[go: up one dir, main page]

JP2025094867A - Floating offshore wind power plant with hydrogen plant - Google Patents

Floating offshore wind power plant with hydrogen plant Download PDF

Info

Publication number
JP2025094867A
JP2025094867A JP2023223864A JP2023223864A JP2025094867A JP 2025094867 A JP2025094867 A JP 2025094867A JP 2023223864 A JP2023223864 A JP 2023223864A JP 2023223864 A JP2023223864 A JP 2023223864A JP 2025094867 A JP2025094867 A JP 2025094867A
Authority
JP
Japan
Prior art keywords
offshore wind
wind power
hydrogen
floating offshore
mooring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023223864A
Other languages
Japanese (ja)
Inventor
龍夫 高橋
Tatsuo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takahashi Kanri KK
Original Assignee
Takahashi Kanri KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahashi Kanri KK filed Critical Takahashi Kanri KK
Priority to JP2023223864A priority Critical patent/JP2025094867A/en
Publication of JP2025094867A publication Critical patent/JP2025094867A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Wind Motors (AREA)

Abstract

To significantly shorten the number of days for construction and to provide a water electrolysis device for generating hydrogen by carrying out electrolysis on sea water with electrical output obtained at a floating body type offshore wind power station as a power source inside the floating body type offshore wind power station, and the floating body type offshore wind power station installed with a storage facility for the generated hydrogen.SOLUTION: A construction period is significantly shortened by building a facility for constructing a floating body type offshore wind power station on a coast near the ocean where the floating type offshore wind power station is to be installed, constructing the floating type offshore wind power station by making use of technology cultivated by construction work for a skyscraper etc., floating the floating body type offshore wind power station assembled on land on water, and having a tugboat (tow boat) tow to site, and thereby an effective construction method on land is provided, as well as there are provided a water electrolysis device for generating hydrogen by carrying out electrolysis on sea water with the power generated by the floating body type offshore wind power station as a power source inside the floating body type offshore wind power station, and the floating body type offshore wind power station installed with a hydrogen storage facility for storing the generated hydrogen.SELECTED DRAWING: Figure 2

Description

本発明は、水電解装置と液体水素貯蔵設備を併設した鉄筋コンクリート構造の浮体式洋上風力発電所に関するものである。The present invention relates to a floating offshore wind power plant having a reinforced concrete structure equipped with a water electrolysis device and a liquid hydrogen storage facility.

近年、再生可能エネルギー利用の増加に伴い、洋上は風を遮る障害物が無く、風向き、風速が一定していて変わらないことから安定した電力を得られることが期待される。
現在、実用化されている洋上風力発電装置の構造は、陸上で稼働している装置と同様であり、洋上では陸上に比べて風力発電装置を設置するうえでの制約が少ないため、今後は、洋上での設置が増えていくものと考えられる。
In recent years, with the increase in the use of renewable energy, it is expected that a stable supply of electricity can be obtained offshore, as there are no obstacles that block the wind and the wind direction and speed are constant and do not change.
The structure of offshore wind turbines currently in practical use is similar to that of devices operating on land, and because there are fewer constraints on installing wind turbines offshore than on land, it is expected that more will be installed offshore in the future.

現在、ヨーロッパ等で普及している洋上風力発電装置の支柱が海底まで到達している着床式の場合は水深約50m位までの比較的水深が浅い場所に適しているが、日本の場合は、水深が比較的浅い大陸棚の面積が少ないため、日本では、風力発電装置を洋上に浮かべ、鎖、ワイヤーロープ等で海底に係留することにより位置を保持する浮体式に移行しつつあるのが現状である。Currently, fixed-bottom wind turbines, which are popular in Europe and other regions, have columns that reach the seabed, and are suitable for relatively shallow waters of up to about 50 meters deep. However, in Japan, the area of the continental shelf where the waters are relatively shallow is small, so the current situation is that the country is moving toward floating wind turbines, in which wind turbines are floated on the ocean and kept in position by being moored to the seabed with chains, wire ropes, etc.

浮体式洋上風力発電装置は、水中に配置した浮体と、浮体に立設した塔部で構成され、塔部の頂部にナセルとブレードで構成した風力発電装置が取り付けられる。
現在主流の浮体式洋上風力技術には、主に、スパー型、セミサブ型、バージ型、TLP型の4種類の形式がある。
A floating offshore wind turbine is composed of a float placed underwater and a tower erected on the float, with a wind turbine consisting of a nacelle and blades attached to the top of the tower.
Currently, there are four main types of floating offshore wind technologies in use: spar type, semi-submersible type, barge type, and total load platform (TLP) type.

現在では、設備1台あたりの大出力化が求められており、それに伴いブレードを長くして風車体受風面積を大きくする必要があり、現在ではブレードの長さが80mを超える大型の洋上風力発電装置が実用化されつつある。Currently, there is a demand for greater output per unit, which requires longer blades to increase the wind-receiving surface area of the wind turbine body. Large offshore wind turbines with blades longer than 80 m are now being put into practical use.

従来、指定された海域に浮体式洋上風力発電装置を設置するためには、浮体を設置海域まで台船等により曳航して係留したあと、クレーン船等によって上部構造体を浮体の上端部に移動させ、浮体と上部構造体を連結させていた。Conventionally, in order to install a floating offshore wind power generation device in a designated sea area, the float was towed to the installation area by a barge or the like and moored there, and then the superstructure was moved to the upper end of the float by a crane ship or the like, and the float and the superstructure were connected to each other.

また、近年では再生可能エネルギーの中で、太陽光発電や風力発電等で発電した電気を利用し、水を電気分解して水素と酸素に分離する方法で製造した「グリーン水素」と呼ばれる水素が注目されている。
現在、洋上風力発電装置で発電した電気は、海底に敷設した海底用送電ケーブルを経由して水素製造工場に送られ水電解水素製造装置により水から水素を製造しているため、海底に送電設備を新設する必要があり、大がかりな工事となって設置コストが膨大なものとなり、普及の妨げとなっていた。
In recent years, a type of renewable energy known as "green hydrogen" has been attracting attention. It is produced by using electricity generated by solar or wind power to electrolyze water and separate it into hydrogen and oxygen.
Currently, electricity generated by offshore wind power generation facilities is sent to hydrogen production plants via undersea power transmission cables laid on the seabed, and hydrogen is produced from water using water electrolysis equipment. This necessitates the construction of new power transmission facilities on the seabed, which results in large-scale construction work and enormous installation costs, preventing the widespread use of this technology.

しかしながら、浮体式洋上風力発電装置が設置される水深50m以上の海域は、一般的な海洋工事が行われる海域に比べて海象条件が厳しい場合が多く、浮体式洋上風力発電装置の設置作業は、海象条件の厳しい状況下で海象条件の比較的穏やかな時期を見計らって実施しなければならないため、設置作業の実施時期や期間が限定されるという問題があった。However, sea areas with a depth of 50 m or more where floating offshore wind power generation devices are installed often have harsher oceanographic conditions than sea areas where general marine construction work is carried out, and installation work for floating offshore wind power generation devices must be carried out under harsh oceanographic conditions only during periods when the oceanographic conditions are relatively calm, which poses the problem of limiting the timing and duration of installation work.

さらに、浮体式洋上風力発電装置の設置は、大型作業船を用いて繊細な作業が要求されるため、建設コストの増加を招くといった問題もあった。Furthermore, the installation of floating offshore wind turbines requires delicate work using large workboats, which increases construction costs.

さらに、浮体式洋上風力発電装置で発電した電気で「グリーン水素」を製造するためには、水素製造工場まで電気を送電するための海底用送電ケーブルを海底に敷設しなければならないといった問題もあった。Furthermore, in order to produce "green hydrogen" using electricity generated by floating offshore wind turbines, there was also the issue that an undersea power transmission cable would have to be laid on the seabed to transmit the electricity to the hydrogen production plant.

以上の現状に鑑み、本発明は、浮体式洋上風力発電所を設置する海に近い海岸に、浮体式洋上風力発電所を建設するための施設を構築し、超高層ビル等の建築工事で培った技術を活かして浮体式洋上風力発電所を建設し、陸上で組み立てた浮体式洋上風力発電所を水上に浮かべ、タグボート(曳舟)で現場まで曳航することにより、施工日数の大幅な短縮と、陸上での効率的な建設方法を提供すると共に、効率的にグリーン水素を製造するため、浮体式洋上風力発電所の内部に、浮体式洋上風力発電所で発電した電気を電源として海水を電気分解して水素を生成させるための水電解装置と、生成した水素を貯蔵するための液体水素貯蔵設備を設置することを目的とする。In view of the above current situation, the present invention aims to provide an efficient construction method on land by constructing facilities for constructing a floating offshore wind farm on a coast close to the sea where the floating offshore wind farm will be installed, constructing the floating offshore wind farm using technology cultivated in the construction work of skyscrapers and the like, and floating the floating offshore wind farm assembled on land onto the water and towing it to the site with a tugboat, thereby significantly shortening the number of construction days and providing an efficient construction method on land, and to efficiently produce green hydrogen by installing a water electrolysis device inside the floating offshore wind farm for producing hydrogen by electrolyzing seawater using electricity generated by the floating offshore wind farm as a power source, and a liquid hydrogen storage facility for storing the produced hydrogen.

かかる課題を解決するため、請求項1に記載の発明は、複数枚のブレードと増速機や発電機を内蔵したナセルを支えるタワーで構成した浮体式洋上風力発電において、洋上に配置したタワー部と水中に配置した浮力体部を鉄筋コンクリート構造で構築すると共に、前記タワー部と前記浮力体部を複数本の支柱で連結し、前記浮力体部を複数本の係留ワイヤーにより海底に固定した複数基の海底基礎杭に係留し、前記タワー部の建屋内に前記浮体式洋上風力発電で発電した電気で水を電気分解し水素を生成する水電解装置を設置し、前記浮力体部に前記水電解装置で生成した水素を貯蔵するための液体水素貯蔵タンクを設置したことを特徴とする。In order to solve such problems, the invention described in claim 1 provides a floating offshore wind turbine composed of a tower supporting a nacelle incorporating a number of blades and a gearbox and a generator, wherein the tower section placed on the ocean and the buoyant body section placed underwater are constructed of reinforced concrete structures, the tower section and the buoyant body section are connected by a number of pillars and the buoyant body section is moored to a number of seabed foundation piles fixed to the seabed by a number of mooring wires, a water electrolysis device that electrolyzes water using electricity generated by the floating offshore wind turbine to produce hydrogen is installed inside the tower section, and a liquid hydrogen storage tank for storing the hydrogen produced by the water electrolysis device is installed in the buoyant body section.

請求項2に記載の発明は、請求項1に記載の構造に加え、前記タワー部は概ね円錐形で下部を複数階の建屋で構成すると共に、頂上部を円形状の平面で形成し、前記頂上部にナセルを取り付けるための鋼管を取り付けたことを特徴とする。The invention described in claim 2 is characterized in that, in addition to the structure described in claim 1, the tower section is roughly conical in shape, the lower part is composed of a multi-story building, the top part is formed with a circular flat surface, and a steel pipe for mounting a nacelle is attached to the top part.

請求項3に記載の発明は、請求項1又は2に記載の構造に加え、前記浮力体部は概ね円筒形で内部を空洞で構成し、海近くの陸地で構築した浮体式洋上風力発電所を水上に浮かべるため、前方向と後方向の両方向の底部を前端部と後端部に向けて傾斜させたことを特徴とする。The invention described in claim 3 is characterized in that, in addition to the structure described in claim 1 or 2, the buoyancy body portion is generally cylindrical and hollow inside, and the bottoms in both the forward and rearward directions are inclined toward the front end and rear end in order to float a floating offshore wind power plant constructed on land near the sea on the water.

請求項4に記載の発明は、請求項1乃至3のいずれか1項に記載の構造に加え、前記浮力体部を、海底に設置した複数基の海底基礎杭と複数本の係留ワイヤーでつなぎTLP型により係留すると共に、前記浮力体部の側面に形成した係留ワイヤー用ガイド穴を経由させた前記複数本の係留ワイヤーの一端を、複数個のワイヤー用滑車を介して前記タワー部の建屋内に引き込み、ワイヤー巻取り・送出し機で係留ワイヤーの個々の長さを調整することにより浮体式洋上風力発電所の水平状態を維持させるように構成したことを特徴とする。The invention described in claim 4 is characterized in that, in addition to the structure described in any one of claims 1 to 3, the buoyant body section is moored by a plurality of mooring wires connected to a plurality of seabed foundation piles installed on the seabed using a TLP type mooring system, and one end of the plurality of mooring wires that pass through mooring wire guide holes formed on the side of the buoyant body section are pulled into the building of the tower section via a plurality of wire pulleys, and the horizontal state of the floating offshore wind farm is maintained by adjusting the individual lengths of the mooring wires with a wire winding/letting out machine.

請求項5に記載の発明は、請求項1乃至4のいずれか1項に記載の構造に加え、前記タワー部の概ね上端部から前記浮力体部の概ね下端部まで貫通させた竪穴区画を構築し、竪穴区画の内部に簡易リフトと上下移動用階段を設置したことを特徴とする。The invention described in claim 5 is characterized in that, in addition to the structure described in any one of claims 1 to 4, a vertical compartment is constructed that extends from approximately the upper end of the tower section to approximately the lower end of the buoyancy body section, and a simple lift and a staircase for vertical movement are installed inside the vertical compartment.

請求項6に記載の発明は、請求項1乃至5のいずれか1項に記載の構造に加え、前記タワー部の建屋内に、前記水電解装置で製造した水素を液化させるための水素液化装置を設置したことを特徴とする。The invention described in claim 6 is characterized in that, in addition to the structure described in any one of claims 1 to 5, a hydrogen liquefaction device for liquefying hydrogen produced by the water electrolysis device is installed inside the building of the tower section.

請求項1に記載の発明によれば、複数枚のブレードと増速機や発電機を内蔵したナセルを支えるタワーで構成した浮体式洋上風力発電において、洋上に配置したタワー部と水中に配置した浮力体部を鉄筋コンクリート構造で構築すると共に、前記タワー部と前記浮力体部を複数本の支柱で連結し、前記浮力体部を複数本の係留ワイヤーにより海底に固定した複数基の海底基礎杭に係留し、前記タワー部の建屋内に前記浮体式洋上風力発電で発電した電気で水を電気分解し水素を生成する水電解装置を設置し、前記浮力体部に前記水電解装置で生成した水素を貯蔵するための液体水素貯蔵タンクを設置したことにより、超高層ビル等の建築現場で培った技術を活用し、製作日数を大幅に短縮すると共に、浮体式洋上風力発電所で得られた電気出力を電源として海水を電気分解し水素を直接生成することが可能となった。According to the invention described in claim 1, in a floating offshore wind turbine composed of a tower supporting a nacelle incorporating a plurality of blades and a gearbox and a generator, the tower section placed on the ocean and the buoyant body section placed underwater are constructed of a reinforced concrete structure, the tower section and the buoyant body section are connected by a plurality of pillars, and the buoyant body section is moored to a plurality of seabed foundation piles fixed to the seabed by a plurality of mooring wires, a water electrolysis device that electrolyzes water using electricity generated by the floating offshore wind turbine to produce hydrogen is installed inside the tower section, and a liquid hydrogen storage tank for storing the hydrogen produced by the water electrolysis device is installed in the buoyant body section. This makes it possible to significantly shorten the number of days required for construction by utilizing technology cultivated at construction sites for skyscrapers and the like, and to directly produce hydrogen by electrolyzing seawater using the electrical output obtained from the floating offshore wind turbine as a power source.

請求項2に記載の発明によれば、前記タワー部は概ね円錐形で下部を複数階の建屋で構成すると共に、頂上部を円形状の平面で形成し、前記頂上部にナセルを取り付けるための鋼管を取り付けたことにより、タワー部に対する風の風圧を減少させることが可能になった。According to the invention described in claim 2, the tower section is roughly conical in shape, with the lower part being composed of a multi-story building, and the top part being formed into a circular plane. By attaching a steel pipe for mounting a nacelle to the top part, it is possible to reduce the wind pressure on the tower section.

請求項3に記載の発明によれば、前記浮力体部は概ね円筒形で内部を空洞で構成し、海近くの陸地で構築した浮体式洋上風力発電所を水上に浮かべるため、前方向と後方向の両方向の底部を前端部と後端部に向けて傾斜させたことにより、水の抵抗を減らして安定した状態で水上に浮かべることが可能になった。According to the invention described in claim 3, the buoyancy body portion is generally cylindrical with a hollow interior, and in order to float a floating offshore wind power plant constructed on land near the sea on the water, the bottoms in both the forward and rearward directions are inclined toward the front end and rear end, thereby reducing water resistance and making it possible to float it on the water in a stably state.

請求項4に記載の発明によれば、前記浮力体部を、海底に設置した複数基の海底基礎杭と複数本の係留ワイヤーでつなぎTLP型により係留すると共に、前記浮力体部の側面に形成した係留ワイヤー用ガイド穴を経由させた前記複数本の係留ワイヤーの一端を、複数個のワイヤー用滑車を介して前記タワー部の建屋内に引き込み、ワイヤー巻取り・送出し機で係留ワイヤーの個々の長さを調整することにより浮体式洋上風力発電所の水平状態を維持させるように構成したことにより、個々の係留ワイヤーの長さを調整し、簡単に浮体式洋上風力発電所の水平状態を保つことが可能になった。According to the invention described in claim 4, the buoyant body section is connected to a plurality of seabed foundation piles installed on the seabed with a plurality of mooring wires and moored using a TLP type mooring system, and one end of the plurality of mooring wires, which are passed through guide holes for the mooring wires formed on the side of the buoyant body section, are pulled into the building of the tower section via a plurality of wire pulleys, and the horizontal state of the floating offshore wind farm is maintained by adjusting the individual lengths of the mooring wires with a wire winding/letting out machine.This makes it possible to easily maintain the horizontal state of the floating offshore wind farm by adjusting the length of each mooring wire.

請求項5に記載の発明によれば、前記タワー部の概ね上端部から前記浮力体部の概ね下端部まで貫通させた竪穴区画を構築し、竪穴区画の内部に簡易リフトと上下移動用階段を設置したことにより、作業員がメンテナンスをするための労力を大幅に軽減させることが可能になった。According to the invention described in claim 5, by constructing a vertical compartment that extends from approximately the upper end of the tower section to approximately the lower end of the buoyancy body section, and installing a simple lift and a staircase for vertical movement inside the vertical compartment, it is possible to significantly reduce the labor required by workers to perform maintenance.

請求項6に記載の発明によれば、前記タワー部の建屋内に、前記水電解装置で製造した水素を液化させるための水素液化装置を設置したことにより、浮体式洋上風力発電所で発電した電気で水素を液化させることが可能となった。According to the invention recited in claim 6, a hydrogen liquefaction device for liquefying the hydrogen produced by the water electrolysis device is installed inside the tower building, making it possible to liquefy hydrogen using electricity generated by the floating offshore wind farm.

以下、この発明の実施の形態について説明する。Hereinafter, an embodiment of the present invention will be described.

図1乃至図7には、この発明の実施の形態を示す。1 to 7 show an embodiment of the present invention.

図1は、本発明の水素工場を併設した浮体式洋上風力発電所1を洋上に設置した状態を斜視図で示す。水素工場を併設した浮体式洋上風力発電所1はハブ10に取り付けた3本のブレード2と、ナセル3の内部に設置した増速機、発電機、ヨー制御装置等と、さらに前記ナセル3をタワー部4に固定するための鋼管23と、鉄筋コンクリート構造で構築したタワー部4と、さらにタワー部4と浮力体部8を連結させるため直径約2m、肉厚約30mm、長さ約10mの鋼管で成形した8本の支柱6と、さらに水素工場を併設した浮体式洋上風力発電所1を洋上に浮かべて自立させ、浮体構造部としての役目をはたすため鉄筋コンクリート構造で内部を空洞で形成した浮力体部8で構成される。このように構成した浮力体部8の動揺量を極力抑えるようにTLP型で海底9に係留させるため6本の係留ワイヤー(A)11、係留ワイヤー(B)12、係留ワイヤー(C)13、係留ワイヤー(D)14、係留ワイヤー(E)15、係留ワイヤー(F)16と、前記6本の係留ワイヤー(A)11、係留ワイヤー(B)12、係留ワイヤー(C)13、係留ワイヤー(D)14、係留ワイヤー(E)15、係留ワイヤー(F)16を海底9に固定するため海底9に固定した6基の海底基礎杭(A)17、海底基礎杭(B)18、海底基礎杭(C)19、海底基礎杭(D)20、海底基礎杭(E)21、海底基礎杭(F)22で構成される。なお、鋼管23に取り付けるナセル3は風の吹いてくる方向に対して常にブレード2を追従させる必要があるため、ナセル3の内部には鋼管23に対して360度回動自在に回転させることが出来るようにヨー制御装置(図示せず)が取り付けられる。1 is a perspective view showing a floating offshore wind power plant 1 with a hydrogen plant according to the present invention, installed on the ocean. The floating offshore wind power plant 1 with a hydrogen plant is composed of three blades 2 attached to a hub 10, a gearbox, a generator, a yaw control device, etc. installed inside a nacelle 3, a steel pipe 23 for fixing the nacelle 3 to a tower section 4, a tower section 4 constructed of a reinforced concrete structure, eight supports 6 made of steel pipes with a diameter of about 2 m, a thickness of about 30 mm, and a length of about 10 m for connecting the tower section 4 and a buoyancy body section 8, and a buoyancy body section 8 with a reinforced concrete structure and a hollow interior for floating the floating offshore wind power plant 1 with a hydrogen plant on the ocean and making it self-supporting, and for serving as a floating structure section. In order to minimize the amount of swaying of the buoyant body 8 configured in this manner, the buoyant body 8 is moored to the seabed 9 in a TLP type manner using six mooring wires (A) 11, mooring wire (B) 12, mooring wire (C) 13, mooring wire (D) 14, mooring wire (E) 15, and mooring wire (F) 16, and is fixed to the seabed 9 by six seabed foundation piles (A) 17, seabed foundation pile (B) 18, seabed foundation pile (C) 19, seabed foundation pile (D) 20, seabed foundation pile (E) 21, and seabed foundation pile (F) 22 to fix the six mooring wires (A) 11, mooring wire (B) 12, mooring wire (C) 13, mooring wire (D) 14, mooring wire (E) 15, and mooring wire (F) 16 to the seabed 9. Since the nacelle 3 attached to the steel pipe 23 needs to constantly follow the blades 2 in the direction of the wind, a yaw control device (not shown) is attached inside the nacelle 3 so that the blades 2 can be rotated freely 360 degrees relative to the steel pipe 23.

図2は、図1で説明した水素工場を併設した浮体式洋上風力発電所1を正面図で示す。本発明では、水素工場を併設した浮体式洋上風力発電所1をTLP型で海底9に係留させるため、海底9に設置した6基の海底基礎杭(A)17、海底基礎杭(B)18、海底基礎杭(C)19、海底基礎杭(D)20、海底基礎杭(E)21、海底基礎杭(F)22に対して、それぞれ6本の係留ワイヤー(A)11、係留ワイヤー(B)12、係留ワイヤー(C)13、係留ワイヤー(D)14、係留ワイヤー(E)15、係留ワイヤー(F)16を取り付け、海面7が支柱6の概ね上下中央位置になるように6本の係留ワイヤー(A)11、係留ワイヤー(B)12、係留ワイヤー(C)13、係留ワイヤー(D)14、係留ワイヤー(E)15、係留ワイヤー(F)16の長さを個々に調節して浮力体部8を海面7に対して水平を保つように強制的に潜水させることにより、水素工場を併設した浮体式洋上風力発電所1が海面7に対して縦揺れ、横揺れを小さく抑え水平状態を維持することが出来るようになり、風に対して安定した状態でブレード2を回転させることが可能になった。Fig. 2 shows a front view of the floating offshore wind power plant 1 with the hydrogen plant described in Fig. 1. In the present invention, in order to moor the floating offshore wind power plant 1 with the hydrogen plant to the seabed 9 in a TLP type, six mooring wires (A) 11, (B) 12, (C) 13, (D) 14, (E) 15, and (F) 16 are attached to six seabed foundation piles (A) 17, (B) 18, (C) 19, (D) 20, (E) 21, and (F) 22 installed on the seabed 9, respectively, and the sea surface 7 is positioned approximately at the center from top to bottom of the support 6. By individually adjusting the lengths of the six mooring wires (A) 11, mooring wire (B) 12, mooring wire (C) 13, mooring wire (D) 14, mooring wire (E) 15, and mooring wire (F) 16 so that the buoyancy body 8 is in a horizontal position relative to the sea surface 7 and forcibly submerging the buoyancy body 8 so that it remains horizontal relative to the sea surface 7, the floating offshore wind power plant 1 which also has a hydrogen factory attached can be maintained in a horizontal state with minimal vertical and horizontal swaying relative to the sea surface 7, and the blades 2 can be rotated in a stable state against the wind.

図3は、図1、図2で説明したタワー部4と支柱6と浮力体部8を図3aの平面図と、図3bの正面図で示す。タワー部4は概ね円錐形の鉄筋コンクリート構造で構築され、頂上部33は、図6のタワー部上部直径Aで示すように直径約5mの円形で成形され、タワー部上部スラブ厚さBは約500mm、タワー部4の頂上部33からタワー底部39までのタワー部高さCは約97m、タワー部4のタワー部土台40を構成するタワー底部スラブ厚さDは約1m、タワー部土台40を構成するタワー土台直径Sは円形で直径約25m、タワー部4の下部には、各階の高さが共に約5mで形成された4層構造(建屋1階38、建屋2階37、建屋3階36、建屋4階35で示す)の建屋5が構築される。浮力体部8は概ね円筒形で浮体としての役目をはたすため内部を空洞で構成し、図6で示すように浮力体部8の浮力体部直径Nは約100m、浮力体部高さJは約10mで形成され、さらに図3で示すように浮力体部8の底面の前後に、陸地で構築した水素工場を併設した浮体式洋上風力発電所1を安定した状態で進水させるため、前方向と後方向の両方向の底部を、前方傾斜部31(底部と前方傾斜部31との境目を図3aの一点鎖線(A)41で示す)と、後方傾斜部32(底部と後方傾斜部32の境目を図3aの一点鎖線(B)42で示す)で示すように先端部と後端部に向け、図6の前方傾斜部角度Mと、後方傾斜部角度Rで示すように共に約14度の角度で傾斜させた形状で形成され、さらにタワー部4と浮力体部8を連結するため浮力体部8の上面の中心部の回りに直径約2m、肉厚約30mm、長さ約10mの鋼管で成形した8本の支柱6を、水平面で見たときに中心から45度ごとに放射状に延設した円周上の位置に取り付けた状態を示す。3 shows the tower section 4, the support column 6, and the buoyant body section 8 described in Fig. 1 and Fig. 2 in a plan view in Fig. 3a and a front view in Fig. 3b. The tower section 4 is constructed of a roughly conical reinforced concrete structure, the top section 33 is formed in a circle with a diameter of about 5 m as shown by the tower section top diameter A in Fig. 6, the tower section top slab thickness B is about 500 mm, the tower section height C from the top section 33 of the tower section 4 to the tower bottom 39 is about 97 m, the tower bottom slab thickness D constituting the tower section base 40 of the tower section 4 is about 1 m, the tower base diameter S constituting the tower section base 40 is a circle with a diameter of about 25 m, and a four-story building 5 (shown by the first building floor 38, the second building floor 37, the third building floor 36, and the fourth building floor 35) is constructed at the bottom of the tower section 4, with each floor having a height of about 5 m. The buoyant body section 8 is generally cylindrical and hollow inside in order to function as a float. As shown in FIG. 6, the buoyant body diameter N of the buoyant body section 8 is approximately 100 m, and the buoyant body height J is approximately 10 m. Furthermore, as shown in FIG. 3, in order to launch the floating offshore wind farm 1, which is equipped with a hydrogen plant constructed on land, in a stable state, the bottom of the buoyant body section 8 in both the forward and rearward directions is divided into a forward inclined section 31 (the boundary between the bottom and the forward inclined section 31 is shown by the dashed line (A) 41 in FIG. 3a) and a rear inclined section 32 ( The boundary between the bottom and the rear inclined portion 32 is shown by the dotted line (B) 42 in Figure 3a), and is formed in a shape inclined toward the tip and rear ends at an angle of approximately 14 degrees, as shown by the forward inclined portion angle M and the rear inclined portion angle R in Figure 6. Furthermore, in order to connect the tower section 4 and the buoyancy body section 8, eight struts 6 made of steel pipes with a diameter of approximately 2 m, a thickness of approximately 30 mm, and a length of approximately 10 m are attached around the center of the top surface of the buoyancy body section 8 at circumferential positions extending radially from the center every 45 degrees when viewed on a horizontal plane.

さらに浮力体部8の側面には、図1、図2で説明した6本の係留ワイヤー(A)11、係留ワイヤー(B)12、係留ワイヤー(C)13、係留ワイヤー(D)14、係留ワイヤー(E)15、係留ワイヤー(F)16を、浮力体部8の側面の定位置でガイドするため、半径約30cmで概ね半円筒状(かまぼこ状)に成形した6か所の係留ワイヤー用ガイド穴(A)25、係留ワイヤー用ガイド穴(B)26、係留ワイヤー用ガイド穴(C)27、係留ワイヤー用ガイド穴(D)28、係留ワイヤー用ガイド穴(E)29、係留ワイヤー用ガイド穴(F)30が形成される。Furthermore, on the side of the buoyant body section 8, six mooring wire guide holes (A) 25, mooring wire guide hole (B) 26, mooring wire guide hole (C) 27, mooring wire guide hole (D) 28, mooring wire guide hole (E) 29, and mooring wire guide hole (F) 30 are formed, each shaped roughly in a semi-cylindrical shape (semi-cylindrical) with a radius of approximately 30 cm, in order to guide the six mooring wires (A) 11, mooring wire (B) 12, mooring wire (C) 13, mooring wire (D) 14, mooring wire (E) 15, and mooring wire (F) 16 described in Figures 1 and 2 at fixed positions on the side of the buoyant body section 8.

さらにタワー部4の概ね頂上部33からタワー底部39を貫通し、浮力体部8の中心部の概ね底部まで、一点鎖線(C)43で示すように概ね直径約4mの円筒形で形成した竪穴区画34を構築し、さらに竪穴区画34の内部に点検作業を行うための上下移動用階段(図示せず)と簡易リフト(図示せず)を取り付けることにより作業効率を上げることが可能になった。Furthermore, a cylindrical pit section 34 with a diameter of approximately 4 m was constructed, as shown by the dotted line (C) 43, extending from approximately the top 33 of the tower section 4, through the tower bottom 39, and to approximately the bottom of the center of the buoyancy body section 8. Furthermore, by installing a staircase (not shown) for moving up and down and a simple lift (not shown) for carrying out inspection work inside the pit section 34, it has become possible to improve work efficiency.

このように構成したタワー部4の建屋5の内部に、海水を真水に変えるための海水淡水化装置58を設置し、前記海水淡水化装置58で生成した真水を、ナセル3の内部の発電装置で発電した電気で真水を電気分解して水素を発生させるための水電解装置53と、さらに電気分解した水素を液化させるための水素液化装置54を設置し稼働させることにより、海水から液体水素を製造すると共に、製造した液体水素を竪穴区画34を経由させ浮力体部8の内部に設置したコールドボックス内の液体水素貯蔵タンク55に貯蔵させることが可能になった。このように構成することにより電気分解により発生した水素の体積を約800分の1の液体水素に液化させ効率良く貯蔵することが可能になった。このようにして製造した液体水素は、液化水素運搬船に積荷され移送される。Inside the building 5 of the tower section 4 configured in this manner, a seawater desalination device 58 for turning seawater into fresh water is installed, and a water electrolysis device 53 for electrolyzing the fresh water generated by the seawater desalination device 58 with electricity generated by a power generation device inside the nacelle 3 to generate hydrogen, and a hydrogen liquefaction device 54 for liquefying the electrolyzed hydrogen are installed and operated, thereby producing liquid hydrogen from seawater, and storing the produced liquid hydrogen in a liquid hydrogen storage tank 55 in a cold box installed inside the buoyancy body section 8 via the vertical section 34. By configuring in this manner, it is possible to liquefy the volume of hydrogen generated by electrolysis to about 1/800 of the volume of liquid hydrogen and store it efficiently. The liquid hydrogen produced in this manner is loaded onto a liquefied hydrogen carrier and transported.

図4は、図1、図2で説明した支柱6と浮力体部8を図4aの平面図と、図4bの正面図で示す。浮力体部8の外周部に成形した6か所の係留ワイヤー用ガイド穴(A)25、係留ワイヤー用ガイド穴(B)26、係留ワイヤー用ガイド穴(C)27、係留ワイヤー用ガイド穴(D)28、係留ワイヤー用ガイド穴(E)29、係留ワイヤー用ガイド穴(F)30の位置は、浮力体部8の上面に対して水平面で見たときに中心から60度ごとに放射状に延設した位置に成形され、係留ワイヤー用ガイド穴(A)25、係留ワイヤー用ガイド穴(B)26、係留ワイヤー用ガイド穴(C)27、係留ワイヤー用ガイド穴(D)28、係留ワイヤー用ガイド穴(E)29、係留ワイヤー用ガイド穴(F)30の形状は、全て、半径約30cmで概ね半円筒状(かまぼこ状)に成形される。FIG. 4 shows the support column 6 and the buoyant body portion 8 described in FIG. 1 and FIG. 2 in a plan view in FIG. 4a and a front view in FIG. 4b. The positions of the six mooring wire guide holes (A) 25, mooring wire guide hole (B) 26, mooring wire guide hole (C) 27, mooring wire guide hole (D) 28, mooring wire guide hole (E) 29, and mooring wire guide hole (F) 30 formed on the outer periphery of the buoyant body section 8 are formed at positions extending radially from the center every 60 degrees when viewed in a horizontal plane with respect to the top surface of the buoyant body section 8, and the shapes of the mooring wire guide holes (A) 25, mooring wire guide hole (B) 26, mooring wire guide hole (C) 27, mooring wire guide hole (D) 28, mooring wire guide hole (E) 29, and mooring wire guide hole (F) 30 are all formed into an approximately semi-cylindrical (semi-cylindrical) shape with a radius of approximately 30 cm.

さらにタワー部4と浮力体部8を連結するための8本の支柱6は共に直径約2m、肉厚30mm、長さ10mの円筒状の鋼管で成形され、浮力体部8の上面の中心から半径約1050cmの円周上の、水平面で見たときに中心から45度ごとに放射状に延設された位置に8本の支柱(A)45、支柱(B)46、支柱(C)47、支柱(D)48、支柱(E)49、支柱(F)50、支柱(G)51、支柱(H)52の中心が位置するように垂直に取り付けられると共に、8本の支柱(A)45、支柱(B)46、支柱(C)47、支柱(D)48、支柱(E)49、支柱(F)50、支柱(G)51、支柱(H)52の上部は、図3で説明したタワー底部39の下面に取り付けられる。このようにタワー部4と、浮力体部8を8本の支柱6で連結する理由は、円筒形の丸い直径約2mの支柱でタワー部4を支えることにより、図2で説明した海面7の波による抵抗を最小限に抑え、水素工場を併設した浮体式洋上風力発電所1の揺れを抑え、風が吹いてくる方向にブレードを対峙させるためである。Furthermore, the eight pillars 6 for connecting the tower section 4 and the buoyancy body section 8 are all formed from cylindrical steel pipes with a diameter of approximately 2 m, a thickness of 30 mm, and a length of 10 m, and are vertically attached so that the centers of the eight pillars (A) 45, pillar (B) 46, pillar (C) 47, pillar (D) 48, pillar (E) 49, pillar (F) 50, pillar (G) 51, and pillar (H) 52 are located at positions extending radially every 45 degrees from the center on a circumference of a radius of approximately 1,050 cm from the center of the top surface of the buoyancy body section 8 when viewed on a horizontal plane, and the upper parts of the eight pillars (A) 45, pillar (B) 46, pillar (C) 47, pillar (D) 48, pillar (E) 49, pillar (F) 50, pillar (G) 51, and pillar (H) 52 are attached to the underside of the tower bottom 39 described in Figure 3. The reason for connecting the tower section 4 and the buoyancy body section 8 with eight pillars 6 in this manner is that by supporting the tower section 4 with round cylindrical pillars with a diameter of approximately 2 m, the resistance caused by waves on the sea surface 7 described in Figure 2 can be minimized, the swaying of the floating offshore wind farm 1 which also has a hydrogen plant attached, and the blades can be faced in the direction from which the wind is blowing can be suppressed.

図5は、図1、図2で説明した浮力体部8を海底9に係留するための6本の係留ワイヤー(A)11、係留ワイヤー(B)12、係留ワイヤー(C)13、係留ワイヤー(D)14、係留ワイヤー(E)15、係留ワイヤー(F)16を、図5aの平面図と、図5bの正面図で示す。6本の係留ワイヤー(A)11、係留ワイヤー(B)12、係留ワイヤー(C)13、係留ワイヤー(D)14、係留ワイヤー(E)15、係留ワイヤー(F)16を、浮力体部8の側面に成形した6か所の係留ワイヤー用ガイド穴(A)25、係留ワイヤー用ガイド穴(B)26、係留ワイヤー用ガイド穴(C)27、係留ワイヤー用ガイド穴(D)28、係留ワイヤー用ガイド穴(E)29、係留ワイヤー用ガイド穴(F)30を介して浮力体部8が海面7に対して水平になるように、図7で示すワイヤー巻取り・送り出し機60により個々の係留ワイヤー毎に長さを調整することにより、水素工場を併設した浮体式洋上風力発電所1は海面7に対して水平状態を容易に保つことが出来るようになった。なお、6か所の係留ワイヤー用ガイド穴(A)25、係留ワイヤー用ガイド穴(B)26、係留ワイヤー用ガイド穴(C)27、係留ワイヤー用ガイド穴(D)28、係留ワイヤー用ガイド穴(E)29、係留ワイヤー用ガイド穴(F)30と、6基の海底基礎杭(A)17、海底基礎杭(B)18、海底基礎杭(C)19、海底基礎杭(D)20、海底基礎杭(E)21、海底基礎杭(F)22との位置関係は、海流と、波による浮力体部8の動揺量を極力抑えるため6か所の係留ワイヤー用ガイド穴(A)25、係留ワイヤー用ガイド穴(B)26、係留ワイヤー用ガイド穴(C)27、係留ワイヤー用ガイド穴(D)28、係留ワイヤー用ガイド穴(E)29、係留ワイヤー用ガイド穴(F)30の直下の海底9に、6基の海底基礎杭(A)17、海底基礎杭(B)18、海底基礎杭(C)19、海底基礎杭(D)20、海底基礎杭(E)21、海底基礎杭(F)22を固定させることにより、TLP型の特徴の1つである海面下での占有面積を抑えることが可能になった。Figure 5 shows six mooring wires (A) 11, (B) 12, (C) 13, (D) 14, (E) 15, and (F) 16 for mooring the buoyant body section 8 described in Figures 1 and 2 to the seabed 9, in a plan view in Figure 5a and a front view in Figure 5b. The six mooring wires (A) 11, mooring wire (B) 12, mooring wire (C) 13, mooring wire (D) 14, mooring wire (E) 15, and mooring wire (F) 16 are arranged in six mooring wire guide holes (A) 25, mooring wire guide hole (B) 26, mooring wire guide hole (C) 27, mooring wire guide hole (D) 28, mooring wire guide hole (E) 29, and mooring wire guide hole (F) 30 formed on the side of the buoyant body 8, and the length of each mooring wire is adjusted by the wire winding/feeding machine 60 shown in Figure 7 so that the buoyant body 8 is horizontal to the sea surface 7.This makes it possible for the floating offshore wind power plant 1 with an attached hydrogen factory to easily maintain a horizontal state with respect to the sea surface 7. The positional relationship between the six mooring wire guide holes (A) 25, (B) 26, (C) 27, (D) 28, (E) 29, and (F) 30 and the six seabed foundation piles (A) 17, (B) 18, (C) 19, (D) 20, (E) 21, and (F) 22 is such that the six mooring wires are spaced apart from each other in order to minimize the amount of swaying of the buoyant body 8 due to ocean currents and waves. By fixing six sea-bed foundation piles (A) 17, sea-bed foundation pile (B) 18, sea-bed foundation pile (C) 19, sea-bed foundation pile (D) 20, sea-bed foundation pile (E) 21, and sea-bed foundation pile (F) 22 to the seabed 9 directly below mooring wire guide hole (A) 25, mooring wire guide hole (B) 26, mooring wire guide hole (C) 27, mooring wire guide hole (D) 28, mooring wire guide hole (E) 29, and mooring wire guide hole (F) 30, it has become possible to reduce the area occupied below sea level, which is one of the characteristics of the TLP type.

図6は、図1、図2で説明したタワー部4、支柱6、浮力体部8の部材の寸法、角度をA~Sの記号で示す。タワー部4は概ね円錐形で、頂上部33は円形をした平面で成形され、頂上部33のタワー部上部直径Aは直径約5mで形成し、さらに頂上部33のタワー部上部スラブ厚さBは約500mmで形成し、さらに竪穴区画34は一点鎖線(C)43で示すようにタワー部33の概ね上端部からタワー部土台40を貫通させ浮力体部8の概ね下端部まで概ね直径約4mの円筒形で形成される。さらにタワー部4の頂上部33からタワー底部39までのタワー部高さCは約97mで形成し、さらに4階建ての建屋5の建屋4階高さFは約5m、建屋3階高さGは約5m、建屋2階高さHは約5m、建屋1階高さIは約5mで形成し、さらにタワー部4の底部のタワー底部スラブ厚さDは約1mで形成し、タワー部4の下部のタワー土台直径Sは直径約25mの円形状で形成される。さらに8本の支柱6の支柱高さEは全て約10mで形成し、さらに浮力体部8の鉄筋コンクリートの厚さは、上部、下部、外周面共に全て約200mmで形成し、さらに鉄筋コンクリート構造で構築した浮力体部8の前後底部は前方向と後方向に向けて傾斜させた形状で形成し、さらに浮力体部8の浮力体部直径Nは直径約100mの円形状で形成し、さらに浮力体部8の浮力体部高さJは約10mで形成し、図3で説明した浮力体部8の前方向と後方向の前方傾斜部31と後方傾斜部32の先端部の前方傾斜部先端部高さKと、後方傾斜部後端部高さRは共に約3mで形成し、図3で説明した前方傾斜部31と後方傾斜部32の前方傾斜部角度M、後方傾斜部角度Pは共に約14度で形成し、前記前方傾斜部31の前方傾斜部最大巾Lと、前記後方傾斜部32の後方傾斜部最大巾Qは共に約12mで形成し、さらに竪穴区画34の下部の浮力体部底スラブ厚さOは約200mmで形成される。このようにタワー部4の中心と、8本の支柱6の中心と、浮力体部8の中心を一直線状に構築することにより、水素工場を併設した浮体式洋上風力発電所1は海面7に対してバランス良く水平状態を保つことが可能になった。6 shows the dimensions and angles of the tower section 4, the support column 6, and the buoyant body section 8 explained in Fig. 1 and Fig. 2 with symbols A to S. The tower section 4 is generally conical, the top section 33 is formed with a circular plane, the tower section upper diameter A of the top section 33 is formed with a diameter of about 5 m, and the tower section upper slab thickness B of the top section 33 is formed with a thickness of about 500 mm, and the pit section 34 is formed with a cylindrical shape with a diameter of about 4 m from approximately the upper end of the tower section 33 to approximately the lower end of the buoyant body section 8, penetrating the tower section base 40 as shown by the dashed line (C) 43. Furthermore, the tower height C from the top 33 of the tower section 4 to the tower bottom 39 is approximately 97 m, and the four-story building 5 has a fourth-floor height F of approximately 5 m, a third-floor height G of approximately 5 m, a second-floor height H of approximately 5 m, and a first-floor height I of approximately 5 m. Furthermore, the tower bottom slab thickness D at the bottom of the tower section 4 is approximately 1 m, and the tower foundation diameter S at the bottom of the tower section 4 is formed in a circular shape with a diameter of approximately 25 m. Furthermore, the pillar height E of all eight pillars 6 is approximately 10 m, the thickness of the reinforced concrete of the buoyant body section 8 is approximately 200 mm for the upper, lower and outer peripheral surfaces, the front and rear bottoms of the buoyant body section 8 constructed with a reinforced concrete structure are formed in a shape that is inclined in the forward and rearward directions, the buoyant body diameter N of the buoyant body section 8 is formed in a circular shape with a diameter of approximately 100 m, and the buoyant body height J of the buoyant body section 8 is approximately 10 m, and the forward and rear directions of the buoyant body section 8 described in Figure 3 are approximately 200 mm. The forward inclined portion tip height K and the rear end height R of the rearward inclined portion of the tip of the forward inclined portion 31 and the rearward inclined portion 32 in the rearward direction are both formed to be about 3 m, the forward inclined portion angle M and the rearward inclined portion angle P of the forward inclined portion 31 and the rearward inclined portion 32 described in Fig. 3 are both formed to be about 14 degrees, the forward inclined portion maximum width L of the forward inclined portion 31 and the rearward inclined portion maximum width Q of the rearward inclined portion 32 are both formed to be about 12 m, and further, the buoyant body bottom slab thickness O at the bottom of the pit section 34 is formed to be about 200 mm. By constructing the center of the tower section 4, the centers of the eight pillars 6, and the center of the buoyant body section 8 in a straight line in this way, it has become possible for the floating offshore wind power plant 1 with the hydrogen plant attached to be kept in a well-balanced horizontal state with respect to the sea surface 7.

図7は、図5で説明した6本の係留ワイヤー(A)11、係留ワイヤー(B)12、係留ワイヤー(C)13、係留ワイヤー(D)14、係留ワイヤー(E)15、係留ワイヤー(F)16の内の一本の係留ワイヤー(C)13を代表して浮力体部8の係留ワイヤー用ガイド穴(B)26を経由させワイヤー巻取り・送り出し機60に巻き付けた状態を部分断面図で示す。海底基礎杭(C)19に取り付けた係留ワイヤー(C)13は、図5で説明した浮力体部8の側面に成形した係留ワイヤー用ガイド穴(B)26を経由し、浮力体部8の上面の係留ワイヤー用ガイド穴(B)26の近傍に取り付けたワイヤー用滑車(B)62と、さらに竪穴区画34の外側近傍の浮力体部8の上面に取り付けたワイヤー用滑車(A)61を経由し、さらにワイヤー用滑車(A)61の直上のタワー部土台40に貫通させたワイヤー通し穴63を経由し、建屋1階38の内部の竪穴区画34の外側近傍に取り付けたワイヤー巻取り・送り出し機60に巻き付け、このように構成した係留ワイヤー(C)13をワイヤー巻取り・送り出し機60により長さ調整をすることにより、海面7に対する水素工場を併設した浮体式洋上風力発電所1の上下高さと傾きを簡単に調整することが可能になった。このように6本の係留ワイヤー(A)11、係留ワイヤー(B)12、係留ワイヤー(C)13、係留ワイヤー(D)14、係留ワイヤー(E)15、係留ワイヤー(F)16を個々に巻取り・送出しするためのワイヤー巻取り・送出し機60を建屋1階38の内部の竪穴区画34の側面近傍の円周上に均等に割り当て配置することにより建屋1階38の内部のスペースを効率良く活用すると共に、ワイヤー巻取り・送出し機60のメンテナンスを合理的に行うことが可能になった。Figure 7 shows a partial cross-sectional view of one of the six mooring wires (A) 11, mooring wire (B) 12, mooring wire (C) 13, mooring wire (D) 14, mooring wire (E) 15, and mooring wire (F) 16 described in Figure 5, shown wound around the wire winding/delivering machine 60 after passing through the mooring wire guide hole (B) 26 in the buoyancy body section 8. The mooring wire (C) 13 attached to the seabed foundation pile (C) 19 passes through the mooring wire guide hole (B) 26 formed on the side of the buoyant body section 8 described in Figure 5, then through a wire pulley (B) 62 attached near the mooring wire guide hole (B) 26 on the top surface of the buoyant body section 8, and then through a wire pulley (A) 61 attached to the top surface of the buoyant body section 8 near the outside of the vertical compartment 34, and then through a wire passing hole 63 that penetrates the tower section base 40 directly above the wire pulley (A) 61, and is wound around a wire winding and letting-out machine 60 attached near the outside of the vertical compartment 34 inside the first floor 38 of the building. By adjusting the length of the mooring wire (C) 13 configured in this way using the wire winding and letting-out machine 60, it has become possible to easily adjust the vertical height and inclination of the floating offshore wind power plant 1 with an attached hydrogen plant relative to the sea surface 7. In this way, by evenly allocating and arranging the wire winding and letting-out machines 60 for individually winding and letting-out the six mooring wires (A) 11, mooring wire (B) 12, mooring wire (C) 13, mooring wire (D) 14, mooring wire (E) 15, and mooring wire (F) 16 on a circumference near the side of the vertical section 34 inside the first floor 38 of the building, it is possible to efficiently utilize the space inside the first floor 38 and to rationally perform maintenance of the wire winding and letting-out machines 60.

なお、図7においては、図1、図2で説明した6本の係留ワイヤー(A)11、係留ワイヤー(B)12、係留ワイヤー(C)13、係留ワイヤー(D)14、係留ワイヤー(E)15、係留ワイヤー(F)16の内の係留ワイヤー(C)13について説明したが、他の5本の係留ワイヤー(A)11、係留ワイヤー(B)12、係留ワイヤー(D)14、係留ワイヤー(E)15、係留ワイヤー(F)16についても、係留ワイヤー(C)13と同様にワイヤー用滑車とワイヤー巻取り・送り出し機を活用することにより、各々の係留ワイヤーの長さをワイヤー巻取り・送り出し機で調整することが出来るようになり、水素工場を併設した浮体式洋上風力発電所1の水平状態を保つことが可能になった。In Figure 7, of the six mooring wires (A) 11, mooring wire (B) 12, mooring wire (C) 13, mooring wire (D) 14, mooring wire (E) 15, and mooring wire (F) 16 described in Figures 1 and 2, only mooring wire (C) 13 has been described. However, by utilizing wire pulleys and wire winding/letting machines in the same manner as for mooring wire (C) 13, the length of each mooring wire can be adjusted by the wire winding/letting machine, making it possible to maintain the horizontal state of the floating offshore wind power plant 1 with an attached hydrogen factory.

以上、実施の形態に基づいて、本発明に係る水素工場を併設した浮体式洋上風力発電所について詳細に説明してきたが、本発明は、以上の実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において各種の改変をなしても、本発明の技術的範囲に属するのはもちろんである。The floating offshore wind power plant equipped with a hydrogen factory according to the present invention has been described in detail above based on the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the invention, and still fall within the technical scope of the present invention.

図1、図2において、「6本の係留ワイヤー(A)11、係留ワイヤー(B)12、係留ワイヤー(C)13、係留ワイヤー(D)14、係留ワイヤー(E)15、係留ワイヤー(F)16」と説明したが、係留ワイヤーの種類は、鋼製ワイヤーロープ、合成繊維ロープ、鋼鉄製の鎖を使用する場合もある。In Figures 1 and 2, it has been explained that there are "six mooring wires (A) 11, mooring wire (B) 12, mooring wire (C) 13, mooring wire (D) 14, mooring wire (E) 15, and mooring wire (F) 16," but the mooring wires can also be made of steel wire rope, synthetic fiber rope, or steel chain.

図3において、「・・・ナセル3の内部の発電装置で発電した電気で真水を電気分解して水素を発生させるための水電解装置53と、さらに電気分解した水素を液化させるための水素液化装置54を設置し稼働させることにより、海水から液体水素を製造する・・・」と説明したが、浮体式洋上風力発電装置は、風向き、風力の状況に応じて発電量が不安定であるため、そのため浮体式洋上風力発電装置で発電した電気を水電解装置53に直接接続した場合、水電解装置53が不安定な状態になる。そのため水電解装置53に電力を安定的に供給するため蓄電池装置(図示せず)を組み込み水電解装置53を稼働させる方法も、もちろん有効である。3 , it has been explained that "liquid hydrogen is produced from seawater by installing and operating a water electrolysis device 53 for generating hydrogen by electrolyzing fresh water with electricity generated by a power generation device inside the nacelle 3, and a hydrogen liquefaction device 54 for liquefying the electrolyzed hydrogen...", but since the amount of power generated by a floating offshore wind turbine is unstable depending on the wind direction and wind force conditions, if electricity generated by the floating offshore wind turbine is directly connected to the water electrolysis device 53, the water electrolysis device 53 will be in an unstable state. Therefore, it is of course effective to operate the water electrolysis device 53 by incorporating a storage battery device (not shown) to stably supply power to the water electrolysis device 53.

図1において、支柱6を直径約2m、肉厚約30mm、長さ約10mの鋼管で成形したと説明したが、円筒形をした直径約2m、筒の厚さ約20cm、長さ約10mの鉄筋コンクリート構造で製作することも、もちろん可能である。In FIG. 1, it has been explained that the support pillar 6 is formed from a steel pipe having a diameter of about 2 m, a thickness of about 30 mm, and a length of about 10 m. However, it is of course possible to manufacture it from a cylindrical reinforced concrete structure having a diameter of about 2 m, a tube thickness of about 20 cm, and a length of about 10 m.

図7において、「・・・このように構成した係留ワイヤー(C)13をワイヤー巻取り・送り出し機60により長さ調整をすることにより、海面7に対する浮体式洋上風力発電所1の上下高さと傾きを簡単に調整することが可能になった。」と説明したが。もちろん浮力体部8の内部に設置したバラスト水用タンク(図示せず)にバラスト水(海水)を注入、排出することにより浮力体部8の浮力を予定浮力になるように調整することも、もちろん可能である。7, it was explained that "...by adjusting the length of the mooring wire (C) 13 configured in this way with the wire winding/releasing machine 60, it is possible to easily adjust the vertical height and inclination of the floating offshore wind farm 1 relative to the sea surface 7." Of course, it is also possible to adjust the buoyancy of the buoyancy body part 8 to the planned buoyancy by injecting and discharging ballast water (seawater) into a ballast water tank (not shown) installed inside the buoyancy body part 8.

本発明の実施の形態に係る、水素工場を併設した浮体式洋上風力発電所を斜視図で示す。FIG. 1 is a perspective view of a floating offshore wind farm equipped with a hydrogen plant according to an embodiment of the present invention. 同実施の形態に係る、図1で示した水素工場を併設した浮体式洋上風力発電所を正面図で示す。2 is a front view of the floating offshore wind power plant associated with the hydrogen plant shown in FIG. 1 according to the embodiment. 同実施の形態に係る、タワー部と支柱と浮力体部を平面図と正面図で示す。2A and 2B are plan and front views of a tower section, a support column, and a buoyant body section according to the embodiment. 同実施の形態に係る、支柱と浮力体部を平面図と正面図で示す。2A and 2B are plan and front views of the support column and the buoyant body according to the embodiment. 同実施の形態に係る、図4で示した浮力体部を海底基礎杭で海底に固定した状態を平面図と正面図で示す。5A and 5B are plan and front views showing the state in which the buoyant body shown in FIG. 4 is fixed to the seabed by seabed foundation piles according to the embodiment. 同実施の形態に係る、タワー部と支柱と浮力体部を正面図で示す。FIG. 2 is a front view of the tower section, the support column, and the buoyant body section according to the embodiment. 同実施の形態に係る、図2で示した係留ワイヤーの作動方法を正面図で示す。3 is a front view showing a method of operating the mooring wire shown in FIG. 2 according to the embodiment;

A タワー部上部直径
B タワー部上部スラブ厚さ
C タワー部高さ
D タワー底部スラブ厚さ
E 支柱高さ
F 建屋4階高さ
G 建屋3階高さ
H 建屋2階高さ
I 建屋1階高さ
J 浮力体部高さ
K 前方傾斜部先端部高さ
L 前方傾斜部最大幅
M 前方傾斜部角度
N 浮力体部直径
O 浮力体部底スラブ厚さ
P 後方傾斜部角度
Q 後方傾斜部最大幅
R 後方傾斜部後端部高さ
S タワー土台直径
1 水素工場を併設した浮体式洋上風力発電所
2 ブレード
3 ナセル
4 タワー部
5 建屋
6 支柱
7 海面
8 浮力体部
9 海底
10 ハブ
11 係留ワイヤー(A)
12 係留ワイヤー(B)
13 係留ワイヤー(C)
14 係留ワイヤー(D)
15 係留ワイヤー(E)
16 係留ワイヤー(F)
17 海底基礎杭(A)
18 海底基礎杭(B)
19 海底基礎杭(C)
20 海底基礎杭(D)
21 海底基礎杭(E)
22 海底基礎杭(F)
23 鋼管
25 係留ワイヤー用ガイド穴(A)
26 係留ワイヤー用ガイド穴(B)
27 係留ワイヤー用ガイド穴(C)
28 係留ワイヤー用ガイド穴(D)
29 係留ワイヤー用ガイド穴(E)
30 係留ワイヤー用ガイド穴(F)
31 前方傾斜部
32 後方傾斜部
33 頂上部
34 竪穴区画
35 建屋4階
36 建屋3階
37 建屋2階
38 建屋1階
39 タワー底部
40 タワー部土台
41 一点鎖線(A)
42 一点鎖線(B)
43 一点鎖線(C)
45 支柱(A)
46 支柱(B)
47 支柱(C)
48 支柱(D)
49 支柱(E)
50 支柱(F)
51 支柱(G)
52 支柱(H)
53 水電解装置
54 水素液化装置
55 液体水素貯蔵タンク
56 一点鎖線(D)
57 一点鎖線(E)
58 海水淡水化装置
59 蓄電池設備
60 ワイヤー巻取り・送り出し機
61 ワイヤー用滑車(A)
62 ワイヤー用滑車(B)
63 ワイヤー通し穴
A Diameter of top of tower section B Thickness of top slab of tower section C Height of tower section D Thickness of bottom slab of tower section E Height of support column F Height of 4th floor of building G Height of 3rd floor of building H Height of 2nd floor of building I Height of 1st floor of building J Height of buoyancy body section K Height of tip of forward inclined section L Maximum width of forward inclined section M Angle of forward inclined section N Diameter of buoyancy body section O Thickness of bottom slab of buoyancy body section P Angle of rear inclined section Q Maximum width of rear inclined section R Height of rear end of rear inclined section S Diameter of tower foundation 1 Floating offshore wind power plant with attached hydrogen plant 2 Blade 3 Nacelle 4 Tower section 5 Building 6 Support column 7 Sea surface 8 Buoyancy body section 9 Seabed 10 Hub 11 Mooring wire (A)
12 Mooring wire (B)
13 Mooring wire (C)
14 Mooring wire (D)
15 Mooring wire (E)
16 Mooring wire (F)
17 Submarine foundation pile (A)
18 Submarine foundation pile (B)
19 Submarine foundation pile (C)
20 Submarine foundation pile (D)
21. Seabed foundation piles (E)
22 Submarine foundation pile (F)
23 Steel pipe 25 Guide hole for mooring wire (A)
26 Mooring wire guide hole (B)
27 Mooring wire guide hole (C)
28 Mooring wire guide hole (D)
29 Mooring wire guide hole (E)
30 Mooring wire guide hole (F)
31 forward inclined portion 32 rear inclined portion 33 top portion 34 pit section 35 fourth floor of building 36 third floor of building 37 second floor of building 38 first floor of building 39 tower bottom 40 tower base 41 dashed line (A)
42 One-dot chain line (B)
43 One-dot chain line (C)
45 Support (A)
46 Pillar (B)
47 Pillar (C)
48 Pillar (D)
49 Pillar (E)
50 Pillar (F)
51 Pillar (G)
52 Pillar (H)
53 Water electrolysis device 54 Hydrogen liquefaction device 55 Liquid hydrogen storage tank 56 One-dot chain line (D)
57 One-dot chain line (E)
58 Seawater desalination equipment 59 Battery equipment 60 Wire winding/unwinding machine 61 Wire pulley (A)
62 Wire pulley (B)
63 Wire hole

Claims (6)

複数枚のブレードと増速機や発電機を内蔵したナセルを支えるタワーで構成した浮体式洋上風力発電において、
洋上に配置したタワー部と水中に配置した浮力体部を鉄筋コンクリート構造で構築すると共に、前記タワー部と前記浮力体部を複数本の支柱で連結し、
前記浮力体部を複数本の係留ワイヤーにより海底に固定した複数基の海底基礎杭に係留し、
前記タワー部の建屋内に前記浮体式洋上風力発電で発電した電気で水を電気分解し水素を生成する水電解装置を設置し、
前記浮力体部に前記水電解装置で生成した水素を貯蔵するための液体水素貯蔵タンクを設置したことを特徴とする水素工場を併設した浮体式洋上風力発電所。
A floating offshore wind turbine is made up of a tower that supports multiple blades and a nacelle that houses a gearbox and generator.
A tower section disposed on the ocean and a buoyant body section disposed underwater are constructed with a reinforced concrete structure, and the tower section and the buoyant body section are connected with a plurality of supports,
The buoyant body is moored to a plurality of seabed foundation piles fixed to the seabed by a plurality of mooring wires,
A water electrolysis device is installed in the tower building to electrolyze water using electricity generated by the floating offshore wind power generation system to generate hydrogen,
A floating offshore wind power plant equipped with a hydrogen factory, characterized in that a liquid hydrogen storage tank for storing hydrogen generated by the water electrolysis device is installed in the buoyant body.
前記タワー部は概ね円錐形で下部を複数階の建屋で構成すると共に、頂上部を円形状の平面で形成し、前記頂上部にナセルを取り付けるための鋼管を取り付けたことを特徴とする請求項1に記載の水素工場を併設した浮体式洋上風力発電所。The floating offshore wind power plant with hydrogen factory described in claim 1, characterized in that the tower section is roughly conical in shape, the lower part being composed of a multi-story building, the top part being formed with a circular flat surface, and a steel pipe for mounting a nacelle is attached to the top part. 前記浮力体部は概ね円筒形で内部を空洞で構成し、海近くの陸地で構築した浮体式洋上風力発電所を水上に浮かべるため、前方向と後方向の両方向の底部を前端部と後端部に向けて傾斜させたことを特徴とする請求項1又は2に記載の水素工場を併設した浮体式洋上風力発電所。A floating offshore wind power plant with a hydrogen factory as described in claim 1 or 2, characterized in that the buoyancy body is generally cylindrical with a hollow interior, and the bottoms in both the forward and rearward directions are inclined toward the front end and rear end in order to float the floating offshore wind power plant constructed on land near the sea on the water. 前記浮力体部を、海底に設置した複数基の海底基礎杭と複数本の係留ワイヤーでつなぎTLP型により係留すると共に、前記浮力体部の側面に形成した係留ワイヤー用ガイド穴を経由させた前記複数本の係留ワイヤーの一端を、複数個のワイヤー用滑車を介して前記タワー部の建屋内に引き込み、ワイヤー巻取り・送出し機で係留ワイヤーの個々の長さを調整することにより浮体式洋上風力発電所の水平状態を維持させるように構成したことを特徴とする請求項1乃至3のいずれか1項に記載の水素工場を併設した浮体式洋上風力発電所。4. A floating offshore wind farm with a hydrogen factory as described in any one of claims 1 to 3, characterized in that the buoyant body section is moored by a plurality of mooring wires connected to a plurality of seabed foundation piles installed on the seabed using a TLP type mooring system, and one end of the plurality of mooring wires that pass through mooring wire guide holes formed on the side of the buoyant body section are pulled into the building of the tower section via a plurality of wire pulleys, and the horizontal state of the floating offshore wind farm is maintained by adjusting the individual lengths of the mooring wires with a wire winding/letting out machine. 前記タワー部の概ね上端部から前記浮力体部の概ね下端部まで貫通させた竪穴区画を構築し、竪穴区画の内部に簡易リフトと上下移動用階段を設置したことを特徴とする請求項1乃至4のいずれか1項に記載の水素工場を併設した浮体式洋上風力発電所。A floating offshore wind power plant with a hydrogen factory as described in any one of claims 1 to 4, characterized in that a vertical section is constructed extending from approximately the upper end of the tower section to approximately the lower end of the buoyancy body section, and a simple lift and a staircase for vertical movement are installed inside the vertical section. 前記タワー部の建屋内に、前記水電解装置で製造した水素を液化させるための水素液化装置を設置したことを特徴とする請求項1乃至5のいずれか1項に記載の水素工場を併設した浮体式洋上風力発電所。6. The floating offshore wind power plant with a hydrogen factory according to claim 1, further comprising a hydrogen liquefaction device installed in a building of the tower section for liquefying hydrogen produced by the water electrolysis device.
JP2023223864A 2023-12-13 2023-12-13 Floating offshore wind power plant with hydrogen plant Pending JP2025094867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023223864A JP2025094867A (en) 2023-12-13 2023-12-13 Floating offshore wind power plant with hydrogen plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023223864A JP2025094867A (en) 2023-12-13 2023-12-13 Floating offshore wind power plant with hydrogen plant

Publications (1)

Publication Number Publication Date
JP2025094867A true JP2025094867A (en) 2025-06-25

Family

ID=96139558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023223864A Pending JP2025094867A (en) 2023-12-13 2023-12-13 Floating offshore wind power plant with hydrogen plant

Country Status (1)

Country Link
JP (1) JP2025094867A (en)

Similar Documents

Publication Publication Date Title
CN111232140B (en) Floating offshore wind power foundation structure with additional net cage
CN111469992B (en) Floating offshore wind power structure foundation with damping effect and stability control method
EP2993270B1 (en) Submersible structure for actively supporting towers of generators and sub-stations or similar elements, in maritime facilities
KR101713618B1 (en) Column-stabilized offshore platform with water-entrapment plates and asymmetric mooring system for support of offshore wind turbines
US8235629B2 (en) Submerged floating foundation with blocked vertical thrust as support base for wind turbine, electrolyser and other equipment, combined with fish farming
EP2510231B1 (en) Floating energy producing plant
US12384500B2 (en) Method of assembling and deploying a floating offshore wind turbine platform
US8689721B2 (en) Vertically installed spar and construction methods
WO2007009464A1 (en) Plant for exploiting wind energy at sea
CN113530761B (en) Floating type foundation of offshore wind turbine generator set with grid type structure and construction method
CN102060088A (en) Special technology for offshore combined floating wind power generation
CN212243735U (en) Floating type offshore wind power structure foundation with damping effect
WO2022098288A1 (en) Mooring system comprising buoys and anchors
CN201941953U (en) Marine combined floating wind power generation platform
WO2022098246A1 (en) Installing offshore floating wind turbines
WO2011097779A1 (en) Marine wind turbine whole machine
CN218892677U (en) Semi-floating offshore wind turbine hydrogen production platform
CN212716998U (en) Automatic cross basic of driftage floats formula offshore wind power generation device
CN217416055U (en) An aquatic photovoltaic polygonal floating infrastructure
CN212951052U (en) Three-upright-column offshore wind power generation platform system
JP2025094867A (en) Floating offshore wind power plant with hydrogen plant
JP7730602B2 (en) Offshore hydrogen charging station
CN217870596U (en) Tensioning type fan foundation anchored on foundation seabed
CN212716999U (en) Automatic-yawing double-wind-wheel floating type offshore wind power generation device
JP2025094866A (en) Floating offshore wind farm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240911