JP2025029599A - Flat hole connection method by pulsed laser shock and its device and application - Google Patents
Flat hole connection method by pulsed laser shock and its device and application Download PDFInfo
- Publication number
- JP2025029599A JP2025029599A JP2024139136A JP2024139136A JP2025029599A JP 2025029599 A JP2025029599 A JP 2025029599A JP 2024139136 A JP2024139136 A JP 2024139136A JP 2024139136 A JP2024139136 A JP 2024139136A JP 2025029599 A JP2025029599 A JP 2025029599A
- Authority
- JP
- Japan
- Prior art keywords
- hole
- shaped
- plate material
- hourglass
- inclined surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
- B23K26/702—Auxiliary equipment
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
- Connection Of Plates (AREA)
Abstract
Description
本発明は、先進的なレーザによる製造の技術分野に属し、具体的には、パルスレーザ衝撃によるフラットホール接続方法並びにその装置及び応用に関する。 The present invention belongs to the technical field of advanced laser manufacturing, specifically to a method for flat hole connection by pulsed laser shock, and its device and application.
当該背景技術の情報を開示することは、必ずしも当該情報構成が既に当業者に公知の従来技術となったことを承認したり、いかなる形式で示唆したりするとみなされず、本発明の全体的な背景に対する理解を深めることを意図するに過ぎない。 The disclosure of this background information is not necessarily intended to be an admission or in any manner suggestion that the information constitutes prior art already known to those skilled in the art, but is merely intended to enhance understanding of the overall background of the present invention.
板材間の固定接続方式には、主に溶接、カシメ、螺合接続などがある。 The main methods for fixing connections between plates include welding, crimping, and screw connections.
融接に代表される伝統的な溶接とは、高温熱源により溶融状態となるように材料に作用して冶金結合を形成するものであるため、高い接続強度を有し、高い導電性を得ることができる。しかしながら、融接領域には、熱影響部が形成されることがあり、熱変形、不均一なインクルージョンの形成及び気孔、クラックなどの欠陥の発生を引き起こし、融接継手の耐疲労性を低下させやすくなる。レーザ衝撃溶接は、新規な固体冶金結合技術であり、融接方法による不利な熱効果を回避するが、継手の耐疲労性を依然として著しく改善することができない。 Traditional welding, as typified by fusion welding, involves applying a high-temperature heat source to materials to cause them to become molten, forming a metallurgical bond, which provides high connection strength and high electrical conductivity. However, heat-affected zones may form in the fusion welding area, which can cause thermal deformation, the formation of non-uniform inclusions, and defects such as pores and cracks, which tend to reduce the fatigue resistance of the fusion-welded joint. Laser impact welding is a novel solid-state metallurgical bonding technology that avoids the adverse thermal effects of fusion welding methods, but still fails to significantly improve the fatigue resistance of the joint.
板材間のカシメには、リベットによるカシメ及びリベットレスカシメが含まれ、この両者は、通常、常温で行われるため、冷間加工に属する。中でも、リベットレスカシメは、材料自体の塑性変形のみにより接続し、リベットを必要としないので、加工速度が速く、平坦な継手を得やすいため、近年、その応用が益々広くなっている。溶接による冶金結合に比べて、カシメは、機械的結合に属し、継手の耐疲労性がよいが、剪断強度及び剥離強度が低く、導電性能が低い。リベットレスカシメにより異種材料を接続する場合に、変形後に異種材料の異なる反発量により、継手を緩め、その導電性をさらに低下させる可能性がある。 Fastening between plate materials includes fastening with rivets and rivetless fastening, both of which are usually performed at room temperature and therefore belong to the category of cold working. Rivetless fastening, in particular, connects only through the plastic deformation of the material itself and does not require rivets, so it is fast to process and easy to obtain flat joints, and its application has become increasingly widespread in recent years. Compared to metallurgical bonding by welding, fastening belongs to mechanical bonding and the fatigue resistance of the joint is good, but the shear strength and peel strength are low, and the electrical conductivity is poor. When connecting dissimilar materials with rivetless fastening, the different repulsion amounts of the different materials after deformation can loosen the joint and further reduce its electrical conductivity.
カシメ溶接複合接続技術は、カシメの機械的結合及び溶接の冶金結合の利点を兼ね備え、単純なカシメ継手の強度が低く、導電性が低いという問題、単純な溶接継手の耐疲労性が低いという問題などを一定の程度で解決したため、導電板などの金属板材の接続分野において良好な応用見込みがある。溶接してからカシメを施すと、溶接中に発生した材料性能の変化により、カシメがより困難になる。カシメを施してから溶接すると、カシメプロセスで空間を利用することにより、溶接の位置及び角度が制限され、溶接がより困難になる。このため、産業界は、カシメ溶接の同時実施プロセスによりカシメ溶接複合継手を得ることに向けて努力を進めている。出願番号201510119083.0の中国特許には、極薄板材へのレーザによるカシメ接合・溶接接合の同時実施方法及び装置が開示されている。当該方法において、上層板材と下層板材とを積み重ねて、雌型上にともに置き、雌型には、底部型が設けられており、パルスレーザビームを上層板材又は上層板材の表面に塗布されたエネルギー吸収層に作用させて、爆発プラズマを形成するにつれて、上層板材が下層板材に衝突し、上層板材と下層板材とは、高歪率の塑性フローカップリングが発生し、底部型の拘束下で、上層板材と下層板材は、共同でリベットボタン形状に塑性成形されることによって、機械的相互締結を発生させてカシメ接合される。塑性変形中に、上層板材と下層板材との接触界面には圧縮応力があるので、界面に溶融及び原子拡散が発生し、上層板材と下層板材は、共同で底部型に衝突する時に溶接接合される。しかしながら、当該方法により実現される極薄板材のカシメ溶接継手は、主に2層の板材の共同塑性変形によるものであるため、非常に薄くて厚みに大きな差がない板材の接続のみに好適である。 The rivet welding composite connection technology combines the advantages of mechanical bonding of rivets and metallurgical bonding of welding, and to a certain extent solves the problems of low strength and low conductivity of simple rivet joints and low fatigue resistance of simple welded joints, so it has good prospects for application in the field of connection of metal plate materials such as conductive plates. If welding is performed after rivet application, rivet becomes more difficult due to the change in material performance caused during welding. If rivet application is performed after welding, the position and angle of welding are limited due to the use of space in the rivet process, making welding more difficult. Therefore, the industry is making efforts to obtain a rivet welding composite joint by the simultaneous rivet welding process. A Chinese patent with application number 201510119083.0 discloses a method and apparatus for simultaneous rivet joining and welding joining of ultra-thin plate materials by laser. In this method, the upper and lower plates are stacked and placed together on a female mold, and the female mold is provided with a bottom mold. A pulsed laser beam is applied to the upper plate or the energy absorbing layer applied to the surface of the upper plate to form an explosion plasma, and the upper plate collides with the lower plate, and a plastic flow coupling with a high strain rate occurs between the upper plate and the lower plate. Under the constraint of the bottom mold, the upper plate and the lower plate are plastically formed into a rivet button shape together, thereby generating a mechanical mutual fastening and crimping joint. During plastic deformation, there is a compressive stress at the contact interface between the upper plate and the lower plate, so melting and atomic diffusion occur at the interface, and the upper plate and the lower plate are welded when they collide with the bottom mold together. However, the crimping weld joint of the ultra-thin plate material realized by this method is mainly due to the joint plastic deformation of two layers of plate material, so it is only suitable for connecting very thin plate materials with no significant difference in thickness.
カシメ接合に必要な相互締結構造の作製には、2層の板材の指向性流動が良好に結合することを確保する必要があるとともに、2層の板材が全て非常に高い変形量を生じる必要がある。厚い板材は、高い剛性を有するため、材料の流動性能及び充填性能が低いことから、材料の指向性流動がより困難になり、大きい変形量を生じにくく、一般的には、昇温させることで材料の流動を促進するなど、追加の措置を採る必要がある。また、2層の板材の厚みに大きな差がある場合に、大きな厚みの差により、2層の板材間の流動の結合が劣り、割れが発生しやすく、接続品質が悪くなる。変形中に、接続界面における圧縮応力が主に作用し、大きな厚みの差により、接続時の圧力分布が不均一となり、応力の局所的な集中、接続品質の低下を引き起こし、接続の不安定性及び無効化のリスクが高くなる。 To create the interlocking structure required for crimping, it is necessary to ensure that the directional flow of the two layers of plate materials is well combined, and both layers of plate materials must be able to produce very high deformations. Thick plate materials have high rigidity, and therefore have low material flow and filling performance, making the directional flow of the material more difficult and less likely to produce large deformations. In general, additional measures must be taken, such as increasing the temperature to promote the flow of the material. In addition, when there is a large difference in thickness between the two layers of plate materials, the large thickness difference will cause poor flow coupling between the two layers of plate materials, making them more likely to crack, and resulting in poor connection quality. During deformation, the compressive stress at the connection interface is the main force, and the large thickness difference will cause uneven pressure distribution during connection, leading to localized stress concentration, reduced connection quality, and increased risk of connection instability and invalidation.
前記課題を解決するために、本発明は、大きな厚みがあるか厚みに大きな差がある板材も、溶接接合及びカシメ接合を同時に実現可能であり、継手が平坦で、突起がなく、相互締結量が大きく、継手の強度が高く、耐疲労性及び導電性能が良好であるといった特徴を有するようにする、パルスレーザ衝撃によるフラットホール接続方法並びにその装置及び応用を提供する。 To solve the above problems, the present invention provides a method for connecting flat holes by pulsed laser impact, which can simultaneously achieve welding and crimping joints even for plate materials with large thicknesses or large differences in thickness, and which has the characteristics of a flat joint, no protrusions, a large amount of mutual fastening, high joint strength, and good fatigue resistance and electrical conductivity, as well as an apparatus and application thereof.
本発明の第1の側面は、底部型、砂時計状スルーホール付き下層板材、上層板材、吸収層及び拘束層を下からこの順で積層配置し、ワーク挟持系で各層を挟み付けて作業台に固定するステップと、砂時計状スルーホール領域をパルスレーザ光のスポットの中心位置に置き、パルスレーザ衝撃波の圧力で、上層板材は、下向きに高歪率の塑性変形が発生し、下層板材の砂時計状スルーホールの上傾斜面に衝突し、高速剪断変形が発生し、冶金溶接接合効果を生じるステップと、上層板材が変形し続けるにつれて、上層板材は、下層板材の砂時計状スルーホールのキャビティに流入すると、下層板材の砂時計状スルーホールの下傾斜面とともに上部が小さくて底部が大きい相互締結構造を形成し、機械的カシメ接合効果を生じるステップと、フラットホール状で、上部が溶接を利用して下部がカシメを利用するカシメ溶接複合接続を完成させるステップと、
を含む、パルスレーザ衝撃によるフラットホール接続方法を提供する。
The first aspect of the present invention includes the steps of stacking a bottom mold, a lower plate material with an hourglass-shaped through hole, an upper plate material, an absorption layer, and a constraint layer in this order from the bottom, clamping each layer with a work clamping system and fixing it to a work table; placing the hourglass-shaped through hole region at the center position of the spot of the pulsed laser light, and the pressure of the pulsed laser shock wave causes the upper plate material to undergo downward plastic deformation with a high strain rate, colliding with the upper inclined surface of the hourglass-shaped through hole of the lower plate material, causing high-speed shear deformation and producing a metallurgical welding joint effect; as the upper plate material continues to deform, the upper plate material flows into the cavity of the hourglass-shaped through hole of the lower plate material, and together with the lower inclined surface of the hourglass-shaped through hole of the lower plate material, forms an interlocking structure with a small top and a large bottom, producing a mechanical crimping joint effect; and completing a crimping welding composite connection in the shape of a flat hole, with the upper part utilizing welding and the lower part utilizing crimping.
The present invention provides a method for connecting flat holes by pulsed laser impact, comprising:
本発明の第2の側面は、前記方法を実現する装置であって、下からこの順で積層配置された底部型、砂時計状スルーホール付き下層板材、上層板材、吸収層及び拘束層を含み、ワーク挟持系で各層を挟み付けて作業台に固定し、
パルスレーザを発生させるためのレーザ機をさらに含む、装置を提供する。
A second aspect of the present invention is an apparatus for implementing the above-mentioned method, comprising a bottom mold, a lower plate material with an hourglass-shaped through hole, an upper plate material, an absorption layer, and a constraint layer, which are stacked in this order from the bottom, and a work clamping system clamps each layer and fixes them to a work table;
An apparatus is provided further including a laser for generating a pulsed laser.
本発明の第3の側面は、厚みが大きい板材、又は厚みに大きな差がある板材へのカシメ接合・溶接接合の同時実施における前記方法又は前記方法を実現する装置の使用を提供する。上層板材が厚い場合に、レーザ衝撃力の作用下で、上層板材は、下層板材のスルーホールに押し込まれ、その効果は、金属成形分野における押出成形に類似する。下層板材が厚い場合に、異なる大きさのスルーホールを採用して、上層板材をスルーホールに円滑に流入させることができる。下層板材が薄い場合に、小さいスルーホールを採用することができ、そうでなければ、大きいスルーホールを採用する。 The third aspect of the present invention provides the use of the method or the device for realizing the method in simultaneously performing crimping and welding on thick plates or plates with a large difference in thickness. When the upper plate is thick, the upper plate is forced into the through-hole of the lower plate under the action of the laser impact force, the effect of which is similar to extrusion molding in the field of metal forming. When the lower plate is thick, through-holes of different sizes can be adopted to allow the upper plate to flow smoothly into the through-hole. When the lower plate is thin, small through-holes can be adopted, otherwise large through-holes are adopted.
本発明の有益な効果は、以下のとおりである。
(1)下層板材には、1つの上テーパー及び1つの下テーパーを有することによって、上傾斜面及び下傾斜面を有する砂時計状スルーホールが設けられている。レーザ衝撃の前に、上層板材と上傾斜面とは一定の隙間を有し、当該隙間により上層板材のレーザ衝撃領域に一定の飛行距離を提供し、レーザ衝撃の際に、上層板材は、下層板材の上傾斜面に高速で衝突し、高速剪断変形が発生し、冶金溶接接合効果を生じることができ、上層板材が変形し続けるにつれて、材料は、さらに下層板材の砂時計状スルーホールの下部に流入し、下層板材の砂時計状スルーホールの下傾斜面とともに上部が小さくて底部が大きい相互締結構造を形成し、機械的カシメ接合効果を生じて、フラットホール状で、上部が溶接を利用して下部がカシメを利用するカシメ溶接複合接続を完成させる。
The beneficial effects of the present invention are as follows:
(1) The lower plate has an hourglass-shaped through hole with an upper inclined surface and a lower inclined surface by having an upper taper and a lower taper. Before the laser impact, the upper plate and the upper inclined surface have a certain gap, which provides a certain flight distance for the laser impact area of the upper plate. During the laser impact, the upper plate collides with the upper inclined surface of the lower plate at high speed, which generates high-speed shear deformation and can produce a metallurgical welding joint effect. As the upper plate continues to deform, the material further flows into the lower part of the hourglass-shaped through hole of the lower plate, and together with the lower inclined surface of the hourglass-shaped through hole of the lower plate, forms an interlocking structure with a small upper part and a large lower part, which produces a mechanical crimping joint effect, completing a crimping welding composite connection in the shape of a flat hole, with the upper part using welding and the lower part using crimping.
(2)本発明において、上層板材は、レーザ衝撃下で塑性変形が発生し、変形後の上層板材は、下層板材の砂時計状スルーホールに流入するため、材料の指向性流動が良好である。また、レーザ衝撃下で塑性歪みが発生するのは上層板材のみであり、2層の板材間の流動の結合の課題を考慮する必要がないので、本出願は、厚みが大きい板材、又は厚みに大きな差がある板材へのカシメ接合・溶接接合の同時実施に好適である。 (2) In the present invention, the upper plate material undergoes plastic deformation under the laser impact, and the deformed upper plate material flows into the hourglass-shaped through-holes in the lower plate material, resulting in good directional flow of material. In addition, only the upper plate material undergoes plastic strain under the laser impact, and there is no need to consider the issue of flow coupling between the two plate materials. Therefore, this application is suitable for simultaneously performing crimping and welding on plate materials with large thicknesses or plate materials with large thickness differences.
(3)本発明により提供される方法は、接続領域が小さく、厚いか厚みに大きな差がある板材に用いることができる。また、カシメ接合溶接接合継手は、フラットホール状であり、幾何学的突起がないため、接続空間に対して要求がある板材のカシメ溶接接続の課題を解決する。 (3) The method provided by the present invention can be used for plate materials with a small connection area and a large difference in thickness. In addition, the crimped welded joint joint is flat hole-shaped and has no geometric protrusions, solving the problem of crimped welded joints for plate materials that have requirements for connection space.
(4)本発明により提供される方法は、機械的結合及び冶金結合を実現することができ、高強度、耐疲労性及び導電性を兼ね備える。本発明において、相互締結量は、厚み方向の変形差ではなく、下層板材の巨視的形状に依存するので、相互締結量が大きく、継手の高強度を確保する。 (4) The method provided by the present invention can realize mechanical and metallurgical bonding, and has high strength, fatigue resistance, and electrical conductivity. In the present invention, the amount of mutual fastening depends on the macroscopic shape of the lower plate material, not on the deformation difference in the thickness direction, so the amount of mutual fastening is large and high strength of the joint is ensured.
(5)上層板材は、熱効果ではなく、レーザ衝撃波の力効果で高歪率の塑性成形が発生し、そして、上層板材と下層板材のスルーホールの上傾斜面との高速衝突及び剪断による溶接接合も、瞬時で板材の表層のみに発生するので、熱影響部による課題がない。 (5) The upper plate undergoes high-strain plastic forming due to the force effect of the laser shock wave, not due to a thermal effect, and the welding joint caused by high-speed collision and shearing between the upper inclined surfaces of the through holes in the upper and lower plates occurs instantaneously only on the surface of the plate, so there are no issues due to the heat-affected zone.
(6)本発明により提供される方法は、レーザパルスの作用下で、板材のカシメ接合溶接接合の複合接続を同時に完成させることを実現することができ、プロセスが簡単で、加工効率が高い。 (6) The method provided by the present invention can achieve simultaneous completion of a composite connection of crimping and welding of plate materials under the action of laser pulses, with a simple process and high processing efficiency.
本発明の一部を構成する明細書の図面は、本発明をさらに理解させるためのものである。本発明の模式的な実施例及びその説明は、本発明を解釈するためのものであり、本発明に対する不当な限定を構成するものではない。 The drawings in the specification, which form part of the present invention, are intended to provide a further understanding of the present invention. The schematic examples of the present invention and their explanations are intended to aid in the interpretation of the present invention and do not constitute undue limitations on the present invention.
本発明の第1の典型的な実施形態は、底部型、砂時計状スルーホール付き下層板材、上層板材、吸収層及び拘束層を下からこの順で積層配置し、ワーク挟持系で各層を挟み付けて作業台に固定するステップと、砂時計状スルーホール領域をパルスレーザ光のスポットの中心位置に置き、パルスレーザ衝撃波の圧力で、上層板材は、下向きに高歪率の塑性変形が発生し、下層板材の砂時計状スルーホールの上傾斜面に衝突し、高速剪断変形が発生し、冶金溶接接合効果を生じるステップと、上層板材が変形し続けるにつれて、上層板材は、下層板材の砂時計状スルーホールのキャビティに流入すると、下層板材の砂時計状スルーホールの下傾斜面とともに上部が小さくて底部が大きい相互締結構造を形成し、機械的カシメ接合効果を生じるステップと、フラットホール状で、上部が溶接を利用して下部がカシメを利用するカシメ溶接複合接続を完成させるステップと、
を含む、パルスレーザ衝撃によるフラットホール接続方法を提供する。
The first exemplary embodiment of the present invention includes the steps of stacking the bottom mold, the lower plate with the hourglass-shaped through hole, the upper plate, the absorbing layer and the constraining layer in this order from the bottom, clamping each layer with a work clamping system and fixing it to a work table; placing the hourglass-shaped through hole area at the center position of the spot of the pulsed laser light, and the pressure of the pulsed laser shock wave causes the upper plate to undergo downward plastic deformation with a high strain rate, colliding with the upper inclined surface of the hourglass-shaped through hole of the lower plate, generating high-speed shear deformation and producing a metallurgical welding joint effect; as the upper plate continues to deform, the upper plate flows into the cavity of the hourglass-shaped through hole of the lower plate, and together with the lower inclined surface of the hourglass-shaped through hole of the lower plate, forms an interlocking structure with a small top and a large bottom, producing a mechanical crimping joint effect; completing a crimping welding composite connection in the shape of a flat hole, with the upper part utilizing welding and the lower part utilizing crimping;
The present invention provides a method for connecting flat holes by pulsed laser impact, comprising:
1つ又は複数の実施形態において、前記底部型は、上層板材の変形を制限して、フラットホール状のカシメ接合溶接接合継手を形成するために用いられる。 In one or more embodiments, the bottom mold is used to limit deformation of the upper plate material and form a flat-hole crimped welded joint.
1つ又は複数の実施形態において、前記上層板材は、フラット板材である。 In one or more embodiments, the upper plate material is a flat plate material.
1つ又は複数の実施形態において、前記下層板材の砂時計状スルーホールの上傾斜面は、溶接傾斜面であり、前記下層板材の砂時計状スルーホールの下傾斜面は、カシメ傾斜面である。 In one or more embodiments, the upper inclined surface of the hourglass-shaped through hole in the lower plate material is a welded inclined surface, and the lower inclined surface of the hourglass-shaped through hole in the lower plate material is a crimped inclined surface.
1つ又は複数の実施形態において、前記砂時計状スルーホールの上傾斜面と下層板材の上面(水平面)とがなす角(鋭角)αの値は、20~60°の範囲にあり、砂時計状スルーホールの下傾斜面と下層板材の下面(水平面)とがなす角(鋭角)βの値は、20~60°の範囲にあり、角αの角度≧角βの角度である。 In one or more embodiments, the value of the angle (acute angle) α between the upper inclined surface of the hourglass-shaped through hole and the upper surface (horizontal surface) of the lower plate material is in the range of 20 to 60°, the value of the angle (acute angle) β between the lower inclined surface of the hourglass-shaped through hole and the lower surface (horizontal surface) of the lower plate material is in the range of 20 to 60°, and the angle α is greater than or equal to the angle β.
1つ又は複数の実施形態において、前記下層板材の砂時計状スルーホールの上傾斜面及び下層板材の砂時計状スルーホールの下傾斜面の水平長さをそれぞれxα、xβ、上開口の直径をD、下層板材の厚みをH、下傾斜面の垂直高さをhとすると、xα≧xβであり、上傾斜面と下傾斜面との接続部における口径d=D-2×xαであり、且つd≧2×xβであり、
1つ又は複数の実施形態において、前記砂時計状スルーホール付き下層板材における砂時計状スルーホールは、ドリルビットで板材の両側に切削することにより実現してもよいし、レーザ穿孔により実現してもよく、レーザ穿孔によって、自然なテーパーを形成し、硬くて脆い材料に穿孔することができる。 In one or more embodiments, the hourglass-shaped through holes in the lower plate may be achieved by cutting into both sides of the plate with a drill bit, or by laser drilling, which can create a natural taper and drill into hard, brittle materials.
1つ又は複数の実施形態において、溶接接合・カシメ接合の同時実施の効果を確保するために、前記下層板材の厚みHは、0.1mm以上である。 In one or more embodiments, in order to ensure the effect of simultaneous welding and crimping, the thickness H of the lower plate material is 0.1 mm or more.
1つ又は複数の実施形態において、前記上層板材及び下層板材は、銅、アルミニウム、鋼、チタンなどの同種板材又は異種板材であってもよい。 In one or more embodiments, the upper and lower plate materials may be the same or different plate materials, such as copper, aluminum, steel, titanium, etc.
1つ又は複数の実施形態において、前記吸収層は、黒漆、黒鉛又は金属箔からなる。レーザを吸収層に照射すると、極めて短い時間内に高温、高圧のプラズマが発生し、エネルギーを吸収し続けて、レーザ衝撃波を形成して駆動力として、高歪率の塑性変形を発生させるように板材を押す。これに加えて、吸収層は、材料の表面をレーザ熱傷から保護するという作用をさらに有する。 In one or more embodiments, the absorption layer is made of black lacquer, graphite, or metal foil. When the absorption layer is irradiated with a laser, high-temperature, high-pressure plasma is generated within an extremely short time, and continues to absorb energy, forming laser shock waves that act as a driving force to push the plate material so as to generate plastic deformation with a high strain rate. In addition, the absorption layer further has the effect of protecting the surface of the material from laser burns.
1つ又は複数の実施形態において、前記拘束層は、ガラス又は水からなり、プラズマの膨張を制限することにより、衝撃波のピーク圧力を高めて、作用時間を延長することを目的とする。また、拘束層により衝撃波を板材方向へ伝播させる。 In one or more embodiments, the constraining layer is made of glass or water, and aims to increase the peak pressure of the shock wave and extend its duration by restricting the expansion of the plasma. The constraining layer also propagates the shock wave in the direction of the plate material.
1つ又は複数の実施形態において、前記パルスレーザのパワー密度は、1GW/cm2よりも大きくする必要があり、具体的な数値は、レーザエネルギー、レーザ光のスポットの大きさ及びレーザ機のパルス幅に依存する。 In one or more embodiments, the power density of the pulsed laser needs to be greater than 1 GW/ cm2 , with the specific value depending on the laser energy, the size of the laser light spot, and the pulse width of the laser machine.
さらには、一回のレーザによって上、下板材のカシメ接合及び溶接接合を完成できるように、レーザ機のパルス幅は、20ns以下とする必要がある。 Furthermore, the pulse width of the laser machine must be 20 ns or less so that the crimping and welding of the upper and lower plate materials can be completed with a single laser.
さらには、フラットトップ分布に近接したレーザエネルギーを得るために、レーザ光のスポットの大きさは、下層板材の砂時計状スルーホールの上開口の直径Dの1.5倍以上とする必要がある。 Furthermore, in order to obtain laser energy close to a flat-top distribution, the size of the laser light spot must be at least 1.5 times the diameter D of the upper opening of the hourglass-shaped through hole in the lower plate material.
さらには、レーザエネルギー、レーザ光のスポットの大きさ及びレーザ機のパルス幅を調整することにより、異なる材質の組合せ、厚みの組合せ及びサイズ規格のカシメ接合溶接接合継手を実現する。 Furthermore, by adjusting the laser energy, the size of the laser light spot, and the pulse width of the laser machine, it is possible to realize crimped welding joints with different material combinations, thickness combinations, and size standards.
本発明の第2の典型的な実施形態は、前記方法を実現する装置であって、下からこの順で積層配置された底部型、砂時計状スルーホール付き下層板材、上層板材、吸収層及び拘束層を含み、ワーク挟持系で各層を挟み付けて作業台に固定し、
パルスレーザを発生させるためのレーザ機をさらに含む、装置を提供する。
A second exemplary embodiment of the present invention is an apparatus for implementing the above-mentioned method, comprising a bottom mold, a lower plate material with an hourglass-shaped through hole, an upper plate material, an absorption layer, and a constraint layer, which are stacked in this order from the bottom, and a work clamping system clamps each layer and fixes them to a work table;
An apparatus is provided further including a laser for generating a pulsed laser.
1つ又は複数の実施形態において、前記作業台は、衝撃位置を調整するために用いられる。 In one or more embodiments, the worktable is used to adjust the impact position.
本発明の第3の典型的な実施形態は、厚みが大きい板材、又は厚みに大きな差がある板材へのカシメ接合・溶接接合の同時実施における前記方法又は前記方法を実現する装置の使用を提供する。 A third exemplary embodiment of the present invention provides for the use of the method or an apparatus for implementing the method in the simultaneous crimping and welding of plate materials having a large thickness or plate materials having a large difference in thickness.
当業者に本発明の技術方案をより明確に理解させるために、以下、具体的な実施例により本発明の技術方案を詳細に説明する。 In order to allow those skilled in the art to more clearly understand the technical solution of the present invention, the technical solution of the present invention will be described in detail below with specific examples.
実施例1 上層板材と下層板材との厚みに大きな差がある場合
図5における(a)に示すように、上層板材は、0.05mm厚の純銅板とし、下層板材は、0.15mm厚のアルミニウム合金板とし、砂時計状スルーホールのサイズは、D=0.35mm、α=β=45°、h=0.075mm、H=0.15mm、xα=xβ=0.075mm、d=0.2mmであるように設計される。レーザ機のパルス幅12ns、レーザ光のスポットの直径2mm、レーザエネルギー5Jとする。砂時計状スルーホール領域をパルスレーザ光のスポットの中心位置に置き、パルスレーザ衝撃波の圧力で、上層板材は、下向きに高歪率の塑性変形が発生し、下層板材の砂時計状スルーホールの上傾斜面に衝突し、高速剪断変形が発生し、冶金溶接接合効果を生じた。上層板材が変形し続けるにつれて、上層板材は、下層板材の砂時計状スルーホールのキャビティに流入すると、下層板材の砂時計状スルーホールの下傾斜面とともに上部が小さくて底部が大きい相互締結構造を形成し、機械的カシメ接合効果を生じた。フラットホール状で、上部が溶接を利用して下部がカシメを利用するカシメ溶接複合接続を完成させた。
Example 1: Case where there is a large difference in thickness between the upper and lower plate materials As shown in (a) of FIG. 5, the upper plate material is a 0.05 mm thick pure copper plate, the lower plate material is a 0.15 mm thick aluminum alloy plate, and the size of the hourglass-shaped through hole is designed to be D = 0.35 mm, α = β = 45 °, h = 0.075 mm, H = 0.15 mm, x α = x β = 0.075 mm, d = 0.2 mm. The pulse width of the laser machine is 12 ns, the diameter of the laser light spot is 2 mm, and the laser energy is 5 J. The hourglass-shaped through hole region is placed at the center position of the pulse laser light spot, and the pressure of the pulse laser shock wave causes the upper plate material to undergo plastic deformation with a high strain rate downward, colliding with the upper inclined surface of the hourglass-shaped through hole of the lower plate material, causing high-speed shear deformation, resulting in a metallurgical welding joining effect. As the upper plate continues to deform, it flows into the cavity of the hourglass-shaped through hole of the lower plate, forming a mutual fastening structure with a small top and a large bottom together with the lower inclined surface of the hourglass-shaped through hole of the lower plate, resulting in a mechanical crimping joint effect. A crimping-welded composite connection is completed, with a flat hole-like shape, the top using welding and the bottom using crimping.
実施例2
図5における(b)に示すように、上層板材は、0.20mm厚の純銅板とし、下層板材は、0.20mm厚のアルミニウム合金板とし、砂時計状スルーホールのサイズは、D=0.7mm、α=β=45°、h=0.10mm、H=0.20mm、xα=xβ=0.10mm、d=0.5mmであるように設計される。レーザ機のパルス幅12ns、レーザ光のスポットの直径2mm、レーザエネルギー10Jとする。砂時計状スルーホール領域をパルスレーザ光のスポットの中心位置に置き、パルスレーザ衝撃波の圧力で、上層板材は、下向きに高歪率の塑性変形が発生し、下層板材の砂時計状スルーホールの上傾斜面に衝突し、高速剪断変形が発生し、冶金溶接接合効果を生じた。上層板材が変形し続けるにつれて、上層板材は、下層板材の砂時計状スルーホールのキャビティに流入すると、下層板材の砂時計状スルーホールの下傾斜面とともに上部が小さくて底部が大きい相互締結構造を形成し、機械的カシメ接合効果を生じた。フラットホール状で、上部が溶接を利用して下部がカシメを利用するカシメ溶接複合接続を完成させた。
Example 2
As shown in (b) of Fig. 5, the upper plate material is a 0.20mm thick pure copper plate, the lower plate material is an aluminum alloy plate, and the size of the hourglass-shaped through hole is designed to be D = 0.7mm, α = β = 45°, h = 0.10mm, H = 0.20mm, xα = xβ = 0.10mm, d = 0.5mm. The pulse width of the laser machine is 12ns, the diameter of the laser light spot is 2mm, and the laser energy is 10J. The hourglass-shaped through hole area is placed at the center position of the pulse laser light spot, and the pressure of the pulse laser shock wave causes the upper plate material to undergo downward plastic deformation with a high strain rate, which collides with the upper inclined surface of the hourglass-shaped through hole of the lower plate material, causing high-speed shear deformation, resulting in a metallurgical welding joining effect. As the upper plate continues to deform, it flows into the cavity of the hourglass-shaped through hole of the lower plate, forming a mutual fastening structure with a small top and a large bottom together with the lower inclined surface of the hourglass-shaped through hole of the lower plate, resulting in a mechanical crimping joint effect. A crimping-welded composite connection is completed, with a flat hole-like shape, the top using welding and the bottom using crimping.
以上の実施例は、本発明の好ましい実施例に過ぎず、本発明を制限するためのものではなく、当業者であれば、本発明に様々な変更及び変形を加えることができる。本発明の精神及び原則内に行われる修正、等価置換、改良などは、全て本発明の保護範囲に含まれるべきである。 The above embodiments are merely preferred embodiments of the present invention and are not intended to limit the present invention. Those skilled in the art may make various modifications and variations to the present invention. All modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention should be included in the scope of protection of the present invention.
1 レーザ機
2 ワーク挟持系
3 拘束層
4 吸収層
5 上層板材
6 砂時計状スルーホール付き下層板材
7 底部型
8 作業台
REFERENCE SIGNS
Claims (10)
を含む、ことを特徴とするパルスレーザ衝撃によるフラットホール接続方法。 the step of stacking the bottom mold, the lower plate with the hourglass-shaped through hole, the upper plate, the absorbing layer and the constraint layer in this order from the bottom, clamping each layer with a work clamping system and fixing it to a work table; the step of placing the hourglass-shaped through hole region at the center position of the spot of the pulsed laser light, and the pressure of the pulsed laser shock wave causes the upper plate to undergo downward plastic deformation with a high strain rate, colliding with the upper inclined surface of the hourglass-shaped through hole of the lower plate, causing high-speed shear deformation and producing a metallurgical welding joining effect; the step of flowing the upper plate into the cavity of the hourglass-shaped through hole of the lower plate as the upper plate continues to deform, forming an interlocking structure with a small top and a large bottom together with the lower inclined surface of the hourglass-shaped through hole of the lower plate, producing a mechanical crimping joining effect; and the step of completing a crimping welding composite connection in the shape of a flat hole, with the upper part utilizing welding and the lower part utilizing crimping.
A method for connecting flat holes by pulsed laser impact, comprising:
或いは、前記砂時計状スルーホールの上傾斜面と下層板材の上面とがなす角αの値は、20~60°の範囲にあり、砂時計状スルーホールの下傾斜面と下層板材の下面とがなす角βの値は、20~60°の範囲にあり、角αの角度≧角βの角度であり、
或いは、前記下層板材の砂時計状スルーホールの上傾斜面及び下層板材の砂時計状スルーホールの下傾斜面の水平長さをそれぞれxα、xβ、上開口の直径をD、下層板材の厚みをH、下傾斜面の垂直高さをhとすると、xα≧xβであり、上傾斜面と下傾斜面との接続部における口径d=D-2×xαであり、且つd≧2×xβであり、
Alternatively, the value of the angle α between the upper inclined surface of the hourglass-shaped through hole and the upper surface of the lower plate is in the range of 20 to 60°, the value of the angle β between the lower inclined surface of the hourglass-shaped through hole and the lower surface of the lower plate is in the range of 20 to 60°, and the angle α is equal to or greater than the angle β;
Alternatively, if the horizontal lengths of the upper inclined surface of the hourglass-shaped through hole in the lower plate material and the lower inclined surface of the hourglass-shaped through hole in the lower plate material are x α and x β , respectively, the diameter of the upper opening is D, the thickness of the lower plate material is H, and the vertical height of the lower inclined surface is h, then x α ≧x β , and the diameter d at the connection between the upper inclined surface and the lower inclined surface is D-2×x α , and d≧2×x β ;
或いは、前記吸収層は、黒漆、黒鉛又は金属箔からなり、
或いは、前記拘束層は、ガラス又は水からなる、ことを特徴とする請求項1に記載の接続方法。 The upper and lower plate materials may be the same or different plate materials such as copper, aluminum, steel, titanium, etc.
Alternatively, the absorbent layer is made of black lacquer, graphite or metal foil;
Alternatively, the constraining layer is made of glass or water.
或いは、レーザ光のスポットの大きさは、下層板材の砂時計状スルーホールの上開口の直径Dの1.5倍以上とする必要がある、ことを特徴とする請求項6に記載の接続方法。 The pulse width of the pulsed laser must be 20 ns or less;
7. The connection method according to claim 6, wherein the size of the spot of the laser light must be at least 1.5 times the diameter D of the upper opening of the hourglass-shaped through hole in the lower plate material.
パルスレーザを発生させるためのレーザ機をさらに含む、ことを特徴とする装置。 An apparatus capable of implementing the connection method according to any one of claims 1 to 7, comprising a bottom mold, a lower plate material with an hourglass-shaped through hole, an upper plate material, an absorption layer, and a constraint layer, which are stacked in this order from the bottom, and each layer is clamped by a work clamping system and fixed to a work table;
The apparatus further comprising a laser for generating a pulsed laser.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202311058915.3 | 2023-08-21 | ||
| CN202311058915.3A CN116871666A (en) | 2023-08-21 | 2023-08-21 | A flat hole connection method by pulse laser shock and its device and application |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2025029599A true JP2025029599A (en) | 2025-03-06 |
| JP7748125B2 JP7748125B2 (en) | 2025-10-02 |
Family
ID=88260672
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2024139136A Active JP7748125B2 (en) | 2023-08-21 | 2024-08-20 | Flat-hole connection method by pulsed laser shock, its device and application |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP7748125B2 (en) |
| CN (1) | CN116871666A (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070039933A1 (en) * | 2005-08-18 | 2007-02-22 | Cheng Gary J | System and method of laser dynamic forming |
| CN105458496A (en) * | 2015-12-16 | 2016-04-06 | 江苏大学 | Synchronous welding and forming method and device for laser shock metal foil plates |
-
2023
- 2023-08-21 CN CN202311058915.3A patent/CN116871666A/en active Pending
-
2024
- 2024-08-20 JP JP2024139136A patent/JP7748125B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070039933A1 (en) * | 2005-08-18 | 2007-02-22 | Cheng Gary J | System and method of laser dynamic forming |
| CN105458496A (en) * | 2015-12-16 | 2016-04-06 | 江苏大学 | Synchronous welding and forming method and device for laser shock metal foil plates |
Also Published As
| Publication number | Publication date |
|---|---|
| CN116871666A (en) | 2023-10-13 |
| JP7748125B2 (en) | 2025-10-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Auwal et al. | A review on laser beam welding of copper alloys | |
| CN102248298B (en) | For reducing the double laser beam welding method of T connector welding deformation | |
| CN114261100B (en) | Method for ultra-fast laser welding of transparent hard and brittle material and metal | |
| CN101073857A (en) | Copper or Aluminum and Carbon Steel Laser Butt Welding Method | |
| CN103551721B (en) | Ultrasonic prefabricated transitional band welds the method preparing heterogenous material joint subsequently | |
| CN114502315A (en) | Welding device and method for welding at least two components | |
| CN110216364B (en) | Ultrasonic consolidation forming method for zirconium steel layered composite material | |
| CN101934432B (en) | Coaxial composite welding method of laser spot welding and resistance spot welding | |
| CN101505902A (en) | Rigidity reinforcement plate and method of producing rigidity reinforcement plate | |
| CN111331258A (en) | Welding method | |
| KR101925119B1 (en) | copper-aluminum connecting members in face-to-face penetration welding process and preparation method thereof | |
| CN102140036B (en) | Partial Instantaneous Liquid Phase Welding of Ceramics and Metals with Double Laser Beams | |
| JP2025029599A (en) | Flat hole connection method by pulsed laser shock and its device and application | |
| Mohseni et al. | A novel approach for welding metallic foils using pulsed-laser radiation in the field of battery production | |
| CN117841370B (en) | A method for welding carbon fiber thermoplastic composite material and metal | |
| CN114669879A (en) | Aluminum alloy single-laser self-fusion welding back protection tool and welding method | |
| CN118926705A (en) | A method for improving the wettability of steel surface using femtosecond laser surface texturing | |
| Xiao et al. | Influence of wire addition direction in C02 laser welding of aluminum | |
| CN111975153A (en) | Friction stir welding method of lock bottom structure | |
| Seltzman et al. | Assembly of an additive manufactured GRCop-84 copper alloy lower hybrid current drive launcher antenna with pulsed 1070-nm fiber laser welding | |
| CN105149784A (en) | Laser welding technology for speed changing box gear part | |
| CN112025092B (en) | Laser welding method of flexible conductive structure | |
| CN212577845U (en) | Back protection device for alloy laser forming connection | |
| CN107627026A (en) | A kind of method for laser welding of aluminium alloy | |
| JP6989065B1 (en) | Blanks, blank manufacturing methods and materials |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240905 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240905 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20250617 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20250618 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20250630 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250909 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250911 |