 or more and at least one of which has a weight average molecular weight of less than 50,000, enables bonding of copper foil and a glass substrate by a lamination method and also has excellent heat resistance.
したがって、本発明の目的は、銅箔とガラス基板のラミネート工法による接着を可能とし、かつ、耐熱性に優れる樹脂組成物を提供することにある。 Therefore, the object of the present invention is to provide a resin composition that enables bonding of copper foil and a glass substrate by a lamination method and has excellent heat resistance.
本発明の一態様によれば、
ポリアミド樹脂、ポリイミド樹脂及びポリアクリル樹脂からなる群から選択される、2種以上のポリマーと、
1種以上のエポキシ樹脂と、
硬化剤と、
を含み、前記2種以上のポリマーのうち、
少なくとも1種が、重量平均分子量50000以上のポリマーであり、
少なくとも別の1種が、重量平均分子量50000未満のポリマーである、樹脂組成物が提供される。
According to one aspect of the present invention,
Two or more polymers selected from the group consisting of polyamide resins, polyimide resins, and polyacrylic resins;
One or more epoxy resins;
A hardener;
Among the two or more polymers,
At least one of the polymers has a weight average molecular weight of 50,000 or more,
A resin composition is provided, wherein at least one of the other is a polymer having a weight average molecular weight of less than 50,000.
本発明の他の一態様によれば、
ISO25178に準拠して測定される表面性状のアスペクト比Strが0.3以上1以下である平滑面を備えた銅層と、
前記平滑面に設けられる、前記樹脂組成物で構成される樹脂層と、
を備えた、樹脂付銅箔が提供される。
According to another aspect of the present invention,
A copper layer having a smooth surface with an aspect ratio Str of a surface property of 0.3 or more and 1 or less as measured in accordance with ISO 25178;
a resin layer formed on the smooth surface and composed of the resin composition;
The present invention provides a resin-coated copper foil comprising:
本発明の他の一態様によれば、
ガラス基板と、
前記ガラス基板の少なくとも一方の面に、前記樹脂層が前記ガラス基板と接するように設けられる、前記樹脂付銅箔と、
を備えた、複合材料が提供される。
According to another aspect of the present invention,
A glass substrate;
the resin-coated copper foil being provided on at least one surface of the glass substrate such that the resin layer is in contact with the glass substrate;
A composite material is provided, comprising:
樹脂組成物
本発明の樹脂組成物は、ポリアミド樹脂、ポリイミド樹脂及びポリアクリル樹脂からなる群から選択される2種以上のポリマーと、1種以上のエポキシ樹脂と、硬化剤とを含む。この2種以上のポリマーは、少なくとも1種が重量平均分子量50000以上のポリマーであり、少なくとも別の1種が重量平均分子量50000未満のポリマーである。このように、上記2種以上のポリマー、エポキシ樹脂、及び硬化剤を含む樹脂組成物は、銅箔とガラス基板のラミネート工法による接着を可能とし、かつ、優れた耐熱性を呈する。そして、耐熱性に優れる樹脂組成物は、樹脂組成物を備えた製品を製造する際の高温に耐えることができる。
Resin composition The resin composition of the present invention contains two or more polymers selected from the group consisting of polyamide resins, polyimide resins, and polyacrylic resins, one or more epoxy resins, and a curing agent. At least one of the two or more polymers has a weight average molecular weight of 50,000 or more, and at least another has a weight average molecular weight of less than 50,000. In this way, the resin composition containing the two or more polymers, the epoxy resin, and the curing agent enables adhesion between copper foil and a glass substrate by a lamination method, and exhibits excellent heat resistance. And, the resin composition having excellent heat resistance can withstand high temperatures when manufacturing a product equipped with the resin composition.
前述のとおり、樹脂層としての樹脂組成物を介して銅箔とガラス基板を貼り合わせることで複合材料を作製する場合には、連続的に生産が可能でありガラス基板が割れる可能性も低いラミネート工法が望ましい。しかしながら、ラミネート工法には上述した利点があるものの、プレス工法程圧力を高くすることは難しいため、銅箔とガラス基板のラミネート工法による接着を可能とする樹脂組成物が求められる。ところで、このような樹脂組成物を用いて所望の製品を製造する場合、その製造工程におけるラミネート時に、ボイド発生、樹脂の相分離、反りの発生、クラックの発生等の問題が起こりうる。また、通常、ラミネートだけでは樹脂のCステージ化は完了せず、本硬化のための追加の熱処理が必要となる。この追加の熱処理時にも反りの発生、クラックの発生等の問題が起こりうる。さらに、後工程でも、焼き鈍し(ベーキング)や部品実装等のために加熱工程を経る可能性もあり、そのような製造時の高温に耐えうる耐熱性も望まれる。この点、本発明の樹脂組成物によれば、上記問題を好都合に解消することができる。ここで、樹脂組成物の耐熱性等の特性は、例えば、硬化後のCステージ状態における200℃での貯蔵弾性率、並びに樹脂組成物を介して銅箔とガラス基板を貼り合わせた複合材料における、ボイド発生の程度、樹脂とガラス基板又は銅箔との密着性や接着強度、及び反りの程度を評価することで判断できる。 As mentioned above, when a composite material is produced by bonding a copper foil and a glass substrate via a resin composition as a resin layer, a lamination method is desirable because it allows continuous production and is less likely to crack the glass substrate. However, although the lamination method has the above-mentioned advantages, it is difficult to increase the pressure as much as the press method, so a resin composition that enables adhesion of a copper foil and a glass substrate by the lamination method is required. However, when a desired product is produced using such a resin composition, problems such as void generation, resin phase separation, warping, and cracking may occur during lamination in the manufacturing process. In addition, the resin is usually not brought to the C stage by lamination alone, and additional heat treatment for main curing is required. Problems such as warping and cracking may also occur during this additional heat treatment. Furthermore, in the later process, a heating process may be performed for annealing (baking) or component mounting, and heat resistance that can withstand such high temperatures during manufacturing is also desired. In this regard, the resin composition of the present invention can conveniently solve the above problems. Here, the properties of the resin composition, such as heat resistance, can be determined, for example, by evaluating the storage modulus at 200°C in the C-stage state after curing, as well as the degree of void generation, adhesion and adhesive strength between the resin and the glass substrate or copper foil, and the degree of warping in a composite material in which copper foil and a glass substrate are bonded together via the resin composition.
本発明の樹脂組成物は、硬化後のCステージ状態において、200℃における貯蔵弾性率が10MPa以上であるのが好ましく、より好ましくは30MPa以上、さらに好ましくは300MPa以上である。このように貯蔵弾性率が高いと、樹脂組成物の加熱時の変形やクラックの発生を抑制することができ、耐熱性を高くすることができる。200℃における貯蔵弾性率は高い方が好ましく上限値は特に限定されないが、典型的には10000MPa以下、より典型的には5000MPa以下、さらに典型的には1000MPa以下である。200℃における貯蔵弾性率は、DMA(動的粘弾性測定)装置を用いて測定される。具体的には、このDMA測定は、JIS K 7244-4:1999に準拠して、試験片幅5.0mm、試験片厚み100μmの樹脂をクランプ間長さが20.0mmのクランプに設置し、大気雰囲気下において30℃から280℃まで5℃/minの昇温速度で加熱することにより、測定周波数1Hzで行われる。 The resin composition of the present invention preferably has a storage modulus of 10 MPa or more at 200°C in the C-stage state after curing, more preferably 30 MPa or more, and even more preferably 300 MPa or more. Such a high storage modulus can suppress deformation and cracking during heating of the resin composition, and can improve heat resistance. A high storage modulus at 200°C is preferable, and the upper limit is not particularly limited, but is typically 10,000 MPa or less, more typically 5,000 MPa or less, and even more typically 1,000 MPa or less. The storage modulus at 200°C is measured using a DMA (dynamic viscoelasticity measurement) device. Specifically, this DMA measurement is performed in accordance with JIS K 7244-4:1999, by placing a resin with a test piece width of 5.0 mm and a test piece thickness of 100 μm in a clamp with a clamp length of 20.0 mm, and heating it from 30°C to 280°C at a temperature increase rate of 5°C/min in an air atmosphere at a measurement frequency of 1 Hz.
本発明の樹脂組成物は、ポリアミド樹脂、ポリイミド樹脂及びポリアクリル樹脂からなる群から選択される、2種以上のポリマーを含む。これらポリマーは、ラミネート時の密着性及び貯蔵弾性率の向上に寄与する。ポリアミド樹脂は、アミド構造を主鎖に有するポリマーであれば特に限定されないが、エポキシ樹脂と併用する観点から可溶性ポリアミドが好ましく、より好ましくはエポキシ樹脂と反応可能な官能基を有する可溶性ポリアミドである。ポリイミド樹脂は、イミド構造を主鎖に有するポリマーであれば特に限定はされないが、エポキシ樹脂と併用する観点から可溶性ポリイミドが好ましく、より好ましくはエポキシ樹脂と反応可能な官能基を有する可溶性ポリイミドである。ポリアクリル樹脂の例としては、アクリル酸エステル重合体、メタクリル酸エステル重合体等が挙げられ、好ましくはエポキシ樹脂と反応可能な官能基を有するものである。エポキシ樹脂と反応可能な官能基の例としては、フェノール性水酸基、アミノ基(一級アミン及び二級アミン)、カルボキシル基(酸無水物を含む)、シアネート基、メルカプト基等が挙げられる。 The resin composition of the present invention contains two or more polymers selected from the group consisting of polyamide resins, polyimide resins, and polyacrylic resins. These polymers contribute to improving adhesion and storage modulus during lamination. The polyamide resin is not particularly limited as long as it is a polymer having an amide structure in the main chain, but from the viewpoint of using it in combination with an epoxy resin, a soluble polyamide is preferable, and more preferably a soluble polyamide having a functional group capable of reacting with an epoxy resin. The polyimide resin is not particularly limited as long as it is a polymer having an imide structure in the main chain, but from the viewpoint of using it in combination with an epoxy resin, a soluble polyimide is preferable, and more preferably a soluble polyimide having a functional group capable of reacting with an epoxy resin. Examples of polyacrylic resins include acrylic acid ester polymers and methacrylic acid ester polymers, and preferably have functional groups capable of reacting with an epoxy resin. Examples of functional groups capable of reacting with an epoxy resin include phenolic hydroxyl groups, amino groups (primary amines and secondary amines), carboxyl groups (including acid anhydrides), cyanate groups, mercapto groups, and the like.
ポリアミド樹脂、ポリイミド樹脂及びポリアクリル樹脂からなる群から選択される、2種以上のポリマーの合計含有量は、樹脂組成物の総量100重量部に対して、16重量部以上70重量部以下であるのが好ましく、より好ましくは30重量部以上68重量部以下、さらに好ましくは33重量部以上45重量部以下、特に好ましくは35重量部以上42重量部以下である。 The total content of two or more polymers selected from the group consisting of polyamide resins, polyimide resins, and polyacrylic resins is preferably 16 parts by weight or more and 70 parts by weight or less, more preferably 30 parts by weight or more and 68 parts by weight or less, even more preferably 33 parts by weight or more and 45 parts by weight or less, and particularly preferably 35 parts by weight or more and 42 parts by weight or less, relative to 100 parts by weight of the total amount of the resin composition.
この2種以上のポリマーのうち、少なくとも1種がポリアミド樹脂であり、少なくとも別の1種がポリイミド樹脂であるのが好ましい。このように上記2種以上のポリマーが、少なくともポリアミド樹脂とポリイミド樹脂を含むことで、ラミネート可能な温度域を広く確保することができる。 Of these two or more polymers, it is preferable that at least one is a polyamide resin and at least one other is a polyimide resin. In this way, the above two or more polymers contain at least a polyamide resin and a polyimide resin, so that a wide temperature range in which lamination is possible can be ensured.
ポリアミド樹脂、ポリイミド樹脂及びポリアクリル樹脂からなる群から選択される、2種以上のポリマーのうち、少なくとも1種が重量平均分子量50000以上のポリマーであり、少なくとも別の1種が重量平均分子量50000未満のポリマーである。このように上記2種以上のポリマーが、重量平均分子量50000以上のポリマーを含むことで、硬化後の樹脂組成物の脆さを改善できる一方で、ラミネート性や接着強度が低下する可能性がある。重量平均分子量50000未満のポリマーを含むことで、ラミネート性や接着強度を向上させることができる一方で、硬化後の樹脂組成物の貯蔵弾性率が低下する可能性がある。すなわち、上記2種以上のポリマーが、重量平均分子量50000以上のポリマーと、重量平均分子量50000未満のポリマーとを含むことで、樹脂組成物の物性を調整することができ、特に、ラミネート性や接着強度を改善することができる。 At least one of the two or more polymers selected from the group consisting of polyamide resins, polyimide resins, and polyacrylic resins is a polymer having a weight average molecular weight of 50,000 or more, and at least another is a polymer having a weight average molecular weight of less than 50,000. In this way, the two or more polymers contain a polymer having a weight average molecular weight of 50,000 or more, which can improve the brittleness of the resin composition after curing, but can also reduce lamination properties and adhesive strength. The two or more polymers contain a polymer having a weight average molecular weight of less than 50,000, which can improve lamination properties and adhesive strength, but can also reduce the storage modulus of the resin composition after curing. In other words, the two or more polymers contain a polymer having a weight average molecular weight of 50,000 or more and a polymer having a weight average molecular weight of less than 50,000, which can adjust the physical properties of the resin composition, and can particularly improve lamination properties and adhesive strength.
また、樹脂組成物の物性をさらに調整する観点から、樹脂組成物は、樹脂組成物の総量100重量部に対して、重量平均分子量50000未満のポリマーを15重量部以上70重量部以下の割合で含むのが好ましく、より好ましくは20重量部以上60重量部以下、さらに好ましくは20重量部以上50重量部以下、特に好ましくは20重量部以上40重量部以下の割合で含む。さらに、樹脂組成物は、樹脂組成物の総量100重量部に対して、重量平均分子量50000以上のポリマーを1重量部以上20重量部以下の割合で含むのが好ましく、より好ましくは1重量部以上18重量部以下、さらに好ましくは5重量部以上18重量部以下、特に好ましくは5重量部以上15重量部以下の割合で含む。 In addition, from the viewpoint of further adjusting the physical properties of the resin composition, the resin composition preferably contains 15 parts by weight or more and 70 parts by weight or less of a polymer having a weight average molecular weight of less than 50,000, relative to 100 parts by weight of the total amount of the resin composition, more preferably 20 parts by weight or more and 60 parts by weight or less, even more preferably 20 parts by weight or more and 50 parts by weight or less, and particularly preferably 20 parts by weight or more and 40 parts by weight or less. Furthermore, the resin composition preferably contains 1 part by weight or more and 20 parts by weight or less of a polymer having a weight average molecular weight of 50,000 or more, relative to 100 parts by weight of the total amount of the resin composition, more preferably 1 part by weight or more and 18 parts by weight or less, even more preferably 5 parts by weight or more and 18 parts by weight or less, and particularly preferably 5 parts by weight or more and 15 parts by weight or less.
本発明の樹脂組成物は、1種以上のエポキシ樹脂を含み、この1種以上のエポキシ樹脂の少なくとも1種がナフタレン骨格を有するのが好ましい。エポキシ樹脂は、ラミネート性や硬化後の樹脂組成物における貯蔵弾性率の向上に寄与するが、その少なくとも1種がナフタレン骨格を有することで硬化後の樹脂組成物により高い貯蔵弾性率をもたらす。 The resin composition of the present invention contains one or more epoxy resins, and at least one of the one or more epoxy resins preferably has a naphthalene skeleton. The epoxy resin contributes to improving the lamination properties and storage modulus of the cured resin composition, and at least one of the epoxy resins has a naphthalene skeleton, which provides a higher storage modulus to the cured resin composition.
上記1種以上のエポキシ樹脂の合計含有量は、樹脂組成物の総量100重量部に対して、30重量部以上70重量部以下であるのが好ましく、より好ましくは35重量部以上65重量部以下、さらに好ましくは45重量部以上65重量部以下、特に好ましくは50重量部以上63重量部以下である。 The total content of the one or more epoxy resins is preferably 30 parts by weight or more and 70 parts by weight or less, more preferably 35 parts by weight or more and 65 parts by weight or less, even more preferably 45 parts by weight or more and 65 parts by weight or less, and particularly preferably 50 parts by weight or more and 63 parts by weight or less, based on 100 parts by weight of the total amount of the resin composition.
ナフタレン骨格を有するエポキシ樹脂の例としては、ナフタレン骨格を有するものであれば特に限定されないが、下記式:
樹脂組成物は、樹脂組成物の総量100重量部に対して、ナフタレン骨格を有するエポキシ樹脂を30重量部以上70重量部以下の割合で含むのが好ましく、より好ましくは40重量部以上70重量部以下、さらに好ましくは50重量部以上70重量部以下、特に好ましくは55重量部以上65重量部以下の割合で含む。 The resin composition preferably contains 30 to 70 parts by weight of an epoxy resin having a naphthalene skeleton, more preferably 40 to 70 parts by weight, even more preferably 50 to 70 parts by weight, and most preferably 55 to 65 parts by weight, per 100 parts by weight of the total amount of the resin composition.
また、官能基密度の調整の観点から、この1種以上のエポキシ樹脂が2種以上のエポキシ樹脂を含み、そのうち、少なくとも1種が官能基数3以上のエポキシ樹脂であり、少なくとも別の1種が官能基数3未満のエポキシ樹脂であるのが好ましい。また、これら2種以上のエポキシ樹脂のうち、少なくとも1種が1分子あたりのエポキシ基の官能基数が3以上のエポキシ樹脂であり、少なくとも別の1種が1分子あたりのエポキシ基の官能基数が3未満のエポキシ樹脂であるのが好ましい。なお、本明細書において官能基数とは、樹脂中に存在する1分子あたりの平均の官能基数を意味する。例えば、繰り返し単位を有し、その繰り返し単位中に官能基を持つ構造の樹脂は、製造上、全ての分子の繰り返し単位の数(一般的にはnで表される)を一律にすることは難しく、繰り返し単位の数が異なる分子が混在している場合がある。その場合、官能基数が異なる分子が混在し得るため、樹脂中に存在する分子における、官能基数×存在比率の総和(すなわち、官能基数を存在比率で平均化した値であり、存在比率の合計は1である。)を樹脂の官能基数として用いる。例えば、樹脂中に存在する官能基数が2である分子の存在比率が0.5、官能基数が3である分子の存在比率が0.5の時、当該樹脂の官能基数は、2×0.5+3×0.5=2.5とする。官能基数3以上のエポキシ樹脂を含むことで、硬化後の樹脂組成物の耐熱性を向上させることができる一方で、硬化後の樹脂組成物が脆くなる可能性がある。官能基数3未満のエポキシ樹脂を含むことで、硬化後の樹脂組成物の脆さを改善できる一方で、硬化後の樹脂組成物の耐熱性が低下する可能性がある。すなわち、エポキシ樹脂が、官能基数3以上のエポキシ樹脂と、官能基数3未満のエポキシ樹脂とを含むことで、樹脂組成物の物性を調整することができ、特に、硬化後の樹脂組成物において耐熱性を確保する一方で脆さを改善することができる。官能基数3以上のエポキシ樹脂は、モノマーである場合は、好ましくは3以上4以下の官能基数を有する。また、エポキシ樹脂は、ノボラック型のように主鎖に多数の官能基を有する場合、官能基数3以上かつ官能基当量が100g/eq以上400g/eq以下であることが好ましい。エポキシ樹脂の例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、トリスフェノール型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、トリアジン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビナフチル型エポキシ樹脂、アントラセン型エポキシ樹脂等が挙げられ、これら列挙したエポキシ樹脂のエポキシ基の官能基数が3以上のものと3未満のものを組み合わせて用いることができる。 In addition, from the viewpoint of adjusting the functional group density, it is preferable that the one or more epoxy resins include two or more epoxy resins, at least one of which is an epoxy resin with a functional group number of 3 or more, and at least another of which is an epoxy resin with a functional group number of less than 3. It is also preferable that at least one of these two or more epoxy resins is an epoxy resin with a functional group number of 3 or more per molecule, and at least another of which is an epoxy resin with a functional group number of less than 3 per molecule. In this specification, the number of functional groups means the average number of functional groups per molecule present in the resin. For example, in a resin having a structure in which a repeating unit and a functional group is included in the repeating unit, it is difficult to make the number of repeating units (generally represented by n) of all molecules uniform in manufacturing, and molecules with different numbers of repeating units may be mixed. In that case, since molecules with different numbers of functional groups may be mixed, the sum of the number of functional groups x the existence ratio in the molecules present in the resin (i.e., the value obtained by averaging the number of functional groups by the existence ratio, and the total existence ratio is 1.) is used as the number of functional groups of the resin. For example, when the ratio of molecules having a functional group number of 2 in a resin is 0.5 and the ratio of molecules having a functional group number of 3 is 0.5, the number of functional groups of the resin is 2×0.5+3×0.5=2.5. By including an epoxy resin having a functional group number of 3 or more, the heat resistance of the resin composition after curing can be improved, but the resin composition after curing may become brittle. By including an epoxy resin having a functional group number of less than 3, the brittleness of the resin composition after curing can be improved, but the heat resistance of the resin composition after curing may decrease. That is, by including an epoxy resin having a functional group number of 3 or more and an epoxy resin having a functional group number of less than 3, the physical properties of the resin composition can be adjusted, and in particular, the heat resistance of the resin composition after curing can be secured while the brittleness can be improved. When the epoxy resin having a functional group number of 3 or more is a monomer, it preferably has a functional group number of 3 or more and 4 or less. Furthermore, when the epoxy resin has a large number of functional groups in the main chain, such as a novolac type, it is preferable that the number of functional groups is 3 or more and the functional group equivalent is 100 g/eq or more and 400 g/eq or less. Examples of epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol E type epoxy resins, cresol novolac type epoxy resins, phenol novolac type epoxy resins, alkyl type epoxy resins, glycidylamine type epoxy resins, glycidyl ester type epoxy resins, phenol aralkyl type epoxy resins, trisphenol type epoxy resins, tetraphenylethane type epoxy resins, biphenyl type epoxy resins, bisphenol fluorene type epoxy resins, triazine type epoxy resins, isocyanurate type epoxy resins, alicyclic epoxy resins, heterocyclic epoxy resins, naphthol aralkyl type epoxy resins, naphthol novolac type epoxy resins, naphthol-phenol co-condensed novolac type epoxy resins, naphthol-cresol co-condensed novolac type epoxy resins, naphthalene type epoxy resins, naphthylene ether type epoxy resins, binaphthyl type epoxy resins, anthracene type epoxy resins, and the like. These epoxy resins having a functional number of epoxy groups of 3 or more and less than 3 can be used in combination.
官能基数3以上のエポキシ樹脂の含有量は、樹脂組成物の総量100重量部に対して、15重量部以上70重量部以下であるのが好ましく、より好ましくは20重量部以上50重量部以下、さらに好ましくは25重量部以上45重量部以下、特に好ましくは30重量部以上40重量部以下である。官能基数3未満のエポキシ樹脂の含有量は、樹脂組成物の総量100重量部に対して、10重量部以上65重量部以下であるのが好ましく、より好ましくは12重量部以上50重量部以下、さらに好ましくは14重量部以上40重量部以下、特に好ましくは16重量部以上30重量部以下である。 The content of the epoxy resin having 3 or more functional groups is preferably 15 parts by weight or more and 70 parts by weight or less, more preferably 20 parts by weight or more and 50 parts by weight or less, even more preferably 25 parts by weight or more and 45 parts by weight or less, and particularly preferably 30 parts by weight or more and 40 parts by weight or less, based on 100 parts by weight of the total amount of the resin composition. The content of the epoxy resin having less than 3 functional groups is preferably 10 parts by weight or more and 65 parts by weight or less, more preferably 12 parts by weight or more and 50 parts by weight or less, even more preferably 14 parts by weight or more and 40 parts by weight or less, and particularly preferably 16 parts by weight or more and 30 parts by weight or less, based on 100 parts by weight of the total amount of the resin composition.
本発明の樹脂組成物は、硬化剤を含む。硬化剤は、上記2種以上のポリマーと、1種以上のエポキシ樹脂との架橋反応の促進や、エポキシ樹脂同士の反応に寄与する。硬化剤は、エポキシの反応を促進できるものであれば特に限定されないが、好ましい例としては、イミダゾール系硬化剤、リン系硬化剤等が挙げられる。 The resin composition of the present invention contains a curing agent. The curing agent contributes to promoting the crosslinking reaction between the two or more polymers and one or more epoxy resins, and to the reaction between epoxy resins. The curing agent is not particularly limited as long as it can promote the epoxy reaction, but preferred examples include imidazole-based curing agents and phosphorus-based curing agents.
硬化剤の含有量は、樹脂組成物の総量100重量部に対して、0.3重量部以上10重量部以下であるのが好ましく、より好ましくは1.0重量部以上5.0重量部以下、さらに好ましくは2.0重量部以上4.0重量部以下である。 The content of the curing agent is preferably 0.3 parts by weight or more and 10 parts by weight or less, more preferably 1.0 parts by weight or more and 5.0 parts by weight or less, and even more preferably 2.0 parts by weight or more and 4.0 parts by weight or less, based on 100 parts by weight of the total amount of the resin composition.
樹脂付銅箔
本発明の樹脂組成物は樹脂付銅箔の樹脂層として用いられるのが好ましい。予め樹脂付銅箔の形態とすることで、樹脂層を別途形成することなく、ガラス基板を備える部材の製造を効率良く行うことができる。すなわち、本発明の好ましい態様によれば、ISO25178に準拠して測定される表面性状のアスペクト比Strが0.3以上1以下である平滑面を備えた銅層と、平滑面に設けられる樹脂組成物で構成される樹脂層とを備えた、樹脂付銅箔が提供される。典型的には、樹脂組成物は樹脂層の形態であって、樹脂組成物を、銅箔(銅層)に乾燥後の樹脂層の厚さが所定の値となるようにバーコーターを用いて塗工し乾燥させ、樹脂付銅箔を得る。塗工方法については任意であるが、ドクターブレードやバーコーター等を使用して塗工することができ、グラビアコート方式、ダイコート方式、ナイフコート方式等を採用することもできる。
Resin-Coated Copper Foil The resin composition of the present invention is preferably used as a resin layer of a resin-coated copper foil. By forming the resin-coated copper foil in advance, it is possible to efficiently manufacture a member having a glass substrate without separately forming a resin layer. That is, according to a preferred embodiment of the present invention, a resin-coated copper foil is provided, which comprises a copper layer having a smooth surface with an aspect ratio Str of the surface property measured in accordance with ISO25178 of 0.3 to 1, and a resin layer composed of a resin composition provided on the smooth surface. Typically, the resin composition is in the form of a resin layer, and the resin composition is applied to the copper foil (copper layer) using a bar coater so that the thickness of the resin layer after drying is a predetermined value, and then dried to obtain a resin-coated copper foil. The coating method is arbitrary, but can be applied using a doctor blade or a bar coater, and can also be a gravure coating method, a die coating method, a knife coating method, or the like.
銅箔は、電解製箔又は圧延製箔されたままの金属箔(いわゆる生箔)であってもよいし、少なくともいずれか一方の面に表面処理が施された表面処理箔の形態であってもよい。表面処理は、金属箔の表面において何らかの性質(例えば防錆性、耐湿性、耐薬品性、耐酸性、耐熱性、及び基板との密着性)を向上ないし付与するために行われる各種の表面処理でありうる。表面処理は金属箔の少なくとも片面に行われてもよいし、金属箔の両面に行われてもよい。銅箔に対して行われる表面処理の例としては、防錆処理、シラン処理、粗化処理、バリア形成処理等が挙げられる。 The copper foil may be a metal foil (so-called raw foil) that has been electrolytically or rolled, or may be in the form of a surface-treated foil that has been surface-treated on at least one side. The surface treatment may be any of a variety of surface treatments that are performed to improve or impart certain properties to the surface of the metal foil (e.g., rust resistance, moisture resistance, chemical resistance, acid resistance, heat resistance, and adhesion to a substrate). The surface treatment may be performed on at least one side of the metal foil, or on both sides of the metal foil. Examples of surface treatments performed on copper foil include rust prevention treatment, silane treatment, roughening treatment, and barrier formation treatment.
銅層は、回路のダウンサイジング(微細化)の観点から、平滑面を備える。銅層表面の平滑性を判断する指標として表面性状のアスペクト比Strがある。表面性状のアスペクト比Strは、表面の高さの異方性(急激に変化している箇所の有無)を示す指標である。Strが0に近いほど異方性が有り、1に近いほど異方性が無いことを示す。超平滑なガラスと銅層との貼り合わせの場合、貼り合わせ不良を低減する観点から、銅層表面のStrが1に近い(異方性が無い)ことが好ましい。このような観点から、銅層は表面性状のアスペクト比Strが0.3以上1以下であるのが好ましく、より好ましくは0.4以上1以下、さらに好ましくは0.5以上1以下、特に好ましくは0.6以上1以下である。 The copper layer has a smooth surface from the viewpoint of downsizing (miniaturization) of the circuit. The aspect ratio Str of the surface texture is an index for judging the smoothness of the copper layer surface. The aspect ratio Str of the surface texture is an index that indicates the anisotropy of the surface height (presence or absence of places where there is a sudden change). The closer Str is to 0, the more anisotropic it is, and the closer Str is to 1, the less anisotropic it is. In the case of bonding ultra-smooth glass and a copper layer, it is preferable that the Str of the copper layer surface is close to 1 (no anisotropy) from the viewpoint of reducing bonding defects. From this viewpoint, it is preferable that the aspect ratio Str of the surface texture of the copper layer is 0.3 or more and 1 or less, more preferably 0.4 or more and 1 or less, even more preferably 0.5 or more and 1 or less, and particularly preferably 0.6 or more and 1 or less.
銅層の樹脂層と接する側の表面における、最大高さSzは、好ましくは6.8μm以下であり、より好ましくは0.15μm以上6.8μm以下、さらに好ましくは0.25μm以上5.0μm以下、特に好ましくは0.3μm以上3.0μm以下である。このような範囲内であると、樹脂層が程よく追従して銅層とガラス基板との十分な密着性を確保できる。なお、本明細書において「最大高さSz」とは、ISO25178に準拠して測定される、表面の最も高い点から最も低い点までの距離を表すパラメータである。 The maximum height Sz of the surface of the copper layer on the side in contact with the resin layer is preferably 6.8 μm or less, more preferably 0.15 μm to 6.8 μm, even more preferably 0.25 μm to 5.0 μm, and particularly preferably 0.3 μm to 3.0 μm. Within this range, the resin layer conforms appropriately to ensure sufficient adhesion between the copper layer and the glass substrate. In this specification, the "maximum height Sz" is a parameter that represents the distance from the highest point to the lowest point on the surface, measured in accordance with ISO 25178.
銅層の樹脂層と接する側の表面における、最大山高さSpは、好ましくは3.3μm以下であり、より好ましくは0.06μm以上3.1μm以下、さらに好ましくは0.06μm以上3.0μm以下、特に好ましくは0.07μm以上2.9μm以下である。このような範囲内であると、このような範囲内であると、樹脂層が程よく追従して銅層とガラス基板との十分な密着性を確保できる。なお、本明細書において「最大山高さSp」とは、ISO25178に準拠して測定される、表面の平均面からの高さの最大値を表す三次元パラメータである。 The maximum peak height Sp on the surface of the copper layer that contacts the resin layer is preferably 3.3 μm or less, more preferably 0.06 μm or more and 3.1 μm or less, even more preferably 0.06 μm or more and 3.0 μm or less, and particularly preferably 0.07 μm or more and 2.9 μm or less. Within such a range, the resin layer can conform appropriately to ensure sufficient adhesion between the copper layer and the glass substrate. In this specification, the "maximum peak height Sp" is a three-dimensional parameter that represents the maximum value of the height from the average plane of the surface, measured in accordance with ISO25178.
銅層の樹脂層と接する側の表面における、二乗平均平方根勾配Sdqは好ましくは0.01以上2.3以下、より好ましくは0.02以上2.0以下、さらに好ましくは0.04以上1.8以下である。このような範囲内であると、樹脂層が程よく追従して銅層とガラス基板との十分な密着性を確保できる。なお、本明細書において「二乗平均平方根勾配Sdq」とは、ISO25178に準拠して測定される、定義領域のすべての点における傾斜の二乗平均平方根により算出されるパラメータである。すなわち、局所的な傾斜角の大きさを評価する三次元パラメータであるため、表面の凹凸の険しさを数値化できる。例えば、完全に平坦な面のSdqは0となり、表面に傾斜があるとSdqは大きくなる。45度の傾斜成分からなる平面のSdqは1になる。 The root-mean-square gradient Sdq on the surface of the copper layer in contact with the resin layer is preferably 0.01 to 2.3, more preferably 0.02 to 2.0, and even more preferably 0.04 to 1.8. Within such a range, the resin layer can follow suit to ensure sufficient adhesion between the copper layer and the glass substrate. In this specification, the "root-mean-square gradient Sdq" is a parameter calculated from the root-mean-square of the slope at all points in the defined area measured in accordance with ISO25178. In other words, since it is a three-dimensional parameter that evaluates the magnitude of the local slope angle, it can quantify the steepness of the surface unevenness. For example, the Sdq of a completely flat surface is 0, and if the surface is inclined, the Sdq becomes large. The Sdq of a plane consisting of a 45-degree slope component is 1.
上述したStr、Sz、Sp及びSdqは、市販のレーザー顕微鏡(例えば、オリンパス株式会社製OLS5000)を用い、ISO25178に準拠して、実施例に示される手順に従って測定することができる。 The above-mentioned Str, Sz, Sp and Sdq can be measured using a commercially available laser microscope (e.g., OLS5000 manufactured by Olympus Corporation) in accordance with ISO25178 and according to the procedures shown in the examples.
銅層の厚さは5μm以下であるのが好ましく、より好ましくは0.5μm以上4μm以下、さらに好ましくは1μm以上4μm以下、特に好ましくは1μm以上3μm以下である。このような厚さであると、ファインパターンの回路を切る場合に、アンダーカット等の回路細りを低減できる。もっとも、このように薄い銅層を用いる場合は、樹脂付銅箔のハンドリング性向上のために、銅層の平滑面とは反対側の面にキャリア層が設けられるのが好ましい。すなわち、厚さ5μm以下の銅層(極薄銅箔)がキャリア付銅箔の形態で与えられるのが好ましい。したがって、本発明の好ましい態様によれば、銅層の厚さが5μm以下であり、かつ、銅層の平滑面とは反対側の面にキャリア層をさらに備えた、樹脂付銅箔が提供される。なお、回路形成のため、典型的には銅めっき等の公知の方法を用いて、銅層上に所望の厚さの銅をさらに形成することができる。 The thickness of the copper layer is preferably 5 μm or less, more preferably 0.5 μm to 4 μm, even more preferably 1 μm to 4 μm, and particularly preferably 1 μm to 3 μm. With such a thickness, it is possible to reduce circuit thinning such as undercut when cutting a fine pattern circuit. However, when using such a thin copper layer, it is preferable to provide a carrier layer on the side opposite the smooth side of the copper layer in order to improve the handleability of the resin-coated copper foil. That is, it is preferable that a copper layer (ultra-thin copper foil) having a thickness of 5 μm or less is provided in the form of a carrier-coated copper foil. Therefore, according to a preferred embodiment of the present invention, a resin-coated copper foil is provided in which the copper layer has a thickness of 5 μm or less and further includes a carrier layer on the side opposite the smooth side of the copper layer. In addition, for circuit formation, a copper layer of a desired thickness can be further formed on the copper layer, typically using a known method such as copper plating.
樹脂層の厚さは、特に限定されないが、好ましくは1μm以上10μm以下、より好ましくは2μm以上8μm以下、さらに好ましくは2μm以上7μm以下、特に好ましくは3μm以上7μm以下である。このような厚さであると、上述した本発明の特性をより効果的に実現でき、樹脂組成物の塗布により樹脂層の形成がしやすい。さらにハンドリング性も向上する。 The thickness of the resin layer is not particularly limited, but is preferably 1 μm to 10 μm, more preferably 2 μm to 8 μm, even more preferably 2 μm to 7 μm, and particularly preferably 3 μm to 7 μm. With such a thickness, the above-mentioned characteristics of the present invention can be more effectively realized, and the resin layer can be easily formed by applying the resin composition. Furthermore, handling properties are improved.
複合材料
本発明の樹脂組成物は、ガラス基板と樹脂付銅箔を備える複合材料の樹脂層として用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、ガラス基板と、ガラス基板の少なくとも一方の面に、樹脂層がガラス基板と接するように設けられる樹脂付銅箔とを備えた、複合材料が提供される。前述したように、樹脂層としての樹脂組成物を介して銅箔とガラス基板を貼り合わせることで複合材料を作製する場合には、連続的に生産が可能でありガラス基板が割れる可能性も低いラミネート工法が望ましい。しかしながら、ラミネート工法には上述した利点があるものの、プレス工法程圧力を高くすることは難しく、銅箔とガラス基板の接着性の確保が難しい。そこで、本発明の樹脂組成物を樹脂層として用いることで、銅箔とガラス基板をラミネート工法により接着させ、複合材料を効率的に作製することができる。
Composite material The resin composition of the present invention is preferably used as a resin layer of a composite material comprising a glass substrate and a resin-coated copper foil. That is, according to a preferred embodiment of the present invention, a composite material is provided comprising a glass substrate and a resin-coated copper foil provided on at least one surface of the glass substrate so that the resin layer is in contact with the glass substrate. As described above, when a composite material is produced by bonding a copper foil and a glass substrate via a resin composition as a resin layer, a lamination method is desirable because it allows continuous production and has a low possibility of cracking the glass substrate. However, although the lamination method has the above-mentioned advantages, it is difficult to increase the pressure as much as the pressing method, and it is difficult to ensure the adhesion between the copper foil and the glass substrate. Therefore, by using the resin composition of the present invention as a resin layer, the copper foil and the glass substrate can be bonded by the lamination method, and the composite material can be efficiently produced.
本発明を以下の例によってさらに具体的に説明する。 The present invention will be further illustrated by the following examples.
例1~11
(1)ワニスの調製
まず、ワニス用原料成分として、以下に示される樹脂成分を用意した。
(a1)分子量50000未満のポリイミド樹脂:
‐ JFEケミカル株式会社製のポリイミドA(重量平均分子量50000未満)
‐ JFEケミカル株式会社製のポリイミドB(重量平均分子量50000未満)
‐ PIAD300(荒川化学工業株式会社製、中分子量熱可塑性ポリイミド、重量平均分子量50000未満)
(a2)分子量50000以上のポリアミド樹脂:
‐ DAN1(日本化薬株式会社製、重量平均分子量50000以上)
(a3)分子量50000以上のアクリル樹脂:
‐ SG-P3(ナガセケムテックス株式会社製、官能基:エポキシ、重量平均分子量50000以上)
(b1)官能基数3以上のエポキシ樹脂:
‐ HP4710(ナフタレン骨格有り)(DIC株式会社製、官能基数:3以上、エポキシ当量:170g/eq)
‐ EPPN502H(ナフタレン骨格無し)(日本化薬株式会社製、官能基数:3以上、エポキシ当量:158g/eq以上178g/eq以下)
(b2)官能基数3未満のエポキシ樹脂:
‐ HP4770(ナフタレン骨格有り)(DIC株式会社製、官能基数:3未満、エポキシ当量:160g/eq以上170g/eq以下)
‐ NC3000H(ナフタレン骨格無し)(日本化薬株式会社製、官能基数:3未満、エポキシ当量:280g/eq以上300g/eq以下)
(c1)イミダゾール系硬化剤:
‐ TBZ(四国化成工業株式会社製)
‐ 2P4MHZ(四国化成工業株式会社製)
Examples 1 to 11
(1) Preparation of Varnish First, the resin components shown below were prepared as raw materials for the varnish.
(a1) Polyimide resin having a molecular weight of less than 50,000:
- Polyimide A (weight average molecular weight less than 50,000) manufactured by JFE Chemical Corporation
- Polyimide B (weight average molecular weight less than 50,000) manufactured by JFE Chemical Corporation
- PIAD300 (Arakawa Chemical Industries, Ltd., medium molecular weight thermoplastic polyimide, weight average molecular weight less than 50,000)
(a2) Polyamide resin having a molecular weight of 50,000 or more:
- DAN1 (manufactured by Nippon Kayaku Co., Ltd., weight average molecular weight of 50,000 or more)
(a3) Acrylic resin having a molecular weight of 50,000 or more:
- SG-P3 (Nagase ChemteX Corporation, functional group: epoxy, weight average molecular weight 50,000 or more)
(b1) Epoxy resin having three or more functional groups:
- HP4710 (having naphthalene skeleton) (manufactured by DIC Corporation, number of functional groups: 3 or more, epoxy equivalent: 170 g/eq)
- EPPN502H (no naphthalene skeleton) (manufactured by Nippon Kayaku Co., Ltd., functional group number: 3 or more, epoxy equivalent: 158 g/eq or more and 178 g/eq or less)
(b2) Epoxy resin having a functionality of less than 3:
- HP4770 (having naphthalene skeleton) (manufactured by DIC Corporation, number of functional groups: less than 3, epoxy equivalent: 160 g/eq or more and 170 g/eq or less)
- NC3000H (no naphthalene skeleton) (manufactured by Nippon Kayaku Co., Ltd., number of functional groups: less than 3, epoxy equivalent: 280 g/eq or more and 300 g/eq or less)
(c1) Imidazole-based curing agent:
- TBZ (manufactured by Shikoku Chemical Industry Co., Ltd.)
- 2P4MHZ (manufactured by Shikoku Chemical Industry Co., Ltd.)
表1及び2に示される配合比(重量部)及び固形分濃度(重量%)となるように各原料成分及び有機溶剤を秤量してフラスコに入れた。フラスコをマントルヒーターで60℃に加熱しながら攪拌羽で攪拌し、各原料成分を溶剤に溶解させた後、常温まで冷却してワニスを得た。このとき、ワニス用原料成分にポリアミド樹脂(DAN1)を使用した例1から5及び8から11については、予めDAN1をシクロペンタノン溶剤に添加して固形分濃度20%の溶液を作製しておき、この溶液を、別途作製したその他の成分が溶解し常温まで冷却した溶液に、表1及び2に示されるDAN1の配合比(重量部)となるように加えて攪拌し、ワニスを得た。 Each raw material component and organic solvent were weighed and placed in a flask so as to obtain the compounding ratio (parts by weight) and solid content concentration (% by weight) shown in Tables 1 and 2. The flask was heated to 60°C with a mantle heater while stirring with a stirring blade, and each raw material component was dissolved in the solvent, and then cooled to room temperature to obtain a varnish. At this time, for Examples 1 to 5 and 8 to 11 in which polyamide resin (DAN1) was used as a raw material component for the varnish, DAN1 was added to cyclopentanone solvent in advance to prepare a solution with a solid content concentration of 20%, and this solution was added to a separately prepared solution in which the other components had been dissolved and cooled to room temperature so as to obtain the compounding ratio (parts by weight) of DAN1 shown in Tables 1 and 2, and the mixture was stirred to obtain a varnish.
(2)希釈ワニスの調製
得られたワニスの一部を取り分け、表1及び2に示される希釈固形分濃度(重量%)となるように希釈溶剤としてシクロペンタノンを加えて攪拌し、希釈ワニスを得た。
(2) Preparation of Dilute Varnish A portion of the obtained varnish was set aside, and cyclopentanone was added as a dilution solvent to give a diluted solids concentration (wt %) shown in Tables 1 and 2, followed by stirring to obtain a diluted varnish.
(3)樹脂フィルムの作製
上記(1)で得られたワニスをフッ素樹脂フィルム(AGC株式会社製、アフレックス(登録商標))に塗布して15秒間空気乾燥させた後、予め150℃に予熱したオーブンに入れて5分間加熱乾燥した。こうして、アフレックス付きの樹脂層を得た。このとき、乾燥後の樹脂層の厚さ(アフレックスの厚さを含まない)が20μmとなるように塗工条件を調整した。得られたアフレックス付きの樹脂層からアフレックスを剥離し、樹脂層のみを5枚積層した。得られた樹脂積層体を、真空プレス機で220℃及び40kgf/cm2の条件で90分間保持して硬化させ、樹脂フィルムを得た。
(3) Preparation of resin film The varnish obtained in (1) above was applied to a fluororesin film (manufactured by AGC Corporation, Aflex (registered trademark)) and air-dried for 15 seconds, then placed in an oven preheated to 150°C and heated and dried for 5 minutes. In this way, a resin layer with Aflex was obtained. At this time, the coating conditions were adjusted so that the thickness of the resin layer after drying (not including the thickness of the Aflex) was 20 μm. The Aflex was peeled off from the obtained resin layer with Aflex, and five sheets of only the resin layer were laminated. The obtained resin laminate was held in a vacuum press at 220°C and 40 kgf/ cm2 for 90 minutes to be cured, and a resin film was obtained.
(4)樹脂付銅箔の作製
表面性状のアスペクト比Strが0.39、最大高さSzが0.81、最大山高さSpが0.40、二乗平均平方根勾配Sdqが0.22の平滑面を有する、厚さ2μmの電解銅箔(三井金属鉱業株式会社製)を用意した。なお、表面性状のアスペクト比Str、最大高さSz、最大山高さSp及び二乗平均平方根勾配Sdqの測定は、レーザー顕微鏡(オリンパス株式会社製、OLS5000)を用いた表面粗さ解析により、ISO25178に準拠して以下のようにして行った。まず、銅箔の平滑面における面積16384μm2の領域の表面プロファイルを、上記レーザー顕微鏡にて倍率100倍の対物レンズを用いて、走査モード「3D標準+カラー」及び撮影モード「Auto」の条件で測定した。得られた平滑面の表面プロファイルに対して、ノイズ除去によりスパイクノイズを除去し、傾き除去を自動で行った後、表面性状解析により表面性状のアスペクト比Strの測定を実施した。このとき、F演算で形状除去(「多次局面3次」を選択)を行い、Sフィルターによるカットオフ波長を0.55μmとし、Lフィルターによるカットオフ波長を10μmとして計測した。上記Str、Sz、Sp及びSdqの測定を異なる8視野にて実施し、全視野におけるStr、Sz、Sp及びSdqの平均値を当該サンプルにおける平滑面の値としてそれぞれ採用した。
(4) Preparation of resin-coated copper foil An electrolytic copper foil (manufactured by Mitsui Mining & Smelting Co., Ltd.) having a thickness of 2 μm and a smooth surface with a surface property aspect ratio Str of 0.39, a maximum height Sz of 0.81, a maximum peak height Sp of 0.40, and a root-mean-square gradient Sdq of 0.22 was prepared. The surface property aspect ratio Str, maximum height Sz, maximum peak height Sp, and root-mean-square gradient Sdq were measured by surface roughness analysis using a laser microscope (manufactured by Olympus Corporation, OLS5000) in accordance with ISO25178 as follows. First, the surface profile of an area of 16384 μm 2 on the smooth surface of the copper foil was measured using a 100x objective lens with the above laser microscope under the conditions of scanning mode "3D standard + color" and shooting mode "Auto". The obtained surface profile of the smooth surface was subjected to noise removal to remove spike noise, and tilt removal was automatically performed, after which the aspect ratio Str of the surface property was measured by surface property analysis. At this time, shape removal was performed by F calculation (selecting "multiple surface cubic"), and the cutoff wavelength by the S filter was set to 0.55 μm, and the cutoff wavelength by the L filter was set to 10 μm. The above Str, Sz, Sp, and Sdq were measured in eight different fields of view, and the average values of Str, Sz, Sp, and Sdq in all fields of view were adopted as the values of the smooth surface of the sample.
上記(2)で得られた希釈ワニスを、バーコーターを用いて上記銅箔の平滑面に塗布し、予め150℃に予熱したオーブンに入れて2分間加熱乾燥して、樹脂付銅箔を得た。このとき、乾燥後の樹脂層の厚さが5μmとなるように塗工条件を調整した。 The diluted varnish obtained in (2) above was applied to the smooth surface of the copper foil using a bar coater, and then placed in an oven preheated to 150°C and dried for 2 minutes to obtain a resin-coated copper foil. The coating conditions were adjusted so that the thickness of the resin layer after drying would be 5 μm.
(5)ガラス基板とのラミネート
上記(4)で得られた樹脂付銅箔を10.5cm×10.5cmの正方形に裁断した。10cm×10cmのサイズの厚さ0.5mmのガラス基板(Corning社製、無アルカリガラス、イーグルXG)に、裁断した樹脂付銅箔をその樹脂面がガラス基板に当接するように載置し、真空ラミネーターを用いてラミネートした。このラミネートは、真空引きを20秒間行った後、170℃及び0.95MPaの条件で70秒間積層体を保持することにより行った。こうしてガラス基板と樹脂付銅箔とを備えたラミネート後の複合材料を得た。
(5) Lamination with glass substrate The resin-coated copper foil obtained in (4) above was cut into a square of 10.5 cm x 10.5 cm. The cut resin-coated copper foil was placed on a 0.5 mm thick glass substrate (Corning, alkali-free glass, Eagle XG) measuring 10 cm x 10 cm so that the resin surface was in contact with the glass substrate, and laminated using a vacuum laminator. This lamination was performed by holding the laminate under conditions of 170 ° C and 0.95 MPa after evacuation for 20 seconds. In this way, a composite material after lamination comprising a glass substrate and a resin-coated copper foil was obtained.
(6)本硬化
上記(5)で得られたラミネート後の複合材料に追加の熱処理を行い、硬化を完了させ、ガラス基板と樹脂付銅箔とを備えた本硬化後(Cステージ状態)の複合材料を得た。追加の熱処理は予め230℃に加熱したオーブンに複合材料を入れて30分間保持することにより行った。
(6) Main curing: The laminated composite material obtained in (5) above was subjected to additional heat treatment to complete the curing, and a fully cured (C-stage) composite material comprising a glass substrate and a resin-coated copper foil was obtained. The additional heat treatment was performed by placing the composite material in an oven preheated to 230° C. and holding it there for 30 minutes.
(7)各種評価
作製した樹脂フィルム又は複合材料について以下の評価を行った。
(7) Various Evaluations The produced resin films and composite materials were evaluated as follows.
<貯蔵弾性率>
上記(3)で得られた樹脂フィルムから5mm×50mmの短冊状のサンプルを切り出し、DMA(動的粘弾性測定)装置(日立ハイテクサイエンス製、DMA7100)を用いてDMA測定を行った。この測定は、JIS K 7244-4:1999に準拠して、試験片幅5.0mm、試験片厚み100μmの樹脂をクランプ間長さが20.0mmのクランプに設置し、大気雰囲気下において30℃から280℃まで5℃/minの昇温速度で加熱することにより、測定周波数1Hzで行った。得られた測定データを解析し、200℃における貯蔵弾性率E’(MPa)を算出し、以下の基準に従い評価した。結果は表3及び4に示されるとおりであった。
‐評価AA:300MPa以上
‐評価A:30MPa以上でかつ300MPa未満
‐評価B:10MPa以上でかつ30MPa未満
‐評価C:10MPa未満
<Storage modulus>
A 5 mm x 50 mm rectangular sample was cut out from the resin film obtained in (3) above, and a DMA (dynamic viscoelasticity measurement) measurement was performed using a DMA (dynamic viscoelasticity measurement) device (Hitachi High-Tech Science, DMA7100). This measurement was performed in accordance with JIS K 7244-4:1999, by placing a resin with a test piece width of 5.0 mm and a test piece thickness of 100 μm in a clamp with a clamp-to-clamp length of 20.0 mm, and heating it from 30 ° C. to 280 ° C. at a temperature increase rate of 5 ° C./min in an air atmosphere, at a measurement frequency of 1 Hz. The obtained measurement data was analyzed, and the storage modulus E' (MPa) at 200 ° C. was calculated and evaluated according to the following criteria. The results were as shown in Tables 3 and 4.
- Rating AA: 300 MPa or more - Rating A: 30 MPa or more and less than 300 MPa - Rating B: 10 MPa or more and less than 30 MPa - Rating C: less than 10 MPa
<ラミネート性(ボイドの有無)>
上記(5)で得られた複合材料をそのガラス面から目視で観察し、ボイドの有無を確認し、以下の基準に従い評価した。結果は表3及び4に示されるとおりであった。
‐評価A:目視上ボイドが確認できない
‐評価B:目視上ボイドが確認できる
‐評価C:樹脂付銅箔がガラス基板に貼り付いていない
<Lamination properties (presence or absence of voids)>
The composite material obtained in (5) above was visually observed from its glass surface to check for the presence or absence of voids and was evaluated according to the following criteria. The results are shown in Tables 3 and 4.
- Rating A: No voids were visible - Rating B: Voids were visible - Rating C: The resin-coated copper foil was not attached to the glass substrate
<ラミネート性(ボイド占有率)>
上記(5)で得られた複合材料をそのガラス面から光学顕微鏡(Keyence製、VHX7100)を用いて撮影した。撮影画像を画像解析ソフトimageJ(フリーソフト)に取り込み解析し、撮影画像の面積に占めるボイドの面積の比率(%)を算出し、以下の基準に従い評価した。結果は表3及び4に示されるとおりであった。
‐評価A:ボイドの面積が占める割合が1%未満
‐評価B:ボイドの面積が占める割合が1%以上
‐評価C:樹脂付銅箔がガラス基板に貼り付いていない
<Lamination properties (void occupancy rate)>
The composite material obtained in (5) above was photographed from its glass surface using an optical microscope (Keyence, VHX7100). The photographed image was imported into image analysis software ImageJ (free software) and analyzed, and the ratio (%) of the void area to the photographed image area was calculated and evaluated according to the following criteria. The results are shown in Tables 3 and 4.
- Grade A: The void area ratio is less than 1%. - Grade B: The void area ratio is 1% or more. - Grade C: The resin-coated copper foil is not attached to the glass substrate.
<ラミネート性(密着性)>
上記(5)で得られた複合材料をハンドリング(上記(6)の本硬化を行うための持ち運び)した際に、ガラスから樹脂及び/又は銅箔が剥離しないか(取り扱いが可能か)を確認し、以下の基準に従い評価した。結果は表3及び4に示されるとおりであった。
‐評価A:剥離は発生せず、問題無くハンドリングすることができた
‐評価B:ハンドリングによりサンプル端部において、ガラスと樹脂との間で幅1mm未満の剥離が発生した
‐評価C:ハンドリングによりサンプル端部において、ガラスと樹脂との間で幅1mm以上の剥離が発生した
<Lamination properties (adhesion)>
When the composite material obtained in (5) above was handled (transported for the main curing in (6) above), it was checked whether the resin and/or copper foil peeled off from the glass (whether it was possible to handle it), and was evaluated according to the following criteria. The results are shown in Tables 3 and 4.
- Evaluation A: No peeling occurred, and handling was possible without any problems. - Evaluation B: Peeling of less than 1 mm in width occurred between the glass and resin at the edge of the sample due to handling. - Evaluation C: Peeling of 1 mm in width or more occurred between the glass and resin at the edge of the sample due to handling.
<接着強度>
上記(6)で得られた複合材料に銅めっきを行い、配線幅10mm、配線厚み20μmの銅配線をサブトラクティブ工法により形成し、JIS C 6481に準拠して接着強度(剥離強度)を測定した。測定は5回実施し、その平均値を接着強度の値とし、以下の基準に従い評価した。なお、ここで測定される接着強度は、ガラス/樹脂間の界面剥離、樹脂内の凝集破壊、及び樹脂/銅箔間の界面剥離の3つの破壊モードが反映された値であり、その値が高いほどガラスへの接着性、樹脂層の強度、及び低粗度箔への接着性に優れることを意味している。結果は表3及び4に示されるとおりであった。
‐評価AA:接着強度が1.0kgf/cm以上
‐評価A:接着強度が0.5kgf/cm以上1.0kgf/cm未満
‐評価B:接着強度が0.1kgf/cm以上0.5kgf/cm未満
‐評価C:接着強度が0.1kgf/cm未満
<Adhesive strength>
The composite material obtained in (6) above was copper plated to form copper wiring with a wiring width of 10 mm and a wiring thickness of 20 μm by a subtractive method, and the adhesive strength (peel strength) was measured in accordance with JIS C 6481. The measurement was performed five times, and the average value was taken as the adhesive strength value and evaluated according to the following criteria. The adhesive strength measured here is a value that reflects three failure modes: interfacial peeling between glass and resin, cohesive failure in the resin, and interfacial peeling between resin and copper foil, and the higher the value, the better the adhesion to glass, the strength of the resin layer, and the adhesion to low roughness foil. The results were as shown in Tables 3 and 4.
- Grade AA: Adhesive strength is 1.0 kgf/cm or more - Grade A: Adhesive strength is 0.5 kgf/cm or more and less than 1.0 kgf/cm - Grade B: Adhesive strength is 0.1 kgf/cm or more and less than 0.5 kgf/cm - Grade C: Adhesive strength is less than 0.1 kgf/cm
<反り>
上記(6)で得られた複合材料を3D加熱表面形状測定装置(akrometrix社製、サーモレイPS200S)を用いて基板の反り量を測定した。反り量はガラス積層板のZ座標の最大値と最小値との差から算出した。測定は27℃雰囲気で5回行い、得られた測定値の平均値を反りとし、以下の基準に従い評価した。結果は表3及び4に示されるとおりであった。
‐評価A:反り量が500μm未満
‐評価C:反り量が500μm以上
<Warping>
The composite material obtained in (6) above was used to measure the amount of warping of the substrate using a 3D heating surface profiler (Thermoray PS200S, manufactured by Akrometrix). The amount of warping was calculated from the difference between the maximum and minimum values of the Z coordinate of the glass laminate. The measurement was performed five times in an atmosphere of 27°C, and the average value of the obtained measurements was taken as the warping, and was evaluated according to the following criteria. The results are shown in Tables 3 and 4.
- Rating A: Warpage is less than 500 μm - Rating C: Warpage is 500 μm or more
Claims (11)
1種以上のエポキシ樹脂と、
硬化剤と、
を含み、前記2種以上のポリマーのうち、
少なくとも1種が、重量平均分子量50000以上のポリマーであり、
少なくとも別の1種が、重量平均分子量50000未満のポリマーである、樹脂組成物。 Two or more polymers selected from the group consisting of polyamide resins, polyimide resins, and polyacrylic resins;
One or more epoxy resins;
A hardener;
Among the two or more polymers,
At least one of the polymers has a weight average molecular weight of 50,000 or more,
A resin composition, wherein at least one other of the resins is a polymer having a weight average molecular weight of less than 50,000.
少なくとも1種が、官能基数3以上のエポキシ樹脂であり、
少なくとも別の1種が、官能基数3未満のエポキシ樹脂である、請求項1又は2に記載の樹脂組成物。 The epoxy resin contains two or more epoxy resins, and among the two or more epoxy resins,
At least one of the epoxy resins has a functionality of 3 or more,
The resin composition according to claim 1 or 2, wherein at least one of the other resins is an epoxy resin having a functionality of less than 3.
少なくとも1種がポリアミド樹脂であり、
少なくとも別の1種がポリイミド樹脂である、請求項1~3のいずれか一項に記載の樹脂組成物。 Among the two or more polymers,
At least one of the resins is a polyamide resin,
The resin composition according to any one of claims 1 to 3, wherein at least one of the other resins is a polyimide resin.
前記平滑面に設けられる、請求項1~8のいずれか一項に記載の樹脂組成物で構成される樹脂層と、
を備えた、樹脂付銅箔。 A copper layer having a smooth surface with an aspect ratio Str of a surface property of 0.3 or more and 1 or less as measured in accordance with ISO 25178;
A resin layer formed on the smooth surface and composed of the resin composition according to any one of claims 1 to 8;
The resin-coated copper foil is provided with:
、請求項9に記載の樹脂付銅箔。 The thickness of the copper layer is 5 μm or less, and a carrier layer is further provided on the surface of the copper layer opposite to the smooth surface.
The resin-coated copper foil according to claim 9.
前記ガラス基板の少なくとも一方の面に、前記樹脂層が前記ガラス基板と接するように設けられる、請求項9又は10に記載の樹脂付銅箔と、
を備えた、複合材料。 A glass substrate;
The resin-coated copper foil according to claim 9 or 10, wherein the resin layer is provided on at least one surface of the glass substrate so as to be in contact with the glass substrate;
A composite material comprising:
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2022057710A JP2025071393A (en) | 2022-03-30 | 2022-03-30 | Resin composition, resin-coated copper foil and composite material |
| PCT/JP2023/008657 WO2023189298A1 (en) | 2022-03-30 | 2023-03-07 | Resin composition, copper foil equipped with resin, and composite material |
| TW112110595A TW202342575A (en) | 2022-03-30 | 2023-03-22 | Resin composition, copper foil equipped with resin, and composite material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2022057710A JP2025071393A (en) | 2022-03-30 | 2022-03-30 | Resin composition, resin-coated copper foil and composite material |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2025071393A true JP2025071393A (en) | 2025-05-08 |
Family
ID=88201427
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2022057710A Pending JP2025071393A (en) | 2022-03-30 | 2022-03-30 | Resin composition, resin-coated copper foil and composite material |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JP2025071393A (en) |
| TW (1) | TW202342575A (en) |
| WO (1) | WO2023189298A1 (en) |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3063929B2 (en) * | 1991-12-26 | 2000-07-12 | 宇部興産株式会社 | Heat resistant adhesive |
| JP4217952B2 (en) * | 2002-01-31 | 2009-02-04 | Dic株式会社 | Thermosetting polyimide resin composition, method for producing polyimide resin, and polyimide resin |
| JP2004333672A (en) * | 2003-05-02 | 2004-11-25 | Kanegafuchi Chem Ind Co Ltd | Photosensitive resin composition and photosensitive dry film resist with favorable storage stability, and use method thereof |
| CN101218539B (en) * | 2005-07-05 | 2011-07-13 | 日立化成工业株式会社 | Photosensitive adhesive composition, and adhesive film, adhesive sheet, semiconductor wafer with adhesive layer attached thereto, semiconductor device, and electronic component obtained by using the same |
| JP5664455B2 (en) * | 2011-05-20 | 2015-02-04 | 日立化成株式会社 | Adhesive composition, adhesive sheet, and semiconductor device |
| JP6869078B2 (en) * | 2017-03-31 | 2021-05-12 | 太陽インキ製造株式会社 | Curable resin compositions, laminated structures, cured products thereof, and electronic components |
| JP7461337B2 (en) * | 2019-03-28 | 2024-04-03 | 三井金属鉱業株式会社 | Resin composition and resin-coated copper foil |
-
2022
- 2022-03-30 JP JP2022057710A patent/JP2025071393A/en active Pending
-
2023
- 2023-03-07 WO PCT/JP2023/008657 patent/WO2023189298A1/en not_active Ceased
- 2023-03-22 TW TW112110595A patent/TW202342575A/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| WO2023189298A1 (en) | 2023-10-05 |
| TW202342575A (en) | 2023-11-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7607711B2 (en) | Resin materials, laminated films and multilayer printed wiring boards | |
| KR101524898B1 (en) | Epoxy resin composition, resin sheet, prepreg, multilayer printed wiring board, and semiconductor device | |
| CN101223015B (en) | Prepreg with carrier and process for producing the same, thin double-sided board and process for producing the same, and process for producing multilayer printed wiring board | |
| JP7212626B2 (en) | Resin composition for printed wiring board, resin-coated copper foil, copper-clad laminate, and printed wiring board | |
| TWI685289B (en) | Method for producing printed wiring board | |
| TWI609043B (en) | Resin copper foil, copper-clad laminate and printed wiring board | |
| TW202020022A (en) | Resin material, layered structure, and multi-layer printed wiring board | |
| US20180324956A1 (en) | Resin composition and article made therefrom | |
| KR20170132680A (en) | Resin composition | |
| TWI639639B (en) | Resin composition and articles made from it | |
| TWI820312B (en) | Resin compositions, resin-attached copper foil and composite materials | |
| US11198788B2 (en) | Resin composition and article made therefrom | |
| TWI759332B (en) | Hardened body and multilayer substrate | |
| JP2020094213A (en) | Resin material and multilayer printed wiring board | |
| TWI793906B (en) | circuit board | |
| TW201635877A (en) | Method for producing resin sheet | |
| CN107163274B (en) | Low-flow-glue prepreg | |
| JP2020059820A (en) | Resin material and multilayer printed wiring board | |
| JP6863435B2 (en) | Manufacturing method of adhesive sheet with protective film | |
| WO2017209093A1 (en) | Resin composition for printed wiring boards and resin sheet for printed wiring boards using same | |
| JP2025071393A (en) | Resin composition, resin-coated copper foil and composite material | |
| CN112739771B (en) | Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and printed wiring board | |
| JP2025071392A (en) | Resin composition, resin-coated copper foil and composite material | |
| TW201943757A (en) | Thermosetting composition, prepreg, laminate, metal foil-clad laminate sheet, printed wiring board, and multilayer printed wiring board | |
| JP6451280B2 (en) | Manufacturing method of multilayer printed wiring board |