JP2560002B2 - Wafer prober - Google Patents
Wafer proberInfo
- Publication number
- JP2560002B2 JP2560002B2 JP59130795A JP13079584A JP2560002B2 JP 2560002 B2 JP2560002 B2 JP 2560002B2 JP 59130795 A JP59130795 A JP 59130795A JP 13079584 A JP13079584 A JP 13079584A JP 2560002 B2 JP2560002 B2 JP 2560002B2
- Authority
- JP
- Japan
- Prior art keywords
- optical information
- wafer
- information
- semiconductor wafer
- detecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 44
- 238000003384 imaging method Methods 0.000 claims description 17
- 239000004065 semiconductor Substances 0.000 claims description 14
- 238000001514 detection method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Control Of Position Or Direction (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 開示技術は、半導体製造装置における半導体ウエハの
位置合わせを行うウエハプローバに関する発明であり、
特に、該半導体ウエハの特徴部の検出を正確に行うウエ
ハプローバに係る発明である。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The disclosed technology is an invention relating to a wafer prober for aligning a semiconductor wafer in a semiconductor manufacturing apparatus,
In particular, the invention relates to a wafer prober that accurately detects a characteristic portion of the semiconductor wafer.
〈従来の技術〉 従来、半導体ウエハ(以下単にウエハと略称)の位置
合わせを行うウエハプローバにあっては位置合わせにつ
いてこれでレーザ光を照射して行う態様と、撮像カメラ
を用いて行う態様とがあった。<Prior Art> Conventionally, in a wafer prober for aligning a semiconductor wafer (hereinafter simply referred to as “wafer”), a mode for performing alignment by irradiating a laser beam and a mode for performing alignment using an imaging camera are used. was there.
〈発明が解決しようとする課題〉 しかしながら、前者は半導体ウエハチップ(以下チッ
プと略称)の表面にレーザ光を照射し、該チップ表面で
の反射によって生じた散乱光を集光して該散乱光を電気
信号に変換し、得られた電気信号を基本認識情報と比較
し、特徴部を検出するようにされているが、チップの表
面を繰り返しスキャンニングして該特徴部を決定する情
報を得るまでに長い時間を費すという欠点があり、作業
能率を低下させるという難点がある。<Problems to be Solved by the Invention> However, in the former, the surface of a semiconductor wafer chip (hereinafter abbreviated as a chip) is irradiated with laser light, and scattered light generated by reflection on the surface of the chip is collected to collect the scattered light. Is converted into an electric signal, and the obtained electric signal is compared with basic recognition information to detect a characteristic portion. The surface of the chip is repeatedly scanned to obtain information for determining the characteristic portion. However, there is a drawback that it takes a long time to process, and there is a drawback that work efficiency is reduced.
これに対し、後者はウエハの表面を高倍率にセットし
た撮像カメラにより特徴部を探索する態様であるが、第
6図に示す様に、該ウエハを最初の探索位置30から30a,
30b,…30zへと順番に該ウエハが吸着されている載置台
と共に等速度で移動して特徴部を探索するのでこれまた
作業に多大の時間を費すという難点がある。On the other hand, the latter is a mode in which a characteristic portion is searched for by an imaging camera in which the surface of the wafer is set at a high magnification. However, as shown in FIG.
30b, ..., 30z are sequentially moved together with the mounting table on which the wafer is adsorbed at a constant speed to search for a characteristic portion, which also has a drawback that a lot of time is required for the work.
〈発明の目的〉 この発明の目的は上述従来技術に基づく半導体製造装
置におけるウエハプローバの位置合わせの問題点を解決
すべき技術的課題とし、従来態様の上記欠点を排除し難
点を解消するようにして半導体製造産業における測定技
術利用分野に益する優れたウエハプローバを提供せんと
するものである。<Object of the Invention> An object of the present invention is to solve the problem of alignment of the wafer prober in the semiconductor manufacturing apparatus based on the above-mentioned conventional technique, and to eliminate the above-mentioned drawbacks of the conventional embodiment and solve the difficulties. The present invention aims to provide an excellent wafer prober that benefits the field of measurement technology application in the semiconductor manufacturing industry.
〈課題を解決するための手段・作用〉 上述目的に沿い先述特許請求の範囲を要旨とするこの
出願の発明の構成は、前述課題を解決するために、ウエ
ハの位置合わせをするに、まず、第1の巨視的な光情報
により特徴部の第1の光情報を大まかに検出し、該特徴
部の情報の一部を限定し、次いで、これを微視的に拡大
し、該特徴部の詳細な位置を第2の光情報として検出す
るようにし、この際、ウエハ位置合わせについては、特
徴部の情報を有するウエハ表面を撮像カメラにより巨視
的にとらえて当該撮像画面の可及的に中央に近い部分の
特徴部を認識し、その特徴部を拡大してとらえる当該第
2の光情報を検出する位置へウエハを移動して撮像カメ
ラにより拡大して第2の光情報として微視的にとらえ、
このようにして当該特徴部の位置を正確に検出するよう
にした技術的手段を講じたものである。<Means and Actions for Solving the Problems> In order to solve the above-mentioned problems, the structure of the invention of the present application, which is based on the above-mentioned claims, is aimed at solving the above-mentioned problems. The first light information of the feature portion is roughly detected by the first macroscopic light information, a part of the information of the feature portion is limited, and then this is microscopically magnified to obtain the feature information of the feature portion. The detailed position is detected as the second light information. At this time, regarding the wafer alignment, the wafer surface having the information of the characteristic portion is macroscopically captured by the image capturing camera and the center of the image capturing screen is adjusted as much as possible. Is recognized, and the wafer is moved to a position for detecting the second optical information by enlarging and capturing the characteristic portion and enlarged by an imaging camera to microscopically obtain the second optical information. Catch
In this way, the technical means for accurately detecting the position of the characteristic portion is taken.
〈実施例〉 次に、この出願の発明の実施例を第1〜5図に基づい
て説明すれば以下の通りである。<Embodiment> Next, an embodiment of the invention of this application will be described below with reference to FIGS.
尚、第6図と同一態様部分は同一符号を用いて説明す
るものとする。It should be noted that parts that are the same as those in FIG. 6 will be described using the same symbols.
第1〜4図に実施例において、ウエハ14の表面を第1
の光情報として巨視的に検出する手段と第2の光情報と
して微視的に検出する手段とを第1図の態様により機能
的に説明すると、該第1の光情報として巨視的に検出す
る手段にあっては所定の光源7から発される光がレンズ
6を通して第1図には図示しないウエハ14(第2図)の
表面上に照射され、次いで、当該第2図のAに示すウエ
ハ14の巨視的な面積部から反射した反射光をミラー5、
レンズ4、ミラー3、及び、ビームスプリッタ2を通し
て第1の光情報を撮像カメラ1に入射させるようにす
る。In the embodiment shown in FIGS. 1 to 4, the surface of the wafer 14 is
When the means for macroscopically detecting as the optical information and the means for microscopically detecting as the second optical information are functionally described by the mode of FIG. 1, the macroscopically detecting as the first optical information is performed. In the means, the light emitted from a predetermined light source 7 is radiated through the lens 6 onto the surface of the wafer 14 (Fig. 2) not shown in Fig. 1, and then the wafer shown in Fig. 2A. The reflected light reflected from the 14 macroscopic areas is reflected by the mirror 5,
The first optical information is made incident on the imaging camera 1 through the lens 4, the mirror 3, and the beam splitter 2.
次に、ウエハ14の表面を微視的に検出する第2の光情
報の手段にあっては、同じく第1図に示す様に、光源13
から発する光がレンズ12を通してウエハ14の表面上の微
視的な面積部Bに照射される。Next, in the second optical information means for microscopically detecting the surface of the wafer 14, as shown in FIG.
The light emitted from the laser beam illuminates the microscopic area B on the surface of the wafer 14 through the lens 12.
尚、巨視的に第1の光情報を検出する時と、第2の光
情報を微視的に検出する時には該ウエハ14の場所が異な
るため、当該異なった場所間の距離を適宜の演算処理手
段により演算し、ウエハ14を吸着してある図示しない載
置台を2次元的に移動させる手段により所定に移動させ
て選択した特徴部を検出出来るようにする。Since the location of the wafer 14 is different when macroscopically detecting the first optical information and when microscopically detecting the second optical information, the distance between the different locations is appropriately calculated. It is calculated by the means, and the mounting table (not shown) on which the wafer 14 is sucked is moved two-dimensionally by the means so that the selected characteristic portion can be detected.
そして、第2図のBに示すウエハ14の微視的な面積部
から反射した第2の光情報の反射光をレンズ11で拡大
し、ミラー10、ミラー9、レンズ8、及び、ビームスプ
リッタ2を通して撮像カメラ1に第2の光情報として入
射させるようにする。Then, the reflected light of the second optical information reflected from the microscopic area portion of the wafer 14 shown in FIG. 2B is magnified by the lens 11, and the mirror 10, the mirror 9, the lens 8 and the beam splitter 2 Through the image pickup camera 1 as the second light information.
尚、該ビームスプリッタ2か撮像カメラ1に入射する
光軸は上述巨視的に検出する第1の光情報の手段と、当
該微視的に検出する第2の光情報の手段とにおいて予め
同軸にセットしておく。Incidentally, the optical axis incident on the beam splitter 2 or the imaging camera 1 is preliminarily coaxial with the means for the first optical information for macroscopically detecting and the means for the second optical information for microscopically detecting. Set it.
而して、巨視的に検出する手段により撮像カメラ1に
入射する第1の光情報と、上記微視的に検出する手段に
より撮像カメラ1に入射する第2の光情報と、切換手段
により相互に選択的に切り換えられるようにされてお
り、該切換手段はビームスプリッタ2の前に位置させた
遮蔽板21と遮蔽板21のシリンダータイプの駆動装置22と
から成り、該遮蔽板21を駆動装置22により駆動すること
によって切り換えることが出来るようにされるものであ
る。Thus, the first optical information incident on the imaging camera 1 by means of macroscopic detection and the second optical information incident on the imaging camera 1 by means of microscopic detection are mutually switched by the switching means. The switching means comprises a shield plate 21 positioned in front of the beam splitter 2 and a cylinder type drive unit 22 for the shield plate 21, and the shield plate 21 is driven by the drive unit. It can be switched by driving with 22.
該切換手段には上記巨視的に検出する手段と微視的に
検出する手段とを切り換える信号が制御手段として入力
される。A signal for switching between the macroscopically detecting means and the microscopically detecting means is input to the switching means as control means.
而して、処理手段としては上記巨視的検出手段により
検出された第1の光情報を入力し、基本認識情報と所定
の判断手段により比較して判断した該第1の光情報の可
及的に中心部に近い所定の特徴情報を第2の光情報によ
り微視的に検出して特徴のある位置を記録するようにす
る。As the processing means, the first optical information detected by the macroscopic detection means is input, and the first optical information determined by comparing the basic recognition information with predetermined determination means First, predetermined characteristic information close to the center is microscopically detected by the second optical information to record a characteristic position.
次に、ウエハプローバの動作については第2図に示す
様に、巨視的に第1の光情報を検出する手段でウエハ14
表面のAの巨視的面積部を撮像カメラ1でとらえ、該撮
像カメラ1でとらえた該A部の巨視的面積のパターンの
第1の光情報は、第3図(a)で示す様に、例えば、ス
クライプラインの交点を基本認識情報として既に記録さ
せてあるデータと前記判断手段により比較した後、複数
個の特徴部31を検出するが、上記撮像カメラ1がとらえ
た第1の光情報のパターンの中央に一番近い特徴部を選
択する。Next, regarding the operation of the wafer prober, as shown in FIG. 2, the wafer 14 is measured by means for macroscopically detecting the first optical information.
As shown in FIG. 3 (a), the first optical information of the pattern of the macroscopic area of the part A captured by the imaging camera 1 is as follows: For example, after comparing the data of the intersections of the script lines with the data already recorded as the basic recognition information by the judging means, a plurality of characteristic portions 31 are detected, but the first optical information captured by the imaging camera 1 is detected. Select the feature closest to the center of the pattern.
次に、再び第2図に示す様に、微視的に検出する第2
の光情報の手段でBの極小面積部を拡大して撮像カメラ
1でとらえ、該撮像カメラ1でとらえたB部の極小面積
の第2の光情報のパターンは、第3図(b)に示す様
に、1個の特徴部31Eの位置を記録する。Next, as shown in FIG. 2 again, the second microscopic detection is performed.
The minimum area of B is magnified by the means of optical information and captured by the imaging camera 1, and the pattern of the second optical information of the minimum area of the portion B captured by the imaging camera 1 is shown in FIG. As shown, the position of one feature 31E is recorded.
その際、Aの巨視的面積部を上記撮像カメラ1でとら
えた第1の光情報のパターンの中央に一番近い特徴部を
選択し、同時に上記切換手段の遮蔽板21の駆動装置22で
該遮蔽板21を駆動し、巨視的レンズ系軸から微視的レン
ズ系軸に切り換え第2の光情報を得るようにする。At that time, the characteristic portion closest to the center of the pattern of the first optical information obtained by capturing the macroscopic area portion of A by the imaging camera 1 is selected, and at the same time, the driving device 22 of the shield plate 21 of the switching means selects the characteristic portion. The shield plate 21 is driven to switch from the macroscopic lens system axis to the microscopic lens system axis to obtain the second optical information.
この切換手段の切換信号等による制御は、全て上記制
御手段により行う。The control by the switching signal of the switching means and the like are all performed by the control means.
上述の動作で第4図に示す様に、少なくとも2ケ所の
特徴部を結んだ直線成分が基本直線成分に対して傾きθ
を生じた場合には所定に演算し、その演算結果に基づい
て制御手段から制御信号を出力し、ウエハを吸着してあ
る載置台の移動手段を制御して該載置台を対応する角度
回転修正して一致させるようにするものである。In the above operation, as shown in FIG. 4, the straight line component connecting at least two characteristic portions has an inclination θ with respect to the basic straight line component.
In the case of occurrence, a predetermined calculation is performed, and a control signal is output from the control means based on the calculation result, and the moving means of the mounting table on which the wafer is adsorbed is controlled to correct the mounting table by a corresponding angle rotation. Then, they are matched.
第5図は他の実施例を示すものであって当該第5図に
おいて、撮像カメラ1、ミラー5、レンズ6、光源7、
及び、ウエハ14は第4図に示す態様と同様であり、40は
ウエハ14の表面の特徴を検出する手段で該ウエハ14の表
面を巨視的、及び、微視的に同一光軸上で撮像カメラ1
にとらえるためのズームレンズ系により構成されてい
る。FIG. 5 shows another embodiment. In FIG. 5, the image pickup camera 1, the mirror 5, the lens 6, the light source 7,
The wafer 14 is the same as that shown in FIG. 4, and 40 is a means for detecting the characteristics of the surface of the wafer 14, which macroscopically and microscopically images the surface of the wafer 14 on the same optical axis. Camera 1
It is composed of a zoom lens system for capturing.
当該実施例の動作について説明すると、上記ズームレ
ンズ系40にあっては、光源7より光をレンズ6を通して
ウエハ14の図示しない表面上に照射し、巨視的な面積部
Aから反射した反射光の第1の光情報はミラー5を通
り、巨視的な面積部Aをとらえるようにセットされたズ
ームレンズ系40を通って撮像カメラ1に入射する。The operation of this embodiment will be described. In the zoom lens system 40, the light from the light source 7 is radiated through the lens 6 onto the surface (not shown) of the wafer 14, and the reflected light reflected from the macroscopic area A is reflected. The first optical information passes through the mirror 5, and enters the imaging camera 1 through the zoom lens system 40 set so as to capture the macroscopic area A.
そして、入射したパターンは第3図(a)に示す様に
とらえられてウエハ14の表面上に巨視的に検出する手段
で検出する。Then, the incident pattern is captured as shown in FIG. 3 (a), and is detected macroscopically on the surface of the wafer 14.
次に、ウエハ14の表面を微視的に検出する手段は光源
7よりレンズ6を通してウエハ14の表面上の光を照射さ
れている巨視的な面積部Aから反射した反射光をミラー
5を通し、微視的に選択された面積部Bをとらえるよう
にセットされたズームレンズ系40を通って微視的面積部
Bを撮像カメラ1に第2の光情報として入射させる。Next, the means for microscopically detecting the surface of the wafer 14 passes through the mirror 5 the reflected light reflected from the macroscopic area A irradiated with the light on the surface of the wafer 14 from the light source 7 through the lens 6. The microscopic area portion B is made incident on the image pickup camera 1 as second optical information through the zoom lens system 40 set so as to capture the microscopically selected area portion B.
このようにして入射したパターンは第3図(b)に示
す様にとらえられ、ウエハ14の表面上を微視的に検出す
る。The pattern thus entered is captured as shown in FIG. 3 (b), and the surface of the wafer 14 is microscopically detected.
而して、巨視的に検出する手段と微視的に検出する手
段とを切り換える切換手段は、上述のように巨視的にと
らえた複数の特徴部31の中から1個を選択した信号を制
御手段に入力し、この制御手段により切換信号をズーム
レンズ系40の図示しない駆動手段に出力して微視的に検
出するレンズ系手段になるようにレンズを移動させる。Thus, the switching means for switching between the means for macroscopically detecting and the means for microscopically detecting controls the signal in which one is selected from the plurality of characteristic parts 31 macroscopically captured as described above. Then, the control means outputs a switching signal to a driving means (not shown) of the zoom lens system 40 to move the lens so as to be a lens system means for microscopically detecting.
そして、特徴部31の位置を検出した後は上述同様に動
作させることによりウエハ14の位置合わせを行う。Then, after detecting the position of the characteristic portion 31, the wafer 14 is aligned by operating in the same manner as described above.
尚、上述各実施例に記載されている構成部品の相対的
な配置、及び、数量等はこの出願の発明の範囲をそれら
に限定する趣旨のものではなく、単なる説明例にすぎな
い。It should be noted that the relative arrangement and quantity of the components described in each of the above-described embodiments are not intended to limit the scope of the invention of this application to them, but are merely examples of explanation.
〈発明の効果〉 以上のように、この出願の発明のウエハプローバによ
れば、従来のようにウエハ上のチップを拡大した状態を
維持して限りなく探索し、特徴部をサーチするものでは
なく、ウエハの表面上を巨視的にとらえて第1の光情報
として該第1の光情報の可及的に中心部に近い特定の特
徴部を概略的に把握した後、把握した特定の特徴部を微
視的に拡大して特徴部の位置を正確に第2の光情報によ
り検出することが出来、第1の光情報と第2の光情報と
の撮像カメラへの入力を光路の遮蔽板に連係する駆動装
置から成る切換手段の切り換えのみで行い、該撮像カメ
ラのウエハプローバ内での位置を動かさなくとも、自動
的に目的とするウエハ上の特徴部が撮像出来る構成とし
たので、ウエハプローバ内での該ウエハの位置合わせに
要求される高い精度を満たし、確実な特徴部の検出が可
能となることとなって、より正確な位置合わせが出来る
優れた効果が奏される。<Effects of the Invention> As described above, according to the wafer prober of the invention of this application, the chip on the wafer is kept in an enlarged state and searched endlessly as in the conventional case, and the characteristic part is not searched. , After macroscopically grasping the surface of the wafer as the first optical information, after roughly grasping a specific characteristic portion as close to the center as possible of the first optical information, the grasped specific characteristic portion Can be microscopically magnified to accurately detect the position of the characteristic portion based on the second optical information, and input of the first optical information and the second optical information to the imaging camera can be blocked by an optical path. The wafer can be automatically imaged without changing the position of the imaging camera in the wafer prober by simply switching the switching means including the driving device linked to the wafer. Required to align the wafer within the prober It is possible to satisfy the high accuracy required and to reliably detect the characteristic portion, and there is an excellent effect that more accurate alignment can be performed.
又、ウエハの表面の特徴部を検出する際に、従来のよ
うに該ウエハの表面全体を拡大した状態で特徴情報を抽
出するまでスキャンニングすることを施す工程がなくな
るため、第1の光情報の可及的に中心部に近い特定の特
徴部を抽出する時間が大幅に短縮され、該特徴部の抽出
工程が飛躍的に改善されるという優れた効果が奏され
る。Further, when detecting the characteristic portion of the surface of the wafer, the step of performing scanning until the characteristic information is extracted in the state in which the entire surface of the wafer is enlarged as in the related art is eliminated. The time required for extracting the specific feature portion as close to the center portion as possible is greatly reduced, and the excellent effect of dramatically improving the extraction process of the feature portion is achieved.
第1〜4図はこの出願の発明の一実施例を示す斜視図、
第2図は同ウエハ表面の拡大斜視図、第3図(a)は同
ウエハ表面を巨視的にとらえた状態の平面図、第3図
(b)は同微視的にとらえた状態の平面図、第4図
(a),(b)は同ウエハの傾きθを示すそれぞれ平面
図、第5図はこの出願の発明の他の実施例を示す斜視
図、第6図は従来態様を示す平面図である。 1……撮像カメラ、2……ビームスプリッタ 3,5,9,10……ミラー、4,6,8,11,12……レンズ 7,13……光源、14……ウエハ 16……スクライプライン、21……遮蔽板 22……駆動装置、30a,30b,30z……探索位置 31A〜31F……特徴部1 to 4 are perspective views showing an embodiment of the invention of this application,
FIG. 2 is an enlarged perspective view of the wafer surface, FIG. 3 (a) is a plan view of the wafer surface macroscopically captured, and FIG. 3 (b) is a plan view of the same wafer microscopically captured. FIGS. 4 (a) and 4 (b) are plan views showing the inclination θ of the wafer, FIG. 5 is a perspective view showing another embodiment of the invention of this application, and FIG. 6 is a conventional embodiment. It is a top view. 1 ... Imaging camera, 2 ... Beam splitter 3,5,9,10 ... Mirror, 4,6,8,11,12 ... Lens 7,13 ... Light source, 14 ... Wafer 16 ... Scrap line , 21 Shield plate 22 ...... Drive device, 30a, 30b, 30z ...... Search position 31A to 31F ...... Features
フロントページの続き (56)参考文献 特開 昭57−167651(JP,A) 特開 昭58−86739(JP,A) 特公 昭56−25775(JP,B2)Continuation of the front page (56) Reference JP-A-57-167651 (JP, A) JP-A-58-86739 (JP, A) JP-B-56-25775 (JP, B2)
Claims (2)
の反射光が撮像カメラに入射する第1の光情報と、上記
半導体ウエハ表面上の該第1の光情報内の微視的な面積
部からの反射光が上記撮像カメラに入射する第2の光情
報とを備えたウエハプローバにおいて、上記第1の光情
報に対し予め記憶された基本認識情報とを比較する判断
手段と、該判断手段からの出力により該基本認識情報に
対応する撮像画面の可及的に中央に近い部分の特定の特
徴部の第2の光情報の位置を検出する検出手段と、該検
出手段の出力により、上記半導体ウエハを第1の光情報
を検出する位置から第2の光情報を検出する位置へ移動
させる移動手段と、該第1の光情報と第2の光情報との
上記撮像カメラに入射する光情報に対する遮蔽板と該遮
蔽板に連係する駆動装置から成る切換手段とを備えてい
ることを特徴とするウエハプローバ。1. First optical information in which reflected light from a macroscopic area portion on the surface of a semiconductor wafer is incident on an image pickup camera, and microscopic information in the first optical information on the surface of the semiconductor wafer. In a wafer prober provided with second light information in which reflected light from the area portion is incident on the image pickup camera, a judgment means for comparing the first light information with basic recognition information stored in advance, By detecting means for detecting the position of the second optical information of the specific characteristic portion in the portion as close to the center as possible of the imaging screen corresponding to the basic recognition information by the output from the determining means, and the output of the detecting means. Moving means for moving the semiconductor wafer from a position where the first optical information is detected to a position where the second optical information is detected, and the image pickup camera for the first optical information and the second optical information. A shield plate for optical information that is generated and a drive that is linked to the shield plate. Wafer prober, characterized in that it comprises a switching means comprising a unit.
位置を検出した半導体ウエハ面の少くとも2部位の特徴
情報位置を求め、上記微視的な第2の光情報を得るに該
2部位を結ぶ仮想線と半導体ウエハが移動する方向とか
ら該半導体ウエハの回転ずれを求めて位置合わせをする
ようにすることを特徴とする特許請求の範囲第1項記載
のウエハプローバ。2. The characteristic information position of at least two parts of the semiconductor wafer surface where the characteristic information position is detected from the macroscopic first optical information is obtained to obtain the microscopic second optical information. The wafer prober according to claim 1, wherein the semiconductor wafer is aligned by obtaining a rotational deviation of the semiconductor wafer from a virtual line connecting the two parts and a direction in which the semiconductor wafer moves.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59130795A JP2560002B2 (en) | 1984-06-23 | 1984-06-23 | Wafer prober |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59130795A JP2560002B2 (en) | 1984-06-23 | 1984-06-23 | Wafer prober |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS619710A JPS619710A (en) | 1986-01-17 |
| JP2560002B2 true JP2560002B2 (en) | 1996-12-04 |
Family
ID=15042871
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP59130795A Expired - Lifetime JP2560002B2 (en) | 1984-06-23 | 1984-06-23 | Wafer prober |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2560002B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6090403B1 (en) * | 2015-10-15 | 2017-03-08 | 株式会社明電舎 | Vehicle restraint device |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5854713B2 (en) * | 2011-09-05 | 2016-02-09 | 株式会社東京精密 | Method for detecting chip array on wafer in prober |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5625775A (en) * | 1979-08-09 | 1981-03-12 | Canon Kk | Electronic equipment |
| JPS5886739A (en) * | 1981-11-19 | 1983-05-24 | Nippon Telegr & Teleph Corp <Ntt> | Automatic wafer positioning method |
-
1984
- 1984-06-23 JP JP59130795A patent/JP2560002B2/en not_active Expired - Lifetime
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6090403B1 (en) * | 2015-10-15 | 2017-03-08 | 株式会社明電舎 | Vehicle restraint device |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS619710A (en) | 1986-01-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4213117A (en) | Method and apparatus for detecting positions of chips on a semiconductor wafer | |
| JP2622573B2 (en) | Mark detection apparatus and method | |
| US6291816B1 (en) | System and method for measuring object features with coordinated two and three dimensional imaging | |
| US4247203A (en) | Automatic photomask inspection system and apparatus | |
| JP3399697B2 (en) | Measurement point mapping apparatus and semiconductor wafer measurement apparatus using the same | |
| JPH02140742A (en) | Reticle inspection method and apparatus | |
| US6061467A (en) | Automated optical inspection apparatus using nearest neighbor interpolation | |
| JPH08211281A (en) | Automatic focus detection method | |
| JP3501672B2 (en) | Surface image projection apparatus and method | |
| JP2560002B2 (en) | Wafer prober | |
| JP2003017536A (en) | Pattern inspection method and inspection apparatus | |
| JP3135063B2 (en) | Comparative inspection method and apparatus | |
| JP3223483B2 (en) | Defect inspection method and device | |
| JP3316829B2 (en) | Comparative inspection method and device | |
| CN1114089C (en) | Three-dimensional space optical integrated circuit pin detection method and its detection instrument | |
| JP2000193434A (en) | Foreign substance inspecting device | |
| JPH09250912A (en) | Pattern measuring device | |
| JPH10185847A (en) | Pattern inspection apparatus, pattern inspection apparatus using electron beam, and method therefor | |
| WO1991018313A1 (en) | Projected image focus system and method of use | |
| JP2695338B2 (en) | Hardness measuring method | |
| JP3250537B2 (en) | Positioning method and apparatus used for the method | |
| JP3721713B2 (en) | Alignment accuracy measurement method and alignment accuracy measurement apparatus | |
| JP2695337B2 (en) | Hardness measuring method | |
| JPH0534602B2 (en) | ||
| JPH0641164Y2 (en) | Mounted printed circuit board automatic inspection device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EXPY | Cancellation because of completion of term |