[go: up one dir, main page]

JP2025513220A - Method for producing liquefied hydrogen - Google Patents

Method for producing liquefied hydrogen Download PDF

Info

Publication number
JP2025513220A
JP2025513220A JP2024559935A JP2024559935A JP2025513220A JP 2025513220 A JP2025513220 A JP 2025513220A JP 2024559935 A JP2024559935 A JP 2024559935A JP 2024559935 A JP2024559935 A JP 2024559935A JP 2025513220 A JP2025513220 A JP 2025513220A
Authority
JP
Japan
Prior art keywords
stream
hydrogen
providing
heat exchanger
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024559935A
Other languages
Japanese (ja)
Inventor
スキナー,ジェフリー,フレデリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gasconsult Ltd
Original Assignee
Gasconsult Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gasconsult Ltd filed Critical Gasconsult Ltd
Publication of JP2025513220A publication Critical patent/JP2025513220A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0259Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0261Details of cold box insulation, housing and internal structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/10Hydrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Figure 2025513220000001

水素ガスを液化するための方法であって、
外部冷媒との間接的熱交換によって、通常は予冷と称される水素の初期冷却を行うステップと、
水素またはヘリウム、またはそれらとネオンとの混合物との熱交換による冷却された前記水素のさらなる冷却及び液化を行うステップと、
前記予冷に必要な熱交換器を、通常はコールドボックスと称される第1の断熱容器内に収容するステップと、
さらなる冷却および液化に必要な熱交換器を第2の断熱容器またはコールドボックスに収容するステップと、
前記第1の断熱容器の容量内に前記第2の断熱容器またはコールドボックスを収容するステップと、
を含む。
【選択図】図2

Figure 2025513220000001

1. A method for liquefying hydrogen gas, comprising:
providing an initial cooling of the hydrogen by indirect heat exchange with an external refrigerant, commonly referred to as pre-cooling;
further cooling and liquefying the cooled hydrogen by heat exchange with hydrogen or helium or a mixture thereof with neon;
housing the heat exchangers necessary for said pre-cooling in a first insulated container, usually called a cold box;
housing the heat exchangers necessary for further cooling and liquefaction in a second insulated vessel or cold box;
housing the second insulated container or cold box within the volume of the first insulated container;
Includes.
[Selected figure] Figure 2

Description

本発明は、水素ガスを液化するための方法、特に、必要な熱交換器を配置するための方法に関する。 The present invention relates to a method for liquefying hydrogen gas, and in particular to a method for arranging the necessary heat exchangers.

水素の液化プロセスは、通常、プロセスの予冷部分である第1ステップであって、窒素などの外部冷媒との熱交換によって水素が約-150~-200℃の温度に冷却される、第1ステップと、双方ともネオンが任意に混合される水素またはヘリウムとの熱交換によって水素をさらに冷却して液化する第2ステップとを含む。 The hydrogen liquefaction process typically involves a first step, which is the pre-cooling part of the process, where the hydrogen is cooled to a temperature of about -150 to -200°C by heat exchange with an external refrigerant such as nitrogen, and a second step where the hydrogen is further cooled and liquefied by heat exchange with hydrogen or helium, both optionally mixed with neon.

熱の侵入を最小限に抑えるために、現在の慣行では、プロセスの前述の第2ステップ、すなわち、さらなる冷却および液化に必要な熱交換器および関連機器は、通常、真空断熱容器に収められており、図1に機器の符号と流れの番号とともに概略的に示されている。室温の水素流[1]は、第1の熱交換器[A]の高温通路に流れ、第1の熱交換器の出口流[2]は通常-190℃の温度を有する。熱交換器[A]で必要な冷却は、窒素[3]などの第1の冷媒の流れまたは複数の流れによって提供されるが、この流れは熱交換器[A]の低温通路を流れ、加熱流又は複数の加熱流[4]として出てくる。冷却流[2]は、第2の熱交換器[B]の高温通路に流れ、第2の熱交換器の出口蒸気[5]は液化窒素を含み、-240℃未満の温度を有する。第2の熱交換器[B]における必要な冷却は、水素又はヘリウム[6]などの第2の冷媒の流れ又は複数の流れによって提供され、この流れは第2の熱交換器[B]の低温通路を流れ、加熱流又は複数の加熱流[7]として出てくる。 To minimize heat ingress, in current practice, the heat exchangers and associated equipment required for the aforementioned second step of the process, i.e., further cooling and liquefaction, are typically housed in a vacuum insulated container, shown diagrammatically in FIG. 1 with equipment designations and stream numbering. A hydrogen stream at room temperature [1] flows into the hot passage of a first heat exchanger [A], the outlet stream [2] of which typically has a temperature of −190° C. The cooling required in the heat exchanger [A] is provided by a first refrigerant stream or streams, such as nitrogen [3], which flows through the cold passage of the heat exchanger [A] and emerges as a heated stream or streams [4]. The cooled stream [2] flows into the hot passage of a second heat exchanger [B], the outlet vapor of which [5] comprises liquefied nitrogen and has a temperature below −240° C. The necessary cooling in the second heat exchanger [B] is provided by a second refrigerant stream or streams, such as hydrogen or helium [6], which flow through the cold passages of the second heat exchanger [B] and emerge as a heated stream or streams [7].

熱交換器[A]は、通常、パーライトなどの粒状断熱材が入った容器またはコールドボックス[C]に収納されている。乾燥した不活性ガス[8]の流れは、空気と湿気を排除する目的で容器[C]に導入され、流れ[9]として大気中に放出される。熱交換器[B]は真空断熱容器[D]に収納されている。 The heat exchanger [A] is housed in a vessel or cold box [C], typically containing granular insulation such as perlite. A stream of dry inert gas [8] is introduced into vessel [C] to exclude air and moisture and is discharged to the atmosphere as stream [9]. The heat exchanger [B] is housed in a vacuum insulated vessel [D].

大型の真空断熱容器の提供は実際上困難であるため、図1に示す構造のタイプは、1日あたり約50トンの水素液化能力でのみ使用できる。現在検討中の、1日あたり最大500トンの一連の能力を有するはるかに大規模な水素液化プラントには、複数の真空断熱熱交換器が必要になる。 Due to practical difficulties in providing large vacuum insulated vessels, the type of construction shown in Figure 1 can only be used for hydrogen liquefaction capacities of about 50 tons per day. For the much larger hydrogen liquefaction plants currently under consideration, with serial capacities of up to 500 tons per day, multiple vacuum insulated heat exchangers will be required.

本発明は、水素の液化プロセスの最終段階、特に流体温度が-150℃未満のプロセス部分に関する。 The present invention relates to the final stage of the hydrogen liquefaction process, particularly the process part where the fluid temperature is below -150°C.

本出願人は、典型的な水素液化設備において、-150℃から-200℃の温度に予冷する前述の第1ステップに必要な一般にUAと呼ばれる熱交換器能力は、水素をさらに冷却して液化する第2ステップについての対応する熱交換器能力の約5倍になることに留意している。したがって、第1ステップに必要な熱交換器の総容量は、第2ステップに必要な熱交換器の総容量よりも大きくなることが予想される。 The applicant notes that in a typical hydrogen liquefaction facility, the heat exchanger capacity, commonly referred to as UA, required for the above-mentioned first step of pre-cooling to a temperature of -150°C to -200°C is approximately five times the corresponding heat exchanger capacity for the second step of further cooling and liquefying the hydrogen. Thus, the total heat exchanger capacity required for the first step is expected to be greater than the total heat exchanger capacity required for the second step.

本発明は、第1ステップに必要な熱交換器も収容する、より大きな断熱収容体またはコールドボックス内に配置された断熱収容体またはコールドボックスに、第2ステップに必要な熱交換器を設置することから成る。 The invention consists of placing the heat exchangers required for the second step in an insulated containment or cold box that is placed within a larger insulated containment or cold box that also contains the heat exchangers required for the first step.

この配置により、約-150℃である第2ステップの収容体の周囲の温度と、-250℃である液体水素生成物の温度との間の温度差は、約100℃になる。この温度差は、第2ステップの収容体が第1ステップの収容体とは独立して設置されている場合の周囲温度と液体水素との間の約280℃である温度差よりもはるかに小さくなる。その結果、第2ステップの収容体の中への潜在的な熱漏洩は、第2ステップの独立した収容体への熱漏洩に比べて減少する。第2ステップの収容体の真空断熱構造の必要性はそれほど重要ではなくなり、従来型のコールドボックス構造の使用が可能になる。 With this arrangement, the temperature difference between the ambient temperature of the second step containment, which is about -150°C, and the temperature of the liquid hydrogen product, which is -250°C, is about 100°C. This temperature difference is much smaller than the temperature difference of about 280°C between the ambient temperature and the liquid hydrogen if the second step containment were installed separately from the first step containment. As a result, the potential heat leakage into the second step containment is reduced compared to the heat leakage into the separate second step containment. The need for vacuum insulation construction of the second step containment becomes less critical, allowing the use of a conventional cold box construction.

これにより、高出力のプラントにおける液化プロセスの最も冷たい部分に複数の真空断熱熱交換器を設置する必要性に伴う、前記真空断熱構造の能力制限が回避される。 This avoids the capacity limitations of the vacuum insulation structure that would be required to install multiple vacuum insulated heat exchangers in the coldest parts of the liquefaction process in high power plants.

内側の小さなコールドボックスには、わずかに高圧の水素またはヘリウムが充填されており、周囲の大きなコールドボックスから窒素が漏れて第2ステップで必要な熱交換器の表面で固まるのを防ぐ。 The smaller inner cold box is filled with slightly higher pressure hydrogen or helium to prevent nitrogen from leaking from the surrounding larger cold box and freezing on the surfaces of the heat exchangers required in the second step.

したがって、本発明の主な態様(図2及びそこに示されている機器の符号と流れの番号を参照)を示す以下のような水素を液化するためのプロセス及び装置が提供され、本発明は、
室温の第1の水素ガス流[11]を提供するステップと、
温度が-150℃から-200℃の間の出口蒸気[12]を有する第1の熱交換器[A]の高温通路で流れ[11]を冷却するステップと、
窒素などの第1の冷媒の流れ又は複数の流れ[13]を提供するステップと、
流れ[11]の温度よりも低い温度の出口流[14]を有する第1の熱交換器[A]の低温通路に通すステップ[13]と、
流れ[12]を、温度が-240℃よりも低い液体水素を含む出口流[15]を有する第2の熱交換器[B]の高温通路に通すステップと、
水素またはヘリウムなどの第2の冷媒の流れ又は複数の流れ[16]を提供するステップと、
流れ[12]の温度よりも低い温度の出口[17]を有する第2の熱交換器[B]の低温通路に通すステップ[16]と、
第1の熱交換器[A]を収容する第1の断熱容器[C]を提供するステップと、
第2の熱交換器[B]を収容する第2の断熱容器[D]を提供するステップと、
前記第2の断熱容器[D]を前記第1の断熱容器[C]の容積内に収容するステップと、
窒素ガス流[18]を提供するステップと、
流れ[18]を前記第1の断熱容器[C]の容積に通過させて、出口流[19]内の空気および水分を掃き出すステップと、
水素またはヘリウムガスの流れ[20]を提供するステップと、
流れ[20]を前記第2の断熱容器[D]の容積に通過させて、出口流[21]内の窒素を掃き出すステップと、
入口流[21]および出口流[22]を有するバルブ[E]を提供するステップと、
流れ[21]の圧力を流れ[19]の圧力よりも高いレベルに維持するようにバルブ[E]を調整するステップと、
を含む。
Thus, in accordance with the main aspects of the invention (see FIG. 2 and the equipment numbers and flow numbers shown therein), there is provided a process and apparatus for liquefying hydrogen as follows, the invention comprising:
providing a first flow of hydrogen gas [11] at room temperature;
cooling the stream [11] in the hot passage of a first heat exchanger [A] having an exit steam [12] having a temperature between -150°C and -200°C;
providing a first refrigerant stream or streams [13], such as nitrogen;
passing the stream [11] through a cold passage of a first heat exchanger [A] having an outlet stream [14] at a temperature lower than that of the stream [11];
passing stream [12] through the hot passage of a second heat exchanger [B] having an outlet stream [15] comprising liquid hydrogen having a temperature below -240°C;
providing a second refrigerant stream or streams [16], such as hydrogen or helium;
passing the stream [16] through a cold passage of a second heat exchanger [B] having an outlet [17] at a lower temperature than that of stream [12];
providing a first insulated container [C] housing a first heat exchanger [A];
providing a second insulated enclosure [D] housing a second heat exchanger [B];
A step of housing the second insulating container [D] within a volume of the first insulating container [C];
providing a nitrogen gas flow [18];
passing stream [18] through the volume of said first insulated vessel [C] to sweep out air and moisture in the outlet stream [19];
providing a flow of hydrogen or helium gas [20];
passing stream [20] through the volume of said second insulated vessel [D] to sweep out the nitrogen in outlet stream [21];
providing a valve [E] having an inlet flow [21] and an outlet flow [22];
adjusting valve [E] to maintain the pressure of stream [21] at a level higher than the pressure of stream [19];
Includes.

断熱容器[C]および[D]は、通常、パーライト(perlite)などの粒状断熱材を収容する。 The insulated containers [C] and [D] typically contain a granular insulating material such as perlite.

必要に応じて、流れ[15]の状態は-200℃未満の温度のガスの状態であってもよい。 Optionally, the state of the stream [15] may be a gas state with a temperature below -200°C.

Claims (6)

水素ガスを液化するための方法であって、
室温の水素ガス流[11]を提供するステップと、
温度が-150℃から-200℃の間の出口蒸気[12]を有する第1の熱交換器[A]の高温通路で流れ[11]を冷却するステップと、
窒素などの第1の冷媒の流れ[13]を提供するステップと、
流れ[13]を、流れ[11]の温度よりも低い温度の出口流[14]を有する第1の熱交換器[A]の低温通路に通すステップと、
流れ[12]を、温度が-240℃以下の液体水素を含む出口流[15]を有する第2の熱交換器[B]の高温通路に通すステップと、
水素またはヘリウムなどの第2の冷媒の流れ[16]を提供するステップと、
流れ[16]を、流れ[12]の温度よりも低い温度の出口流[17]を有する前記熱交換器[B]の低温通路に通すステップと、
第1の熱交換器[A]を収容する第1の断熱容器[C]を提供するステップと、
第2の熱交換器[B]を収容する第2の断熱容器[D]を提供するステップと、
前記第2の断熱容器[D]を前記第1の断熱容器[C]の容積内に収容するステップと、
を含むことを特徴とする方法。
1. A method for liquefying hydrogen gas, comprising:
providing a flow of room temperature hydrogen gas [11];
cooling the stream [11] in the hot passage of a first heat exchanger [A] having an exit steam [12] having a temperature between -150°C and -200°C;
providing a first refrigerant flow [13], such as nitrogen;
passing stream [13] through a cold passage of a first heat exchanger [A] having an outlet stream [14] at a lower temperature than that of stream [11];
passing stream [12] through the hot passage of a second heat exchanger [B] having an outlet stream [15] comprising liquid hydrogen having a temperature below -240°C;
providing a second refrigerant flow [16], such as hydrogen or helium;
passing stream [16] through a cold passage of said heat exchanger [B] having an outlet stream [17] at a temperature lower than that of stream [12];
providing a first insulated container [C] housing a first heat exchanger [A];
providing a second insulated enclosure [D] housing a second heat exchanger [B];
A step of housing the second insulating container [D] within a volume of the first insulating container [C];
The method according to claim 1, further comprising:
請求項1に記載の方法において、
窒素ガス流[18]を提供するステップと、
前記流れ[18]を前記第1の断熱容器[C]の容積に通過させて、出口流[19]内の空気および水分を掃き出すステップと、
を含むことを特徴とする方法。
10. The method of claim 1 ,
providing a nitrogen gas flow [18];
passing said stream [18] through the volume of the first insulated vessel [C] to sweep out air and moisture in the outlet stream [19];
The method according to claim 1, further comprising:
請求項1又は2に記載の方法において、
水素またはヘリウムガスの流れ[20]を提供するステップと、
前記流れ[20]を前記第2の断熱容器[D]の容積に通過させて、出口流[21]内の窒素を掃き出すステップと、
を含むことを特徴とする方法。
The method according to claim 1 or 2,
providing a flow of hydrogen or helium gas [20];
passing said stream [20] through the volume of said second insulated vessel [D] to sweep out the nitrogen in outlet stream [21];
The method according to claim 1, further comprising:
請求項3に記載の方法において、
入口流[21]および出口流[22]を有するバルブ[E]を提供するステップと、
流れ[21]の圧力を流れ[19]の圧力よりも高いレベルに維持するようにバルブ[E]を調整するステップと、
を含むことを特徴とする方法。
4. The method of claim 3,
providing a valve [E] having an inlet flow [21] and an outlet flow [22];
adjusting valve [E] to maintain the pressure of stream [21] at a level higher than the pressure of stream [19];
The method according to claim 1, further comprising:
請求項1~4のいずれか一項に記載の方法において、
流れ[15]の水素は、ガス状の状態で、-200℃未満の温度であることを特徴とする方法。
The method according to any one of claims 1 to 4,
4. The process of claim 3, wherein the hydrogen of stream [15] is in gaseous state and at a temperature below −200° C.
請求項1~5のいずれか一項に記載の方法において、
前記断熱容器[C]、[D]のいずれかまたは双方は、パーライト(perlite)といった微粒子断熱材を含むことを特徴とする方法。
The method according to any one of claims 1 to 5,
The method according to claim 1, wherein either or both of said insulating containers [C], [D] comprise a particulate insulating material such as perlite.
JP2024559935A 2022-04-23 2023-03-17 Method for producing liquefied hydrogen Pending JP2025513220A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB2205939.8 2022-04-23
GB2205939.8A GB2617861A (en) 2022-04-23 2022-04-23 Process for producing liquefied hydrogen
PCT/GB2023/000014 WO2023203305A1 (en) 2022-04-23 2023-03-17 Process for producing liquefied hydrogen

Publications (1)

Publication Number Publication Date
JP2025513220A true JP2025513220A (en) 2025-04-24

Family

ID=81851997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024559935A Pending JP2025513220A (en) 2022-04-23 2023-03-17 Method for producing liquefied hydrogen

Country Status (5)

Country Link
JP (1) JP2025513220A (en)
KR (1) KR20250006026A (en)
CN (1) CN119053826A (en)
GB (1) GB2617861A (en)
WO (1) WO2023203305A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1295048A (en) * 1960-07-29 1962-06-01 Sulzer Ag Heat insulation device for elements of a low temperature installation
US3115015A (en) * 1962-07-30 1963-12-24 Little Inc A Refrigeration apparatus and method
JPS5758302A (en) * 1980-09-24 1982-04-08 Mitsubishi Electric Corp Helium refrigerating apparatus
CN108036582A (en) * 2017-12-29 2018-05-15 上海启元空分技术发展股份有限公司 A kind of method and its device for producing liquid hydrogen
CN108759301B (en) * 2018-05-28 2020-06-02 江苏国富氢能技术装备有限公司 Hydrogen liquefaction process
FR3108390B1 (en) * 2020-03-23 2022-11-25 Air Liquide Hydrogen refrigeration plant and process
KR20210122393A (en) * 2020-03-31 2021-10-12 주식회사 패리티 Hydrogen liquefaction system
JP7488093B2 (en) * 2020-04-14 2024-05-21 川崎重工業株式会社 Liquefied hydrogen production facility

Also Published As

Publication number Publication date
GB202205939D0 (en) 2022-06-08
CN119053826A (en) 2024-11-29
KR20250006026A (en) 2025-01-10
WO2023203305A1 (en) 2023-10-26
GB2617861A (en) 2023-10-25

Similar Documents

Publication Publication Date Title
EP0131652B1 (en) Condenser
US2986891A (en) Low-temperature vessels
US3587731A (en) Plural refrigerant tray type heat exchanger
US11549746B2 (en) Natural gas liquefaction device and natural gas liquefaction method
KR20220065247A (en) Condensing type hydrogen liquefier
US20120145369A1 (en) Efficient self cooling heat exchanger
CN119790273A (en) Cryogenic gas cooling system and method
US3250079A (en) Cryogenic liquefying-refrigerating method and apparatus
JP7488093B2 (en) Liquefied hydrogen production facility
JP2025513220A (en) Method for producing liquefied hydrogen
JP2016180479A (en) Method and system for transferring liquid helium
US3795116A (en) Method and apparatus for supercooling of electrical devices
JPH02171579A (en) Hydrogen liquefaction method
JP2024539342A (en) Low temperature freezing equipment
US3282061A (en) Gas liquefier plant with low pressure storage
JP3526648B2 (en) High-purity nitrogen gas production equipment
WO2025190917A1 (en) A process for handling a hydrogen bog stream
US20210310731A1 (en) Flexible installation of a hydrocarbon liquefaction unit
US20240310115A1 (en) Hydrogen liquefaction device and hydrogen liquefaction method
US11749435B2 (en) Pre-cooling and removing ice build-up from cryogenic cooling arrangements
US20230076753A1 (en) Liquified natural gas processing cold box with internal refrigerant storage
RU2742009C1 (en) Natural gas liquefaction device and method for the realization therof
US20210095919A1 (en) Hydrocarbon fluid liquefaction system installation and system therefor
Baldus et al. A continuous helium II refrigerator
Ruber et al. Cryomodule testing at Uppsala University