[go: up one dir, main page]

JP2575041B2 - Molded body of amorphous alloy powder and molding method - Google Patents

Molded body of amorphous alloy powder and molding method

Info

Publication number
JP2575041B2
JP2575041B2 JP63039681A JP3968188A JP2575041B2 JP 2575041 B2 JP2575041 B2 JP 2575041B2 JP 63039681 A JP63039681 A JP 63039681A JP 3968188 A JP3968188 A JP 3968188A JP 2575041 B2 JP2575041 B2 JP 2575041B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
binder
alloy powder
molded body
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63039681A
Other languages
Japanese (ja)
Other versions
JPH01215906A (en
Inventor
毅 山本
有一 佐藤
駿 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63039681A priority Critical patent/JP2575041B2/en
Publication of JPH01215906A publication Critical patent/JPH01215906A/en
Application granted granted Critical
Publication of JP2575041B2 publication Critical patent/JP2575041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は充填率を向上させたアモルファス合金粉粒物
の成形体およびその製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a molded product of an amorphous alloy powder having an improved filling factor and a method for producing the same.

(従来の技術) アモルファス合金より立体成形物を作成する方法でこ
れまで知られているものを大別すると(i)銃弾の衝撃
力や火薬の爆発力を利用するもの(例えば日本金属学会
講演概要集、1984年10月発行541頁)、(ii)アモルフ
ァス合金のガラス遷移に伴う軟化現象を利用するもの
(例えばH.H.Lieber−mann;Mat.Sci.and Eng.46(198
0)241頁)、(iii)結合剤を使用し、成形体を得るも
の(例えば特開昭60−165303号公報)の3つに分類でき
る。即ち、これらのうち(i)ならびに(ii)は一般的
に加工が困難と言われているアモルファス合金に永久的
な変形を与えて高い充填率を有する成形体を得るために
極めて大きな成形圧力を必要とし、しかも生産効率が低
く、コストも高くなるため工業的に採用するには適切で
ない。この理由は大半のアモルファス合金が結晶化温度
直下の加熱によってもアモルファス固体状態より過冷却
液体状態へのガラス遷移挙動に伴う軟化現象を明瞭に示
さないため、いずれの温度域においても従来の結晶質合
金に比べ粉粒物の加工が一般的に困難であるためであ
る。また(iii)に述べたように結合剤を使用して成形
体を得る方法においても、結合剤使用の主目的はアモル
ファス合金成形体の機械的強度の確保、もしくは粉粒物
層間の絶縁性向上の理由からであった。このため結合剤
を使用したアモルファス合金成形体においても充填率を
向上させるためには高い成形圧力ならびに加熱が必要
(例えば特開昭60−165303号公報の実施例においては成
形圧力は1.02GPaであり、加熱温度は200〜350℃の範囲
である。)とされており、先に述べたように成形装置の
大型化、コストの高騰につながり工程が複雑となる問題
があった。このため高い充填率を有するアモルファス合
金の立体成形物を工業的規模で製造する目的としては結
合剤を使用する方法も適しているとは言い難いものであ
った。
(Prior art) A method of forming a three-dimensional molded product from an amorphous alloy can be roughly classified into (i) a method using a bullet impact force and an explosive force of a gunpowder (for example, a summary of a lecture by the Japan Institute of Metals). , October 1984, p. 541), and (ii) those utilizing a softening phenomenon accompanying a glass transition of an amorphous alloy (for example, HHLieber-mann; Mat. Sci. And Eng. 46 (198)
0) p. 241), and (iii) a molded article obtained by using a binder (for example, JP-A-60-165303). That is, among these, (i) and (ii) require an extremely large molding pressure to give a permanent deformation to an amorphous alloy, which is generally said to be difficult to process, to obtain a molded body having a high filling factor. It is not suitable for industrial use because it requires, and the production efficiency is low and the cost is high. The reason is that most amorphous alloys do not clearly show the softening phenomenon accompanying the glass transition behavior from the amorphous solid state to the supercooled liquid state even when heated just below the crystallization temperature, so that the conventional crystalline This is because it is generally more difficult to process a granular material than an alloy. As described in (iii), in the method of obtaining a molded body using a binder, the main purpose of using the binder is to secure the mechanical strength of the amorphous alloy molded body or to improve the insulating property between the granular material layers. For that reason. Therefore, high molding pressure and heating are required to improve the filling rate even in an amorphous alloy molded body using a binder (for example, in the example of JP-A-60-165303, the molding pressure is 1.02 GPa. The heating temperature is in the range of 200 to 350 ° C.), and as described above, there has been a problem that the molding apparatus becomes large-sized, the cost increases, and the process becomes complicated. Therefore, it has been difficult to say that a method using a binder is also suitable for the purpose of producing a three-dimensional molded product of an amorphous alloy having a high filling factor on an industrial scale.

アモルファス合金以外の分野、例えば結晶質磁性材料
の分野においても成形体の充填率を向上させるための研
究が報告されている。すなわちこれらは(i)樹脂の成
分に関する研究(例えば鉄と鋼、71(5)1985、489
頁)、(ii)無機化合物微粉末を分散混合した樹脂の使
用に関する研究(例えば第8回複合材料シンポジウム講
演要旨集、1983、63頁)、(iii)有機カップリング材
などを使用し粉末表面の性状を改質する研究(例えば鉄
と鋼、71(3)、1985、S1573)である。ところがアモ
ルファス合金粉粒物に上記(i)〜(iii)を適用した
ところ充填率改善の顕著な効果が認められなかった。
In fields other than amorphous alloys, for example, in the field of crystalline magnetic materials, studies for improving the filling rate of a compact have been reported. That is, they are based on (i) studies on the components of resins (eg, iron and steel, 71 (5) 1985, 489).
Page), (ii) Research on the use of resin in which inorganic compound fine powder is dispersed and mixed (for example, Proceedings of the 8th Symposium on Composite Materials, 1983, p. 63), (iii) Powder surface using organic coupling material, etc. (For example, iron and steel, 71 (3), 1985, S1573). However, when the above (i) to (iii) were applied to the amorphous alloy particles, no remarkable effect of improving the filling rate was observed.

(発明が解決しようとする課題) 本発明はミクロ組織の特徴に起因する優れた物理的・
化学的特性を有するアモルファス合金の粉粒物から、ア
モルファス合金の非晶質状態を保持したままで充填率が
向上された立体成形体とそれを工業的規模で製造する方
法を提供することを目的としている。
(Problems to be Solved by the Invention) The present invention provides excellent physical and mechanical properties due to the characteristics of the microstructure.
An object of the present invention is to provide a three-dimensional molded body having an improved filling factor from an amorphous alloy powder having chemical properties while maintaining the amorphous state of the amorphous alloy, and a method of manufacturing the same on an industrial scale. And

(課題を解決するための手段) 本発明はSを0.01〜3原子%含有したアモルファス合
金の粉粒物に樹脂を主成分とする結合剤を混合し圧縮成
形してなる成形体と、Sを0.01〜3原子%含有したアモ
ルファス合金の粉粒物に樹脂を主成分とする結合剤を混
合し圧縮成形することによりアモルファス合金成形体の
充填率を向上させることを特徴とするアモルファス合金
粉粒物の成形方法である。
(Means for Solving the Problems) The present invention relates to a molded article obtained by mixing a binder mainly composed of a resin with an amorphous alloy powder containing 0.01 to 3 atomic% of S and compressing and molding the same. Amorphous alloy powder or granule characterized by improving the filling rate of an amorphous alloy compact by mixing and compression-molding a binder mainly composed of a resin with amorphous alloy powder containing 0.01 to 3 atomic%. This is a molding method.

以下に本発明の詳細について説明する。 Hereinafter, details of the present invention will be described.

本発明でいうアモルファス合金とは、金属と半金属も
しくは金属と金属との合金で、主として液体急冷法で作
成されるもので非晶質状態を示すものである。その合金
成分とは金属と半金属との合金において例えば金属とし
てFe,Co,Ni,Cr,Moなどの1種または2種以上、半金属は
B,Si,C,P,Geであり、また金属と金属の合金の場合の成
分例としてはFe−Ti,Fe−Zr,Cu−Tiなどがある。本発明
ではこれらの成分元素に添加元素としてSを0.01〜3原
子%含有したものを用いる。またそれぞれの元素の含有
量は104℃/sec以上の冷却速度で少なくとも90%が非晶
質化することを条件に選定される。
The amorphous alloy referred to in the present invention is an alloy of a metal and a metalloid or a metal and a metal, which is mainly produced by a liquid quenching method and shows an amorphous state. The alloy component is an alloy of a metal and a metalloid, for example, one or more of metals such as Fe, Co, Ni, Cr, Mo, etc.
B, Si, C, P, and Ge. Examples of components in the case of a metal-metal alloy include Fe-Ti, Fe-Zr, and Cu-Ti. In the present invention, those containing 0.01 to 3 atomic% of S as an additive element to these component elements are used. The content of each element is selected on the condition that at least 90% of the element becomes amorphous at a cooling rate of 10 4 ° C / sec or more.

合金成分中に添加されるSの含有量は0.01〜3原子%
の範囲である。Sの含有量が0.01原子%未満では充填率
の改善効果が確実でなく、また3原子%を超えるSの添
加では基本成分および半金属成分の量が少なくなりアモ
ルファス合金としての本来の性質に影響を及ぼすおそれ
があるからである。
The content of S added to the alloy component is 0.01 to 3 atomic%.
Range. If the content of S is less than 0.01 atomic%, the effect of improving the filling rate is not certain, and if the content of S exceeds 3 atomic%, the amounts of the basic components and the metalloid components are reduced and the original properties as an amorphous alloy are affected. This is because the

本発明において原料として用いられるアモルファス合
金の箔、細線および粉末等(以下粉粒物と称す)の作成
方法として、箔の作成が可能な単ロール法や双ロール
法、遠心法があり、また細線の作成としては回転液中紡
糸法がある。アモルファス合金粉末の作成手段にはアト
マイズ法、キャビテーション法、液中噴出法、プラズマ
溶射法、メカニカルアロイング(MA)、メカニカルグラ
インディング(MG)など直接作成する方法と、箔や細線
を作成した後、ボールミルなどで粉砕する間接作成方法
があり、何れの方法を用いてもよい。
Examples of a method for producing an amorphous alloy foil, a fine wire, a powder, and the like (hereinafter referred to as a granular material) used as a raw material in the present invention include a single roll method, a twin roll method, and a centrifugal method capable of producing a foil. For example, there is a spinning in liquid spinning method. Amorphous alloy powder can be prepared directly by atomizing, cavitation, submerged jetting, plasma spraying, mechanical alloying (MA), mechanical grinding (MG), etc. There is an indirect method of pulverizing with a ball mill or the like, and any method may be used.

また異なる方法によって得られた粉粒物を混合して使
用してもよい。
Also, powders obtained by different methods may be mixed and used.

粉粒物の圧縮成形の方法については特に限定はしない
が、例えば単動式もしくは複動式のプレス装置、静水圧
圧縮装置(CIP)、押し出し装置などを用いる。成形体
の原料としては先に述べたアモルファス合金粉粒物の他
に樹脂を主成分とする結合剤をアモルファス合金粉粒物
に対して0.5〜10重量%の範囲内で混合させる。
Although there is no particular limitation on the method of compression molding of the granular material, for example, a single-acting or double-acting pressing device, a hydrostatic compression device (CIP), an extrusion device, or the like is used. As a raw material of the compact, a binder mainly composed of a resin is mixed in a range of 0.5 to 10% by weight with respect to the amorphous alloy particles in addition to the above-described amorphous alloy particles.

使用できる結合剤としては、(i)フェノール系やエ
ポキシ系等の熱硬化性の樹脂、(ii)ナイロン系や塩化
ビニル系等の熱可塑性の樹脂、(iii)ポリサルファイ
ド系やニトリルゴム系等のエラストマー性の樹脂、(i
v)嫌気性樹脂等の1種もしくは2種以上の混合物があ
げられる。上記結合剤の使用目的の違いはアモルファス
合金成形体に要求される性能や加圧温度に依存する。た
とえばせん断強度や耐熱性が要求される成形体、もしく
は室温近傍の比較的低温で成形する場合には熱硬化系の
樹脂の使用が好ましい。また剥離強度が要求される成形
体やさらに高い充填率が要求される成形体には熱可塑性
樹脂を用い、結晶化温度直下の高い温度で成形すること
が望ましい。さらに、成形体に衝撃力が加わる場合や弾
性的な性能が強く要求される場合には、エラストマー性
樹脂を使用することが好ましい。嫌気性樹脂は常温でも
加圧等により空気を追い出し容易に硬化可能なため、生
産性の合理化、省力化、自動化を強く望む分野で使用す
ることが好ましい。これらの結合剤をアモルファス合金
粉粒物に対して0.5〜10重量%の範囲で混合させる。0.5
重量%未満の結合剤の使用では成形体に十分な強度を得
ることができず、また10重量%を超える結合剤の使用で
は、結合剤の使用量が増大し経済的に得策でないばかり
か、本発明の性質上少量のS添加で成形体に十分高い充
填率を付与することができるため、余分の結合剤が成形
時にかえって充填率を低下するおそれが生ずるためであ
る。
Examples of the binder that can be used include (i) a thermosetting resin such as a phenol-based or epoxy-based resin, (ii) a thermoplastic resin such as a nylon-based or vinyl chloride-based resin, and (iii) a polysulfide-based or nitrile rubber-based resin. Elastomeric resin, (i
v) One or a mixture of two or more such as anaerobic resins. The difference in the purpose of use of the binder depends on the performance and the pressing temperature required for the amorphous alloy compact. For example, a thermosetting resin is preferably used in the case of a molded article requiring shear strength and heat resistance or molding at a relatively low temperature near room temperature. Further, it is desirable to use a thermoplastic resin for a molded body requiring a peel strength or a molded body requiring a higher filling rate, and to mold at a high temperature just below the crystallization temperature. Further, when an impact force is applied to the molded body or when elastic performance is strongly required, it is preferable to use an elastomeric resin. The anaerobic resin can be easily cured by expelling air by pressurizing even at room temperature. Therefore, it is preferable to use the anaerobic resin in a field in which productivity is rationalized, labor saving and automation are strongly desired. These binders are mixed in the range of 0.5 to 10% by weight with respect to the amorphous alloy particles. 0.5
If the binder is used in an amount of less than 10% by weight, sufficient strength cannot be obtained in the molded article, and if the binder is used in an amount of more than 10% by weight, the amount of the binder used increases, which is not economically advantageous. This is because a sufficiently high filling rate can be imparted to the molded article by adding a small amount of S due to the properties of the present invention, so that the excess binder may lower the filling rate at the time of molding.

圧縮成形温度は、本発明の性質上アモルファス合金粉
粒物が結晶化を生じない温度範囲内に限られるが、好ま
しくは樹脂を主成分とする結合剤の耐熱限界温度以下で
ある。成形圧力は加圧工具を連続的に使用せねばならな
いため、100MPaから最大1.5GPaの範囲にすることが好ま
しい。また本発明ではSの添加により粉砕工程が簡易化
できる特徴もある。
The compression molding temperature is limited to a temperature range in which the amorphous alloy particles do not crystallize due to the properties of the present invention, but is preferably equal to or lower than the heat-resistant limit temperature of the binder containing resin as a main component. The molding pressure is preferably in the range of 100 MPa to a maximum of 1.5 GPa because the pressurizing tool must be used continuously. The present invention also has a feature that the pulverizing step can be simplified by adding S.

以上述べたように本発明ではSを少量添加することに
よりアモルファス合金の組成を大きく変えることなくア
モルファス合金粉粒物の充填率を大きく向上させるとい
う点で極めて優れた発明であるといえる。この事実は本
発明の方法がホットプレス等を用いたアモルファス合金
成形体の成形法に比べ、加圧力を低くできるため金型ダ
イスの負担が軽く、しかも特別な加熱装置も必要としな
いため室温・大気中で容易に成形可能な点に特徴があ
る。また従来の樹脂を結合剤に用いた圧縮成形法に比べ
アモルファス合金粉粒物の充填率が高く、しかも結合剤
の混合量が小量で済み、かつ粉砕化が容易な合金成分系
であるため大量のアモルファス合金粉粒物を消費する工
業的プロセスにおいて、きわめて有用な成形方法である
といえる。
As described above, it can be said that the present invention is a very excellent invention in that the addition of a small amount of S greatly improves the packing ratio of the amorphous alloy particles without greatly changing the composition of the amorphous alloy. This fact is because the method of the present invention can reduce the pressing force compared to the forming method of the amorphous alloy formed body using a hot press or the like, so that the load on the mold die is light, and no special heating device is required. It is characterized in that it can be easily molded in the atmosphere. In addition, compared to the compression molding method using a conventional resin as a binder, the filling rate of the amorphous alloy particles is higher, the mixing amount of the binder is small, and the pulverization is easy. It can be said that this is a very useful forming method in an industrial process that consumes a large amount of amorphous alloy particles.

(実施例) 実施例1 合金組成がFe72-xCo10Mo2C4B12Sx原子%(x=0,0.2
5,0.5,1.0)でCu合金製単ロール(周速1.4m/s)で作成
された幅25mm、板厚約50μmのアモルファス合金箔をバ
ッチ式ルーレットミル(吉田製作所製1036−A型出力0.
75kw)を用いて粉砕し、−100+200メッシュ(74〜14
9)に分級した。粉砕に要した時間はx=0を1に換算
した場合例えばx=1.0ではその約1/25であった。
(Example) Example 1 Alloy composition is Fe 72-x Co 10 Mo 2 C 4 B 12 S x atomic% (x = 0, 0.2
Batch-type roulette mill (Yoshida Seisakusho 1036-A type 0) with 25mm wide and 50μm thick amorphous alloy foil made with a single roll of Cu alloy (peripheral speed 1.4m / s) at 5,0.5,1.0) .
Crushed using 75kw), -100 + 200 mesh (74-14 mesh)
Classified in 9). When x = 0 was converted to 1, for example, the time required for pulverization was about 1/25 of that at x = 1.0.

このアモルファス合金粉粒物3.0gに3重量%ならびに
10重量%の嫌気性樹脂(日本ロックタイト株式会社製LO
CTITE 290)を結合剤として使用し、直径12mmの片押し
型ダイスにて室温状態のまま加圧力620MPa、加圧時間10
secの同一条件にて圧縮成形体(φ12mmの円筒状)を作
製した。第1図は成形体の密度(ならびに充填率)に及
ぼすS添加の効果を示す。
3% by weight and 3.0g of this amorphous alloy powder
10% by weight of anaerobic resin (LO manufactured by Nippon Loctite Co., Ltd.)
Using CTITE 290) as a binder, pressurizing force 620MPa, pressing time 10
A compression molded body (cylindrical shape of φ12 mm) was produced under the same conditions of sec. FIG. 1 shows the effect of the addition of S on the density (and the filling factor) of the compact.

結合剤として10重量%の結合剤を混合した(第1図●
印)x=0,0.25,0.50,1.0なる合金の成形体密度は、そ
れぞれ4.80g/cm3、5.04g/cm3、5.02g/cm3、5.34g/cm3
あり、Fe72Co10Mo2C4B12原子%アモルファス合金箔の密
度7.77g/cm3を100%として換算した成形体の充填率はx
=0の61.7%からx=0.25の64.9%、x=0.50の66.9
%、x=1.00の68.7%へと1原子%のS添加により充填
率は7.0%向上した。
10% by weight of a binder was mixed as the binder (Fig. 1
Marks) The compact densities of alloys with x = 0, 0.25, 0.50, 1.0 are 4.80 g / cm 3 , 5.04 g / cm 3 , 5.02 g / cm 3 , 5.34 g / cm 3 , respectively, and Fe 72 Co 10 The filling rate of the compact, calculated assuming that the density of the Mo 2 C 4 B 12 atom% amorphous alloy foil is 7.77 g / cm 3 as 100%, is x
From 61.7% of x = 0 to 64.9% of x = 0.25, 66.9 of x = 0.50
%, X = 1.00 to 68.7%, and the addition of 1 atomic% of S increased the filling rate by 7.0%.

3重量%の結合剤を混合した(第1図○印)x=0,0.
25,0.50,1.0なる合金粉粒物(74〜149μm)の成形体密
度(充填率)はx=0.25,0.50,1.0でそれぞれ5.19g/cm3
(66.8%)、5.54g/cm3(71.3%)、5.58g/cm3(71.8
%)であり先に述べた様にSの添加により充填率が向上
することが判る。またこの場合には10%の結合剤を用い
た場合に比べ成形体の密度は約3%向上し、結合剤の混
合量もある程度低下させることにより成形体の充填性が
向上した。ところが結合剤の低下は圧縮成形性に影響
し、x=0の合金組成で結合剤の混合量3重量%の条件
では健全な成形体が得られず密度測定は不可能であっ
た。
3% by weight of a binder was mixed (marked with a circle in FIG. 1).
The compact density (filling rate) of the alloy particles (74 to 149 μm) of 25, 0.50, 1.0 was 5.19 g / cm 3 at x = 0.25, 0.50, 1.0.
(66.8%), 5.54 g / cm 3 (71.3%), 5.58 g / cm 3 (71.8
%), Which indicates that the addition of S improves the filling rate as described above. In this case, the density of the molded body was improved by about 3% as compared with the case where 10% of the binder was used, and the filling of the molded body was improved by reducing the amount of the binder mixed to some extent. However, the decrease in the binder affects the compression moldability. When the alloy composition is x = 0 and the amount of the binder mixed is 3% by weight, a sound compact cannot be obtained, and density measurement is impossible.

実施例2 合金組成がFe4-xCo69Mo2Si16B9Sx原子%(x=0,1.
0)ならびにFe75-xNi5Mo4C4B12Sx原子%(x=0,1.0)
からなるアモルファス合金箔を実施例1と同一条件で粉
砕・分級後、74〜149μmの粉粒物を使用して圧縮成形
を行なった。その結果を第1表に示す。Fe4Co69Mo2Si16
B9原子%合金ならびにFe75Ni5Mo4C4B12原子%合金の密
度7.87g/cm3、7.83g/cm3をそれぞれ充填率100%に換算
した成形体の密度(充填率)は、結合剤3%、x=1に
おいて5.61g/cm3(71.3%)、5.59g/cm3(71.4%)、結
合剤10%、x=1において5.49g/cm3(69.8%)、5.50g
/cm3(70.2%)であった。ところが結合剤を3重量%な
らびに10重量%混合したx=0なる上記組成のアモルフ
ァス合金粉粒物は、同一圧縮成形条件にもかかわらず密
度測定可能な成形体は得られなかった。
Example 2 The alloy composition was Fe 4-x Co 69 Mo 2 Si 16 B 9 S x at % (x = 0,1.
0) and Fe 75-x Ni 5 Mo 4 C 4 B 12 S x atomic% (x = 0,1.0)
After pulverizing and classifying the amorphous alloy foil made of under the same conditions as in Example 1, compression molding was performed using a powder having a particle size of 74 to 149 μm. Table 1 shows the results. Fe 4 Co 69 Mo 2 Si 16
The density (filling rate) of the compact obtained by converting the density of 7.87 g / cm 3 and 7.83 g / cm 3 of the 9 atomic percent B alloy and the Fe 75 Ni 5 Mo 4 C 4 B 12 atomic percent alloy to 100%, respectively, is , Binder 3%, 5.61 g / cm 3 (71.3%) at x = 1, 5.59 g / cm 3 (71.4%), binder 10%, 5.49 g / cm 3 (69.8%) at x = 1, 5.50 g
/ cm 3 (70.2%). However, in the case of the amorphous alloy powder having the above composition of x = 0, in which the binder was mixed at 3% by weight and 10% by weight, a compact whose density could be measured was not obtained despite the same compression molding conditions.

実施例3 実施例1と同様の方法で粉砕・分級した−100+200メ
ッシュ(74〜149μm)のFe71Co10Mo2C4B12S1原子%ア
モルファス合金粉粒物に3重量%の熱硬化性樹脂(配合
比はエポキシ系樹脂10に対して硬化剤0.44の割合)を結
合剤として使用し、第2図(a),(b)ならばに
(c)に示した形状の成形体を作製した。成形条件は加
圧力550MPa,加圧時間10sec,硬化温度160℃×90minであ
り、また金型として浮型を使用した。
3% by weight of thermoset Fe 71 Co 10 Mo 2 C 4 B 12 S 1 atom% amorphous alloy powder grains of pulverization and classification were -100 + 200 mesh (74~149μm) in the same manner as in Example 3 Example 1 2 (a) and 2 (b), a molded article having the shape shown in FIG. 2 (c) was used as a binder. Produced. The molding conditions were a pressing force of 550 MPa, a pressurizing time of 10 sec, a curing temperature of 160 ° C. × 90 min, and a floating mold was used as a mold.

得られた成形体の密度は5.60〜5.63g/cm3であり、ア
モルファス合金箔の密度7.77g/cm3を100%に換算した成
形体の充填率は71.9〜72.5%の範囲であった。
The density of the obtained green body was 5.60 to 5.63 g / cm 3 , and the filling rate of the green body obtained by converting the density of the amorphous alloy foil from 7.77 g / cm 3 to 100% was in the range of 71.9 to 72.5%.

(発明の効果) 本発明によって、アモルファス合金の粉粒物を簡易な
方法で充填率が改善された圧縮成形体とすることができ
る。またSの添加によりアモルファス合金箔の細線の粉
砕工程が簡易化できるため粉粒物の製造コストが低減で
きる。このことは形状が粉末や箔や細線に限定されてい
たため使用分野が限られていたアモルファス合金をいっ
そう広い分野で使用することが可能となる。また製造プ
ロセスに複雑な工程を必要とせず、成形後の再加工も特
に必要としないため工業的規模で大量、安価に生産でき
る特徴を有する。
(Effects of the Invention) According to the present invention, a powder compact of an amorphous alloy can be formed into a compression-molded body having an improved filling factor by a simple method. In addition, the addition of S can simplify the process of pulverizing fine wires of the amorphous alloy foil, so that the production cost of the granular material can be reduced. This makes it possible to use amorphous alloys whose use fields are limited because their shapes are limited to powders, foils and thin wires, in a wider field. Further, since there is no need for complicated steps in the manufacturing process and no particular need for rework after molding, it has the feature that it can be mass-produced at low cost on an industrial scale.

本発明によって得られる成形体は磁性材料等の分野に
おいて有効な材料となる。
The molded product obtained by the present invention is an effective material in the field of magnetic materials and the like.

例えば磁気特性をそなえたアモルファス合金を原料と
して本発明法により充填率が改善されたコア材、各種磁
気センサー材が作製できる。またシート状に加工するこ
とにより磁気シールド材にも応用が期待できる。
For example, using an amorphous alloy having magnetic properties as a raw material, a core material and a variety of magnetic sensor materials whose filling factor is improved by the method of the present invention can be produced. By processing it into a sheet, its application to magnetic shield materials can be expected.

【図面の簡単な説明】[Brief description of the drawings]

第1図はアモルファス合金粉粒物の樹脂成形体密度に及
ぼすS添加の効果を示す。○印は結合剤の混合量3重量
%、●印は結合剤の混合量10重量%の場合である。 第2図(a),(b),(c)は実施例3により作製し
た成形体の形状を示す。
FIG. 1 shows the effect of S addition on the density of the resin molded product of the amorphous alloy powder. ○ indicates the case where the mixing amount of the binder was 3% by weight, and ● indicates the case where the mixing amount of the binder was 10% by weight. 2 (a), 2 (b) and 2 (c) show the shape of the molded article produced in Example 3. FIG.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Sを0.01〜3原子%含有したアモルファス
合金の粉粒物に、樹脂を主成分とする結合剤を混合し、
圧縮成形してなるアモルファス合金粉粒物の成形体。
An amorphous alloy powder containing 0.01 to 3 atomic% of S is mixed with a binder mainly composed of a resin.
A compact of amorphous alloy powder obtained by compression molding.
【請求項2】Sを0.01〜3原子%含有したアモルファス
合金の粉粒物に樹脂を主成分とする結合剤を混合し、圧
縮成形することによりアモルファス合金成形体の充填率
を向上させることを特徴とするアモルファス合金粉粒物
の成形方法。
2. A method for improving the filling rate of an amorphous alloy molded body by mixing a binder mainly composed of a resin with an amorphous alloy powder containing 0.01 to 3 atomic% of S and compressing and molding the mixture. Characteristic method of forming amorphous alloy powder.
JP63039681A 1988-02-24 1988-02-24 Molded body of amorphous alloy powder and molding method Expired - Lifetime JP2575041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63039681A JP2575041B2 (en) 1988-02-24 1988-02-24 Molded body of amorphous alloy powder and molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039681A JP2575041B2 (en) 1988-02-24 1988-02-24 Molded body of amorphous alloy powder and molding method

Publications (2)

Publication Number Publication Date
JPH01215906A JPH01215906A (en) 1989-08-29
JP2575041B2 true JP2575041B2 (en) 1997-01-22

Family

ID=12559830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039681A Expired - Lifetime JP2575041B2 (en) 1988-02-24 1988-02-24 Molded body of amorphous alloy powder and molding method

Country Status (1)

Country Link
JP (1) JP2575041B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100545849B1 (en) * 2003-08-06 2006-01-24 주식회사 아모텍 Manufacturing method of iron-based amorphous metal powder and manufacturing method of soft magnetic core using same
KR100531253B1 (en) * 2003-08-14 2005-11-28 (주) 아모센스 Method for Making Nano Scale Grain Metal Powders Having Excellent High Frequency Characteristics and Method for Making Soft Magnetic Core for High Frequency Using the Same

Also Published As

Publication number Publication date
JPH01215906A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
KR101838825B1 (en) Dust core, coil component using same and process for producing dust core
CN1089386A (en) Hot-pressed magnets molded from anisotropic powder
US3923946A (en) Composite materials
US4943319A (en) Process for producing highly functional composite material and composite material obtained thereby
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JP2575041B2 (en) Molded body of amorphous alloy powder and molding method
JPS585241A (en) Powder molding method
US5002727A (en) composite magnetic compacts and their forming methods
US2796660A (en) Method for the production of light metal articles
JPH04210448A (en) Functionally gradient material using zn-22al superplastic powder and method for forming the same
JPS59103309A (en) Permanent magnet manufacturing method
JP3047239B2 (en) Warm-worked magnet and manufacturing method thereof
CN1845272B (en) Preparation process of a bonded rare earth giant magnetostrictive material
JPS6220845A (en) Composite magnetic material consisting of zn-22al superplastic alloy powder and magnetic powder and compacting method thereof
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
CN101348877B (en) A bonded Tb0.2Pr0.8(Fe0.4Co0.6)1.93-xCx alloy and its preparation method
JPH03290906A (en) Warm-worked magnet and its manufacture
JPS63209107A (en) Manufacture of magnetic powder for bonded magnet
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JPH02285605A (en) Manufacture of permanent magnet
JPS5852540B2 (en) Manufacturing method of anisotropic magnet
JPH01103806A (en) Rare-earth magnet
Maeda et al. High-Thermostability Nd-Fe-B Magnet Formed by Binderless Net-Shaping
JPH0544161B2 (en)