JP2500346B2 - Polarization plane rotation speed multiplier - Google Patents
Polarization plane rotation speed multiplierInfo
- Publication number
- JP2500346B2 JP2500346B2 JP24251792A JP24251792A JP2500346B2 JP 2500346 B2 JP2500346 B2 JP 2500346B2 JP 24251792 A JP24251792 A JP 24251792A JP 24251792 A JP24251792 A JP 24251792A JP 2500346 B2 JP2500346 B2 JP 2500346B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- wave plate
- electric field
- polarization plane
- rotation speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010287 polarization Effects 0.000 title claims description 40
- 230000005684 electric field Effects 0.000 description 43
- 239000013598 vector Substances 0.000 description 24
- 239000013078 crystal Substances 0.000 description 23
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Polarising Elements (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、レーザ光の偏光面を
回転する光学装置を使用する光波制御の分野に属するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the field of light wave control using an optical device that rotates the plane of polarization of laser light.
【0002】[0002]
【従来の技術】一般に、直線偏光のレーザ光を出射する
光源は出射端にブリュウスターウインドが配置されてお
り、ブリュウスターウインドでの入射の平面に平行な方
向の電界の振動方向を有する光波が出射される。直線偏
光をした光の偏光面は、光波の電界成分の振動方向と垂
直な面として規定されており、これを回転する方法とし
ては、ブリュウスターウインド単体、あるいは装置全体
を回転させる方法が原理的には考えられるが、出力の安
定性の問題や利便性から一般には行なわれない。偏光面
を回転させる一般的な方法としては、図1に示すよう
に、半波長板を波長板の中央を通る法線ベクトルを軸と
して回転させ、この回転軸と直線偏光をしたレーザ光の
伝搬方向を一致させるように入射させる方法がある。半
波長板では、入射光の電界ベクトルのうちで半波長板の
結晶主軸と平行な方向の電界成分と垂直な方向の電界成
分の間にπの位相差を与えて透過させる。この結果、半
波長板を透過した光の電界ベクトルの方向は、入射光の
電界ベクトルの方向に対して、入射光の電界ベクトルの
方向と半波長板の結晶主軸のなす角度θの2倍の角度2
θをなす。このため、半波長板を連続して回転させた場
合には、出射光は半波長板の回転角の2倍の回転角度分
だけ方向が同じ向きに偏光面が回転する。直線偏光した
光を偏光板や偏光ビームスプリッタ等のポラライザを透
過させると、透過光の強度を入射光の偏光面の方向によ
って制御できる。このため、偏光面の方向を連続して回
転させてポラライザを透過させることにより、変調度が
ほぼ100%の光強度の変調を行なうことができる。ところ
で、半波長板を連続して回転させるには、モーター等の
動力源を用いて半波長板を設置した治具を回転させる方
法をとる。たとえば図2のような構成が考えられる。こ
のときの半波長板の回転速度は、モーター等の動力源の
仕様および、ギアやプーリー、ベルト等の動力伝達機構
の構成や、半波長板を設置した治具の回転トルク、許容
回転速度等の諸条件により制限を受ける。このため、偏
光面の回転速度も制限されるため、より高速な偏光面の
回転を実現するには、半波長板の回転装置の許容回転速
度を上げる必要があった。2. Description of the Related Art Generally, a light source that emits linearly polarized laser light has a Brewster window arranged at the exit end, and a light wave having an electric field oscillation direction parallel to the plane of incidence at the Brewster window is generated. Is emitted. The plane of polarization of linearly polarized light is specified as the plane perpendicular to the vibration direction of the electric field component of the light wave, and as a method of rotating this, the Brewster window alone or the method of rotating the entire device is the principle. However, this is not generally done because of output stability problems and convenience. As a general method for rotating the plane of polarization, as shown in FIG. 1, a half-wave plate is rotated about a normal vector passing through the center of the wave plate as an axis, and linearly polarized laser light is propagated with this rotation axis. There is a method of making the light incident in the same direction. In the half-wave plate, a phase difference of π is given between the electric field component in the direction parallel to the crystal main axis of the half-wave plate and the electric field component in the direction perpendicular to the electric field vector of the incident light to transmit the light. As a result, the direction of the electric field vector of the light transmitted through the half-wave plate is twice the angle θ between the direction of the electric field vector of the incident light and the crystal main axis of the half-wave plate with respect to the direction of the electric field vector of the incident light. Angle 2
form θ. Therefore, when the half-wave plate is continuously rotated, the polarization plane of the emitted light rotates in the same direction by a rotation angle that is twice the rotation angle of the half-wave plate. When the linearly polarized light is transmitted through a polarizer such as a polarizing plate or a polarization beam splitter, the intensity of the transmitted light can be controlled by the direction of the plane of polarization of the incident light. Therefore, by continuously rotating the direction of the polarization plane and transmitting the light through the polarizer, it is possible to modulate the light intensity with a modulation degree of almost 100%. By the way, in order to continuously rotate the half-wave plate, a method of rotating a jig provided with the half-wave plate using a power source such as a motor is adopted. For example, a configuration as shown in FIG. 2 can be considered. The rotation speed of the half-wave plate at this time is the specifications of the power source such as the motor, the configuration of the power transmission mechanism such as gears, pulleys, and belts, the rotation torque of the jig with the half-wave plate installed, and the allowable rotation speed. Limited by the conditions of. For this reason, the rotation speed of the polarization plane is also limited. Therefore, in order to realize a faster rotation of the polarization plane, it is necessary to increase the allowable rotation speed of the half-wave plate rotating device.
【0003】[0003]
【発明が解決しようとする課題】解決しようとする問題
点は、レーザ光の偏光面をより高速に回転させるという
点にある。The problem to be solved is to rotate the plane of polarization of laser light at a higher speed.
【0004】[0004]
【課題を解決するための手段】直線偏光をしているレー
ザ光に対して、半波長板をレーザ光の伝搬方向を軸とし
て回転させる半波長板回転装置2台を順に配置し、初段
と次段の回転装置の回転方向を逆向きにして回転させ、
レーザ光を透過させる。[Means for Solving the Problems] Two half-wave plate rotating devices for rotating a half-wave plate about the propagation direction of the laser light with respect to a linearly polarized laser light are sequentially arranged. Rotate the stage rotation device in the opposite direction,
Allows laser light to pass through.
【0005】[0005]
【作用】初段の半波長板回転装置を出た光の偏光面は、
初段回転装置の回転速度の2倍の回転速度で回転する。
この偏光面の回転方向に対して逆方向に次段の半波長板
を回転させ、次段での入射光偏光面と波長板結晶主軸と
の相対的な回転角を大きくする。そうすると、2台の波
長板回転装置を透過した光の偏光面を、初段と次段の回
転速度の和の2倍の回転速度で回転させることができ
る。[Operation] The polarization plane of the light emitted from the first half-wave plate rotation device is
It rotates at twice the rotation speed of the first-stage rotation device.
The half-wave plate of the next stage is rotated in the direction opposite to the direction of rotation of the polarization plane, and the relative rotation angle between the polarization plane of the incident light and the crystal plate main axis of the next stage is increased. Then, the polarization plane of the light transmitted through the two wave plate rotating devices can be rotated at a rotation speed twice as high as the sum of the rotation speeds of the first stage and the second stage.
【0006】[0006]
【実施例】偏光面回転速度増倍装置の全体的な構成とし
ては、図3のように、直線偏光をしているレーザ光に対
して、半波長板をレーザ光の伝搬方向を軸として回転さ
せる波長板回転装置2台を順に配置し、初段と次段の回
転装置の回転方向を逆向きにする。EXAMPLE As a general construction of a polarization plane rotation speed multiplier, as shown in FIG. 3, a half-wave plate is rotated about a laser light propagation direction with respect to linearly polarized laser light. The two wave plate rotating devices to be arranged are sequentially arranged, and the rotation directions of the first-stage rotating device and the second-stage rotating device are reversed.
【0007】図4に、初段の半波長板での光波の電界ベ
クトルの変化の様子を示す。ここでは、簡単のために入
射光の電界ベクトルを鉛直方向にとる。この電界ベクト
ルを、鉛直方向を Y軸、水平方向を X軸にとり、ベルト
ル成分 EyとEx として数式1のように表す。ここで I
は入射光の電界強度である。FIG. 4 shows how the electric field vector of the light wave changes in the first half-wave plate. Here, for simplicity, the electric field vector of the incident light is taken in the vertical direction. This electric field vector is expressed as Equation 1 as Bertrel components Ey and Ex, where the vertical direction is the Y axis and the horizontal direction is the X axis. Where I
Is the electric field strength of the incident light.
【0008】[0008]
【数1】Ey = I Ex = 0[Equation 1] Ey = I Ex = 0
【0009】波長板の結晶主軸は波長板の面内にあり、
図4に示すように結晶主軸と入射光の電界ベクトルとの
なす角度をθとおく。半波長板では、前述のように入射
光の電界ベクトルのうち、結晶主軸と平行な方向の電界
成分Ey1iと垂直な方向の電界成分Ex1iの間にπの位相差
を与えて透過させる。この位相差πの正負は各半波長板
によって異なる。Ey1iとEx1iは数式2で表せることがで
き、透過光の結晶主軸と平行な方向の電界成分Ey1oと垂
直な方向の電界成分Ex1oは数式3となる。入射光と透過
光の電界ベクトルは図4のようになり、これらの電界ベ
クトルは2θの角度をなすことから、入射光と透過光の
偏光面は2θの角度をなすことになる。この角度θは波
長板の回転と伴に変化し、透過光の偏光面の回転速度は
波長板の回転の2倍の値となる。The crystal major axis of the wave plate lies in the plane of the wave plate,
As shown in FIG. 4, the angle formed by the crystal main axis and the electric field vector of the incident light is set to θ. In the half-wave plate, as described above, of the electric field vector of the incident light, a phase difference of π is given between the electric field component Ey1i in the direction parallel to the crystal main axis and the electric field component Ex1i in the direction perpendicular to the crystal main axis to transmit the light. The positive / negative of this phase difference π differs depending on each half-wave plate. Ey1i and Ex1i can be expressed by Equation 2, and the electric field component Ey1o in the direction parallel to the crystal principal axis of the transmitted light and the electric field component Ex1o in the direction perpendicular to the crystal main axis are Equation 3. The electric field vectors of the incident light and the transmitted light are as shown in FIG. 4, and since these electric field vectors form an angle of 2θ, the polarization planes of the incident light and the transmitted light form an angle of 2θ. This angle θ changes with the rotation of the wave plate, and the rotation speed of the plane of polarization of the transmitted light is twice the rotation of the wave plate.
【0010】[0010]
【数2】Ey1i = I cosθ Ex1i = -I sinθ[Equation 2] Ey1i = I cos θ Ex1i = -I sin θ
【0011】[0011]
【数3】Ey1o = I cosθ Ex1o = I sinθ[Equation 3] Ey1o = I cos θ Ex1o = I sin θ
【0012】つぎに、次段の半波長板回転装置では、初
段を透過して偏光面が回転している光波に対して、偏光
面の回転方向と逆方向に半波長板を回転させる。図5に
次段半波長板での光波の電界ベクトルの変化の様子を示
す。図5のように、次段波長板の結晶主軸と鉛直方向と
のなす角度をφとおく。初段と同様に、次段波長板の結
晶主軸を基準とした、入射光と透過光の電界成分をそれ
ぞれEy2i,Ey2i,Ey2o,Ex2oとおくと、数式4,5のように
表すことができる。それらの電界ベクトルは図5に示さ
れ、次段波長板透過光の電界ベクトルと結晶主軸のなす
角度はφ+2θとなる。従って、次段波長板透過光の電界
ベクトルは、鉛直方向を向いた初段へ入射するレーザ光
の電界ベクトルに対して2φ+2θの角度をなす。よっ
て、2台の波長板回転装置を回転させるとφとθは時間
とともに変化し、透過光の偏光面は各回転装置の回転速
度の和の2倍の速度で回転する。Next, in the half-wave plate rotating device of the next stage, the half-wave plate is rotated in the direction opposite to the direction of rotation of the polarization plane with respect to the light wave transmitted through the first stage and having the polarization plane rotated. FIG. 5 shows how the electric field vector of the light wave changes in the next half-wave plate. As shown in FIG. 5, the angle formed by the crystal main axis of the next wave plate and the vertical direction is set to φ. As in the case of the first stage, when the electric field components of the incident light and the transmitted light with respect to the crystal main axis of the second-stage wave plate are set as Ey2i, Ey2i, Ey2o, and Ex2o, respectively, they can be expressed as Formulas 4 and 5. These electric field vectors are shown in FIG. 5, and the angle formed by the electric field vector of the light transmitted through the next wave plate and the crystal main axis is φ + 2θ. Therefore, the electric field vector of the light transmitted through the second-stage wave plate forms an angle of 2φ + 2θ with respect to the electric field vector of the laser light that is incident on the first stage in the vertical direction. Therefore, when two wave plate rotating devices are rotated, φ and θ change with time, and the polarization plane of the transmitted light rotates at a speed twice the sum of the rotating speeds of the rotating devices.
【0013】[0013]
【数4】Ey2i = I cos(2θ+φ) Ex2i = I sin(2θ+φ)[Equation 4] Ey2i = I cos (2θ + φ) Ex2i = I sin (2θ + φ)
【0014】[0014]
【数5】Ey2o = I cos(2θ+φ) Ex2o = -I sin(2θ+φ)[Equation 5] Ey2o = I cos (2θ + φ) Ex2o = -I sin (2θ + φ)
【0015】[0015]
【発明の効果】本発明の偏光面回転速度増倍装置は、直
線偏光をしているレーザ光源と半波長板の中心を軸とし
て回転させる装置2台と極めて簡素な構成で、これま
で、半波長板の回転装置の許容回転数で制限されていた
偏光面の回転速度をより高速にすることができる。The polarization plane rotation speed multiplying device of the present invention has a very simple structure including a linearly polarized laser light source and two devices for rotating about the center of a half-wave plate. The rotation speed of the polarization plane, which was limited by the permissible rotation speed of the rotation device for the wave plate, can be increased.
【0016】本発明の偏光面回転速度増倍装置の原理を
応用して、半波長板の回転装置を3台以上の多段にして
用いると、さらに高速に偏光面を回転させることができ
る。次段以降の回転装置の回転方向を前段の回転装置と
逆方向にし、各波長板に入射する光波の偏光面の回転方
向に対して逆向きにする。そのように設定すると、最終
段の透過光の偏光面を各装置の回転速度の和の2倍の回
転速度で回転させることができる。By applying the principle of the polarization plane rotation speed multiplying device of the present invention and using three or more half-wave plate rotation devices in multiple stages, the polarization plane can be rotated at a higher speed. The rotation direction of the rotation device of the next stage and thereafter is opposite to that of the rotation device of the previous stage, and is opposite to the rotation direction of the polarization plane of the light wave incident on each wave plate. With this setting, the polarization plane of the transmitted light at the final stage can be rotated at a rotation speed twice the sum of the rotation speeds of the devices.
【0017】偏光面回転速度増倍装置の利用方法とし
て、直線偏光した信号光とランダムに偏光した背景雑音
光との分離が考えられる。信号光と背景雑音光が入交じ
った光を偏光面回転速度増倍装置に通し、信号光の偏光
面を高速に回転させる。その透過光をポラライザに通す
と、信号光のみを偏光面の回転速度に応じた周波数で強
度変調できる。そして、フォトダイオード等で光電変換
された後に、その周波数の信号だけを検出すれば、不要
な帯域の検出器の雑音を除去し、かつ背景光を除いた信
号光のみの検出を行なうことができる。ここで、偏光面
回転速度増倍装置を用いることにより偏光面の回転速度
を増加させて検出の周波数を上げることができ、所望の
検出周波数を設定することができる。As a method of using the polarization plane rotation speed multiplier, separation of linearly polarized signal light and randomly polarized background noise light can be considered. Light in which signal light and background noise light are mixed is passed through a polarization plane rotation speed multiplier, and the polarization plane of signal light is rotated at high speed. When the transmitted light is passed through the polarizer, only the signal light can be intensity-modulated at a frequency according to the rotation speed of the polarization plane. Then, after photoelectrically converting with a photodiode or the like, if only the signal of that frequency is detected, the noise of the detector in the unnecessary band can be removed and only the signal light excluding the background light can be detected. . Here, by using the polarization plane rotation speed multiplier, the rotation speed of the polarization plane can be increased to raise the detection frequency, and a desired detection frequency can be set.
【0018】この偏光面回転速度増倍装置は、半波長板
の有効径の範囲内のビーム幅のレーザ光に対して偏光面
の回転を摘要できるため、電気光学効果や音響光学効果
を用いた光の強度変調方式と比較してより大きなビーム
径の光に対応でき、大きなビームの光に対してそのまま
強度変調を行なったり、エネルギー密度の高い光に対し
てはビーム径を拡大して行なうことができる。This polarization plane rotation speed multiplier uses the electro-optic effect or the acousto-optic effect because it can rotate the polarization plane for a laser beam having a beam width within the range of the effective diameter of the half-wave plate. Compared to the light intensity modulation method, it can handle light with a larger beam diameter, and directly perform intensity modulation on a large beam of light, or expand the beam diameter for light with a high energy density. You can
【図1】半波長板を用いた光の偏光面の回転の原理図で
ある。FIG. 1 is a principle diagram of rotation of a plane of polarization of light using a half-wave plate.
【図2】半波長板回転を回転させる装置の斜視図であ
る。FIG. 2 is a perspective view of an apparatus for rotating a half-wave plate rotation.
【図3】偏光面回転速度増倍装置の原理図である。FIG. 3 is a principle diagram of a polarization plane rotation speed multiplier.
【図4】偏光面回転速度増倍装置の初段の半波長板での
入射光と透過光の電界ベクトルを表した図である。FIG. 4 is a diagram showing electric field vectors of incident light and transmitted light at the first half-wave plate of the polarization plane rotation speed multiplier.
【図5】偏光面回転速度増倍装置の次段の半波長板での
入射光と透過光の電界ベクトルを表した図である。FIG. 5 is a diagram showing electric field vectors of incident light and transmitted light in a half-wave plate at the next stage of a polarization plane rotation speed multiplier.
1 入射光 2 入射光の電界ベクトル 3 半波長板 4 透過光の電界ベクトル 5 半波長板回転を回転させる装置 6 初段の半波長板回転装置 7 次段の半波長板回転装置 8 半波長板の結晶主軸の方向 9 初段透過光の電界ベクトル 10 次段透過光の電界ベクトル θ 半波長板の結晶主軸と入射光の電界ベクトルのなす
角度 φ 次段の半波長板の結晶主軸が鉛直方向となす角度 I 入射光の電界強度 Ey 入射光の鉛直方向の電界成分 Ex 入射光の水平方向の電界成分 Ey1i 初段波長板での入射光の波長板結晶主軸と平行な
方向の電界成分 Ex1i 初段波長板での入射光の波長板結晶主軸と垂直な
方向の電界成分 Ey1o 初段波長板での透過光の波長板結晶主軸と平行な
方向の電界成分 Ex1o 初段波長板での透過光の波長板結晶主軸と垂直な
方向の電界成分 Ey2i 次段波長板での入射光の波長板結晶主軸と平行な
方向の電界成分 Ex2i 次段波長板での入射光の波長板結晶主軸と垂直な
方向の電界成分 Ey2o 次段波長板での透過光の波長板結晶主軸と平行な
方向の電界成分 Ex2o 次段波長板での透過光の波長板結晶主軸と垂直な
方向の電界成分1 incident light 2 electric field vector of incident light 3 half-wave plate 4 electric field vector of transmitted light 5 device for rotating half-wave plate 6 first half-wave plate rotating device 7 next-stage half-wave plate rotating device 8 half-wave plate Direction of crystal principal axis 9 Electric field vector of first stage transmitted light 10 Electric field vector of second stage transmitted light θ Angle between crystal principal axis of half-wave plate and electric field vector of incident light φ Crystal principal axis of next half-wave plate is vertical Angle I Electric field intensity of incident light Ey Vertical electric field component of incident light Ex Horizontal electric field component of incident light Ey1i Wave plate of incident light at the first-stage wave plate Electric field component parallel to crystal main axis Ex1i At first-stage wave plate Electric field component of incident light in the direction perpendicular to the waveplate crystal main axis Ey1o Electric field component of transmitted light in the first-stage waveplate parallel to the waveplate crystal main axis Ex1o Perpendicular to the waveplate crystal main axis of transmitted light in the first-stage waveplate Field component in different directions Ey2i Next-stage wave Wave plate of incident light on the plate Electric field component parallel to the principal axis of the crystal Ex2i Wave plate of incident light on the second-stage wave plate Electric field component perpendicular to the crystal main axis Ey2o Wave plate of transmitted light on the second-stage wave plate Electric field component in the direction parallel to the crystal main axis Ex2o Wave plate of transmitted light in the next-stage wave plate Electric field component in the direction perpendicular to the crystal main axis
Claims (1)
半波長板を光の伝搬方向を軸として回転させる半波長板
回転装置2台を順に配置し、初段と次段の回転装置の回
転方向を逆向きにしてレーザ光を透過させることによ
り、透過した光の偏光面を回転させる装置。1. A linearly polarized laser beam,
Two half-wave plate rotating devices that rotate the half-wave plate about the light propagation direction are arranged in order, and the laser light is transmitted by making the rotation directions of the first-stage rotation device and the next-stage rotation device opposite to each other. A device that rotates the plane of polarization of light.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24251792A JP2500346B2 (en) | 1992-08-20 | 1992-08-20 | Polarization plane rotation speed multiplier |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24251792A JP2500346B2 (en) | 1992-08-20 | 1992-08-20 | Polarization plane rotation speed multiplier |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH07151982A JPH07151982A (en) | 1995-06-16 |
| JP2500346B2 true JP2500346B2 (en) | 1996-05-29 |
Family
ID=17090287
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP24251792A Expired - Lifetime JP2500346B2 (en) | 1992-08-20 | 1992-08-20 | Polarization plane rotation speed multiplier |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2500346B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ATE283140T1 (en) * | 2001-11-06 | 2004-12-15 | Raylase Ag | METHOD AND DEVICE FOR CONTROLLING LASER BEAM ENERGY |
| WO2003073052A1 (en) * | 2002-02-27 | 2003-09-04 | Sumitomo Electric Industries, Ltd. | Optical signal processor |
| JP4750613B2 (en) * | 2006-04-21 | 2011-08-17 | 富士通株式会社 | Polarization scrambler, optical add / drop device, optical path switching device, and wavelength division multiplexing optical transmission system |
-
1992
- 1992-08-20 JP JP24251792A patent/JP2500346B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH07151982A (en) | 1995-06-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3324295A (en) | Frequency modulation discriminator for optical signals | |
| WO1994027183A1 (en) | Frequency-converting laser system and power control therefor | |
| JPS596519B2 (en) | laser gyroscope | |
| CN105576495B (en) | Residual amplitude modulation stabilising arrangement based on angle of wedge electro-optic crystal | |
| JP2500346B2 (en) | Polarization plane rotation speed multiplier | |
| US3356438A (en) | Light modulator employing multiplereflective light path | |
| Alippi et al. | Incidence angle and polarization dependence of light diffracted by acoustic surface waves | |
| US3982817A (en) | Collinear acousto-optical tunable filter and acousto-optically tunable laser | |
| CN105549230A (en) | Terahertz circularly polarized light generating method based on narrow-band semiconductor indium antimonide | |
| JPH11271698A (en) | Polarization scrambler | |
| US3402002A (en) | 45deg. cut low voltage optical modulator | |
| CN114035338A (en) | Device and method for generating mixed-order Poincare light beam | |
| US7012739B2 (en) | Double-pass polarization-independent signal processor and on-axis processing method | |
| GB1358671A (en) | Method and apparatus for control of light transmission through an anisotropic medium | |
| US4514056A (en) | Acoustically tuned optical filter system | |
| US3767286A (en) | Acousto-optic filter having means for damping acoustic resonances | |
| CN115542565B (en) | 90-degree space optical mixer insensitive to polarization | |
| CN115437160B (en) | Polarization insensitive space optical mixer | |
| US3437399A (en) | Solid-state crystal optical modulator | |
| US5500729A (en) | Magneto-optical arrangement for laser radar | |
| US3484151A (en) | A nonreciprocal optical device employing birefringent elements with rotating birefringent axes | |
| RU2613943C1 (en) | Acousto-optic polarization transformer of laser radiation (versions) | |
| CN115016133B (en) | Novel carrier modulation pulse generation device and method | |
| JPH09197302A (en) | Light intensity control device | |
| Bagini et al. | Change of energy of photons passing through rotating anisotropic elements |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| EXPY | Cancellation because of completion of term |