[go: up one dir, main page]

JP2502411B2 - Heat storage device and anticorrosion method thereof - Google Patents

Heat storage device and anticorrosion method thereof

Info

Publication number
JP2502411B2
JP2502411B2 JP3022404A JP2240491A JP2502411B2 JP 2502411 B2 JP2502411 B2 JP 2502411B2 JP 3022404 A JP3022404 A JP 3022404A JP 2240491 A JP2240491 A JP 2240491A JP 2502411 B2 JP2502411 B2 JP 2502411B2
Authority
JP
Japan
Prior art keywords
inhibitor
heat storage
storage device
storage medium
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3022404A
Other languages
Japanese (ja)
Other versions
JPH04260794A (en
Inventor
和利 伊藤
雅彦 伊藤
紀之 大中
康雄 小関
明洋 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3022404A priority Critical patent/JP2502411B2/en
Publication of JPH04260794A publication Critical patent/JPH04260794A/en
Application granted granted Critical
Publication of JP2502411B2 publication Critical patent/JP2502411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷暖房用の蓄熱装置およ
びその防食方法に関し、特に高温濃厚ハロゲン化物水溶
液を主体とする蓄熱媒体を用いた蓄熱装置における、金
属材料の腐食を防止する手段及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage device for cooling and heating and a method of preventing corrosion thereof, and more particularly to a heat storage device using a heat storage medium mainly composed of a high temperature concentrated halide aqueous solution, and means and method for preventing corrosion of a metal material. Regarding

【0002】[0002]

【従来の技術】蓄熱装置としては、例えば実開昭62-346
69号公報に示されるような、濃厚ハロゲン化物水溶液の
濃縮、希釈による水和熱を利用する濃度差利用方式が、
操作温度、出力温度を任意に設定できることから、今日
きわめて有効な手段となってきている。この種の蓄熱装
置は、水を冷媒とし、濃いハロゲン化物水溶液を蓄熱媒
体として利用しており、特に蓄熱媒体としては経済性と
蓄熱密度の点から臭化リチウムや塩化カルシウムなどの
ハロゲン化物水溶液が単独あるいは混合して用いられ
る。
2. Description of the Related Art As a heat storage device, for example, the actual development of Sho 62-346
As disclosed in Japanese Patent Publication No. 69, a concentration difference utilization method utilizing the heat of hydration by concentration and dilution of a concentrated halide aqueous solution,
Since the operating temperature and output temperature can be set arbitrarily, it has become an extremely effective means today. This type of heat storage device uses water as a refrigerant and a concentrated halide aqueous solution as a heat storage medium. Particularly, as the heat storage medium, an aqueous halide solution such as lithium bromide or calcium chloride is used from the viewpoint of economy and heat storage density. Used alone or as a mixture.

【0003】これらの水溶液は元来強腐食性であり、蓄
熱装置の通常の運転条件下である高温(120℃)、濃厚
(55wt%)溶液になるとその腐食性は格段と激しくな
る。そこで、従来、蓄熱媒体中に無機系のクロム酸塩、
硝酸塩、モリブデン酸塩あるいは有機系のベンゾトリア
ゾールなどのインヒビタを添加して、蓄熱装置の防食を
図っている。
These aqueous solutions are strongly corrosive in nature, and their corrosiveness becomes remarkably high at a high temperature (120 ° C.) and concentrated (55 wt%) solution which is a normal operating condition of a heat storage device. Therefore, conventionally, an inorganic chromate in the heat storage medium,
Inhibitors such as nitrates, molybdates, and organic benzotriazole are added to prevent corrosion of the heat storage device.

【0004】[0004]

【発明が解決しようとする課題】これら、従来のインヒ
ビタは水に対する溶解度が元来それ程大きくないのに加
え、蓄熱媒体は濃厚ハロゲン化物水溶液であるため溶解
度が一般に小さい。その上、蓄熱装置内では媒体の温度
が低く、濃度の高い媒体槽における溶解度で装置全体の
インヒビタ濃度が決められてしまうため、このインヒビ
タの添加濃度は極めて小さいという問題があった。
The solubility of these conventional inhibitors in water is not so high originally, and in addition, the heat storage medium is a concentrated halide aqueous solution, so that the solubility is generally low. Moreover, since the temperature of the medium is low in the heat storage device and the concentration of the inhibitor in the entire device is determined by the solubility in the medium tank having a high concentration, there is a problem that the concentration of the added inhibitor is extremely small.

【0005】また、これらのインヒビタは有機系では金
属材料に対して難溶性の化合物皮膜を、無機系では金属
材料表面に不働態皮膜を形成することにより腐食を抑制
する。そのため、循環系統中のインヒビタは消耗し、時
間の経過と共に次第に腐食を抑制する能力が低下する。
したがって蓄熱装置のインヒビタの管理が必要となる
が、装置内部が減圧状態でかつ全密閉構造であるため、
簡単には試料採取ができず、運転を一時停止した状態で
採取し化学分析などによりインヒビタの濃度を調査をし
ているが、この方法では、一時的に低圧状態が破られ、
酸素の侵入による腐食の進行などが起こることから、頻
繁にインヒビタの補給をしなければならず、その試料採
取の煩しさとともに補給方法自体が問題になっていた。
Further, these inhibitors suppress corrosion by forming a compound film that is hardly soluble in a metal material in an organic system and a passive film on the surface of a metal material in an inorganic system. Therefore, the inhibitors in the circulation system are consumed, and the ability to suppress corrosion gradually decreases with the passage of time.
Therefore, it is necessary to manage the inhibitor of the heat storage device, but since the inside of the device is in a depressurized state and has a fully sealed structure,
Sampling cannot be done easily, and the concentration of inhibitor is investigated by chemical analysis etc. with the operation temporarily stopped, but this method temporarily breaks the low pressure state,
Since the progress of corrosion due to the invasion of oxygen occurs, it has been necessary to replenish the inhibitor frequently, and the replenishment method itself has been a problem along with the troublesome sampling.

【0006】また,吸収式冷凍機では、インヒビタ管理
法として腐食による系内の圧力変化を測定し、インヒビ
タ濃度を検知してインヒビタの濃度管理をする方法(特
開昭52−37257号公報)および腐食による発生水
素量を測定し、その水素量によりインヒビタ濃度を検知
してインヒビタ濃度を維持する方法(特開昭52−46
552号公報)などが知られている。しかし、いずれも
操作が煩雑でインヒビタの添加時期の正確さにかけるこ
とは否めない。
Further, in the absorption refrigerator, as a method for controlling the inhibitor, a method of measuring the pressure change in the system due to corrosion and detecting the inhibitor concentration to control the inhibitor concentration (Japanese Patent Laid-Open No. 52-37257) and A method of measuring the amount of hydrogen generated by corrosion, detecting the inhibitor concentration based on the amount of hydrogen, and maintaining the inhibitor concentration (JP-A-52-46).
No. 552) is known. However, it is undeniable that the operation is complicated and the accuracy of the inhibitor addition timing is limited.

【0007】本発明の目的は、上記した従来技術の欠点
をなくし、蓄熱装置への腐食抑制を安定してかつ長期に
維持することのできる、簡便でしかも安価な連続的イン
ヒビタの供給手段およびそのための方法を提供すること
にある。
An object of the present invention is to provide a simple and inexpensive continuous inhibitor supply means capable of eliminating the above-mentioned drawbacks of the prior art and maintaining stable corrosion control for a heat storage device for a long period of time. Is to provide a method.

【0008】[0008]

【課題を解決するための手段】通常、濃縮器内ではシス
テム上、濃縮時に高温(120℃)、希釈時に低温(30℃)
の温度サイクルを繰り返す。従って、高温時に防食に十
分な量のインヒビタを添加しても、低温時になるとイン
ヒビタの溶解度が不足し、余分なインヒビタの沈澱物が
生じる。これらの点から、高温状態でも満足する防食効
果を有し、かつ低温での溶解度も満足するインヒビタの
添加濃度を見い出すことが必要である。また、一般に、
蓄熱装置内において、蓄熱媒体に対するインヒビタの溶
解量は媒体の濃度および温度により決定される。また、
装置内における媒体中のインヒビタは金属材料の腐食抑
制のため被膜を形成し消耗する。この消耗分を連続的に
補給し、初期のインヒビタ濃度を維持する必要がある。
[Means for solving the problems] Normally, in the concentrator, due to the system, high temperature (120 ° C) during concentration and low temperature (30 ° C) during dilution
Repeat the temperature cycle of. Therefore, even if the inhibitor is added in an amount sufficient for anticorrosion at a high temperature, the solubility of the inhibitor becomes insufficient at a low temperature, and an extra inhibitor precipitate is generated. From these points, it is necessary to find out the addition concentration of the inhibitor which has a satisfactory anticorrosive effect even in a high temperature state and a solubility in a low temperature. Also, in general,
In the heat storage device, the amount of inhibitor dissolved in the heat storage medium is determined by the concentration and temperature of the medium. Also,
The inhibitor in the medium in the apparatus forms a film and is consumed to suppress the corrosion of the metal material. It is necessary to continuously replenish this depleted portion and maintain the initial inhibitor concentration.

【0009】本発明者らは、上記のような目的を達成す
るために、種々の実験を行い、次のような知見を得た。
すなわち、蓄熱媒体液として塩化カルシウムと臭化リチ
ウムを混合比1:1、濃度55wt%に調整し、それにイン
ヒビタとしてベンゾトリアゾールを添加して実験を行っ
た。炭素鋼(SS-41)について、120℃で200時間腐食試験
を行い、炭素鋼の腐食量に及ぼすベンゾトリアゾール濃
度の影響を調査した。その結果を図5に示している。な
お、腐食試験は脱気後行い、試験中は大気(酸素)の影
響がないようにした。図から、ベンゾトリアゾール濃度
0.05wt%以下では孔食の発生及び腐食量が大きく、炭素
鋼の腐食にはベンゾトリアゾールの添加濃度が大きく影
響することがわかる。ベンゾトリアゾールを0.05wt%以
上加えることによって、腐食量は2mg/dm2以下となり腐
食抑制効果が顕著であった。
The present inventors conducted various experiments in order to achieve the above-mentioned objects, and obtained the following findings.
That is, an experiment was conducted by adjusting calcium chloride and lithium bromide as a heat storage medium liquid at a mixing ratio of 1: 1 and a concentration of 55 wt%, and adding benzotriazole as an inhibitor thereto. A carbon steel (SS-41) was subjected to a corrosion test at 120 ° C for 200 hours to investigate the effect of benzotriazole concentration on the corrosion amount of carbon steel. The result is shown in FIG. The corrosion test was performed after deaeration so that the atmosphere (oxygen) was not affected during the test. From the figure, the benzotriazole concentration
It can be seen that the occurrence of pitting corrosion and the amount of corrosion are large when the content is 0.05 wt% or less, and that the addition concentration of benzotriazole greatly affects the corrosion of carbon steel. By adding benzotriazole in an amount of 0.05 wt% or more, the amount of corrosion was 2 mg / dm 2 or less, and the effect of suppressing corrosion was remarkable.

【0010】次に、蓄熱媒体に対するベシゾトリアゾー
ルの溶解濃度と温度との関係を調べた。その結果を図6
に示す。図に示されるように、ベンゾトリアゾールの溶
解濃度は媒体の温度が低くなるにつれて減少する。30℃
におけるベンゾトリアゾールの溶解濃度は0.05wt%であ
る。従って、図5及び図6から、蓄熱装置の動作温度で
ある高温側(120℃)で良好な腐食抑制効果を示し、かつ
低温側(30℃)でもインヒビタの余分な沈澱物のできな
いベンゾトリアゾールの添加濃度は0.05wt%であること
がわかる。
Next, the relationship between the dissolved concentration of besisotriazole in the heat storage medium and the temperature was investigated. The result is shown in Figure 6.
Shown in As shown in the figure, the dissolved concentration of benzotriazole decreases as the temperature of the medium decreases. 30 ° C
The dissolved concentration of benzotriazole is 0.05 wt%. Therefore, it can be seen from FIGS. 5 and 6 that the benzotriazole which has a good corrosion inhibiting effect on the high temperature side (120 ° C.), which is the operating temperature of the heat storage device, and does not cause excessive precipitation of inhibitors even on the low temperature side (30 ° C.). It can be seen that the added concentration is 0.05 wt%.

【0011】さらに、蓄熱媒体中のベンゾトリアゾール
の濃度変化を調べた。その結果を図7に示す。温度は 1
20℃で試験した。図から明らかなようにベンゾトリアゾ
ールの濃度は50時間後に 0.025wt%と初期の添加濃度の
約半分に低下し、以後時間の経過と共に徐々に減少する
傾向を示す。ところで、蓄熱装置において最も腐食が激
しいのは、システムの動作温度の高温側で濃縮した蓄熱
媒体にさらされる濃縮器である。濃縮器以外では媒体温
度が低いために、腐食の程度は著しく低下する。従っ
て、高温側での濃縮器の腐食防止がこの種の蓄熱装置で
は最優先する。
Further, changes in the concentration of benzotriazole in the heat storage medium were investigated. FIG. 7 shows the result. Temperature is 1
Tested at 20 ° C. As is clear from the figure, the concentration of benzotriazole was 0.025 wt% after 50 hours, which was about half of the initial concentration and then gradually decreased with the passage of time. By the way, it is the concentrator exposed to the concentrated heat storage medium on the high temperature side of the operating temperature of the system that is most corroded in the heat storage device. Since the medium temperature is low except for the concentrator, the degree of corrosion is significantly reduced. Therefore, prevention of corrosion of the condenser on the high temperature side has the highest priority in this type of heat storage device.

【0012】そこで、前記インヒビタを収納した容器を
蓄熱装置の中で最も媒体温度の低い濃縮槽と熱交換器間
に設置し、この容器を動作温度の低温側温度(30℃)に
保持することにより、一定濃度のインヒビタが常時供給
され、濃縮器の高温における腐食抑制効果あるいは低温
における溶解度も満足しするとともに、運転時間の経過
と共に媒体中のインヒビタが消耗し補給の必要が生じて
も連続的に補給できるので長時間腐食は防止されるとと
もに、特に、インヒビタとして有機系のインヒビタであ
るベンゾトリアゾールを用いた場合には、媒体中に約0.
05wt%添加すると腐食抑制効果及び溶解度の両方を満足
することを見つけ出した。
Therefore, a container accommodating the inhibitor is installed between the concentrating tank having the lowest medium temperature and the heat exchanger in the heat storage device, and the container is kept at the low temperature side (30 ° C.) of the operating temperature. As a result, a constant concentration of inhibitor is constantly supplied, and the corrosion inhibitory effect at high temperature of the concentrator or the solubility at low temperature is satisfied, and even if the inhibitor in the medium is exhausted and needs to be replenished with the lapse of operating time, it can be continuously supplied. Since corrosion can be prevented for a long time because it can be replenished to the medium, especially when benzotriazole, which is an organic type inhibitor, is used as the inhibitor, it is about 0.
It was found that addition of 05 wt% satisfies both corrosion inhibition effect and solubility.

【0013】これらの点に立脚し、さらに、蓄熱装置に
おいてインヒビタが消耗した分だけインヒビタの媒体に
対する溶解度が増えることを知見し、それに基づき、本
発明に到達したものである。すなわち、本発明は、蓄熱
媒体槽および熱交換器を有する密閉循環系の蓄熱装置に
おいて、その蓄熱媒体中のインヒビタ濃度の低下を補う
のに必要な量のインヒビタを自動的かつ連続的に供給し
うるインヒビタ補給装置を蓄熱媒体循環系中に配置した
蓄熱装置、および、蓄熱媒体槽および熱交換器を有する
密閉循環系の蓄熱装置における防食方法であって、イン
ヒビタの消耗量をその消耗分だけ蓄熱媒体に対するイン
ヒビタの溶解度が増えることを利用して、自動的且つ連
続的に補給し、それにより防食に必要な一定のインヒビ
タ濃度を維持しうるようにした、蓄熱装置の防食方法を
開示し、提供する。
Based on these points, it was further found that the solubility of the inhibitor in the medium increases by the amount of the inhibitor consumed in the heat storage device, and based on this, the present invention has been achieved. That is, the present invention, in a heat storage device of a closed circulation system having a heat storage medium tank and a heat exchanger, automatically and continuously supplies an amount of an inhibitor necessary to compensate for the decrease in the inhibitor concentration in the heat storage medium. A method for preventing corrosion in a heat storage device in which a heat inhibitor supply device is arranged in a heat storage medium circulation system, and in a closed circulation system heat storage device having a heat storage medium tank and a heat exchanger, in which the consumption amount of the inhibitor is stored by the consumed amount. Disclosed and provided is an anticorrosion method for a heat storage device, which utilizes the increased solubility of inhibitor in a medium to automatically and continuously replenish and thereby maintain a constant inhibitor concentration necessary for anticorrosion. To do.

【0014】インヒビタ補給装置は、蓄熱媒体槽と熱交
換器間の循環系の一部に設けることは好ましい形態であ
り、また、インヒビタ補給装置には温度制御機構を敷設
し、それによりインヒビタ補給装置を蓄熱装置の動作温
度の低温側温度に制御するようにすることにより、より
目的は達成される。本発明の他の態様として、インヒビ
タ補給装置を蓄熱媒体槽と熱交換器間の循環系の一部に
複数個並列に設けるとともに、蓄熱装置の濃縮器内には
腐食を検知するための検知手段を設け、該検知手段の信
号に基づき、該複数のインヒビタ補給装置を選択的に使
用しうるように構成することもできる。それにより、よ
り長期間にわたるインヒビタの補給が可能となる。
It is preferable that the inhibitor replenishing device is provided in a part of the circulation system between the heat storage medium tank and the heat exchanger, and the inhibitor replenishing device is provided with a temperature control mechanism, whereby the inhibitor replenishing device is provided. By controlling the temperature of the heat storage device to the low temperature side of the operating temperature, the more purpose is achieved. As another aspect of the present invention, a plurality of inhibitor replenishing devices are provided in parallel in a part of the circulation system between the heat storage medium tank and the heat exchanger, and detection means for detecting corrosion in the concentrator of the heat storage device. Alternatively, the plurality of inhibitor replenishing devices can be selectively used based on the signal from the detection means. As a result, the inhibitor can be supplied for a longer period of time.

【0015】いずれの場合にあっても、インヒビタ補給
装置は、不溶解のインヒビタの溶出を防止しかつ腐食性
の固型物を除去するための手段をその内部に有するよう
にすることは実際的である。また、本発明による防食方
法は、蓄熱媒体として塩化カルシウムと臭化リチウムの
混合水溶液を、インヒビタとしてベンゾトリアゾールを
用い、インヒビタの濃度を約0.05wt%として実施するこ
とにより、より有効な効果を得ることができる。
In any case, it is practical for the inhibitor replenishing device to have inside it means for preventing the dissolution of insoluble inhibitors and for removing corrosive solids. Is. Further, the anticorrosion method according to the present invention, by using a mixed aqueous solution of calcium chloride and lithium bromide as a heat storage medium, using benzotriazole as an inhibitor, and carrying out the concentration of the inhibitor at about 0.05 wt%, a more effective effect is obtained. be able to.

【0016】さらに、補給装置内のインヒビタの過飽和
溶液を温度制御し、その温度で溶けうる量のインヒビタ
を防食に必要なインヒビタとして補給するようにするこ
とも、きわめて有効である。なお、本発明では一例とし
て、臭化リチウムと塩化カルシウムの混合水溶液にベン
ゾトリアゾールを添加したが、他に蓄熱媒体として有効
な濃厚ハロゲン化物水溶液及び腐食抑制効果の高い他の
無機系及び有機系のインヒビタを本発明の蓄熱装置に用
いても何らさしつかえない。
Further, it is also extremely effective to control the temperature of the supersaturated solution of the inhibitor in the replenishing device so as to replenish the inhibitor in an amount soluble at that temperature as an inhibitor necessary for corrosion prevention. Incidentally, in the present invention, as an example, benzotriazole was added to a mixed aqueous solution of lithium bromide and calcium chloride, but in addition, a concentrated halide aqueous solution effective as a heat storage medium and other inorganic and organic based highly corrosion-inhibiting effects were used. It does not matter if the inhibitor is used in the heat storage device of the present invention.

【0017】[0017]

【作 用】本発明は、上記のような構成を有するので、
蓄熱装置におけるインヒビタの消耗分は長期間にわたり
自動的かつ連続的に補給される。
[Operation] Since the present invention has the above configuration,
The consumed amount of the inhibitor in the heat storage device is automatically and continuously supplied over a long period of time.

【0018】[0018]

【実施例】以下、本発明に基づく蓄熱装置およびその防
食方法を、幾つかの実施例に従いより詳細に説明する。
図1は本発明を適用した蓄熱装置の系統図である。蓄熱
装置は図に示すように濃縮器1、希釈器2、媒体槽3、
水槽4、及びこれらを結ぶポンプ5、6と熱交換器7、
8から成り立っている。この実施例の蓄熱装置は水を冷
媒とし、濃い臭化リチウムあるいは臭化リチウムと塩化
カルシウムの混合水溶液を媒体として使用する。媒体は
ポンプ5により濃縮器1、熱交換器7及び媒体槽3を循
環する。さらに、システムの動作温度に従い、濃縮器1
内では濃縮、希釈による高温(120℃)及び低温(30℃)
の温度サイクルが繰り返される。この実施例において
は、図3あるいは図4に示される形状のインヒビタ補給
器9が媒体槽3と熱交換器7間に設置されており、イン
ヒビタとしてのベンゾトリアゾールを内部に収容してい
る。
The heat storage device and its anticorrosion method according to the present invention will now be described in more detail with reference to some embodiments.
FIG. 1 is a system diagram of a heat storage device to which the present invention is applied. As shown in the figure, the heat storage device includes a condenser 1, a diluter 2, a medium tank 3,
A water tank 4, pumps 5 and 6 connecting these, and a heat exchanger 7,
It consists of eight. The heat storage device of this embodiment uses water as a refrigerant and concentrated lithium bromide or a mixed aqueous solution of lithium bromide and calcium chloride as a medium. The medium is circulated through the concentrator 1, the heat exchanger 7 and the medium tank 3 by the pump 5. Furthermore, according to the operating temperature of the system, the concentrator 1
Inside, high temperature (120 ℃) and low temperature (30 ℃) due to concentration and dilution
The temperature cycle of is repeated. In this embodiment, an inhibitor replenisher 9 having the shape shown in FIG. 3 or 4 is installed between the medium tank 3 and the heat exchanger 7, and contains benzotriazole as an inhibitor inside.

【0019】この蓄熱装置は次のように作動する。イン
ヒビタ補給器9を作動サイクルの低温側温度(30℃)に
伝熱管14により常時保持することにより、機内における
ベンゾトリアゾール濃度は常時約0.05wt%の一定濃度に
保たれる。この濃度であれば、先に記載した理由によ
り、高温時の腐食抑制効果と低温時の溶解度の両方を満
足する。さらに、運転時間の経過と共に媒体中のインヒ
ビタは消耗し、その濃度が低下して補給の必要が生じて
もインヒビタ補給器9内のインヒビタを過飽和溶液にし
ておくことにより、30℃に溶解し得る量のインヒビタが
常時連続的に補給されることとなり、長期間腐食は防止
される。
This heat storage device operates as follows. By constantly maintaining the inhibitor replenisher 9 at the low temperature side (30 ° C.) of the operation cycle by the heat transfer tube 14, the benzotriazole concentration in the machine is constantly maintained at a constant concentration of about 0.05 wt%. This concentration satisfies both the corrosion inhibition effect at high temperature and the solubility at low temperature for the reasons described above. Further, the inhibitor in the medium is consumed with the lapse of operating time, and even if the concentration of the inhibitor decreases and needs to be replenished, the inhibitor in the inhibitor replenisher 9 can be dissolved at 30 ° C. by keeping it in a supersaturated solution. A certain amount of inhibitor will be constantly replenished, and long-term corrosion will be prevented.

【0020】図2は、本発明の他の実施例を示してい
る。このものにおいては、媒体槽3と熱交換器7との間
の媒体流路中に2個のインヒビタ補給器9、10が並列に
設けられるとともに、各インヒビタ補給器の流入部、流
出部にはバルブ12、13が設けられている。さらに濃縮器
1内には、圧力センサーまたは水素センター等の腐食検
知器11が設けられている。
FIG. 2 shows another embodiment of the present invention. In this case, two inhibitor replenishers 9, 10 are provided in parallel in the medium flow path between the medium tank 3 and the heat exchanger 7, and the inflow and outflow portions of each inhibitor replenisher are Valves 12 and 13 are provided. Further, inside the concentrator 1, a corrosion sensor 11 such as a pressure sensor or a hydrogen center is provided.

【0021】この装置の作動は、次の通りである。通常
は一方のインヒビタ補給器10のバルブ12、13を閉じ、正
規の流路内に位置するインヒビタ補給器9内に媒体を通
すことによって、第1の実施例の場合と同様に常時イン
ヒビタを補給している。インヒビタ補給器9内のインヒ
ビタが消耗し、濃縮器1内に設置した圧力センサーまた
は水素センサーが腐食によって生じる器内の圧力変化ま
たは発生水素量を検知した場合には、手動によりまたは
適宜の自動手段により、インヒビタ補給器9のバルブを
閉じ、もう一方の流路の弁12、13を開いて媒体をインヒ
ビタ補給器10を介して循環させるようにする。すなわ
ち、この実施例にあっては、循環系路に複数のインヒビ
タ補給装置を設けることで、蓄熱装置の運転を休止する
ことなく連続的にかつ長期にわたりインヒビタを補給す
ることができる効果を有する。
The operation of this device is as follows. Normally, the valves 12 and 13 of one of the inhibitor replenishers 10 are closed, and the medium is passed through the inhibitor replenisher 9 located in the regular flow path to constantly replenish the inhibitor as in the case of the first embodiment. are doing. When the inhibitor in the inhibitor replenisher 9 is consumed and the pressure sensor or the hydrogen sensor installed in the concentrator 1 detects the pressure change or the generated hydrogen amount in the container caused by the corrosion, manually or by an appropriate automatic means. Thus, the valve of the inhibitor replenisher 9 is closed and the valves 12 and 13 of the other flow path are opened to circulate the medium through the inhibitor replenisher 10. That is, in this embodiment, by providing a plurality of inhibitor replenishing devices in the circulation path, it is possible to replenish the inhibitor continuously and for a long time without suspending the operation of the heat storage device.

【0022】次に、本発明に用いるインヒビタ補給器の
構成について説明する。図3は、インヒビタ補給器の一
つである充填型インヒビタ補給器を示している。このイ
ンヒビタ補給器9は、内部に伝熱管14を有しておりイン
ヒビタ過飽和溶液15を加熱・冷却することにより温度制
御し、その温度で溶けうるインヒビタの量のみを蓄熱媒
体循環系路内に補給するようになっている。また、イン
ヒビタ補給器内には差圧が生じない程度のメッシュの網
状体16が設けられており、未溶解のインヒビタが系路内
に混入しないようになっている。
Next, the structure of the inhibitor replenisher used in the present invention will be described. FIG. 3 shows a filling type inhibitor replenisher which is one of the inhibitor replenishers. This inhibitor replenisher 9 has a heat transfer tube 14 inside and controls the temperature by heating / cooling the inhibitor supersaturated solution 15, and replenishes only the amount of the inhibitor that can be melted at that temperature into the heat storage medium circulation system passage. It is supposed to do. In addition, the mesh reticulate body 16 is provided in the inhibitor replenisher so as not to generate a differential pressure so that the undissolved inhibitor is not mixed into the system passage.

【0023】図4は、インヒビタ補給器の他の例である
含浸積層型のインヒビタ補給器を示している。このイン
ヒビタ補給器9'は、内部に伝熱管14を有するとともに、
複数層のスポンジなどの含浸材17、17が位置しており、
インヒビタ過飽和溶液15は含浸材17、17中に含浸してい
る。その積層中を蓄熱媒体が通過する。このものにあっ
ても、充填型と同様に伝熱管14でインヒビタ過飽和溶液
を温度制御して、補給するインヒビタ濃度を制御する。
FIG. 4 shows an impregnated laminated inhibitor replenisher which is another example of the inhibitor replenisher. This inhibitor replenisher 9'has a heat transfer tube 14 inside,
There are impregnated materials 17, 17 such as multiple layers of sponge,
The inhibitor supersaturated solution 15 is impregnated in the impregnating materials 17, 17. The heat storage medium passes through the stack. Even in this case, similarly to the filling type, the temperature of the inhibitor supersaturated solution is controlled by the heat transfer tube 14 to control the concentration of the inhibitor to be replenished.

【0024】充填型および含浸積層型のいずれのインヒ
ビタ補給器もその網状体あるいは含浸材が腐食性固形物
を除去する効果を同時に有しており、このようなインヒ
ビタ補給器を用いることによりより一層防食性を向上さ
せることができる。なお、通常の蓄熱装置が必要とする
インヒビタの補給量は、インヒビタ補給器内のインヒビ
タ容量と比べ極めて小さいものであり、定期補充は2年
に一度で十分である。例えば、蓄熱媒体量が1klの場
合、インヒビタとしてベンゾトリアゾール(BTA)を
用いた場合、30℃で溶解しうる量は0.5 gであり、200h
後のインヒビタの消耗量は約1/2 であるので、年間使用
量は、 0.5x2x(8800/200h)=44 g となり、インヒビタ補給器内にベンゾトリアゾールを約
100g過飽和状態で充填しておけば2年間は補充の必要が
ないことがわかる。
In both the filling type and the impregnated laminated type inhibitor replenisher, the mesh or the impregnating material has the effect of removing corrosive solid substances at the same time. The anticorrosion property can be improved. The amount of inhibitor supply required by a normal heat storage device is extremely smaller than the inhibitor capacity in the inhibitor replenisher, and periodic replenishment is sufficient once every two years. For example, when the amount of heat storage medium is 1 kl and benzotriazole (BTA) is used as an inhibitor, the amount that can be dissolved at 30 ° C is 0.5 g, and 200 h
After that, the consumption of the inhibitor is about 1/2, so the annual usage is 0.5x2x (8800 / 200h) = 44 g, and about benzotriazole is stored in the inhibitor supply device.
It can be seen that there is no need to replenish for 2 years if 100g is supersaturated.

【0025】[0025]

【発明の効果】本発明によれば、従来頻雑に蓄熱媒体の
分析及びインヒビタを補給する繁雑さ及び蓄熱性能の低
下などの種々の欠点を解消し、しかも安価で簡便且つ自
動的、連続的に腐食抑制に必要な一定のインヒビタを補
給できることから、腐食のトラブルもなく蓄熱装置の性
能を安定に維持することができ、メンテナンスフリーの
蓄熱装置として信頼性を著しく向上できる。
EFFECTS OF THE INVENTION According to the present invention, various disadvantages such as the frequent analysis of a heat storage medium and the complexity of replenishing an inhibitor and the deterioration of heat storage performance can be solved, and it is inexpensive, simple, automatic and continuous. In addition, since a certain amount of inhibitor necessary for suppressing corrosion can be replenished, the performance of the heat storage device can be stably maintained without any corrosion trouble, and the reliability of the maintenance-free heat storage device can be remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す蓄熱装置の系統図FIG. 1 is a system diagram of a heat storage device showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す蓄熱装置の系統図FIG. 2 is a system diagram of a heat storage device showing another embodiment of the present invention.

【図3】本発明のによるインヒビタ補給器の概略断面図FIG. 3 is a schematic sectional view of an inhibitor supply device according to the present invention.

【図4】本発明による他のインヒビタ補給器の概略断面
FIG. 4 is a schematic sectional view of another inhibitor supply device according to the present invention.

【図5】ベンゾトリアゾール濃度と腐食量の関係を示す
FIG. 5 is a diagram showing the relationship between the benzotriazole concentration and the amount of corrosion.

【図6】温度とベンゾトリアゾール溶解濃度の関係を示
す図
FIG. 6 is a graph showing the relationship between temperature and benzotriazole dissolved concentration.

【図7】時間とベンゾトリアゾール濃度の関係を示す
図。 1・・濃縮器、2・・希釈器、3・・媒体槽、4・・水
槽、5,6・・ポンプ、7,8・・熱交換器、9,10・
・・インヒビタ補給器、11・・腐食検知器、12,13 ・・
バルブ、14・・伝熱管
FIG. 7 is a graph showing the relationship between time and benzotriazole concentration. 1 ... Concentrator, 2 ... Diluter, 3 ... Medium tank, 4 ... Water tank, 5, 6 ... Pump, 7, 8 ... Heat exchanger, 9, 10 ...
..Inhibitor replenisher, 11 ... Corrosion detector, 12,13 ..
Valve, 14 ... Heat transfer tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小関 康雄 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 谷 明洋 茨城県土浦市神立町603番地 株式会社 日立製作所 土浦工場内 (56)参考文献 特開 平4−28889(JP,A) 特開 昭56−110888(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yasuo Ozeki 4026 Kujimachi, Hitachi City, Ibaraki Hitachi, Ltd., Hitachi Research Laboratory (72) Inventor Akihiro Tani 603, Kintatemachi, Tsuchiura City, Ibaraki Hitachi, Ltd. Tsuchiura Plant (56) Reference JP-A-4-28889 (JP, A) JP-A-56-110888 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蓄熱媒体槽及び熱交換器を有する密閉循環
系の蓄熱装置において、蓄熱媒体中のインヒビタ濃度の
低下を補うのに必要な量のインヒビタを自動的かつ連続
的に供給しうるインヒビタ補給装置を、蓄熱媒体循環系
中の前記蓄熱媒体槽と前記熱交換器間の循環系の一部に
設置し、前記インヒビタ補給装置が温度制御機構を備
え、該温度制御機構によって前記インヒビタ補給装置を
蓄熱装置の作動温度の低温側温度に制御することを特徴
とする蓄熱装置。
1. In a heat storage device of a closed circulation system having a heat storage medium tank and a heat exchanger, an inhibitor capable of automatically and continuously supplying an amount of an inhibitor necessary to compensate for a decrease in the inhibitor concentration in the heat storage medium. A replenishing device is installed in a part of the circulation system between the heat storage medium tank and the heat exchanger in the heat storage medium circulation system, and the inhibitor replenishing device includes a temperature control mechanism, and the inhibitor replenishing device is provided by the temperature control mechanism. Is controlled to a low temperature side of the operating temperature of the heat storage device.
【請求項2】インヒビタ補給装置が、蓄熱媒体槽と熱交
換器間の循環系の一部に複数個並列に設けられており、
更に、蓄熱装置の濃縮器内には腐食を検知するための検
知手段が設けられていて、該検知手段の信号に基づき、
前記複数のインヒビタ補給装置を選択的に使用しうるよ
うに構成されていることを特徴とする請求項1記載の蓄
熱装置。
2. A plurality of inhibitor replenishing devices are provided in parallel in a part of the circulation system between the heat storage medium tank and the heat exchanger,
Furthermore, a detecting means for detecting corrosion is provided in the concentrator of the heat storage device, and based on the signal of the detecting means,
The heat storage device according to claim 1, wherein the heat storage device is configured so that the plurality of inhibitor supply devices can be selectively used.
【請求項3】インヒビタ補給装置は、不溶解のインヒビ
タの溶出を防止し、かつ、腐食性の固形物を除去するた
めの手段をその内部に有していることを特徴とする請求
項1又は2記載の蓄熱装置。
3. The inhibitor replenishing device has a means for preventing the insoluble inhibitor from being eluted and for removing corrosive solid matter, inside thereof. The heat storage device according to 2.
【請求項4】蓄熱媒体槽及び熱交換器を有し、インヒビ
タ補給装置を前記蓄熱媒体槽と前記熱交換器間の循環系
の一部に設置し、前記インヒビタ補給装置が温度制御機
構を備え、該温度制御機構によって前記インヒビタ補給
装置を蓄熱装置の作動温度の低温側温度に制御する密閉
循環系の蓄熱装置における防食方法であって、インヒビ
タの消耗量を、その消耗分だけ蓄熱媒体に対するインヒ
ビタの溶解度が増えることを利用して、自動的かつ連続
的に補給し、防食に必要な一定のインヒビタ濃度を維持
しうるようにしたことを特徴とする蓄熱装置の防食方
法。
4. A heat storage medium tank and a heat exchanger, wherein the inhibitor replenishing device is installed in a part of a circulation system between the heat storage medium tank and the heat exchanger, and the inhibitor replenishing device is provided with a temperature control mechanism. A method for preventing corrosion in a heat storage device of a closed circulation system, wherein the inhibitor replenishing device is controlled to a low temperature of an operating temperature of a heat storage device by the temperature control mechanism, wherein an amount of consumption of the inhibitor is the amount of consumption of the inhibitor to the heat storage medium. The method for preventing corrosion of a heat storage device is characterized in that it is possible to maintain the constant inhibitor concentration necessary for corrosion protection by automatically and continuously replenishing it by utilizing the increase in the solubility of.
【請求項5】蓄熱媒体が塩化カルシウムと臭化リチウム
の混合水溶液であり、インヒビタがベンゾトリアゾール
であり、インヒビタ濃度が0.05wt%であることを特徴と
する請求項4記載の蓄熱装置の防食方法。
5. The anticorrosion method for a heat storage device according to claim 4, wherein the heat storage medium is a mixed aqueous solution of calcium chloride and lithium bromide, the inhibitor is benzotriazole, and the inhibitor concentration is 0.05 wt%. .
【請求項6】補給装置内のインヒビタの過飽和溶液を温
度制御し、その温度で溶けうる量のインヒビタを防食に
必要なインヒビタとして補給することを特徴とする請求
項4又は5記載の蓄熱装置の防食方法。
6. The heat storage device according to claim 4, wherein the supersaturated solution of the inhibitor in the replenishing device is temperature-controlled, and an amount of the inhibitor soluble at that temperature is replenished as an inhibitor necessary for corrosion prevention. Anticorrosion method.
JP3022404A 1991-02-15 1991-02-15 Heat storage device and anticorrosion method thereof Expired - Fee Related JP2502411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3022404A JP2502411B2 (en) 1991-02-15 1991-02-15 Heat storage device and anticorrosion method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3022404A JP2502411B2 (en) 1991-02-15 1991-02-15 Heat storage device and anticorrosion method thereof

Publications (2)

Publication Number Publication Date
JPH04260794A JPH04260794A (en) 1992-09-16
JP2502411B2 true JP2502411B2 (en) 1996-05-29

Family

ID=12081729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3022404A Expired - Fee Related JP2502411B2 (en) 1991-02-15 1991-02-15 Heat storage device and anticorrosion method thereof

Country Status (1)

Country Link
JP (1) JP2502411B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225268A (en) * 2006-02-21 2007-09-06 Michiko Yamaguchi Latent heat accumulator provided with heat exchanging function

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821797U (en) * 1981-08-03 1983-02-10 市田 弘司 Cold and hot water treatment equipment for air conditioning

Also Published As

Publication number Publication date
JPH04260794A (en) 1992-09-16

Similar Documents

Publication Publication Date Title
US5342510A (en) Water control system using oxidation reduction potential sensing
US5332494A (en) Water control system using oxidation reduction potential sensing
US7242581B2 (en) Liquid cooling system and an electronic apparatus applying the same therein
US4402912A (en) Device to automatically add a controlled amount of corrosion inhibitor with a change in spring loading
EP0652305B1 (en) Corrosion inhibiting method for closed cooling systems
CA2603426A1 (en) Water treatment and method of water treatment
EP0640747B1 (en) Boiler system pH/phosphate program control method
JP2502411B2 (en) Heat storage device and anticorrosion method thereof
JP5551381B2 (en) Cooling water chemical injection control method and apparatus
Andersen et al. The influence of condensation rate and acetic acid concentration on TOL-Corrosion in multiphase pipelines
CN103451659B (en) Method of inhibiting corrosion in airtight cooling water system
US6379587B1 (en) Inhibition of corrosion in aqueous systems
JPS5956066A (en) Sealing circulation type absorption system refrigerator
US4857222A (en) Absorption type refrigerator and absorbing solution therefor
US5820763A (en) Method for inhibiting corrosion in water systems
JPH0729095B2 (en) Evaporative concentration processing equipment for photographic processing waste liquid
Feitler Cooling water scale control: The scale meter and the critical pH of scaling
JPH0444085B2 (en)
KR20040002888A (en) Method for retarding corrosion of metals in lithium halide solutions
JPH0693479A (en) Cooling device of electronic computer
AU5465199A (en) Inhibition of corrosion in aqueous systems
JP3355025B2 (en) Corrosion inhibitor and solution composition for absorption liquid of absorption heat pump
JP7665399B2 (en) Chiller water composition and method for operating a chiller
US3264138A (en) De-scaling process
JP3389064B2 (en) Water-based anticorrosion agent and anticorrosion method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees