[go: up one dir, main page]

JP2546340B2 - Moisture sensitive element and its operating circuit - Google Patents

Moisture sensitive element and its operating circuit

Info

Publication number
JP2546340B2
JP2546340B2 JP63158192A JP15819288A JP2546340B2 JP 2546340 B2 JP2546340 B2 JP 2546340B2 JP 63158192 A JP63158192 A JP 63158192A JP 15819288 A JP15819288 A JP 15819288A JP 2546340 B2 JP2546340 B2 JP 2546340B2
Authority
JP
Japan
Prior art keywords
electrode
moisture
source
gate electrode
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63158192A
Other languages
Japanese (ja)
Other versions
JPH0210146A (en
Inventor
一郎 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP63158192A priority Critical patent/JP2546340B2/en
Publication of JPH0210146A publication Critical patent/JPH0210146A/en
Application granted granted Critical
Publication of JP2546340B2 publication Critical patent/JP2546340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、感湿素子およびその動作回路に関する。更
に詳しくは、MOS形FETを基本とし、それの感湿特性の向
上を図った感湿素子およびその動作回路に関する。
TECHNICAL FIELD The present invention relates to a humidity sensitive element and an operating circuit thereof. More specifically, the present invention relates to a humidity sensitive element based on a MOS type FET, which has improved moisture sensitive characteristics, and an operating circuit thereof.

〔従来の技術〕[Conventional technology]

空気中の相対湿度の制御は、精密工業、食品工業、繊
維工業、ビル管理上などで大変重要であり、それを検知
する感湿素子としては、従来金属、半導体、(多孔質)
金属酸化物、電解質塩、高分子膜などの材料を用いたも
の知られている。
Controlling the relative humidity in the air is very important in the precision industry, food industry, textile industry, building management, etc., and as a moisture sensing element for detecting it, conventional metals, semiconductors, (porous)
It is known to use materials such as metal oxides, electrolyte salts and polymer membranes.

しかしながら、これらの各種材料を用いた感湿素子
は、いずれも保守が大変であったり、あるいは信頼性や
応答性に問題があるなど、満足される状態にはない。
However, the humidity-sensitive elements using these various materials are not in a satisfactory state because they are difficult to maintain or have problems in reliability and responsiveness.

本発明者は先に、このような問題点のない感湿素子と
して、絶縁性基板上に形成された下部電極の表面に、有
機アミン化合物またはこれとハロゲン化炭化水素または
ハロゲン化シランとの混合物のプラズマ重合膜を形成さ
せ、このプラズマ重合膜上面に透湿性を有する上部電極
を設置した薄膜感湿素子を提案している(特開平1−10
9251号公報、同1−121745号公報)。ここで形成される
プラズマ重合膜は、これを誘電体とするコンデンサの静
電容量、即ち重合膜の誘電率が広範囲にわたる相対湿度
の変化に対応して変化するという作用がみられる。
The present inventor has previously found that as a moisture-sensitive element having no such problems, an organic amine compound or a mixture thereof with a halogenated hydrocarbon or a halogenated silane is formed on the surface of a lower electrode formed on an insulating substrate. Has proposed a thin film moisture sensitive element in which a plasma polymerized film is formed and an upper electrode having moisture permeability is placed on the upper surface of the plasma polymerized film (Japanese Patent Laid-Open No. 1-10).
9251 and 1-121745). The plasma-polymerized film formed here has the effect that the capacitance of a capacitor using it as a dielectric, that is, the dielectric constant of the polymer film, changes in response to changes in relative humidity over a wide range.

従来は、この種の静電容量の変化を検出する方法とし
て、CR発振回路と感湿素子とを組み合せ、乾湿素子の静
電容量の変化を発振周波数の変化に変換する手法がとら
れている。しかしながら、将来的にはセンサの小型化、
多機能化を図る上において、信号変換素子としてトラン
ジスタなどの半導体素子と組み合せる方法が有効である
と考えられる。
Conventionally, as a method of detecting this type of capacitance change, a method of combining a CR oscillation circuit and a humidity sensitive element and converting a change in capacitance of the dry / wet element into a change in oscillation frequency has been used. . However, in the future, miniaturization of the sensor,
A method of combining with a semiconductor element such as a transistor as a signal conversion element is considered to be effective in achieving multi-functionality.

かかる手法として、感湿膜を誘電体とするコンデンサ
をMOS形FETのゲート部に直接形成させた構造をとり、ゲ
ート電圧の交流成分が感湿膜の誘電率に対応して変化す
ることを利用したものが提案され、このため感湿部材と
半導体信号変換素子とを一体化することができ、感湿素
子の小型化に成功したものが知られている(電子材料19
84年8月号第127頁)。
As such a method, a structure in which a capacitor having a moisture sensitive film as a dielectric is directly formed on the gate part of a MOS type FET is used, and the AC component of the gate voltage changes according to the permittivity of the moisture sensitive film. It has been proposed that a moisture sensitive member and a semiconductor signal conversion element can be integrated for this reason, and that the moisture sensitive element has been successfully downsized (electronic material 19
(August 1984, p. 127).

図面の第4図には、それの等価回路が示されており、
この回路においては、感湿膜を誘電体とするコンデンサ
の静電容量Csとゲート電圧の交流成分 との関係は下記(1)式の如くに示され、Csに対応する の変化をソース−ドレイン間の電流変化として検出する
原理となっている。
FIG. 4 of the drawing shows an equivalent circuit thereof,
In this circuit, the capacitance Cs of the capacitor with the humidity sensitive film as the dielectric and the AC component of the gate voltage The relation with and is shown as the following equation (1), and corresponds to Cs The principle is to detect the change in the current as a current change between the source and the drain.

しかるに、このような手法では、次のような問題点が
みられる。即ち、上記(1)式からCsと との関係を示すと第5図のグラフのようになるが、ここ
に示される如く、Csの変化に対して が線形的に対応して変化するのは、Csの値が10n(F)
を中心とする1桁の範囲内にとどまっている。そのた
め、感湿素子の静電容量が広い領域にわたって変化する
場合には、このような測定回路では十分な応答が得られ
ない。
However, such a method has the following problems. That is, from the above equation (1), Cs The relationship between and is as shown in the graph in Fig. 5, but as shown here, with respect to changes in Cs Changes linearly corresponding to the value of Cs being 10 n (F)
It stays within the range of one digit centered on. Therefore, when the capacitance of the humidity sensitive element changes over a wide area, such a measurement circuit cannot provide a sufficient response.

一方、本発明者が先に提案した前述のプラズマ重合膜
を乾湿膜とする薄膜感湿素子は、その静電容量変化が2
桁以上と大きいので、かかる測定回路を適用することが
できない。
On the other hand, the thin film moisture-sensitive element using the above-described plasma-polymerized film as the wet and dry film, which the present inventor has previously proposed, has a capacitance change of 2
Since it is as large as a digit or more, such a measuring circuit cannot be applied.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明の目的は、プラズマ重合膜などを感湿膜とし、
従って感湿特性の向上を図ったMOS形FETを基本とする感
湿素子を抵抗することにある。
The object of the present invention is a moisture-sensitive film such as a plasma-polymerized film,
Therefore, it is to resist the moisture sensitive element based on the MOS type FET, which has improved moisture sensitive characteristics.

本発明の他の目的は、向上した感湿特性の測定にも十
分に適用し得る上記感湿素子用動作回路を提供すること
にある。
Another object of the present invention is to provide an operating circuit for a humidity sensitive element which can be sufficiently applied to measurement of improved humidity sensitive characteristics.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成させる本発明の感湿素子は、ソース拡
散層およびドレイン拡散層を設けたMOS形FETにおいて、
ゲート電極を透湿性電極で形成し、それをソース電極と
直接接続すると共に、該透湿性ゲート電極と絶縁層との
間に感湿性薄膜層を設置した構造を有している。
The humidity-sensitive element of the present invention to achieve the above object is a MOS type FET provided with a source diffusion layer and a drain diffusion layer,
The gate electrode is formed of a moisture permeable electrode, which is directly connected to the source electrode, and a moisture sensitive thin film layer is provided between the moisture permeable gate electrode and the insulating layer.

更に、かかる感湿素子の動作回路は、ソース拡散層、
ドレイン拡散層およびゲート電極によって構成される電
界効果トランジスタの動作態が、ゲート電極−ソース電
極間の電圧が0Vのときにも電流が流れるデプレッション
型であるように構成される。
Furthermore, the operating circuit of such a humidity sensitive element is composed of a source diffusion layer,
The operation state of the field effect transistor constituted by the drain diffusion layer and the gate electrode is configured to be a depletion type in which current flows even when the voltage between the gate electrode and the source electrode is 0V.

図面の第1図は、本発明に係る感湿素子の一態様の縦
断面図であり、半導体基板1、絶縁層2,2′,2″、ソー
ス電極3、ドレイン電極4およびゲート電極5よりな
り、ソース拡散層6およびドレイン拡散層7を設けたMO
S形FETにおいて、ゲート電極5を透湿性電極で形成し、
それをソース電極3と直接接続すると共に、この透湿性
ゲート電極5と絶縁層2との間には感湿性薄膜層8が設
けられている。
FIG. 1 of the drawings is a vertical cross-sectional view of one embodiment of a moisture-sensitive element according to the present invention, showing a semiconductor substrate 1, insulating layers 2, 2 ′, 2 ″, a source electrode 3, a drain electrode 4 and a gate electrode 5. And MO provided with source diffusion layer 6 and drain diffusion layer 7
In the S-type FET, the gate electrode 5 is formed of a moisture permeable electrode,
A moisture sensitive thin film layer 8 is provided between the moisture permeable gate electrode 5 and the insulating layer 2 while directly connecting it to the source electrode 3.

半導体基板上へのソース拡散層およびドレイン拡散層
の形成は、熱拡散またはイオン注入法により、半導体基
板内に不純物を拡散させることによって行われる。この
とき、半導体基板の伝導型の種類によって、不純物とし
て次のようなものが選択される。
The source diffusion layer and the drain diffusion layer are formed on the semiconductor substrate by diffusing impurities in the semiconductor substrate by thermal diffusion or ion implantation. At this time, the following impurities are selected depending on the conductivity type of the semiconductor substrate.

N型基板:ボロン、アルミニウム、ガリウム、インジウ
ム P型基板:リン、ひ素、アンチモン かかるソース拡散層およびドレイン拡散層を形成させ
た半導体基板の表面には、ソース電極−ソース拡散層お
よびドレイン電極−ドレイン拡散層の各接触面を除い
て、絶縁層の形成が行われる。絶縁層は、絶縁性、化学
的安定性などにすぐれた窒化けい素などの無機窒化物あ
るいは酸化ケイ素、酸化アルミニウム、酸化タンタルな
どの無機酸化物の薄膜として形成される。これらの薄膜
の形成は、従来から用いられている各種CVD法、スパッ
タリング法などいずれの方法を用いても行なうことがで
きる。
N-type substrate: boron, aluminum, gallium, indium P-type substrate: phosphorus, arsenic, antimony On the surface of the semiconductor substrate on which the source diffusion layer and drain diffusion layer are formed, source electrode-source diffusion layer and drain electrode-drain The insulating layer is formed except for the contact surfaces of the diffusion layer. The insulating layer is formed as a thin film of an inorganic nitride such as silicon nitride having excellent insulating properties and chemical stability or an inorganic oxide such as silicon oxide, aluminum oxide and tantalum oxide. The formation of these thin films can be performed by any method such as various conventionally used CVD methods and sputtering methods.

しかしながら、いずれの場合にも、ゲート電極表面と
絶縁層との界面を電気的に安定なものとするためには、
基板−絶縁層間に薄い酸化膜(膜厚約100〜1000Å)を
形成させておく必要がある。このような酸化膜の形成
は、通常熱酸化法によって行われる。即ち、乾燥酸素雰
囲気中で基板を約800〜1000℃に加熱することで、容易
に酸化膜を形成させることができる。
However, in any case, in order to make the interface between the gate electrode surface and the insulating layer electrically stable,
It is necessary to form a thin oxide film (film thickness of 100 to 1000Å) between the substrate and insulating layer. The formation of such an oxide film is usually performed by a thermal oxidation method. That is, the oxide film can be easily formed by heating the substrate to about 800 to 1000 ° C. in a dry oxygen atmosphere.

一般に、MOS形FETの動作態をデプレッション型とする
ためには、ゲート部表面に予めチャネルを形成させてお
く必要がある。ただし、基板の伝導系がP型の場合に
は、酸化膜中の金属イオンやダングリングボンド(未結
合手)の存在により、ゲート電極表面にN型の反転層即
ちNチャネルが形成され、FETの動作態はデプレッショ
ン型となる。また、N型基板の場合には、ゲート電極表
面にPチャネルを形成させるために、ソース、ドレイン
拡散層の形成に用いられたのと同じ不純物を極くわずか
注入しなければならない。このように、酸化膜を形成さ
せる際に、同時にNチャネルも形成させることのできる
P型基板を用いた方が工程上は有利である。
Generally, in order to make the operation state of the MOS type FET depletion type, it is necessary to form a channel on the surface of the gate portion in advance. However, when the conduction system of the substrate is P-type, an N-type inversion layer, that is, an N-channel is formed on the surface of the gate electrode due to the presence of metal ions in the oxide film and dangling bonds (dangling bonds), The operation state of is a depletion type. In the case of an N-type substrate, in order to form a P channel on the surface of the gate electrode, the same impurities as those used for forming the source / drain diffusion layer must be implanted in a very small amount. As described above, it is advantageous in terms of process to use the P-type substrate that can simultaneously form the N channel when forming the oxide film.

上記のようにして約500〜10000Åの厚さに形成される
絶縁性無機薄膜は、基板面全体を覆うように一旦は形成
されるが、上記電極−拡散層接触部分を露出させるため
には、通常のフォトリソグラフ法によりその部分の絶縁
膜を除去する。
The insulating inorganic thin film formed to a thickness of about 500 to 10000Å as described above is once formed so as to cover the entire substrate surface, but in order to expose the electrode-diffusion layer contact portion, The insulating film in that portion is removed by a normal photolithography method.

即ち、基板面にフォトレジストをコーティングし、上
記接触部分のみが露出するような陽画または陰画を重ね
て密着露光を行ない、現像処理した後、接触部分の絶縁
膜をエッチング除去する。エッチングは、湿式、乾式の
いずれの方法によっても行なうことができる。例えば、
乾式エッチングとしては、一般的に用いられているプラ
ズマエッチング法、反応性イオンエッチング法などが用
いられる。プラズマエッチングの場合には、例えば約5
〜10%の酸素を含有するCF4をエッチングガスとして用
い、圧力約0.1〜10Torr、電力約50〜400Wの高周波(13.
56MHz)を用いて行われ、そのエッチング速度は相手材
によっても異なるが、相手材がSiNやSiOの場合には、一
般に約50〜400Å/分である。
That is, a photoresist is coated on the surface of a substrate, a positive image or a negative image is exposed so that only the contact portion is exposed, contact exposure is performed, and after development processing, the insulating film at the contact portion is removed by etching. Etching can be performed by either a wet method or a dry method. For example,
As the dry etching, a commonly used plasma etching method, reactive ion etching method, or the like is used. In the case of plasma etching, for example, about 5
Using CF 4 containing ~ 10% oxygen as an etching gas, a high frequency (13.
The etching rate varies depending on the mating material, but when the mating material is SiN or SiO, it is generally about 50 to 400 Å / min.

次いで、常法によりソース電極およびドレイン電極を
それぞれの拡散層と接触させた状態で形成させた後、ソ
ース電極およびドレイン電極の間の絶縁層上に感湿層の
形成が行われる。
Next, after forming the source electrode and the drain electrode in contact with the respective diffusion layers by a conventional method, a moisture sensitive layer is formed on the insulating layer between the source electrode and the drain electrode.

感湿層は、相対湿度に応じた吸着水分量の変化と共に
膜の誘電率が変化する材料から、湿度変化に対する応答
速度を速くするため一般に約1μm以下を膜厚で形成さ
れる。かかる材料としては、例えば多孔質の酸化アルミ
ニウム、酢酸セルロース、ポリイミド、ポリビニルアル
コール、あるいは前述の本発明者提案のプラズマ重合物
などが用いられる。
The moisture-sensitive layer is generally formed with a film thickness of about 1 μm or less in order to increase the response speed to humidity changes, from a material whose dielectric constant changes with the amount of adsorbed moisture according to relative humidity. As such a material, for example, porous aluminum oxide, cellulose acetate, polyimide, polyvinyl alcohol, or the above-mentioned plasma polymerized product proposed by the present inventors is used.

かかる感質層の上面には、ゲート電極が形成される。
ゲート電極は、耐食性にすぐれた金または白金から形成
されることが好ましいが、それは感質膜に空気中などの
水蒸気が到達できるように透質性を有することが要求さ
れる。このため、ゲート電極は真空蒸着法によっいて形
成され、その膜厚も約250Åより薄くなるとポーラスな
状態を示すようになるので、約50〜250Åの範囲内に設
定することが望ましい。なお、このようなポーラスな電
極を形成させる場合、真空蒸着雰囲気中にアルゴン、窒
素などの不活性ガスを微量導入する方法も、有効な手段
として採られる。
A gate electrode is formed on the upper surface of the sensitive layer.
The gate electrode is preferably formed of gold or platinum having excellent corrosion resistance, but it is required to have permeability so that water vapor such as in the air can reach the sensitive film. For this reason, the gate electrode is formed by the vacuum deposition method, and when the film thickness becomes thinner than about 250 Å, it shows a porous state, so it is desirable to set it within the range of about 50 to 250 Å. When forming such a porous electrode, a method of introducing a small amount of an inert gas such as argon or nitrogen into the vacuum vapor deposition atmosphere is also taken as an effective means.

この蒸着法によるゲート電極形成の際、ソース電極3
の感湿層8側面部分に開口蒸着窓を有するような蒸着マ
スクを用いることにより、ゲート電極5とソース電極3
とを短絡9させることができる。
When forming the gate electrode by this vapor deposition method, the source electrode 3
The gate electrode 5 and the source electrode 3 are formed by using an evaporation mask having an opening evaporation window on the side surface of the moisture sensitive layer 8.
And 9 can be short-circuited.

以上の如くに構成される本発明の感湿素子は、ソース
拡散層、ドレイン拡散層およびゲート電極によって構成
される電界効果トランジスタの動作態が、ゲート電極−
ソース電極間の電圧が0Vのときにもその間に電流が流れ
るデプレッション型のものとして使用される。
In the moisture sensitive element of the present invention configured as described above, the operating state of the field effect transistor including the source diffusion layer, the drain diffusion layer and the gate electrode is
It is used as a depletion type device in which a current flows between the source electrodes even when the voltage between them is 0V.

図面の第2図には、この感湿素子の等価回路が示され
ている。
An equivalent circuit of this humidity sensitive element is shown in FIG. 2 of the drawing.

この等価回路においては、ゲート電極とソース電極と
は直接接続され、ソース電極−ドレイン電極間には、FE
Tが飽和領域で動作するように(2)式をみたす電圧VDS
を印加しておく。
In this equivalent circuit, the gate electrode and the source electrode are directly connected, and the FE is connected between the source electrode and the drain electrode.
The voltage V DS that satisfies Eq. (2) so that T operates in the saturation region
Is applied.

|VDS|>|VGS−VGS(th)| ……(2) VGS:ゲート−ソース間電圧 VGS(th):デプレッション型MOS形 FETにおいては、IDS(ソース−ドレイン電流)≒0とす
るのに必要なしきい値であり、≠0である MOS形FETの飽和動作領域においては、VGSとIDSとの関
係を示す伝達特性は、次の(3)式のように近似でき
る。
| V DS | > | V GS −V GS (th) | (2) V GS : Gate-source voltage V GS (th): I DS (source-drain current) in depletion type MOS FET In the saturation operation region of the MOS type FET where ≠ 0, which is the threshold value required to make ≈0, the transfer characteristic showing the relationship between V GS and I DS is as shown in the following equation (3). Can be approximated.

β:素子による定数でゲート部の幾何学的構造で決ま
り、(4)式で示される μ:電子またはホールの移動度 ε:誘電率 W:チャンネル(ゲート部)幅 To:ゲート部絶縁膜の厚さ L:ドレイン−ソース間距離(ゲート部長さ) 上記(4)式において、μ以外はゲート部絶縁膜の静
電容量Ciを決定する値であり、次の(5)式の如くに示
される。
β: A constant determined by the element, which is determined by the geometrical structure of the gate, and is expressed by equation (4). μ: Electron or hole mobility ε: Dielectric constant W: Channel (gate) width To: Gate insulating film thickness L: Drain-source distance (gate length) In formula (4) above, except μ Is a value that determines the electrostatic capacitance Ci of the gate insulating film, and is represented by the following equation (5).

(4)および(5)式から、次の(6)式から導かれ
る。
The following equation (6) is derived from the equations (4) and (5).

一方、VGSはゲート−ソース間が短絡されているた
め、VGS=0であり、従って(3)および(6)式か
ら、(7)式が導かれる。
On the other hand, since V GS is short-circuited between the gate and the source, V GS = 0, and therefore, formula (7) is derived from formulas (3) and (6).

また、感湿層8がゲート部の絶縁層2上に直接設置さ
れているため、感湿膜の静電容量Csの変化は、ゲート部
絶縁膜Ciの変化とみなすことができる。従って、上記
(7)式は、次の(8)式の如くに表わすことができ
る。
Further, since the moisture sensitive layer 8 is directly provided on the insulating layer 2 of the gate portion, the change in the capacitance Cs of the moisture sensitive film can be regarded as the change in the gate insulating film Ci. Therefore, the above equation (7) can be expressed as the following equation (8).

ここで、μ、L、VGS(th)はFET固有の定数であるの
で、(8)式においてIDSとCsとは比例関係となり、Cs
の広範囲な変化に対してIDSの十分な応答を得ることが
できる。
Here, μ, L, and V GS (th) are constants peculiar to the FET, so in equation (8), I DS and Cs have a proportional relationship, and Cs
A sufficient response of I DS can be obtained for a wide range of changes in.

〔作用〕および〔発明の効果〕 本発明に係る感湿素子の動作回路においては、感湿素
子のゲート電極とソース電極とが電気的に直接接続され
ており、ソース電極−ドレイン電極間に一定電圧を与え
ると、ゲート−ソース間が短絡されているため、ソース
−ドレイン間の電圧は0Vとなるが、MOS形FETの動作態が
デプレッション型であるため、FET固有の伝達特性に応
じた電流がソース−ドレイン間を流れるようになる。
[Operation] and [Effects of the Invention] In the operating circuit of the humidity-sensitive element according to the present invention, the gate electrode and the source electrode of the humidity-sensitive element are electrically directly connected, and a constant amount is provided between the source electrode and the drain electrode. When a voltage is applied, the voltage between the source and drain becomes 0V because the gate and source are short-circuited, but since the operating state of the MOS type FET is the depletion type, the current according to the transfer characteristics peculiar to the FET is Will flow between the source and drain.

この状態においては、感湿膜の静電容量をゲート部の
絶縁膜の静電容量の一部としてみなすことができるた
め、相対湿度の変化に応じて乾湿膜の静電容量が変化す
ると、FETの伝達特性に応じてゲート絶縁膜のみかけ上
の静電容量が変化し、これによりソース−ドレイン間の
電流が変化するようになる。このときの電流値が、ゲー
ト部の静電容量に対し比例して変化するため、静電容量
の広範囲にわたる変化に対しても十分なる応答性を得る
ことができる。
In this state, the capacitance of the moisture sensitive film can be regarded as a part of the capacitance of the insulating film of the gate portion, so if the capacitance of the dry and wet film changes according to the change in relative humidity, the FET The apparent capacitance of the gate insulating film changes according to the transfer characteristics of the gate insulating film, which causes the current between the source and the drain to change. Since the current value at this time changes in proportion to the capacitance of the gate portion, sufficient responsiveness can be obtained even when the capacitance changes over a wide range.

また、かかる動作回路においては、感湿素子のゲート
電極−ソース電極間を短絡しているため回路構成が単純
となり、特にその間に直流あるいは交流の電源を必要と
しなくなり、測定装置の簡略化をも図ることができる。
Further, in such an operating circuit, the gate electrode and the source electrode of the moisture sensitive element are short-circuited, so that the circuit configuration is simple, and in particular, a direct current or an alternating current power supply is not required between them, which simplifies the measuring device. Can be planned.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be described with reference to examples.

実施例 P型シリコン半導体基板に、n型のソース拡散層およ
びドレイン拡散層を有し、デプレッション型動作態を有
するMOS形FETを形成させた。絶縁層は、膜厚5000ÅのSi
O2薄膜から形成されている。
Example A MOS type FET having an n type source diffusion layer and a drain diffusion layer and having a depletion type operation state was formed on a P type silicon semiconductor substrate. The insulating layer is made of Si with a thickness of 5000 Å
It is formed from an O 2 thin film.

ゲート部の絶縁膜上には、N,N,N′,N′−テトラメチ
ルエチレンジアミン(0.0.7Torr)−臭化メチル(0.01T
orr)混合ガスを用い、電力40W、時間30分間の放電条件
下でプラズマ重合させた、膜厚5000Åのプラズマ重合膜
を感湿膜として形成させた。
N, N, N ', N'-tetramethylethylenediamine (0.0.7Torr) -methyl bromide (0.01T) is formed on the gate insulating film.
A plasma polymerized film having a film thickness of 5000 Å was formed as a moisture sensitive film by plasma polymerization under the discharge condition of power of 40 W and time of 30 minutes using an orr) mixed gas.

この感湿膜上に、ステンレス鋼板(厚さ0.2mm)にゲ
ート電極パターンと同一形状、同一寸法の蒸着窓をあけ
た蒸着マスクを重ね、マスクごしに金を真空蒸着し、膜
厚200Åの金蒸着膜を形成させ、ゲート電極とした。な
お、ゲート電極は、基板上でソース電極と接続するよう
なパターン形状となっている。
On this moisture-sensitive film, a vapor deposition mask with a vapor deposition window of the same shape and size as the gate electrode pattern was placed on a stainless steel plate (thickness 0.2 mm), and gold was vacuum-deposited over the mask to a film thickness of 200 Å. A gold vapor deposition film was formed and used as a gate electrode. Note that the gate electrode has a pattern shape which is connected to the source electrode on the substrate.

このようにして作製された感湿素子を用い、その動作
回路に従って感湿特性を測定した、なお、ソース電極−
ドレイン電極間の電圧は、FETが飽和領域で駆動するの
に十分な電圧(12V)を印加した。得られた結果は、第
3図のグラフに示されており、この結果から相対湿度約
10〜80%の広い領域にわたって十分な応答が得られるこ
とが明らかである。
The moisture-sensitive element thus manufactured was used to measure the humidity-sensitive characteristics according to its operating circuit.
As the voltage between the drain electrodes, a voltage (12 V) sufficient to drive the FET in the saturation region was applied. The results obtained are shown in the graph of Fig. 3, which indicates that the relative humidity
It is clear that a satisfactory response is obtained over a wide area of 10-80%.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る感湿素子の一態様の縦断面図で
あり、第2図はその動作回路である。第3図は、実施例
における相対湿度と出力との関係を示すグラフである。
第4図は、従来公知の感湿素子の等価回路であり、第5
図はそれの感湿特性を示すグラフである。 (符号の説明) 1……半導体基板 2……絶縁層 3……ソース電極 4……ドレイン電極 5……ゲート電極 6……ソース拡散層 7……ドレイン拡散層 8……感湿層 9……ゲート電極−ソース電極間短絡
FIG. 1 is a vertical cross-sectional view of one mode of the moisture sensitive element according to the present invention, and FIG. 2 is its operating circuit. FIG. 3 is a graph showing the relationship between relative humidity and output in the example.
FIG. 4 is an equivalent circuit of a heretofore known moisture sensitive element.
The figure is a graph showing the moisture-sensitive characteristics thereof. (Explanation of symbols) 1 ... Semiconductor substrate 2 ... Insulating layer 3 ... Source electrode 4 ... Drain electrode 5 ... Gate electrode 6 ... Source diffusion layer 7 ... Drain diffusion layer 8 ... Moisture sensitive layer 9 ... ... Gate electrode-source electrode short circuit

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ソース拡散層およびドレイン拡散層を設け
たMOS形FETにおいて、ゲート電極を透湿性電極で形成
し、それをソース電極と直接接続すると共に、該透湿性
ゲート電極と絶縁層との間に感湿性薄膜層を設置してな
る感湿素子。
1. A MOS type FET provided with a source diffusion layer and a drain diffusion layer, wherein a gate electrode is formed of a moisture permeable electrode and the moisture permeable gate electrode and the insulating layer are directly connected to the source electrode. A moisture sensitive element having a moisture sensitive thin film layer interposed therebetween.
【請求項2】請求項1記載の感湿素子の動作回路におい
て、ソース拡散層、ドレイン拡散層およびゲート電極に
よって構成される電界効果トランジスタの動作態が、ゲ
ート電極−ソース電極間の電圧が0Vのときにも電流が流
れるデプレッション型である動作回路。
2. The operating circuit of the moisture sensitive element according to claim 1, wherein the field effect transistor constituted by the source diffusion layer, the drain diffusion layer and the gate electrode is operated such that the voltage between the gate electrode and the source electrode is 0V. An operation circuit that is a depletion type in which a current flows even when.
JP63158192A 1988-06-28 1988-06-28 Moisture sensitive element and its operating circuit Expired - Fee Related JP2546340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63158192A JP2546340B2 (en) 1988-06-28 1988-06-28 Moisture sensitive element and its operating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63158192A JP2546340B2 (en) 1988-06-28 1988-06-28 Moisture sensitive element and its operating circuit

Publications (2)

Publication Number Publication Date
JPH0210146A JPH0210146A (en) 1990-01-12
JP2546340B2 true JP2546340B2 (en) 1996-10-23

Family

ID=15666280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63158192A Expired - Fee Related JP2546340B2 (en) 1988-06-28 1988-06-28 Moisture sensitive element and its operating circuit

Country Status (1)

Country Link
JP (1) JP2546340B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11435310B2 (en) * 2017-03-31 2022-09-06 Mitsumi Electric Co., Ltd. Humidity sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036905A1 (en) * 2003-08-12 2005-02-17 Matsushita Electric Works, Ltd. Defect controlled nanotube sensor and method of production
JP6535185B2 (en) * 2015-03-04 2019-06-26 エイブリック株式会社 Humidity sensor
US11460428B2 (en) * 2018-11-16 2022-10-04 Minebea Mitsumi Inc. Humidity detecting device and method of determining malfunction
JP7167396B2 (en) * 2018-11-16 2022-11-09 ミネベアミツミ株式会社 Humidity detector and failure determination method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158807A (en) * 1977-04-25 1979-06-19 Massachusetts Institute Of Technology Gapped gate charge-flow transistor with a thin film sensor having two modes of conduction within the gapped gate used to sense a property of the ambient environment
GB8322418D0 (en) * 1983-08-19 1983-09-21 Emi Ltd Humidity sensor
GB2145280B (en) * 1983-08-19 1987-12-02 Emi Ltd Vapour sensor
JPS60253958A (en) * 1984-05-31 1985-12-14 Sharp Corp Sensor
JPS6114555A (en) * 1984-06-29 1986-01-22 Sharp Corp Drive method of FET type sensor
JPS6157847U (en) * 1984-09-21 1986-04-18
JPH0313721Y2 (en) * 1986-11-12 1991-03-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11435310B2 (en) * 2017-03-31 2022-09-06 Mitsumi Electric Co., Ltd. Humidity sensor

Also Published As

Publication number Publication date
JPH0210146A (en) 1990-01-12

Similar Documents

Publication Publication Date Title
CN109682863B (en) Gas sensor based on TMDCs-SFOI heterojunction and preparation method thereof
CN112578013B (en) Sensing circuit including a bio-sensitive field effect transistor and method of operation
Reddy Jr et al. High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing
Lu et al. High-performance double-gate $\alpha $-InGaZnO ISFET pH sensor using a HfO2 gate dielectric
TW434704B (en) Device of amorphous WO3 ion sensitive field effect transistor (ISFET) and method for making the same
GB2103014A (en) Semiconductor device responsive to ions
JPH0415903B2 (en)
EP0181206A2 (en) Semiconductor devices
JPS63500739A (en) Sensor that selectively measures liquid or gas phase components
JPH0376860B2 (en)
JPH0240973B2 (en)
EP3217167B1 (en) Humidity sensors with transistor structures and piezoelectric layer
CA2572485A1 (en) Capteur pour la detection et/ou la mesure d'une concentration de charges electriques contenues dans une ambiance, utilisations et procede de fabrication correspondants.
JP2546340B2 (en) Moisture sensitive element and its operating circuit
JPH0374947B2 (en)
Molina-Reyes Design and electrochemical characterization of ion-sensitive capacitors with ALD Al 2 O 3 as the sensitive dielectric
US7355200B2 (en) Ion-sensitive field effect transistor and method for producing an ion-sensitive field effect transistor
US6929728B2 (en) Sensor for measuring a gas concentration or ion concentration
TW396408B (en) Method of manufacturing ion sensor device and the device thereof
Chang et al. Characteristics of zirconium oxide gate ion-sensitive field-effect transistors
Hazarika et al. Survey on ion sensitive field effect transistor from the view point of pH sensitivity and drift
CN116429841A (en) Multi-gate structure field effect transistor pH sensor and manufacturing method thereof
Covington et al. Recent advances in microelectronic ion-sensitive devices (ISFETs). The operational transducer
Duarte et al. ISFET Fabrication and Characterization for Hydrogen Peroxide sensing
CN114660157A (en) An extended structure field effect transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees