[go: up one dir, main page]

JP2572616B2 - How to remove carbon dioxide - Google Patents

How to remove carbon dioxide

Info

Publication number
JP2572616B2
JP2572616B2 JP62318800A JP31880087A JP2572616B2 JP 2572616 B2 JP2572616 B2 JP 2572616B2 JP 62318800 A JP62318800 A JP 62318800A JP 31880087 A JP31880087 A JP 31880087A JP 2572616 B2 JP2572616 B2 JP 2572616B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
adsorbent
gas
adsorption
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62318800A
Other languages
Japanese (ja)
Other versions
JPH01164418A (en
Inventor
節信 浅野
健二 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP62318800A priority Critical patent/JP2572616B2/en
Publication of JPH01164418A publication Critical patent/JPH01164418A/en
Application granted granted Critical
Publication of JP2572616B2 publication Critical patent/JP2572616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二酸化炭素の除去方法に関し、さらに詳細に
は、吸着剤として酸化亜鉛を用いた二酸化炭素の除去方
法に関する。
The present invention relates to a method for removing carbon dioxide, and more particularly, to a method for removing carbon dioxide using zinc oxide as an adsorbent.

水素、窒素、ヘリウム、アルゴンおよび酸素などのガ
スはボンベ詰めあるいは液化状態で市販され、各種工業
用および学術用として使用されている。
Gases such as hydrogen, nitrogen, helium, argon and oxygen are commercially available in packed or liquefied state and are used for various industrial and academic purposes.

近年、半導体製造プロセス、光ファイバー製造プロセ
ス、金属の熱処理プロセスおよび分析などの分野におけ
る技術の高度化に伴い、これらのガスも高純度であるこ
とが要求されている。
In recent years, with the advancement of technologies in fields such as a semiconductor manufacturing process, an optical fiber manufacturing process, a metal heat treatment process, and analysis, these gases are also required to have high purity.

〔従来の技術〕[Conventional technology]

高純度のガスを得るためにガス中に含有される不純物
の種類などに応じて種々な精製方法が知られており、水
素、炭化水素、一酸化炭素などの不純物については、こ
れらを燃焼させて二酸化炭素と水に転換し、元から混入
していた二酸化炭素および水などとともに吸着剤に接触
させてこれらを除去する方法が用いられている。
Various purification methods are known according to the type of impurities contained in the gas in order to obtain a high-purity gas. For impurities such as hydrogen, hydrocarbons, and carbon monoxide, these are burned. A method has been used in which carbon dioxide and water are converted to water, and the carbon dioxide and water, which are originally mixed, are brought into contact with an adsorbent to remove these.

これらの吸着剤としては合成ゼオライトが一般的に広
く用いられ、たとえばモレキュラーシーブス(米国,ユ
ニオンカーバイド社)がもっともよく知られている。不
純物を吸着した吸着剤は高温で再生することにより繰り
返し使用される。
As these adsorbents, synthetic zeolites are generally and widely used, for example, molecular sieves (Union Carbide, USA) are best known. The adsorbent having adsorbed impurities is repeatedly used by regenerating at high temperature.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

半導体の集積度が高くなり、これにともなってガスの
純度も向上し、不純物の濃度が低くなる方向にあるが、
さらに不純物を除くことが要求されている。一方、半導
体プロセスなどにおいては設置スペースなどの関係から
装置の小型化も強く要望されている。
Although the degree of integration of semiconductors has increased, the purity of gas has also increased, and the concentration of impurities has been decreasing.
Further, it is required to remove impurities. On the other hand, in a semiconductor process or the like, there is a strong demand for downsizing of the device due to the installation space and the like.

現在多く用いられているモレキュラーシーブ5Aについ
て低濃度の二酸化炭素の平衡吸着量を測定すると、二酸
化炭素の濃度が1ppmのような低濃度の場合には、二酸化
炭素濃度が10ppmのときの約1/7に低下する。すなわち、
同量のガスを精製するためには濃度が1/10に低下しても
吸着筒の容積は7/10にしか小さくならない。吸着筒をさ
らに小さくするには加熱再生のサイクルを短くするか、
あるいは吸着温度を0℃以下のような低温に下げるなど
で吸着量の増大を図る必要がある。
When the equilibrium adsorption amount of low-concentration carbon dioxide is measured for molecular sieve 5A that is currently widely used, when the concentration of carbon dioxide is as low as 1 ppm, it is about 1 / Drops to 7. That is,
In order to purify the same amount of gas, the volume of the adsorption column is reduced to only 7/10 even if the concentration is reduced to 1/10. To make the adsorption cylinder even smaller, shorten the cycle of heating and regeneration, or
Alternatively, it is necessary to increase the amount of adsorption by lowering the adsorption temperature to a low temperature such as 0 ° C. or lower.

しかしながら、加熱サイクルを短くするにも設計上限
度があり、また、吸着温度を下げる場合にはチラーや冷
凍機などの設置が必要となり、小型化の要求には対応で
きなくなるという欠点がある。
However, shortening the heating cycle also has a design upper limit, and lowering the adsorption temperature requires installation of a chiller, a refrigerator, and the like, and thus has a drawback that it cannot meet the demand for downsizing.

又、合成ゼオライトに代わるものとして二酸化炭素を
固定除去するために酸化カルシウム、酸化マグネシウ
ム、酸化バリウム、苛性カリ、ソーダライムなどを用い
ることも実験的に知られているが、これらはいずれも除
去速度および除去容量が小さく出口ガス純度の監視や薬
剤の交換を頻繁におこなわなければならず、さらに吸着
後の再生が困難であり繰り返し使用ができないという問
題点がある。
It has also been experimentally known to use calcium oxide, magnesium oxide, barium oxide, caustic potash, soda lime, etc. to fix and remove carbon dioxide as an alternative to synthetic zeolite. There is a problem that the removal capacity is small, the purity of the outlet gas must be monitored and the chemical must be replaced frequently, and the regeneration after adsorption is difficult and cannot be repeated.

〔問題点を解決するための手段、作用〕[Means and actions for solving the problems]

本発明者らは特に冷却を必要とせず、しかもガス中に
含有される二酸化炭素を付随する水分などとともに効率
よく除去するべく鋭意研究を重ねた結果、粒状に成型さ
れた酸化亜鉛を主成分とする吸着剤を用いることにより
不純物を効率よく除去できるとともに加熱再生によって
吸着剤は繰り返して使用しうることを見出し本発明に到
達した。
The present inventors did not particularly require cooling, and as a result of intensive research to efficiently remove carbon dioxide contained in the gas together with accompanying moisture and the like, as a result, zinc oxide formed into a granular form as a main component The present inventors have found that impurities can be efficiently removed by using an adsorbent that can be used, and that the adsorbent can be used repeatedly by heating and regenerating.

すなわち、本発明は不純物として二酸化炭素を含有す
るガスを吸着剤と接触させて、当該ガスから二酸化炭素
を除去する二酸化炭素の除去法において、吸着剤として
酸化亜鉛を主成分とする成型体を用いることを特徴とす
る二酸化炭素の除去方法である。
That is, in the present invention, a gas containing carbon dioxide as an impurity is brought into contact with an adsorbent, and in a carbon dioxide removal method for removing carbon dioxide from the gas, a molded body mainly composed of zinc oxide is used as an adsorbent. A method for removing carbon dioxide, characterized in that:

本発明は水素、窒素、ヘリウム、アルゴンおよび酸素
などのガス中に不純物として含有される二酸化炭素の除
去に適用される。又、これらのガス中に水分が含有され
るときには水分も同時に除去される。
The present invention is applied to the removal of carbon dioxide contained as an impurity in gases such as hydrogen, nitrogen, helium, argon and oxygen. When moisture is contained in these gases, the moisture is also removed at the same time.

本発明に使用される吸着剤は酸化亜鉛を主成分とする
成型体である。
The adsorbent used in the present invention is a molded product containing zinc oxide as a main component.

酸化亜鉛としては亜鉛塩の水溶液を原料とする湿式
法、金属亜鉛を原料とするフランス法、亜鉛鉱石を原料
とするアメリカ法など種々な方法で製造されたものが使
用できるが、粒度が小さく、比表面積が大きいものが得
られる点で湿式法によるものが一般的に好ましい。湿式
法としては例えば硝酸亜鉛、塩化亜鉛などの水溶液にソ
ーダ灰水溶液を加えて塩基生炭酸亜鉛を沈殿させ、これ
を濾過、水洗した後乾燥し、さらに200〜700℃で焼成す
ることにより、酸化亜鉛とするものである。又、市販さ
れている酸化亜鉛の中から適当なものを選択使用しても
よい。
As the zinc oxide, those manufactured by various methods such as a wet method using an aqueous solution of a zinc salt as a raw material, a French method using metal zinc as a raw material, and an American method using zinc ore as a raw material can be used. The wet method is generally preferred in that a material having a large specific surface area can be obtained. As a wet method, for example, an aqueous solution of zinc nitrate, zinc chloride or the like is added with an aqueous solution of soda ash to precipitate basic zinc carbonate, which is filtered, washed with water, dried, and further calcined at 200 to 700 ° C., thereby oxidizing. Should be zinc. Alternatively, an appropriate zinc oxide may be selected from commercially available zinc oxide.

本発明で使用される吸着剤は酸化亜鉛をペレットなど
に成型したもの、あるいは成型物を適当な大きさに破砕
して用いられる。成型方法としては乾式法あるいは湿式
法を用いることができる。例えば前者としては酸化亜鉛
の粉末に少量のグラファイト、タルクなどの滑剤を混合
して打錠成型する方法があり、又、後者としては、酸化
亜鉛に、アルミナセメントなどのバインダーおよび水を
加えて混練し押出成型する方法がある。これらは必要に
応じて再焼成する。酸化亜鉛に対するアルミナセメント
の混合割合は通常は酸化亜鉛100gに対して50g以下、好
ましくは10〜30gとされる。又、例えば前記の塩基性炭
酸亜鉛の段階で滑剤、バインダーなどを加えて成型した
ものを300〜700℃で焼成することによって酸化亜鉛の成
型体としてもよい。一般的には加工のし易さなどから湿
式法が好ましい。
The adsorbent used in the present invention is obtained by molding zinc oxide into pellets or the like, or by crushing a molded product to an appropriate size. As a molding method, a dry method or a wet method can be used. For example, as the former, there is a method in which a small amount of a lubricant such as graphite or talc is mixed with powder of zinc oxide to form a tablet, and as the latter, a binder such as alumina cement and water are added to zinc oxide and kneaded. There is a method of extrusion molding. These are refired as necessary. The mixing ratio of alumina cement to zinc oxide is usually 50 g or less, preferably 10 to 30 g, per 100 g of zinc oxide. Also, for example, a molded product of a zinc oxide by adding a lubricant, a binder and the like at the stage of the basic zinc carbonate may be fired at 300 to 700 ° C. to obtain a molded zinc oxide. Generally, a wet method is preferred from the viewpoint of ease of processing.

成型対の大きさおよび形状には特に制限はないが、球
形、円柱形および円筒形などが代表例として挙げられ、
場合によってはこれらは適当な大きさに破砕して用いら
れる。成型体の大きさは球形であれば直径1〜10mm、円
柱形であれば直径1〜10mm、高さ2〜20mm程度とされ、
不定形のものであれば、ふるいの目の開きで0.84〜5.66
mmの範囲のものが使用される。
The size and shape of the molded pair are not particularly limited, but spherical, cylindrical, cylindrical and the like are representative examples,
In some cases, these are used after being crushed to an appropriate size. The size of the molded body is 1 to 10 mm in diameter if it is spherical, 1 to 10 mm in diameter if it is cylindrical, and about 2 to 20 mm in height,
0.84 to 5.66 with a sieve opening
A range of mm is used.

本発明で用いる成型体の密度は通常は0.6〜3.5g/ml、
好ましくは0.8〜2.5g/mlの範囲である。本発明において
密度とは成型体(粒)の重さを成型体の幾何学的体積で
割ったものをいう。
The density of the molded body used in the present invention is usually 0.6 to 3.5 g / ml,
Preferably it is in the range of 0.8 to 2.5 g / ml. In the present invention, the density refers to a value obtained by dividing the weight of a molded article (particle) by the geometric volume of the molded article.

又、成型体を吸着筒に充填した場合の充填密度は通常
は0.5〜2.0g/ml好ましくは0.6〜1.5g/mlとされる。
The filling density when the molded body is filled in an adsorption column is usually 0.5 to 2.0 g / ml, preferably 0.6 to 1.5 g / ml.

本発明において吸着剤は通常は吸着筒に充填され、こ
れに二酸化炭素を含有するガスを通し両者を接触させる
ことによってガス中の二酸化炭素が吸着除去される。こ
のときガス中に水分が含有されるときにはこの水分も同
時に除去されて露点の低い精製ガスが得られる。吸着温
度は一般的には80℃以下であり、低いほうが好ましいが
通常は常温で充分な吸着性能を有し、特に冷却を必要と
しない。接触時のガスの速度は合成ゼオライトを用いる
場合と同じ程度でよく通常は空筒線速度で150cm/sec以
下、好ましくは3〜70cm/secとされる。又、接触時の圧
には特に制限はないが実用上通常は1〜10Kg/cm2Gの範
囲である。
In the present invention, the adsorbent is usually filled in an adsorption column, and the carbon dioxide in the gas is adsorbed and removed by passing a gas containing carbon dioxide through the gas and bringing them into contact with each other. At this time, when water is contained in the gas, the water is also removed at the same time, and a purified gas having a low dew point is obtained. The adsorption temperature is generally 80 ° C. or lower, and a lower one is preferable. However, it usually has a sufficient adsorption performance at room temperature, and does not particularly require cooling. The velocity of the gas at the time of contact may be the same as that in the case of using synthetic zeolite, and is usually 150 cm / sec or less, preferably 3 to 70 cm / sec, as the linear velocity of the cylinder. The pressure at the time of contact is not particularly limited, but is usually in the range of 1 to 10 kg / cm 2 G for practical use.

本発明において通常は二基の吸着筒が使用されガスの
吸着精製と吸着剤の加熱再生とが交互に切り替えられて
おこなわれる。二酸化炭素、水分などを吸着した吸着剤
は吸着筒に精製ガスを流しながら200〜500℃好ましくは
300〜400℃で加熱することにより、二酸化炭素などの不
純物が脱着し、除去されて再生され、ガスの吸着精製に
繰り返し使用される。
In the present invention, usually, two adsorption columns are used, and the adsorption and purification of the gas and the heat regeneration of the adsorbent are alternately switched. The adsorbent that has adsorbed carbon dioxide, moisture, etc. is preferably at 200 to 500 ° C. while flowing a purified gas through the adsorption column.
By heating at 300 to 400 ° C., impurities such as carbon dioxide are desorbed, removed and regenerated, and used repeatedly for gas adsorption purification.

〔実施例〕〔Example〕

実施例1 硝酸亜鉛の20wt%の水溶液を撹はん槽中で撹はんしな
がらこれに炭酸ナトリウムの20wt%水溶液を滴下して塩
基性炭酸亜鉛の沈殿物を生成させた。この沈澱物を濾
過、洗浄した後120℃で10時間乾燥し、続いて300℃で5
時間焼成して酸化亜鉛を得た。このようにして得られた
酸化亜鉛41gにアルミナセメント9gを混合したものに少
量の水を添加してニーダーで混練し、押出成型したもの
を120℃で2時間乾燥した。このものの密度は1.9g/mlで
あった。
Example 1 While a 20 wt% aqueous solution of zinc nitrate was stirred in a stirring tank, a 20 wt% aqueous solution of sodium carbonate was added dropwise thereto to form a precipitate of basic zinc carbonate. The precipitate was filtered, washed and dried at 120 ° C. for 10 hours.
Calcination for a period of time gave zinc oxide. A mixture of 41 g of zinc oxide thus obtained and 9 g of alumina cement was mixed with a small amount of water, kneaded with a kneader, and extruded and dried at 120 ° C. for 2 hours. Its density was 1.9 g / ml.

この成型物を破砕した20〜35meshの成型体1gを内径7.
53mm、長さ100mmのステンレス製の吸着筒内に充填(充
填密度1.3g/ml)し、350℃で精製済みの窒素を1.8Nl/mi
nで流しながら2時間再焼成をおこなった。この吸着筒
内に二酸化炭素10ppmを含有し、かつ露点が−61℃(水
分として9ppm)の原料窒素を、圧力5Kg/cm2G、温度35
℃、流量1.8Nl/i minで6時間流して二酸化炭素の吸着
量および出口ガスの露点を測定した。
This molded product was crushed, and 1 g of a molded product of 20 to 35 mesh was obtained with an inner diameter of 7.
Filled into a 53mm, 100mm long stainless steel adsorption cylinder (filling density 1.3g / ml), and purified nitrogen at 350 ℃ 1.8Nl / mi
Reflowing was performed for 2 hours while flowing with n. Raw material nitrogen containing 10 ppm of carbon dioxide and having a dew point of -61 ° C (9 ppm as moisture) was introduced into this adsorption column at a pressure of 5 kg / cm 2 G and a temperature of 35 kg.
C. and a flow rate of 1.8 Nl / i min for 6 hours to measure the amount of adsorbed carbon dioxide and the dew point of the outlet gas.

二酸化炭素の吸着量は次のようにして測定した。 The adsorption amount of carbon dioxide was measured as follows.

吸着筒の出口から出るガスを、FID−ガスクロマトグ
ラフにより分析した。ガスクロマトグラフの分離管から
出た二酸化炭素を水素の存在下に600℃でニッケル触媒
と接触させてメタンに転換した後FID(水素炎イオン化
検出器)に導いてそのメタン濃度を検出する。出口の二
酸化炭素濃度を時間軸に対してプロットし、この曲線か
ら吸着筒の出口から出た二酸化炭素の量を求め、この量
を原料窒素中の二酸化炭素の量から差し引いた値を二酸
化炭素の吸着量とした。又、露点は浜田式露点計によっ
て測定した。
The gas flowing out of the outlet of the adsorption column was analyzed by FID-gas chromatography. The carbon dioxide discharged from the separation tube of the gas chromatograph is brought into contact with a nickel catalyst at 600 ° C. in the presence of hydrogen to convert it to methane, and then guided to an FID (hydrogen flame ionization detector) to detect the methane concentration. The concentration of carbon dioxide at the outlet is plotted against the time axis, the amount of carbon dioxide coming out of the outlet of the adsorption column is obtained from this curve, and the amount obtained by subtracting this amount from the amount of carbon dioxide in the raw material nitrogen is calculated as the carbon dioxide concentration. The amount of adsorption was used. The dew point was measured by a Hamada dew point meter.

その結果、二酸化炭素の吸着量は、2.55mg/g吸着剤で
あり、出口ガスの露点は−76℃(水分として1ppm)であ
った。
As a result, the amount of carbon dioxide adsorbed was 2.55 mg / g adsorbent, and the dew point of the outlet gas was -76 ° C (1 ppm as moisture).

次に吸着剤の加熱再生試験をおこなった。上記の二酸
化炭素を吸着した吸着筒を、350℃に加熱しながら精製
窒素ガスを圧力5Kg/cm2G、流量1.8Nl/minで1時間流
し、吸着剤から脱離した出口ガス中の二酸化炭素量を前
記の測定方法で求めたところ2.3mg/g吸着剤であった。
Next, a heating regeneration test of the adsorbent was performed. Purified nitrogen gas was flowed at a pressure of 5 kg / cm 2 G and a flow rate of 1.8 Nl / min for 1 hour while heating the above-mentioned adsorption column adsorbing carbon dioxide at 350 ° C., and carbon dioxide in the outlet gas desorbed from the adsorbent was removed. The amount was 2.3 mg / g adsorbent as determined by the above measurement method.

比較例1 モレキュラーシーブ5A(米国、ユニオンカーバイド社
製)を20〜30meshに破砕した吸着剤を使用し、実施例1
と同様にしてテストをおこなったところ二酸化炭素の吸
着量は0.65mg/g吸着剤であり、精製ガスの露点は−76℃
であった。又、再生試験において脱離した二酸化炭素は
0.59g/g吸着剤であった。
Comparative Example 1 Example 1 was performed using an adsorbent obtained by crushing molecular sieve 5A (manufactured by Union Carbide, USA) into 20 to 30 mesh.
When the test was conducted in the same manner as above, the amount of carbon dioxide adsorbed was 0.65 mg / g adsorbent, and the dew point of the purified gas was -76 ° C.
Met. The carbon dioxide desorbed in the regeneration test
It was 0.59 g / g adsorbent.

比較例2 酸化カルシウム79g、酸化マグネシウム17gよりなる混
合物で20〜35meshのものを吸着剤として実施例1と同様
の条件で二酸化炭素の吸着量を測定した結果、0.59mg/g
吸着剤であった。続いて、350℃で加熱しながら吸着剤
からの二酸化炭素の脱離量の測定をおこなったがFIDに
よるメタン曲線のピークは認められなかった。
Comparative Example 2 As a result of measuring the amount of adsorbed carbon dioxide under the same conditions as in Example 1 using a mixture of 79 g of calcium oxide and 17 g of magnesium oxide as an adsorbent under the same conditions as in Example 1, 0.59 mg / g
It was an adsorbent. Subsequently, the amount of desorbed carbon dioxide from the adsorbent was measured while heating at 350 ° C., but no peak of the methane curve by FID was observed.

実施例2 実施例1における原料窒素ガス中の二酸化炭素の濃度
を30.2ppmに代えて吸着量を測定した結果、吸着量は4.0
mg/g吸着剤であった。続いて350℃で精製窒素を1時間
流して脱離量を測定した結果、3.5mg/g吸着剤であっ
た。
Example 2 As a result of measuring the amount of adsorption by changing the concentration of carbon dioxide in the raw material nitrogen gas to 30.2 ppm in Example 1, the amount of adsorption was 4.0.
mg / g adsorbent. Subsequently, purified nitrogen was flowed at 350 ° C. for 1 hour, and the amount of desorption was measured. As a result, it was 3.5 mg / g adsorbent.

実施例3および4 実施例1の窒素を水素に代えて二酸化炭素の含有量が
10.2ppmおよび2.7ppmの2種類について吸着量を測定し
た結果、3.05mg/g吸着剤および3.7mg/g吸着剤であっ
た。
Examples 3 and 4 The nitrogen content in Example 1 was changed to hydrogen, and the content of carbon dioxide was
As a result of measuring the adsorption amount of two kinds, 10.2 ppm and 2.7 ppm, it was 3.05 mg / g adsorbent and 3.7 mg / g adsorbent.

実施例5 実施例1の窒素を酸素に代えて二酸化炭素の含有量が
32ppmのものについて吸着量を測定した結果2.17mg/g吸
着剤であった。
Example 5 The content of carbon dioxide in Example 1 was changed by replacing nitrogen with oxygen.
As a result of measuring the amount of adsorption for 32 ppm, it was 2.17 mg / g adsorbent.

実施例6 実施例1において吸着温度を55℃に代えて吸着量を測
定した結果2.31mg/g吸着剤であった。
Example 6 The amount of adsorption was measured by changing the adsorption temperature to 55 ° C. in Example 1, and the result was 2.31 mg / g adsorbent.

〔発明の効果〕〔The invention's effect〕

本発明は、吸着剤として酸化亜鉛の成型体を使用する
ことによって、従来用いられてきた合成ゼオライトによ
る方法に比べて吸着性能が極めて高く、二酸化炭素を効
率良く除去することが出来る。しかも吸着剤は合成ゼオ
ライトと同様に比較的低い温度によって再生され反復使
用することが出来る。従って従来の寸法に比べて装置の
小型化も可能となり、半導体製造などにおける限られた
スペースへの設置も容易となった。
In the present invention, by using a zinc oxide molded body as an adsorbent, the adsorption performance is extremely high as compared with a method using a synthetic zeolite which has been conventionally used, and carbon dioxide can be efficiently removed. In addition, the adsorbent is regenerated at a relatively low temperature, like the synthetic zeolite, and can be used repeatedly. Therefore, the size of the device can be reduced as compared with the conventional dimensions, and the device can be easily installed in a limited space in semiconductor manufacturing or the like.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】不純物として二酸化炭素を含有するガスを
吸着剤と接触させて、当該ガスから二酸化炭素を除去す
る二酸化炭素の除去方法において、吸着剤として酸化亜
鉛を主成分とする成型体を用いることを特徴とする二酸
化炭素の除去方法。
1. A method of removing carbon dioxide from a gas containing carbon dioxide as an impurity by contacting the gas with an adsorbent, wherein a molded body mainly composed of zinc oxide is used as the adsorbent. A method for removing carbon dioxide.
JP62318800A 1987-12-18 1987-12-18 How to remove carbon dioxide Expired - Fee Related JP2572616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62318800A JP2572616B2 (en) 1987-12-18 1987-12-18 How to remove carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62318800A JP2572616B2 (en) 1987-12-18 1987-12-18 How to remove carbon dioxide

Publications (2)

Publication Number Publication Date
JPH01164418A JPH01164418A (en) 1989-06-28
JP2572616B2 true JP2572616B2 (en) 1997-01-16

Family

ID=18103084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62318800A Expired - Fee Related JP2572616B2 (en) 1987-12-18 1987-12-18 How to remove carbon dioxide

Country Status (1)

Country Link
JP (1) JP2572616B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217201A (en) * 1998-01-30 1999-08-10 Japan Pionics Co Ltd Oxygen gas purification method and its purifier

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI347302B (en) * 2002-10-17 2011-08-21 Entegris Inc Carbon dioxide purification for the semiconductor industry
US7198768B2 (en) * 2004-06-16 2007-04-03 Corning Incorporated Anti-degradation mechanisms for protecting aminated surfaces
US8178141B2 (en) * 2005-01-27 2012-05-15 The Folger Coffee Company Articles of manufacture and methods for absorbing gasses released by roasted coffee packed in hermetically sealed containers
JP4825267B2 (en) * 2006-07-10 2011-11-30 株式会社三井化学分析センター Biodegradability evaluation apparatus and evaluation method
JP5165398B2 (en) * 2008-01-18 2013-03-21 高砂熱学工業株式会社 Filter material and filter for low dew point high pressure gas cleaning
JP6089579B2 (en) * 2012-10-23 2017-03-08 新日鐵住金株式会社 Carbon dioxide adsorbent, carbon dioxide recovery device using the same, and carbon dioxide recovery method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217201A (en) * 1998-01-30 1999-08-10 Japan Pionics Co Ltd Oxygen gas purification method and its purifier

Also Published As

Publication number Publication date
JPH01164418A (en) 1989-06-28

Similar Documents

Publication Publication Date Title
KR100966064B1 (en) Syngas Purification Method
US6183539B1 (en) Molecular sieve adsorbent for gas purification and preparation thereof
US3976447A (en) Removal of hydrogen fluoride from gaseous mixture by absorption on alkaline earth metal fluoride
US4996181A (en) Agglomerate absorbents comprising copper and zinc useful for sulphur compounds removal
US3773690A (en) Zeolite adsorbents
US9772139B2 (en) Purification of argon through liquid phase cryogenic adsorption
EP0204700A1 (en) Activated carbon adsorbent with increased heat capacity and the production thereof.
KR930006690B1 (en) Nitrogen gas super purification device and purification method
JP2572616B2 (en) How to remove carbon dioxide
EP0154855A2 (en) Crystalline zeolite and agglomerate containing the same
KR870000267B1 (en) How to Improve Gas Separation Kinetics for Pelletized Zeolite Adsorbents
KR20080031780A (en) Inert gas treatment method and purification method and gas treatment tank
IE59721B1 (en) Adsorbent for gas purification and purification process
KR101017697B1 (en) Adsorbent for Purification of C2-C3 Olefin
JP2651605B2 (en) How to remove carbon dioxide
JPH08224468A (en) Cylindrically pelletized carbon based adsorbent
KR100803771B1 (en) Manufacturing process of molecular sieve adsorbent for selective adsorption of oxygen from air
JP2651603B2 (en) How to remove carbon dioxide
CA2268489C (en) Adsorbent for separating halogenated aromatic compounds and separation method using it
JP3334664B2 (en) Adsorbent for gas separation
JPS634844A (en) Adsorbent for carbon monoxide
Inui et al. Performance of iron-incorporated A-type zeolites for O2/N2 separation from air by pressure swing adsorption
JPS6035172B2 (en) Hydrogen fluoride removal from gas mixtures by absorption on alkaline earth metal fluorides
JPS61191516A (en) Crystalline zeolite
JPS6121698B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees