JP2507608B2 - Driving force distribution control device - Google Patents
Driving force distribution control deviceInfo
- Publication number
- JP2507608B2 JP2507608B2 JP16722789A JP16722789A JP2507608B2 JP 2507608 B2 JP2507608 B2 JP 2507608B2 JP 16722789 A JP16722789 A JP 16722789A JP 16722789 A JP16722789 A JP 16722789A JP 2507608 B2 JP2507608 B2 JP 2507608B2
- Authority
- JP
- Japan
- Prior art keywords
- speed difference
- force distribution
- rotational speed
- rotation speed
- rear wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Arrangement And Driving Of Transmission Devices (AREA)
- Transmission Devices (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、四輪駆動車の前後輪駆動力配分制御装置や
左右輪や前後輪の差動制限制御装置等として適用される
駆動力配分制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is applied to a front / rear wheel drive force distribution control device for a four-wheel drive vehicle, a drive force distribution control device applied to left / right wheels, front / rear wheel differential limitation control devices, and the like. Regarding the control device.
(従来の技術) 従来、四輪駆動車の前後輪駆動力配分制御装置として
は、例えば、特開昭61−275028号公報に記載されている
装置が知られている。(Prior Art) Conventionally, as a front-rear wheel driving force distribution control device for a four-wheel drive vehicle, for example, a device described in JP-A-61-275028 is known.
この従来出典には、後輪をエンジン直結駆動輪とし、
前輪をトランスファクラッチを介してエンジン駆動力を
伝達するクラッチ締結駆動輪とし、前後輪回転速度差が
大きい程、前輪側への駆動力配分を増す前後輪駆動力配
分制御装置において、タイヤ径が異なることを原因とし
て前後輪回転速度差が発生する時、動力伝達経路での油
温上昇や内部循環トルクによるパワーロスを抑制する
為、車両の惰走を検出した時の前後輪回転速度差を補正
値として制御前後輪回転速度差を得る技術が示されてい
る。In this conventional source, the rear wheels are engine direct drive wheels,
The front wheel is a clutch engagement drive wheel that transmits the engine drive force via the transfer clutch, and the tire diameter is different in the front and rear wheel drive force distribution control device that increases the drive force distribution to the front wheel side as the difference in front and rear wheel rotation speed increases. When there is a difference between the front and rear wheel rotation speeds due to this, in order to suppress power loss due to oil temperature rise in the power transmission path and internal circulation torque, the front and rear wheel rotation speed difference when the coasting of the vehicle is detected is corrected. A technique for obtaining a control front-rear wheel rotation speed difference is disclosed as.
(発明が解決しようとする課題) しかしながら、このような従来の四輪駆動車の前後輪
駆動力配分制御装置にあっては、車両の惰走検出を前後
輪回転速度差の補正条件としている為、異径タイヤ分の
補正値を正確に求める機会が非常に少ないという問題を
残している。(Problems to be Solved by the Invention) However, in such a conventional front and rear wheel drive force distribution control device for a four-wheel drive vehicle, the coasting detection of the vehicle is used as the correction condition for the front and rear wheel rotation speed difference. However, there remains a problem that there are very few opportunities to accurately obtain correction values for tires of different diameters.
即ち、従来装置では、車両の惰走をトランスミッショ
ンが中立位置で、ブレーキ非作動で、車両直進状態であ
ることにより検出しているが、オートマチックトランス
ミッション搭載車では、走行中にニュートラル位置にす
ることはないし、マニュアルトランスミッション搭載車
でも走行中に長時間にわたり上記直進惰行走行状態が継
続することは稀である。That is, in the conventional device, coasting of the vehicle is detected by the transmission being in the neutral position, the brake not being operated, and the vehicle being in the straight traveling state.However, in the vehicle equipped with the automatic transmission, it is not possible to set the neutral position during traveling. Even in a vehicle equipped with a manual transmission, it is rare that the straight coasting traveling state continues for a long time during traveling.
本発明は、上述のような問題に着目してなされたもの
で、前後輪または左右輪の駆動力配分を外部から制御で
きる駆動力配分制御装置において、異径タイヤ装着時に
は、早期にしかも確実に動力伝達経路部での油温上昇や
内部循環トルクによるパワーロスを抑制することを課題
とする。The present invention has been made in view of the above problems, and in a drive force distribution control device capable of externally controlling the drive force distribution of the front and rear wheels or the left and right wheels, when a tire with a different diameter is mounted, it can be surely early and reliably. It is an object to suppress power loss due to oil temperature rise and internal circulation torque in the power transmission path section.
(課題を解決するための手段) 上記課題を解決するため本発明の駆動力配分制御装置
では、異径タイヤ分の補正値を正確に求める機会を増す
べく、直進走行時であり、且つ、回転速度差微分値が小
であると検出された時に実回転速度差検出値を補正する
手段とした。(Means for Solving the Problems) In order to solve the above problems, in the driving force distribution control device of the present invention, in order to increase the chances of accurately obtaining a correction value for tires of different diameters, it is during straight running and rotation. The means for correcting the actual rotation speed difference detection value when the speed difference differential value is detected to be small.
即ち、第1図のクレーム対応図に示すように、エンジ
ン駆動力の前後輪駆動力配分または左右輪駆動力配分を
外部からの駆動指令により制御可能な可変駆動力配分手
段aと、前後輪または左右輪の実回転速度差を検出する
実回転速度差検出手段bと、直進走行検出手段cと回転
速度差微分値検出手段dにより、直進走行時であり、且
つ、回転速度差微分値が小であると検出された時の実回
転速度差の検出値を不感帯回転速度差として設定する不
感帯回転速度差設定手段eと、前記実回転速度差から前
記不感帯回転速度差を差し引いた値を制御回転速度差と
する制御回転速度差演算手段fと、前記制御回転速度差
に基づいて前記可変駆動力配分手段aを制御する駆動力
配分制御手段gとを備えている事を特徴とする。That is, as shown in the claim correspondence diagram of FIG. 1, the variable driving force distribution means a capable of controlling the front and rear wheel driving force distribution or the left and right wheel driving force distribution of the engine driving force, and the front and rear wheels or The actual rotational speed difference detecting means b for detecting the actual rotational speed difference between the left and right wheels, the straight traveling detecting means c, and the rotational speed difference differential value detecting means d are in straight traveling and the rotational speed difference differential value is small. The dead band rotational speed difference setting means e for setting the detected value of the actual rotational speed difference when it is detected as the dead band rotational speed difference, and the value obtained by subtracting the dead band rotational speed difference from the actual rotational speed difference are controlled to rotate. It is characterized in that it is provided with a control rotational speed difference calculation means f for determining a speed difference and a driving force distribution control means g for controlling the variable driving force distribution means a based on the control rotational speed difference.
(作 用) 車両走行時には、不感帯回転速度差設定手段eにおい
て、直進走行検出手段cと回転速度差微分値検出手段d
により、直進走行時であり、且つ、回転速度差微分値が
小であると検出された時の実回転速度差の検出値が不感
帯回転速度差として設定され、制御回転速度差演算手段
fにおいて、前後輪または左右輪の実回転速度差を検出
する実回転速度差検出手段bによる実回転速度差から前
記不感帯回転速度差を引いた値が制御回転速度差とさ
れ、駆動力配分制御手段gにおいて、制御回転速度差に
基づいて可変駆動力配分手段aに対し制御指令が出力さ
れる。(Operation) When the vehicle is traveling, in the dead zone rotation speed difference setting means e, the straight traveling detection means c and the rotation speed difference differential value detection means d
Thus, the detected value of the actual rotation speed difference when the vehicle is traveling straight and the rotation speed difference differential value is detected to be small is set as the dead zone rotation speed difference, and in the control rotation speed difference calculation means f, A value obtained by subtracting the dead zone rotational speed difference from the actual rotational speed difference detected by the actual rotational speed difference detecting means b for detecting the actual rotational speed difference between the front and rear wheels or the left and right wheels is defined as the control rotational speed difference, and the driving force distribution control means g , A control command is output to the variable driving force distribution means a based on the control rotational speed difference.
従って、異径タイヤを装着しての走行時には、直進走
行時であり、且つ、回転速度差微分値が小であるという
条件を満足したら直ちに不感帯回転速度差が求められる
ことになり、楕行を条件とする場合に比べ異径タイヤ分
の補正値を正確に求める機会が大幅に増す。Therefore, when traveling with different-diameter tires, when the vehicle is traveling straight ahead and the condition that the differential value of the rotational speed difference is small is satisfied, the dead zone rotational speed difference is immediately obtained, and the elliptic curve is achieved. Compared to the case where the condition is set, the chance of accurately obtaining the correction value for the tires with different diameters is significantly increased.
(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.
第2図は、本発明の駆動力配分制御装置を後輪駆動を
ベースにした四輪駆動車の前後輪駆動力配分制御装置に
適用した全体システム図である。FIG. 2 is an overall system diagram in which the driving force distribution control device of the present invention is applied to a front and rear wheel driving force distribution control device for a four-wheel drive vehicle based on rear wheel drive.
構成を説明すると、四輪駆動車のエンジン駆動系は、
エンジン1、トランスミッション2、リヤプロペラシャ
フト3、リヤディファレンシャル4、リヤドライブシャ
フト5、後輪6、トランスファクラッチ7、フロントプ
ロペラシャフト8、フロントディファレンシャル9、フ
ロントドライブシャフト10、前輪11を備えている。Explaining the configuration, the engine drive system of a four-wheel drive vehicle is
The engine 1, the transmission 2, the rear propeller shaft 3, the rear differential 4, the rear drive shaft 5, the rear wheel 6, the transfer clutch 7, the front propeller shaft 8, the front differential 9, the front drive shaft 10, and the front wheel 11 are provided.
即ち、後輪6をエンジン直結駆動輪とし、前輪11をト
ランスファクラッチ7を介してエンジン駆動力を伝達す
るクラッチ締結駆動輪としている。That is, the rear wheels 6 are drive wheels directly coupled to the engine, and the front wheels 11 are clutch engagement drive wheels that transmit the engine drive force via the transfer clutch 7.
前記トランスファクラッチ7は、外部から付与される
クラッチ締結圧PCにより前輪11側への伝達トルク(駆動
力配分)を変更可能な湿式多板摩擦クラッチ構造による
クラッチである。The transfer clutch 7 is a clutch having a wet multi-plate friction clutch structure capable of changing the transmission torque (driving force distribution) to the front wheels 11 side by the clutch engagement pressure P C applied from the outside.
そして、トランスファクラッチ7には、外部装置とし
て、クラッチ締結圧PCを作り出す油圧制御装置20と、ク
ラッチ締結部PCを得る指令を出力する電子制御装置30が
設けられていて、PC=0で前輪11への駆動力配分が零の
後輪駆動状態からPC=PMAXで前後輪6,11の駆動力配分が
ほぼ等しいリジット4輪駆動状態まで駆動力配分を制御
できるように構成されている。The transfer clutch 7 is provided with, as external devices, a hydraulic control device 20 that produces a clutch engagement pressure P C and an electronic control device 30 that outputs a command to obtain the clutch engagement portion P C , and P C = 0. Is configured so that the driving force distribution to the front wheels 11 is zero and the driving force distribution can be controlled from the rear wheel driving state to the rigid four-wheel driving state in which the driving force distributions of the front and rear wheels 6, 11 are almost equal at P C = P MAX. ing.
前記油圧制御装置20には、油圧ポンプ21からのポンプ
圧による作動油を指令電流値ICに応じたクラッチ締結圧
PCに調圧する油圧制御ソレノイドバルブ22を備えてい
る。The hydraulic control device 20 supplies the hydraulic pressure by the pump pressure from the hydraulic pump 21 to the clutch engagement pressure according to the command current value I C.
A hydraulic control solenoid valve 22 for adjusting the pressure to P C is provided.
前記電子制御装置30には、内部回路にマイクロコンピ
ュータや駆動回路等を有するトルクスプリットコントロ
ールユニット31と、該コントロールユニット31での制御
演算に必要な入力情報を得る入力情報手段32とを備えて
いて、入力情報手段32としては、前輪速Nfを検出する前
輪速センサ33、後輪速Nrを検出する後輪速センサ34、横
加速度Ygを検出する横加速度センサ35、操舵角θを検出
する操舵角センサ36等が設けられている。The electronic control unit 30 includes a torque split control unit 31 having an internal circuit such as a microcomputer and a drive circuit, and input information means 32 for obtaining input information necessary for control calculation in the control unit 31. The input information means 32 includes a front wheel speed sensor 33 that detects a front wheel speed Nf, a rear wheel speed sensor 34 that detects a rear wheel speed Nr, a lateral acceleration sensor 35 that detects a lateral acceleration Yg, and a steering wheel that detects a steering angle θ. An angle sensor 36 and the like are provided.
そして、前記トルクスプリットコントロールユニット
31には、前輪速Nfと後輪速Mrとに基づき実前後輪回転速
度差ΔNrealを演算する実前後輪回転速度差演算部と、
横加速度Ygや操舵角θにより直進走行かどうか判断する
直進走行判断部と、前記実前後輪回転速度差ΔNrealの
時間微分により回転速度差微分値Δを演算する回転速
度差微分値演算部と、直進走行時であり、且つ、回転速
度差微分値Δが定速走行と見なせる程度に小である時
の実前後輪回転速度差ΔNrealを不感帯回転速度差ΔN1
として設定する不感帯回転速度差設定部と、実前後輪回
転速度差ΔNrealから不感帯回転速度差ΔN1を差し引い
た値を制御前後輪回転速度差ΔNとする制御回転速度差
演算部と、制御前後輪回転速度差ΔN及び制御定数Ktに
基づいて最適の前輪側伝達トルクTfが得られる指令電流
値ICを油圧制御ソレノイドバルブ22に出力するクラッチ
制御部とを有する。And the torque split control unit
Reference numeral 31 denotes an actual front / rear wheel rotation speed difference calculation unit that calculates an actual front / rear wheel rotation speed difference ΔNreal based on the front wheel speed Nf and the rear wheel speed Mr.
A straight running determination unit that determines whether it is straight running based on the lateral acceleration Yg or the steering angle θ, and a rotation speed difference differential value calculation unit that calculates a rotation speed difference differential value Δ by time differentiation of the actual front and rear wheel rotation speed difference ΔNreal, The dead zone rotational speed difference ΔN 1 is the actual front / rear wheel rotational speed difference ΔN real when the vehicle is traveling straight ahead and the rotational speed difference differential value Δ is small enough to be regarded as constant speed traveling.
The dead band rotational speed difference setting unit, the control rotational speed difference calculation unit that sets the control front and rear wheel rotational speed difference ΔN to a value obtained by subtracting the dead band rotational speed difference ΔN 1 from the actual front and rear wheel rotational speed difference ΔNreal, and the control front and rear wheel And a clutch control unit for outputting to the hydraulic control solenoid valve 22 a command current value I C for obtaining the optimum front wheel side transmission torque T f based on the rotational speed difference ΔN and the control constant Kt.
次に、作用を説明する。 Next, the operation will be described.
第3図は実施例での前後輪駆動力配分制御作動の流れ
を示すフローチャートであり、以下各ステップについて
説明する。FIG. 3 is a flowchart showing the flow of front and rear wheel driving force distribution control operation in the embodiment, and each step will be described below.
ステップ40では、不感帯回転速度差ΔN1が初期値とし
てΔN1=0と設定される。In step 40, the dead zone rotational speed difference ΔN 1 is set to ΔN 1 = 0 as an initial value.
ステップ41では、各センサ33〜36から前輪速Nf,後輪
速Nr,横加速度Yg,操舵角θが読み込まれる。In step 41, the front wheel speed Nf, the rear wheel speed Nr, the lateral acceleration Yg, and the steering angle θ are read from the sensors 33 to 36.
ステップ42では、前輪速Nfと後輪速Nrとから実前後輪
回転速度差ΔNrealが下記の式により演算される。In step 42, the actual front-rear wheel rotation speed difference ΔNreal is calculated from the front wheel speed Nf and the rear wheel speed Nr by the following formula.
ΔNreal=Nr−Nf ステップ43では、前記実前後輪回転速度差ΔNrealの
時間微分により回転速度差微分値Δが下記の式で演算
される。ΔNreal = Nr−Nf At step 43, the rotational speed difference differential value Δ is calculated by the following equation by the time differential of the actual front / rear wheel rotational speed difference ΔNreal.
ステップ44では、直進走行かどうかが判断される。 In step 44, it is determined whether the vehicle is traveling straight ahead.
具体例としては、Yg≦Yg0(Yg0は小さなしきい値)、
且つ、θ≦θ0(θ0は小さなしきい値)やこれらの条
件の一方のみの判断等により行なわれる。As a specific example, Yg ≦ Yg 0 (Yg 0 is a small threshold value),
In addition, it is determined based on θ ≦ θ 0 (θ 0 is a small threshold value) or only one of these conditions.
ステップ45では、回転速度度差微分値Δが定速走行
と見なせる程度に小であるかどうかが判断される。In step 45, it is determined whether the rotational speed difference differential value Δ is small enough to be regarded as constant speed traveling.
具体的には、|Δ|≦B(Bはごく小さな値の定
数)を満足するかどうかで判断される。Specifically, it is determined whether or not | Δ | ≦ B (B is a constant having a very small value) is satisfied.
ステップ46では、制御前後輪回転速度差ΔNが0かど
うかが判断される。即ち、ΔN≠0の時には異径タイヤ
による回転速度差補正が未だ行なわれていない時であ
り、この時にはステップ47及びステッブ48へ進む。ま
た、ΔN=0の時には異径タイヤによる回転速度差補正
済であり、この時にはステップ49以降へ進む。In step 46, it is judged whether or not the control front-rear wheel rotation speed difference ΔN is zero. That is, when .DELTA.N.noteq.0, it means that the rotational speed difference correction by the different-diameter tires is not yet performed, and at this time, the routine proceeds to step 47 and step 48. Further, when ΔN = 0, the rotational speed difference due to the different diameter tires has been corrected, and at this time, the process proceeds to step 49 and the subsequent steps.
ステップ47では、異径タイヤによる回転速度差補正を
最初に行なう時、内部循環トルクの発生防止をいち早く
行なう為、一旦、トランスファクラッチ7の締結を解放
する指令電流値IC=0を出力する。In step 47, when the rotational speed difference is corrected by the different diameter tires for the first time, the command current value I C = 0 for releasing the engagement of the transfer clutch 7 is output in order to prevent the internal circulation torque from being generated quickly.
ステップ48では、上記ステップ45〜ステップ46の条件
を満足する時に、ステップ42で求められた実前後輪回転
速度差ΔNreal不感帯回転速度差ΔN1として設定され
る。In step 48, when the conditions in steps 45 to 46 are satisfied, the actual front / rear wheel rotational speed difference ΔNreal is set as the dead zone rotational speed difference ΔN 1 .
ステップ49では、横加速度Ygに基づいて回転速度差の
変化に対する駆動力配分の制御定数Ktが演算により求め
られる。In step 49, the control constant Kt of the driving force distribution with respect to the change in the rotation speed difference is calculated based on the lateral acceleration Yg.
尚、演算式はKt=f(Yg)であり、具体的には、Kt=
A/Yg(A;定数)の式で求められる。The calculation formula is Kt = f (Yg), and specifically, Kt =
It is calculated by the formula of A / Yg (A; constant).
ステップ50では、ステップ42で求められた実前後輪回
転速度差ΔNrealと設定されている不感回転速度差ΔN1
との差により制御前後輪回転速度差ΔNが演算される。In step 50, the actual front-rear wheel rotation speed difference ΔNreal obtained in step 42 and the dead rotation speed difference ΔN 1 set
The control front / rear wheel rotation speed difference ΔN is calculated from the difference between
ステップ51では、制御前後輪回転速度差ΔNと制御定
数Kfによって前後輪伝達トルクTfが下記の式で演算され
ると共に、この前輪側伝達トルクTfが得られる指令電流
ICが油圧制御ソレノイドバルブ22に出力される。In step 51, the front / rear wheel transmission torque T f is calculated by the following equation based on the control front / rear wheel rotation speed difference ΔN and the control constant Kf, and the front wheel side transmission torque T f is obtained.
I C is output to the hydraulic control solenoid valve 22.
Tf=Kt・ΔNであり、特性図であらわすと、第4図及び
第5図の特性線に示すようになる。T f = KtΔN, which is represented by the characteristic lines in the characteristic lines of FIGS. 4 and 5.
以上のような前後輪駆動力配分制御が行なわれること
で、下記のような走行性能を示す。By performing the front-rear wheel driving force distribution control as described above, the following traveling performance is exhibited.
前後輪6,11でタイヤ径が異なる異径タイヤ(例えば、
一方にテンパータイヤを装着した時や空気圧の異なるタ
イヤである時等)を装着しての走行時には、直進走行時
であり、且つ、回転速度差微分値Δが小であるという
条件を満足したら直ちにトランスファクラッチ11が解放
されると共に不感帯回転速度差ΔN1が設定され、その後
の走行においては、実前後輪回転速度差ΔNrealと不感
帯回転速度差ΔN1との差による制御前後輪回転速度差Δ
Nに基づいて前後輪駆動力配分制御が行なわれる。Different diameter tires with different tire diameters on the front and rear wheels 6, 11 (for example,
When a temper tire is attached to one side or a tire with different air pressure is attached), the vehicle is traveling straight ahead and the rotation speed difference differential value Δ is small, immediately after satisfying the condition. When the transfer clutch 11 is released and the dead zone rotational speed difference ΔN 1 is set, in the subsequent traveling, the control front / rear wheel rotational speed difference Δ due to the difference between the actual front / rear wheel rotational speed difference ΔNreal and the dead zone rotational speed difference ΔN 1.
Front and rear wheel drive force distribution control is performed based on N.
即ち、実前後輪回転速度差ΔNrealからタイヤ径が異
なることを原因とする前後輪回転速度差成分が除かれ、
駆動輪スリップをのみを原因とする前後輪回転速度差に
基づく制御が行なわれ、異径タイヤを装着しての走行時
に、動力伝達経路での油温上昇や内部循環トルクによる
パワーロスの抑制が早期にしかも確実に防止される。That is, the front and rear wheel rotation speed difference component caused by the difference in tire diameter is removed from the actual front and rear wheel rotation speed difference ΔNreal,
Control is performed based on the front-rear wheel rotation speed difference caused only by drive wheel slip, and when traveling with tires of different diameters, early suppression of power loss due to oil temperature rise in the power transmission path and internal circulation torque Moreover, it is surely prevented.
尚、異径タイヤを装着しての走行時に実前後輪回転速
度差ΔNrealに基づいて前後輪駆動力配分制御を行なっ
た場合、異径タイヤであることを原因として発生する回
転速度差により常にクラッチ締結状態が維持される為、
内部循環トルクが発生し、パワーロスによる燃費が低下
すると共に、定速走行であってもパワートレン系には大
きな駆動トルクあるいは制動トルクが発生し、あたかも
加速状態または強いエンジンブレーキ状態が長時間に亘
って続くことになり、トランスファケース内の油温ある
いはリヤファイナルドライブの油温が上昇し、作動油の
劣化やシールの劣化を招く。In addition, when the front and rear wheel driving force distribution control is performed based on the actual front and rear wheel rotation speed difference ΔNreal when running with different diameter tires, the clutch is always broken due to the difference in rotation speed caused by the different diameter tire. Because the fastening state is maintained,
Internal circulation torque is generated, fuel consumption is reduced due to power loss, and large drive torque or braking torque is generated in the power train system even at constant speed running, as if the acceleration state or strong engine braking state is present for a long time. As a result, the oil temperature in the transfer case or the oil temperature in the rear final drive rises, leading to deterioration of the hydraulic oil and deterioration of the seal.
以上説明してきたように、実施例の前後輪駆動力配分
制御装置にあっては、下記に列挙する特徴を併有する。As described above, the front and rear wheel drive force distribution control device according to the embodiment also has the features listed below.
前後輪回転速度差の補正条件を、直進走行時であ
り、且つ、回転速度差微分値ΔNが小であるという条件
とした為、車両の惰性検出を前後輪回転速度差の補正条
件とする場合に比べ異径タイヤ分の補正値を正確に求め
る機会が非常に増え、異径タイヤ装着時には、早期にし
かも確実に動力伝達経路部での油温上昇や内部循環トル
クによるパワーロスを抑制することができる。When the correction condition for the front and rear wheel rotation speed difference is set to the condition that the vehicle is traveling straight and the rotation speed difference differential value ΔN is small, the inertial detection of the vehicle is used as the correction condition for the front and rear wheel rotation speed difference. Compared with the above, the chances of accurately obtaining correction values for different diameter tires are greatly increased, and when installing different diameter tires, it is possible to suppress power loss due to oil temperature rise in the power transmission path section and internal circulation torque early and reliably. it can.
前後輪回転速度差の補正条件を最初に満足し、しか
も、異径タイヤ分の補正が未だ行なわれていない時に
は、直ちに、トランスファクラッチ11を解放し、その
後、補正による制御前後輪回転速度差ΔNに基づく制御
に入るようにしている為、異径タイヤ装着による内部循
環トルクの発生が走行開始直後の非常に早い時期から行
なわれ、内部循環トルクによるパワーロス抑制の実効が
図られる。When the condition for correcting the front-rear wheel rotational speed difference is first satisfied, and the correction for the different-diameter tires is not yet performed, the transfer clutch 11 is immediately released, and then the control front-rear wheel rotational speed difference ΔN by the correction. Since the control based on (1) is entered, the generation of the internal circulation torque due to the mounting of the different-diameter tires is performed at an extremely early time immediately after the start of traveling, and the power loss can be effectively suppressed by the internal circulation torque.
以上、本発明の実施例を図面により説明してきたが、
具体的な構成や制御内容はこの実施例に限られるもので
はない。The embodiments of the present invention have been described above with reference to the drawings.
The specific configuration and control contents are not limited to this embodiment.
例えば、実施例では、前後輪のタイヤ径が異なる時に
おける回転速度差補正を前後輪駆動力配分制御に適用し
た例を示したが、左右輪のタイヤ径が異なる時における
左右輪駆動力配分制御に関しても勿論同様に適用でき
る。For example, in the embodiment, the example in which the rotational speed difference correction when the tire diameters of the front and rear wheels are different is applied to the front and rear wheel driving force distribution control, but the left and right wheel driving force distribution control is performed when the left and right tire diameters are different. Of course, the same can be applied to.
以上説明してきたように、本発明にあっては、前後輪
または左右輪の駆動力配分を外部から制御できる駆動力
配分制御装置において、異径タイヤ分の補正値を正確に
求める機会を増すべく、直進走行時であり、且つ、回転
速度差微分値が小であると検出された時に実回転速度差
検出値を補正する手段とした為、異径タイヤ装着時に
は、早期にしかも確実に動力伝達経路部での油温上昇や
内部循環トルクによるパワーロスを抑制することが出来
るという効果が得られる。As described above, in the present invention, in the driving force distribution control device capable of externally controlling the driving force distribution of the front and rear wheels or the left and right wheels, in order to increase the chances of accurately obtaining the correction value for the different diameter tires. Since the means for correcting the actual rotational speed difference detection value when the vehicle is traveling straight ahead and the rotational speed difference differential value is detected to be small, power can be transmitted early and reliably when different-diameter tires are installed. It is possible to obtain an effect that it is possible to suppress power loss due to an increase in oil temperature in the path portion and internal circulation torque.
第1図は本発明の駆動力配分制御装置を示すクレーム対
応図、第2図は実施例の四輪駆動車の前後輪駆動力配分
制御装置を示す全体システム図、第3図は実施例装置で
のトルクスプリットコントロールユニットで行なわれる
前後輪駆動力配分制御作動の流れを示すフローチャー
ト、第4図は制御前後輪回転速度差に対する前輪側伝達
トルク特性図、第5図は実前後輪回転速度差に対する前
輪側伝達トルク特性図である。 a……可変駆動力配分手段 b……実回転速度差検出手段 c……直進走行検出手段 d……回転速度差微分値検出手段 e……不感帯回転速度差設定手段 f……制御回転速度差演算手段 g……駆動力配分制御手段FIG. 1 is a diagram corresponding to the claims showing a driving force distribution control device of the present invention, FIG. 2 is an overall system diagram showing a front and rear wheel driving force distribution control device of a four-wheel drive vehicle of an embodiment, and FIG. 3 is an embodiment device. 4 is a flowchart showing the flow of front and rear wheel driving force distribution control operation performed by the torque split control unit in FIG. 4, FIG. 4 is a front wheel side transfer torque characteristic diagram with respect to control front and rear wheel rotation speed difference, and FIG. FIG. 5 is a front wheel side transmission torque characteristic diagram for FIG. a: Variable driving force distribution means b: Actual rotation speed difference detection means c: Straight running detection means d: Rotation speed difference differential value detection means e: Dead zone rotation speed difference setting means f: Control rotation speed difference Computation means g ...... Driving force distribution control means
Claims (1)
左右輪駆動力配分を外部からの駆動指令により制御可能
な可変駆動力配分手段と、 前後輪または左右輪の実回転速度差を検出する実回転速
度差検出手段と、 直進走行検出手段と回転速度差微分値検出手段により、
直進走行時であり、且つ、回転速度差微分値が小である
と検出された時の実回転速度差の検出値を不感帯回転速
度差として設定する不感帯回転速度差設定手段と、 前記実回転速度差から前記不感帯回転速度差を差し引い
た値を制御回転速度差とする制御回転速度差演算手段
と、 前記制御回転速度差に基づいて前記可変駆動力配分手段
を制御する駆動力配分制御手段とを備えている事を特徴
とする駆動力配分制御装置。1. A variable drive force distribution means capable of controlling front and rear wheel drive force distribution or left and right wheel drive force distribution of engine drive force by an external drive command, and detecting an actual rotational speed difference between the front and rear wheels or left and right wheels. By the actual rotation speed difference detection means, the straight traveling detection means and the rotation speed difference differential value detection means,
Dead zone rotational speed difference setting means for setting the detected value of the actual rotational speed difference when it is detected that the rotational speed difference differential value is small when traveling straight ahead, and the actual rotational speed A control rotation speed difference calculation means for setting a value obtained by subtracting the dead zone rotation speed difference from the difference as a control rotation speed difference, and a driving force distribution control means for controlling the variable driving force distribution means based on the control rotation speed difference. A driving force distribution control device characterized by being provided.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16722789A JP2507608B2 (en) | 1989-06-29 | 1989-06-29 | Driving force distribution control device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16722789A JP2507608B2 (en) | 1989-06-29 | 1989-06-29 | Driving force distribution control device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0331031A JPH0331031A (en) | 1991-02-08 |
| JP2507608B2 true JP2507608B2 (en) | 1996-06-12 |
Family
ID=15845808
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP16722789A Expired - Lifetime JP2507608B2 (en) | 1989-06-29 | 1989-06-29 | Driving force distribution control device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2507608B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3405052B2 (en) * | 1996-03-21 | 2003-05-12 | 日産自動車株式会社 | Driving force distribution control device |
| DE19706720A1 (en) * | 1996-04-06 | 1997-10-09 | Volkswagen Ag | Controlling coupling between front and rear axles of motor vehicle with four wheel drive |
| JP3560448B2 (en) * | 1996-10-01 | 2004-09-02 | 株式会社シマノ | Reel body of dual bearing reel |
-
1989
- 1989-06-29 JP JP16722789A patent/JP2507608B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0331031A (en) | 1991-02-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2528485B2 (en) | Drive force distribution controller for four-wheel drive vehicle | |
| JP4955482B2 (en) | Driving force distribution control device for four-wheel drive vehicles | |
| EP3659878B1 (en) | Vehicle disturbance detection apparatus | |
| JPH08207607A (en) | Traction controller for four-wheel drive vehicle | |
| JPH0741823B2 (en) | Wheel slip controller | |
| JP4223255B2 (en) | Slip control device for four-wheel drive vehicles | |
| JPH0516690A (en) | Vehicle drive wheel torque control device | |
| JPH08136572A (en) | Acceleration sensor device in vehicle | |
| JP4531319B2 (en) | Driving force distribution control device for four-wheel drive vehicles | |
| JP2003104186A (en) | Acceleration slip control device for four-wheel drive vehicle | |
| JP2507608B2 (en) | Driving force distribution control device | |
| JPH05338457A (en) | 4-wheel drive system for vehicles | |
| JP2711740B2 (en) | Target slip rate estimation device | |
| JP3324966B2 (en) | Forward judgment device in vehicle motion control device | |
| JP2001082199A (en) | Driving force control device for four-wheel drive vehicle | |
| JP3355767B2 (en) | Differential limit torque control device | |
| JP3416970B2 (en) | Vehicle yawing momentum control device | |
| JP3551038B2 (en) | Torque distribution device for four-wheel drive vehicles | |
| JP2679302B2 (en) | Vehicle differential limiting control device | |
| JP2679070B2 (en) | Vehicle differential limiting control device | |
| JP2794207B2 (en) | Drive control device for four-wheel drive vehicle | |
| JP2004351945A (en) | Differential control device | |
| JPH0764218B2 (en) | Driving force distribution clutch engagement force control device | |
| JP2896383B2 (en) | Vehicle driving force control device | |
| JP3738748B2 (en) | Torque distribution control device for four-wheel drive vehicles |