[go: up one dir, main page]

JP2595636B2 - Gene encoding glutamine synthase - Google Patents

Gene encoding glutamine synthase

Info

Publication number
JP2595636B2
JP2595636B2 JP63071552A JP7155288A JP2595636B2 JP 2595636 B2 JP2595636 B2 JP 2595636B2 JP 63071552 A JP63071552 A JP 63071552A JP 7155288 A JP7155288 A JP 7155288A JP 2595636 B2 JP2595636 B2 JP 2595636B2
Authority
JP
Japan
Prior art keywords
cdna
tris
gene encoding
minutes
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63071552A
Other languages
Japanese (ja)
Other versions
JPH01243990A (en
Inventor
剛 竹葉
国介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Corp
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, Mitsubishi Chemical Corp filed Critical Mitsubishi Corp
Priority to JP63071552A priority Critical patent/JP2595636B2/en
Publication of JPH01243990A publication Critical patent/JPH01243990A/en
Application granted granted Critical
Publication of JP2595636B2 publication Critical patent/JP2595636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、植物、藻類、微生物等のアンモニア同化の
主要酵素であるグルタミン合成酵素をコードする遺伝子
に関するものである。
Description: TECHNICAL FIELD The present invention relates to a gene encoding glutamine synthase, which is a major enzyme for ammonia assimilation in plants, algae, microorganisms and the like.

〔従来の技術及び発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

グルタミン合成酵素(以下GSとう)は、植物、藻類、
微生物など広く生物界において、アンモニア同化の主要
径路を担う重要な酵素であることが知られている。また
GSは、ある種の除草剤の標的酵素にもなっており、GS活
性が阻害されることによりアンモニアの同化が進まず、
蓄積したアンモニアの毒性により植物が枯死すると考え
られている〔Journal of Molecular and Applied Genet
ics,,621,1984〕。この様に重要な酵素であるGSは、
生物学的及び生化学的な研究も進められ、いくつかの生
物からは遺伝子も単離されており、塩基配列も決定され
ている。例えばインゲンマメ〔J.Mol.Appl.Genet.,,5
89,1984 and EMBO J.,,1429,1986〕、エンドウ〔EMBO
J.,,1,1987〕、アルファルファ〔Mol.Gen.Genet.,20
3,221,1986〕および緑藻〔Nature,306,337,1983 and Ge
ne,53,211,1987〕のGS遺伝子の塩基配列が報告されてい
る。
Glutamine synthase (GS) is used in plants, algae,
It is known that it is an important enzyme that plays a major route in ammonia assimilation in a wide range of organisms such as microorganisms. Also
GS is also a target enzyme for certain herbicides, and the inhibition of GS activity prevents the assimilation of ammonia.
Plant toxicity is thought to die due to the toxicity of the accumulated ammonia [Journal of Molecular and Applied Genet
ics, 2, 621,1984]. GS, which is such an important enzyme,
Biological and biochemical studies have been advanced, genes have been isolated from some organisms, and their nucleotide sequences have been determined. For example, kidney beans [J. Mol. Appl. Genet., 2 , 5,
89, 1984 and EMBO J., 5 , 1429, 1986], peas (EMBO
J., 6 , 1, 1987], Alfalfa [Mol. Gen. Genet., 20
3 , 221, 1986) and green algae (Nature, 306 , 337, 1983 and Ge
ne, 53 , 211, 1987].

また、ある種の植物では、GSは光発芽性と密接に関係
しており、赤色光により光誘導をうけたり、発芽促進効
果を持つジベレリンによっても誘導をうけることが知ら
れており、これらは転写レベルで調節されていることが
明らかとなっている。しかし、光やジベレリンによるGS
遺伝子の発現調節機構は分子レベルで十分に解明されて
いるとは言えない状況である。
In some plants, GS is closely related to photogermination, and is known to be induced by red light and also by gibberellin, which has a germination promoting effect. It has been shown to be regulated at the transcriptional level. But GS by light or gibberellin
The regulation mechanism of gene expression has not been fully elucidated at the molecular level.

(問題点を解決するための手段) そこで本発明者らは、レタスの吸水種子から得たGSの
cDNAクローンの塩基配列を決定し、GSがコードされてい
ることを同定し、本発明を完成するに至った。
(Means for Solving the Problems) Therefore, the present inventors have developed GS obtained from water-absorbed seeds of lettuce.
The nucleotide sequence of the cDNA clone was determined, it was identified that GS was encoded, and the present invention was completed.

即ち本発明の要旨は、図−2に示す塩基配列で表わさ
れるグルタミン合成酵素をコードする遺伝子に存する。
That is, the gist of the present invention resides in a gene encoding glutamine synthetase represented by the nucleotide sequence shown in FIG.

以下に本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明においては、レタス種子(例えばNew York 515
Improved)を赤色光下で吸水発芽させて得られる幼植
物を、ワーリング ブレンダー等で磨砕し、フェノール
抽出、エタノール沈殿等によって全RNAを得る。次いで
塩化リチウム処理によってDNAや低分子RNAを除去する。
目的とするGSのmRNAは、polyA部分を有するので、常法
に従い、これをオリゴ(dT)セルロースカラムにより、
poly(A+)RNA(mRNA)を得る。
In the present invention, lettuce seeds (eg, New York 515)
Improved) is red-lighted and germinated, and the seedling is ground with a Waring blender or the like, and phenol extraction, ethanol precipitation, etc., to obtain total RNA. Then, DNA and low molecular RNA are removed by lithium chloride treatment.
Since the target GS mRNA has a polyA moiety, the GS mRNA is subjected to an oligo (dT) cellulose column using a conventional method.
Poly (A + ) RNA (mRNA) is obtained.

このmRNAを原料として、改良Gubler-Hoffman法(Gen
e,25,263,1983)に従い、まず逆転写酵素により第1鎖c
DNAを得、次いでDNAポリメラーゼにより第2鎖cDNAを合
成して2本鎖cDNAを得る。通常T4DNAポリメラーゼで末
端を平滑化後、EcoRI等のリンカーを結合し、例えばλg
t11等に組み込み、ファージ粒子にパッケージングす
る。このファージ粒子を大腸菌、例えば、大腸菌Y108
8、大腸菌DH5α株等に感染させて培養し、種々の長さの
cDNAを含むcDNAライブラリーを得る。
Using this mRNA as a raw material, the modified Gubler-Hoffman method (Gen
e, 25 , 263, 1983), the first strand c
DNA is obtained, and then second-strand cDNA is synthesized by DNA polymerase to obtain double-stranded cDNA. Usually, after blunting the end with T4 DNA polymerase, a linker such as Eco RI is bound, for example, λg
Incorporate into t11 etc. and package into phage particles. The phage particles are transformed into E. coli, for example, E. coli Y108.
8.Infect E. coli DH5α strain and culture,
Obtain a cDNA library containing cDNA.

cDNAライブラリーから、精製GS蛋白質を抗原としてウ
サギに免疫して得られる抗ウサギGS抗体と反応するクロ
ーンを選択し、該クローンに組み込まれているcDNAをプ
ローブとし、前記cDNAライブラリーとハイブリダイゼー
ションさせる。そして、該プローブとハイブリダイズし
たもののうち、cDNA鎖長の長いものを選択し、pUC9等の
プラスミドに導入し、大腸菌、例えば、大腸菌Y1090等
を形質転換させる。得られる形質転換体を培養して組み
込まれているcDNAを得る。
From the cDNA library, a clone that reacts with an anti-rabbit GS antibody obtained by immunizing a rabbit with the purified GS protein as an antigen is selected, and the cDNA incorporated in the clone is used as a probe and hybridized with the cDNA library. . Then, among those hybridized with the probe, those having a longer cDNA chain length are selected, introduced into a plasmid such as pUC9, and transformed into Escherichia coli, for example, Escherichia coli Y1090. The resulting transformant is cultured to obtain the integrated cDNA.

かくして得られるcDNAを、例えばSangerらのジデオキ
シ法によって塩基配列を決定することができる。本発明
のGSをコードする遺伝子の塩基配列をその対応するアミ
ノ酸と共に図2に示した。
The nucleotide sequence of the cDNA thus obtained can be determined by, for example, the dideoxy method of Sanger et al. The nucleotide sequence of the gene encoding GS of the present invention is shown in FIG. 2 together with the corresponding amino acids.

(発明の効果) 本発明のグルタミン合成酵素をコードする遺伝子は、
除草剤耐性植物の作出や、光やジベレリンによる誘導の
メカニズムの解析、あるいは組織特異性の解明用の材料
として有用であると考えられる。
(Effect of the Invention) The gene encoding the glutamine synthetase of the present invention is:
It is considered to be useful as a material for producing herbicide-tolerant plants, analyzing the mechanism of induction by light or gibberellin, or elucidating tissue specificity.

(実施例) 以下に実施例をあげて、更に具体的に本発明を説明す
るが本発明は以下の実施例によって限定されるものでは
ない。
(Examples) Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to the following Examples.

〔1〕 poly(A+)RNAの単離 レタス種子(New York 515 Improved)を赤色光下で1
0〜20時間吸水させた後、25〜30℃で4〜10日間発芽さ
せた幼植物約20gを、30mlの抽出用緩衝液〔0.1Mトリス
−塩酸(pH9.0)、0.1M塩化ナトリウム、10mM EDTA及び
1%SDS〕、30mlのフェノール:クロロホルム:イソア
ミルアルコール(25:24:1)及び6mlのβ−メルカプトエ
タノールと共にワーリングブレンダーで磨砕した。磨砕
液を7,000r.p.m.で10分間遠心分離し、上層の水層をと
り、これにほぼ等量のフェノール:クロロホルム:イソ
アミルアルコール(25:24:1)を加え、よく混合した
後、遠心分離によって再度水層を回収した。このフェノ
ール抽出をもう一度くり返し、最終的に得られた水層に
5Mの塩化ナトリウムを最終濃度が0.25Mになるように加
え、更に2.5倍量のエタノールを加えてよく混合し−20
℃で一晩放置した。その後8,000r.p.m.で20分間遠心分
離を行ない、得られた沈殿を70%エタノールに懸濁し、
再び遠心分離によって沈殿させた後に回収し、減圧乾燥
した。
[1] Isolation of poly (A + ) RNA Lettuce seeds (New York 515 Improved)
After absorbing water for 0 to 20 hours, about 20 g of a young plant germinated at 25 to 30 ° C. for 4 to 10 days was added to 30 ml of an extraction buffer [0.1 M Tris-HCl (pH 9.0), 0.1 M sodium chloride, 10 mM EDTA and 1% SDS], 30 ml of phenol: chloroform: isoamyl alcohol (25: 24: 1) and 6 ml of β-mercaptoethanol in a Waring blender. The triturated liquid was centrifuged at 7,000 rpm for 10 minutes, and the upper aqueous layer was taken. An approximately equal amount of phenol: chloroform: isoamyl alcohol (25: 24: 1) was added, mixed well, and then centrifuged again. The aqueous layer was collected. This phenol extraction was repeated once more, and the final aqueous layer
Add 5M sodium chloride to a final concentration of 0.25M, add 2.5 volumes of ethanol and mix well.
Left at 0 ° C. overnight. After that, centrifugation was performed at 8,000 rpm for 20 minutes, and the obtained precipitate was suspended in 70% ethanol.
The precipitate was collected by centrifugation again, and dried under reduced pressure.

こうして得られた乾燥全核酸標品を15mlのTE緩衝液
(10mMトリス−塩酸(pH7.5)及び10mM EDTA〕に溶かし
5M塩化リチウムを10ml加えて最終濃度を2Mとし4℃で一
晩放置した。12,000r.p.m.で20分間の遠心分離により、
上清に残るDNAや低分子量のRNAを除去した全RNA画分を
沈殿として回収した。得られた沈殿を2M塩化リチウムに
懸濁し再度遠心分離で沈殿を回収し、70%エタノールで
洗浄した後に減圧乾燥を行って全RNA標品を得た。
The thus obtained dried total nucleic acid sample was dissolved in 15 ml of TE buffer (10 mM Tris-HCl (pH 7.5) and 10 mM EDTA).
10 ml of 5M lithium chloride was added to a final concentration of 2M, and the mixture was left overnight at 4 ° C. By centrifugation at 12,000 rpm for 20 minutes,
The total RNA fraction from which DNA and low molecular weight RNA remaining in the supernatant were removed was collected as a precipitate. The obtained precipitate was suspended in 2M lithium chloride, and the precipitate was recovered by centrifugation again, washed with 70% ethanol, and dried under reduced pressure to obtain a total RNA sample.

こうして得られた乾燥全RNA標品を4.5mlの緩衝液〔10
mMトリス−塩酸(pH7.5)、10mM EDTA及び0.2%SDS〕に
溶解し、68℃で3分間処理した後、氷水中で急冷した。
0.5mlの5M塩化リチウムを加え、遠心によって不溶物を
除去した後、上清を0.5M塩化リチウム、10mMトリス−塩
酸(pH7.5)、10mM EDTA及び0.2%SDSで平衡にしておい
たオリゴ(dT)セルロールカラムにかけた。カラムを約
5倍量の緩衝液〔0.5M塩化リチウム、10mMトリス−塩酸
(pH7.5)、10mM EDTA及び0.2%SDS〕で洗った後、10mM
トリス−塩酸(pH7.5)、1mM EDTA及び0.05%SDSでpoly
(A+)RANを溶出した。poly(A+)RNA溶出液に2.5倍
容の5M塩化リチウム:エタノール(1:24)を加え、−20
℃で一晩放置した後、30,000r.p.m.で30分間遠心分離を
行ない、得られた沈殿を70%エタノールで洗浄し、減圧
乾燥してpoly(A+)RNAを得た。
4.5 ml of the buffer solution [10
mM Tris-HCl (pH 7.5), 10 mM EDTA and 0.2% SDS], treated at 68 ° C. for 3 minutes, and quenched in ice water.
After adding 0.5 ml of 5 M lithium chloride and removing insolubles by centrifugation, the supernatant was equilibrated with 0.5 M lithium chloride, 10 mM Tris-hydrochloric acid (pH 7.5), 10 mM EDTA and 0.2% SDS. dT) applied to a cellulose column. The column was washed with about 5 volumes of a buffer (0.5 M lithium chloride, 10 mM Tris-hydrochloric acid (pH 7.5), 10 mM EDTA and 0.2% SDS), and then washed with 10 mM
Tris-HCl (pH 7.5), 1mM EDTA and 0.05% SDS poly
(A + ) RAN was eluted. Add 2.5 volumes of 5 M lithium chloride: ethanol (1:24) to the poly (A + ) RNA eluate,
After standing at ℃ overnight, the mixture was centrifuged at 30,000 rpm for 30 minutes, and the obtained precipitate was washed with 70% ethanol and dried under reduced pressure to obtain poly (A + ) RNA.

〔2〕 cDNAライブラリーの作製 乾燥poly(A+)RAN5μgを20μlの反応液〔50mMト
リス−塩酸(pH8.9)10mM塩化マグネシウム、140mM塩化
カリウム、1.25mM dNTP、2μgオリゴ(dT)12-18、1
2.5mMジチオスレイトール及び8mMピロリン酸ナトリウ
ム〕に溶かし65℃で5分間加熱した後43℃まで冷やし、
〔α−32P〕dCTP(400Ci/mmol)と40ユニット(unit)
の逆転写酵素を加え、43℃で1時間反応させ、第1鎖cD
NAを合成した。
[2] Preparation of cDNA library 5 μg of dry poly (A + ) RAN was added to 20 μl of a reaction solution [50 mM Tris-HCl (pH 8.9) 10 mM magnesium chloride, 140 mM potassium chloride, 1.25 mM dNTP, 2 μg oligo (dT) 12-18 , 1
2.5mM dithiothreitol and 8mM sodium pyrophosphate], and heated at 65 ° C for 5 minutes, then cooled to 43 ° C,
[Α- 32 P] dCTP (400 Ci / mmol) and 40 units
And reverse reaction at 43 ° C. for 1 hour.
NA was synthesized.

次いで上記反応液に8μlの200mMトリス−塩酸(pH
1.1)、1M塩化カリウム及び50mM塩化マグネシウム溶液
を加え、反応pHを7.3となる様にした。この反応液に5
μg牛血清アルブミン(BSA)、25untiのDNAポリメラー
ゼ、0.8ユニット(unit)のRN ase Hを加え、全液量を1
00μlとした後16℃で2時間反応させて第2鎖cDNAを合
成した。
Next, 8 μl of 200 mM Tris-hydrochloric acid (pH
1.1), 1 M potassium chloride and 50 mM magnesium chloride solution were added to adjust the reaction pH to 7.3. 5
Add μg bovine serum albumin (BSA), 25unti DNA polymerase, and 0.8 unit of RNase H.
After adjusting the volume to 00 μl, the mixture was reacted at 16 ° C. for 2 hours to synthesize second strand cDNA.

更にこの反応液に9ユニット(unit)のT4DNAポリメ
ラーゼを加え、37℃で10分間反応させて2本鎖cDNAの末
端を平滑にした。次いで0.25mM EDKTAと10%SDSとを各
々10μlづつ加えて反応を停め、フェノール抽出を行っ
た後、100μlの4M酢酸アンモニウムと400μlのエタノ
ールを加えて混合し、−80℃で20分間冷却後37℃で数分
間温めて遠心分離を行ない、2本鎖cDNAを回収した。こ
のエタノール沈殿をもう一度行ない、沈殿を70%エタノ
ールで洗浄した減圧乾燥した。
Further, 9 units (unit) of T4 DNA polymerase was added to the reaction solution, and the mixture was reacted at 37 ° C. for 10 minutes to smooth the ends of the double-stranded cDNA. Then, the reaction was stopped by adding 10 μl each of 0.25 mM EDKTA and 10% SDS, and after performing phenol extraction, 100 μl of 4 M ammonium acetate and 400 μl of ethanol were added and mixed, followed by cooling at −80 ° C. for 20 minutes, followed by 37 minutes. The mixture was centrifuged at a temperature of ° C for several minutes to recover double-stranded cDNA. This ethanol precipitation was performed once again, and the precipitate was washed with 70% ethanol and dried under reduced pressure.

末端を平滑にしたcDNAを20μlの緩衝液〔50mMトリス
−塩酸(pH7.5)、1mM EDTA及び5mMジチオスレイトー
ル〕に溶解し2μlの100μM S−アデノシル−L−メチ
オニン及び20ユニット(unit)のEcoRIメチラーゼを加
えて37℃で20分間反応させ、cDNAのEcoRIサイトをメチ
ル化した。70℃で10分間加熱して反応を停止し、フェノ
ール抽出、エタノール沈殿を行ない、遠心分離によって
回収した。これに10μlの反応液〔50mMトリス−塩酸
(pH7.5)、10mM塩化マグネシウム、10mMジチオスレイ
トール、2mM ATP、450ngEcoRIリンカー及び175ユニット
(unit)のT4DNAリガーゼ〕を加え、14℃で24時間反応
させて、EcoRIリンカーを付加した。70℃で15分間加熱
して反応を停止し10μlの50mMトリス−塩酸(pH7.
5)、10mM硫酸マグネシウム及び20mM塩化ナトリウム溶
液を加え、さらに38ユニット(unit)のEcoRIを加えて3
7℃で4時間反応させて、両端にEcoRI結合サイトを持つ
cDNAを得た。反応後フェノール抽出、エタノール沈殿に
より、DNAを回収した。このDNAを20μlのTE緩衝液〔10
mMトリス−塩酸(pH7.5)及び10mM EDTA〕に溶解し、5
%ポリアクリルアミドゲル電気泳動により分離し、600b
p以上のDNAを含むゲルを切り出した。このゲルからエレ
クトロエリューションによりDNAを回収した。
The cDNA having blunt-ended ends was dissolved in 20 µl of a buffer [50 mM Tris-HCl (pH 7.5), 1 mM EDTA and 5 mM dithiothreitol], and 2 µl of 100 µM S-adenosyl-L-methionine and 20 units (unit) were added. Eco RI methylase was added and reacted at 37 ° C. for 20 minutes to methylate the Eco RI site of cDNA. The reaction was stopped by heating at 70 ° C. for 10 minutes, phenol extraction and ethanol precipitation were performed, and collected by centrifugation. To this was added 10 μl of a reaction solution [50 mM Tris-hydrochloric acid (pH 7.5), 10 mM magnesium chloride, 10 mM dithiothreitol, 2 mM ATP, 450 ng Eco RI linker and 175 units of T4 DNA ligase]. After reacting for an hour, an Eco RI linker was added. The reaction was stopped by heating at 70 ° C. for 15 minutes, and 10 μl of 50 mM Tris-HCl (pH 7.
5) Add 10 mM magnesium sulfate and 20 mM sodium chloride solution and add 38 units of Eco RI to add 3
Reaction at 7 ° C for 4 hours with Eco RI binding sites at both ends
cDNA was obtained. After the reaction, DNA was recovered by phenol extraction and ethanol precipitation. This DNA was added to 20 μl of TE buffer [10
mM Tris-HCl (pH 7.5) and 10 mM EDTA].
% Polyacrylamide gel electrophoresis, 600b
A gel containing p or more DNA was cut out. DNA was recovered from the gel by electroelution.

このcDNAを5μlの滅菌水に溶解した後、5μlの反
応液〔0.5μgEcoRI消化λgt11DNA、30mMトリス−塩酸
(pH7.4)、10mMジチオスレイトール、10mM塩化マグネ
シウム、1mM ATP及び30ユニット(unit)のT4DNAリガー
ゼ〕を加え、14℃で4時間反応させてcDNAとλgt11DNA
とのライゲーションを行った。次にGigapack Gold(東
洋紡(株)製)を用いてファージ粒子へのパッケージン
グを行った。このファージを大腸菌Y1088に感染させ、
L寒天培地でプラークを形成させた後、10mMトリス−塩
酸(pH7.5)及び10mM塩化マグネシウムを加え、4℃で
一晩静置した後液を回収し、菌体等を遠心分離して除い
て、上清のファージ液をcDNAライブラリーとして保存し
た。
After dissolving this cDNA in 5 μl of sterile water, 5 μl of a reaction solution [0.5 μg Eco RI digested λgt11 DNA, 30 mM Tris-HCl (pH 7.4), 10 mM dithiothreitol, 10 mM magnesium chloride, 1 mM ATP and 30 units (unit) ) T4 DNA ligase], and allowed to react at 14 ° C for 4 hours.
And ligation. Next, packaging into phage particles was performed using Gigapack Gold (manufactured by Toyobo Co., Ltd.). Infect E. coli Y1088 with this phage,
After forming a plaque on L agar medium, 10 mM Tris-hydrochloric acid (pH 7.5) and 10 mM magnesium chloride were added, and the mixture was allowed to stand at 4 ° C. overnight. The liquid was recovered, and the cells were removed by centrifugation. Then, the supernatant phage solution was stored as a cDNA library.

〔3〕 GScDNAクローンの同定 cDNAライブラリーからファージを大腸菌Y1090に感染
させてL寒天培地上で増殖させ、10mM IPTG処理したニ
トロセルロースフィルターを置いて37℃で3.5時間培養
した。培養後フィルターをはがし、Proto Blot(Promeg
a社製)を用い、抗体として抗GSウサギ抗体を使用して
スクリーニングを行い、該抗体と反応したクローンpLB4
1を得た。
[3] Identification of GS cDNA clone A phage was infected from a cDNA library into Escherichia coli Y1090, grown on L agar medium, and cultured at 37 ° C for 3.5 hours on a 10 mM IPTG-treated nitrocellulose filter. After culturing, remove the filter and use Proto Blot (Promeg
a), and screening was performed using an anti-GS rabbit antibody as an antibody.
Got one.

このクローンに組み込まれたcDNAをプローブとして、
前記cDNAライブラリーとハイブリダイズさせ、ハイブリ
ダイズしたものの中からλgt11に組み込まれたcDNA鎖長
の長いプラスミドを選択して、その中からほゞ全長のGS
をコードするcDNAを含むプラスミドpLGS1を得た。この
プラスミドをEcoRIで処理してcDNAを切り出し、これをp
UC9に導入後、大腸菌Y1090を形質転換した。形質転換体
を増殖して目的cDNAを得、この全塩基配列をSangerらの
ジデオキシ法により求めた。
Using the cDNA incorporated in this clone as a probe,
The cDNA library was hybridized, and a plasmid having a long cDNA chain incorporated in λgt11 was selected from the hybridized ones.
The plasmid pLGS1 containing the cDNA encoding was obtained. This plasmid is treated with Eco RI to cut out cDNA, and
After introduction into UC9, E. coli Y1090 was transformed. The target cDNA was obtained by growing the transformant, and the entire nucleotide sequence was determined by the dideoxy method of Sanger et al.

図1は1429bpのpLGS1の塩基配列であり、16番目から1
089番目までにGSがコードされており、358個のアミノ酸
残基よりなっている。尚、図中でアミノ酸は「一文字記
号」にて表記した(東京化学同人社発行、「生化学辞
典」第1392頁、1984年)。
FIG. 1 shows the nucleotide sequence of pLGS1 of 1429 bp.
GS is encoded by the 089th position and consists of 358 amino acid residues. In the figures, amino acids are represented by "one-letter symbols" (published by Tokyo Chemical Dojinsha, "Biochemical Dictionary", p.1392, 1984).

【図面の簡単な説明】[Brief description of the drawings]

図1はpLGS1の塩基配列とこれを基に翻訳したアミノ酸
配列を示す図面である。図1中で16番目から1089番目ま
でに358個のアミノ酸残基に相当するGSがコードされて
いる。 図2はGSに相当する部分の塩基配列とアミノ酸配列を示
す図面である。
FIG. 1 is a drawing showing the nucleotide sequence of pLGS1 and the amino acid sequence translated based on it. In FIG. 1, GS corresponding to 358 amino acid residues from the 16th to the 1089th is encoded. FIG. 2 is a drawing showing a base sequence and an amino acid sequence of a portion corresponding to GS.

フロントページの続き (56)参考文献 EMBO J.5(7)P.1429− 1435(1986) EMBO J.6(1)P.1−9 (1987) Plant Cell Physio l.24 P.1477−1483(1983)Continuation of front page (56) References EMBO J. 5 (7) P. 1429- 1435 (1986) EMBO J .; 6 (1) P. 1-9 (1987) Plant Cell Physiol. 24 p. 1477-1483 (1983)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記塩基配列で表わされる、グルタミン合
成酵素をコードする遺伝子
1. A gene encoding glutamine synthase represented by the following nucleotide sequence:
JP63071552A 1988-03-25 1988-03-25 Gene encoding glutamine synthase Expired - Fee Related JP2595636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63071552A JP2595636B2 (en) 1988-03-25 1988-03-25 Gene encoding glutamine synthase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071552A JP2595636B2 (en) 1988-03-25 1988-03-25 Gene encoding glutamine synthase

Publications (2)

Publication Number Publication Date
JPH01243990A JPH01243990A (en) 1989-09-28
JP2595636B2 true JP2595636B2 (en) 1997-04-02

Family

ID=13464010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071552A Expired - Fee Related JP2595636B2 (en) 1988-03-25 1988-03-25 Gene encoding glutamine synthase

Country Status (1)

Country Link
JP (1) JP2595636B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235938A (en) * 2002-02-21 2003-08-26 Taisei Kako Co Ltd Infusion vessel

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EMBO J.5(7)P.1429−1435(1986)
EMBO J.6(1)P.1−9(1987)
Plant Cell Physiol.24 P.1477−1483(1983)

Also Published As

Publication number Publication date
JPH01243990A (en) 1989-09-28

Similar Documents

Publication Publication Date Title
CN106318934B (en) Complete gene sequence of carrot β(1,2) xylose transferase and construction of CRISPR/CAS9 plasmid for transfection of dicotyledonous plants
Kinzler et al. Whole genome PCR: application to the identification of sequences bound by gene regulatory protein
Inoue et al. The cyclic AMP response element plays an essential role in the expression of the human prostaglandin‐endoperoxide synthase 2 gene in differentiated U937 monocytic cells
EP0419571B1 (en) Dna amplification and subtraction techniques
JP2023145691A (en) Nuclease systems for genetic engineering
JPS58501771A (en) Oligonucleotide therapeutic agent and its manufacturing method
DE4139418A1 (en) FOR DIFFERENTIAL CELL CARCINOMA ASSOCIATED ANTIQUE CODING DNA FRAGMENT
Hansen Three cDNA clones for barley leaf acyl carrier proteins I and III
Denis et al. Biochemical research on oogenesis: Oocytes and liver cells of the teleost fish Tinca tinca contain different kinds of 5S RNA
TWI316964B (en)
Sharp et al. Transcriptionally active and inactive gene repeats within the D. meianogaster 5S RNA gene cluster
JP2595636B2 (en) Gene encoding glutamine synthase
CN119193597A (en) Application of Artemisia annua AaU6 promoter in CRISPR/Cas9 gene editing and gene editing method
JPS58141778A (en) Expression of metal thionein
WO2001009310A1 (en) 5'ENRICHED cDNA LIBRARIES AND A YEAST SIGNAL TRAP
CA2296771A1 (en) Method for the identification of synthetic cell- or tissue-specific transcriptional regulatory regions
US20040058375A1 (en) Genetically filtered shotgun sequencing of complex eukaryotic genomes
CN118345100B (en) ZmPMI1L gene or application of coded protein thereof in regulation of corn plant height
US20040103450A1 (en) Soybean mutant strain and soybean oil therefrom
KR102480124B1 (en) Single nucleotide polymorphisms associated with reproduction of African indicine breeds and their application
Gene Recombinant DNA technology
SU1659488A1 (en) Method for determination of genetic variants of kappa-casein in agricultural animals
AU620628C (en) DNA amplification and subtraction techniques
JPH03502697A (en) Novel lymphokines, DNA sequences encoding the lymphokines, and pharmaceutical compositions containing the lymphokines
US20130045481A1 (en) Process for the identification and traceability of plant components

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees