JP2509633B2 - Solenoid type AC superconducting coil - Google Patents
Solenoid type AC superconducting coilInfo
- Publication number
- JP2509633B2 JP2509633B2 JP62228870A JP22887087A JP2509633B2 JP 2509633 B2 JP2509633 B2 JP 2509633B2 JP 62228870 A JP62228870 A JP 62228870A JP 22887087 A JP22887087 A JP 22887087A JP 2509633 B2 JP2509633 B2 JP 2509633B2
- Authority
- JP
- Japan
- Prior art keywords
- coil
- winding
- wire
- superconducting
- insulating spacer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004804 winding Methods 0.000 claims description 30
- 125000006850 spacer group Chemical group 0.000 claims description 23
- 238000001816 cooling Methods 0.000 claims description 11
- 239000003507 refrigerant Substances 0.000 claims description 6
- 238000010791 quenching Methods 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Superconductive Dynamoelectric Machines (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、商用周波数(50〜60Hz)で使用するトラ
ンス、発電機等の交流機器に、それ等の構成要素として
採用されるソレノイド型交流用超電導コイルに関する。
より詳しくは、交流損失を大巾に低減した実用性の高い
超電導コイルに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a solenoid type AC adopted as a constituent element of an AC device such as a transformer or a generator used at a commercial frequency (50 to 60 Hz). For superconducting coils for automobiles.
More specifically, it relates to a highly practical superconducting coil in which AC loss is greatly reduced.
極細多芯超電導線の開発によって、従来、数Hz程度の
パルス用途に限られていた交流用超電導コイルは、首記
した商用周波数の領域へも用途が拡大してきている。With the development of ultra-thin multi-core superconducting wires, AC superconducting coils, which were conventionally limited to pulse applications of about several Hz, are now being used for commercial frequencies.
ところで、超電導コイルを交流で用いるためには、通
電下での交流損失を低減し、コイルの発熱を防ぐことが
必要である。By the way, in order to use the superconducting coil with an alternating current, it is necessary to reduce the AC loss under energization and prevent the coil from generating heat.
交流損失は、超電導線の性能に起因するもの、電磁力
による線材の動きに起因するものに分けられるが、その
うち、前者の原因は最近の超電導線の高性能化によって
殆ど取除かれている。従って、実用的な交流用超電導コ
イルを実現するために、残りの原因を取除くことが要求
されている。この要求に対し、これまでに作られたこの
種コイルは、絶縁超電導線を密巻きしたものや、絶縁ス
ペーサを層間に挿入したタイプのものが多い。そして、
それ等は、冷媒(例えば液体ヘリウム)との接触を保つ
ことによって冷却され、発熱が防止されている。The AC loss can be divided into the one caused by the performance of the superconducting wire and the one caused by the movement of the wire due to the electromagnetic force. Among them, the former cause has been mostly removed by the recent high performance of the superconducting wire. Therefore, in order to realize a practical AC superconducting coil, it is required to remove the remaining causes. In response to this requirement, most of the coils of this kind that have been produced so far are of a type in which an insulating superconducting wire is tightly wound or an insulating spacer is inserted between layers. And
They are cooled by maintaining contact with a refrigerant (eg liquid helium) to prevent heat generation.
しかしながら、上述した構造のコイルは、線材の定置
力が巻線時の巻線張力によって決定されるものであり、
通電時の電磁力によるコイル線材の動きが生じ易かった
ために、巻線の全体的な或いは極所的な動きによる発熱
によって冷却能力を越える交流損失が発生し、コイル性
能がその最大容量を越えないうちに、コイル全体を超電
導状態から常電導状態へ転移させてしまういわゆるクエ
ンチ現象がしばしば観測されている。However, in the coil having the above-described structure, the stationary force of the wire is determined by the winding tension at the time of winding,
Since the movement of the coil wire easily occurred due to the electromagnetic force during energization, heat generation due to the entire or local movement of the winding causes AC loss that exceeds the cooling capacity, and the coil performance does not exceed its maximum capacity. A so-called quench phenomenon that causes the entire coil to transition from the superconducting state to the normal conducting state is often observed.
一方、巻線部の機械的な動きを無くすために、従来か
らエポキシ樹脂等を巻線部に含浸し、全体をその樹脂で
固める方法が採用されているが、この方法は、せいぜい
数Hz程度の使用にしか耐えない。何故なら、内層の巻線
は表面が含浸樹脂に包み隠されてしまうため、冷媒によ
る直接の冷却は巻線部の表面のみに限られ、数十Hzによ
って内部で発生する交流損失熱を充分に放出することが
できない。従って、既述のクエンチが発生する。この種
の問題は、コイル容量が大きくなると特に深刻で、交流
損失をいくら低減しても時間の経過と共に熱エネルギー
が蓄積され、ついにはクエンチに至る。On the other hand, in order to eliminate mechanical movement of the winding part, a method of impregnating the winding part with epoxy resin etc. and hardening the whole with the resin has been conventionally adopted, but this method is at most about several Hz. Can only withstand use. Because the surface of the inner layer winding is hidden by the impregnated resin, the direct cooling by the refrigerant is limited to only the surface of the winding part, and the AC loss heat generated internally by several tens Hz is sufficiently released. Can not do it. Therefore, the quench described above occurs. This kind of problem is especially serious when the coil capacity is large, and no matter how much the AC loss is reduced, thermal energy is accumulated with the lapse of time and eventually leads to quenching.
そこで、この発明は、かかる点の問題対策として有効
な交流用超電導コイルを提供することを目的としてい
る。Therefore, an object of the present invention is to provide an alternating-current superconducting coil which is effective as a measure against the above problem.
この発明のソレノイド型交流用超電導コイルは、極細
多芯フィラメントを有する超電導線をコイル軸方向に所
定間隙をあけて巻線し、その巻線の各層間には絶縁スペ
ーサを周方向に所定ピッチで配置し、かつ、このスペー
サは上層のものと下層のものを相互に接着し、さらに、
上記巻線は、上記絶縁スペーサに巻線ピッチで設けた溝
内に接着して保持し、隣り合う絶縁スペーサ間において
各層の巻線間に生じた空隙を、冷媒の流入する冷却チャ
ネルとなしたところに特徴を有する。The solenoid type AC superconducting coil of the present invention is formed by winding a superconducting wire having an ultra-fine multicore filament with a predetermined gap in the coil axial direction, and insulating spacers between the layers of the winding at a predetermined pitch in the circumferential direction. And the spacers bond the upper and lower layers to each other, and
The winding is adhered and held in a groove provided in the insulating spacer at a winding pitch, and a gap formed between windings of each layer between adjacent insulating spacers serves as a cooling channel into which a refrigerant flows. However, it has a feature.
コイル線材は、コイル半径方向に積層、接着した各層
の絶縁スペーサ間に実質的に埋め込んだ状態に保持され
るので、定置安定性に優れ、機械的な動きを生じ難い。Since the coil wire is held in a state of being substantially embedded between the insulating spacers of the layers laminated and adhered in the coil radial direction, it has excellent stationary stability and is unlikely to cause mechanical movement.
また、コイル線材間には、コイル軸方向、コイル半径
方向ともに所定の距離が保たれているため、線材の非支
持部に電磁力による歪が生じても線材がこすれ合うこと
がなく、密巻コイルに見られる線材の摩擦に起因した発
熱が起こらない。In addition, since a predetermined distance is maintained between the coil wire rods in both the coil axial direction and the coil radial direction, the wire rods do not rub against each other even if distortion occurs due to electromagnetic force in the unsupported portions of the wire rods, and the wire is closely wound. The heat generated due to the friction of the wire material seen in the coil does not occur.
さらに、絶縁スペーサ間の冷却チャネルは外部への開
放性に優れ、この部分において線材が直に冷却に接触す
るため、交流損失熱の放出効果が内層巻線部においても
充分に確保される。なお、絶縁スペーサの巾は線材が強
固に固定されれば、細い程、交流損失によって発熱した
線材が冷却されるため好ましい。Further, the cooling channel between the insulating spacers has excellent openability to the outside, and since the wire rod directly contacts the cooling in this portion, the effect of discharging the AC loss heat is sufficiently ensured also in the inner layer winding portion. It is preferable that the width of the insulating spacer is fixed so that the wire member is firmly fixed, because the wire member that is heated by the AC loss is cooled.
添付図に基いて、この発明のソレノイド型超電導コイ
ルの一実施例を説明する。One embodiment of the solenoid type superconducting coil of the present invention will be described with reference to the attached drawings.
図の1は、極細多芯フィラメントを有する超電導線
材、2は交流による損失が発生しないガラス繊維強化プ
ラスチック等で作られたボビン(即ち巻枠)である。ボ
ビン2の巻胴上には、先ず巻線方向に延びる溝3をコイ
ル軸方向に定ピッチで設けた絶縁スペーサが周方向に所
定ピッチで取付けられる。そして、この上に線材1が溝
3に収まるようにコイル軸方向に間隔をあけて巻かれて
いる。さらに、1層目の巻線上には再びスペーサ4が設
置され、以後、所要数の増線層数になるまで1層目と同
じ作業を巻線方向をターンしながら繰り返して所定径の
コイルに仕上げてある。1 is a superconducting wire having an ultrafine multifilamentary filament, and 2 is a bobbin (that is, a bobbin) made of glass fiber reinforced plastic or the like in which loss due to alternating current does not occur. On the winding cylinder of the bobbin 2, first, insulating spacers having grooves 3 extending in the winding direction provided at a constant pitch in the coil axial direction are attached at a predetermined pitch in the circumferential direction. Then, the wire 1 is wound on the coil 3 at intervals in the axial direction of the coil so that the wire 1 fits in the groove 3. Further, the spacer 4 is installed again on the winding of the first layer, and thereafter, the same work as that of the first layer is repeated while turning the winding direction until the required number of additional layers is obtained, and a coil having a predetermined diameter is obtained. It's finished.
また、この作業中に、線材1はエポキシ樹脂等の接着
剤5を塗ってスペーサの溝3内に接着させてある。コイ
ル半径方向に重ねた各層のスペーサ4も接着剤5を介し
て互いに接着一体化してあり、このため、スペーサ部で
は線材1が強固に拘束される。溝3をスペーサ4の接合
界面部に半々に分けて設けても同じ拘束効果が得られ
る。6は外部に直通した冷却チャネルでここに冷媒が流
入する。Further, during this work, the wire 1 is coated with an adhesive 5 such as an epoxy resin and adhered in the groove 3 of the spacer. The spacers 4 of the respective layers stacked in the coil radial direction are also bonded and integrated with each other via the adhesive 5, so that the wire 1 is firmly restrained in the spacer portion. The same constraint effect can be obtained even if the groove 3 is provided in the joint interface portion of the spacer 4 in half. Reference numeral 6 denotes a cooling channel directly communicating with the outside, through which the refrigerant flows.
なお、使用する超電導線材1は、極細多芯フィラメン
トが、NbとTiの合金、もしくその合金中に第3元素の添
加された材料や、Nb3Sn、V3Ga、Nb3Si、V2Hf、Nb3Al等
の化合物系材料から成る実用線材が好ましい。これ等の
線材は容量が少なく、大電流を流し得るからである。In addition, the superconducting wire 1 used is an ultrafine multifilamentary filament made of an alloy of Nb and Ti, or a material in which a third element is added to the alloy, Nb 3 Sn, V 3 Ga, Nb 3 Si, V Practical wire rods made of compound materials such as 2 Hf and Nb 3 Al are preferable. This is because these wires have a small capacity and can flow a large current.
また、多芯フィラメントは、1μm以下の径のものが
好ましい。フィラメントの太さに起因した磁化損失(こ
れが交流損失の主因子)がきわめて小さいからである。
フィラメント径が1μm以上であると、交流用コイルを
作るのは困難である。Further, the multifilamentary filament preferably has a diameter of 1 μm or less. This is because the magnetization loss due to the thickness of the filament (this is the main factor of AC loss) is extremely small.
If the filament diameter is 1 μm or more, it is difficult to make an AC coil.
このほか、スペーサ4は、ボビン鍔の内面に放射状の
溝を対向して設け、この溝に両端を挿入して位置決めす
ると、巻線時の作業性に優れる。尤も、この発明のコイ
ルは、巻芯上に形成した後、その巻芯を外し、次に、巻
芯に代わるコア上に固定して使用してもよく、上記ボビ
ン鍔内面の位置決め溝は勿論、ボビンそのものも必須と
はしない。In addition, when the spacer 4 is provided with radial grooves facing the inner surface of the bobbin collar and both ends are inserted into the grooves for positioning, the workability during winding is excellent. However, the coil of the present invention may be used by forming it on the winding core, removing the winding core, and then fixing the coil on the core instead of the winding core. , The bobbin itself is not mandatory.
以下に、この発明の更に詳細な実施例を比較例と共に
述べる。Hereinafter, more detailed examples of the present invention will be described together with comparative examples.
線径0.36mφの超電導線材1を使って、第1図に示す
幅W=2mm、溝間ピッチP=1mm、の絶縁スペーサ4を間
隙S=2mm(これは最内層の間隔であって外側層は周長
の差によりSの値が少しず大きくなる)で配置した内径
50mm、外径110mm、高さ100mmのこの発明のコイルAを作
った。また、同じ線材を密巻きした内径50mm、外径90m
m、高さ50mmの樹脂非含浸の比較コイルBも作った。Using a superconducting wire 1 having a wire diameter of 0.36 mφ, an insulating spacer 4 having a width W = 2 mm and a groove pitch P = 1 mm shown in FIG. 1 is provided with a gap S = 2 mm (this is the distance between the innermost layers and the outer layer). Is the inner diameter arranged with the value of S increasing slightly due to the difference in circumference.
A coil A of the present invention having a diameter of 50 mm, an outer diameter of 110 mm and a height of 100 mm was produced. Also, the same wire is tightly wound and has an inner diameter of 50 mm and an outer diameter of 90 m.
A resin-impregnated comparison coil B having a height of 50 mm and a height of 50 mm was also prepared.
これ等のコイルの容量を下表に対比して示す。 The capacities of these coils are shown in comparison with the table below.
電圧、電流に関するコイルAの目標値達成率は100%
であるが、コイルBは目標値から大巾にかけ離れてい
る。 The target value achievement rate of coil A for voltage and current is 100%
However, the coil B is far away from the target value.
また、交流損失については30倍もの差が生じている。 In addition, there is a 30 times difference in AC loss.
このように、インダクタンスは、同じであっても、こ
の発明のコイルは、寸法が多少大きくなる嫌いはある
が、従来コイルに比較して性能が大巾に向上する。As described above, even if the inductance is the same, the coil of the present invention has a tendency to have a slightly larger size, but the performance is significantly improved as compared with the conventional coil.
以上から成るこの発明のコイルは、特に、商用周波数
で用いられる交流トランスや発電機等の分野で有効であ
る。The coil of the present invention constituted as described above is particularly effective in the fields of AC transformers and generators used at commercial frequencies.
即ち、複数のコイルを組合せて構成される交流トラン
スは、コイルの相互作用により、コイル巻線部に複雑な
電磁力が作用するため、微妙な機械的動きが生じ易い。
しかし、この発明によれば、絶縁スペーサがその動きを
確実に阻止し、また、線材自体がいわば疎巻きされてい
るので相互摩擦を起こさず、従って、巻線部の微妙な動
きによる局所的な発熱は殆ど起こらず、これに起因した
クエンチが有効に防止される。That is, in the AC transformer configured by combining a plurality of coils, a complicated electromagnetic force acts on the coil winding portion due to the interaction of the coils, and thus a delicate mechanical movement is likely to occur.
However, according to the present invention, the insulating spacer surely prevents the movement, and since the wire itself is so-called loosely wound, mutual friction does not occur, and therefore, the local movement due to the subtle movement of the winding portion is caused. Fever hardly occurs, and quenching due to this is effectively prevented.
また、50〜60Hzの電流印加により、コイル内部には定
常的に交流損失が発生するが、その熱は、層間の冷却チ
ャネル内に流入した冷媒に線材が直に触れて迅速に吸収
されるので、冷却効率の悪さに起因したクエンチも防止
される。In addition, when a current of 50 to 60 Hz is applied, AC loss is constantly generated inside the coil, but the heat is absorbed quickly because the wire rod directly touches the refrigerant flowing into the cooling channel between the layers. Also, quenching due to poor cooling efficiency is prevented.
また、発電機用として特に電機子の巻線に利用する場
合には、コイルが大型化するため、巻線の定置安定化と
効率的な冷却の要求がより高まる。この発明によれば、
その要求に充分に応えて、発電機の完全超電導化に大き
く寄与することができる。Further, particularly when the coil is used for a generator as a winding of an armature, the size of the coil is increased, so that the requirements for stationary stabilization of the winding and efficient cooling are further increased. According to this invention,
By sufficiently meeting the demand, it is possible to make a great contribution to making the generator completely superconducting.
第1図は、この発明に係る超電導コイルの一例の一部を
示す斜視図、第2図はその径方向断面の一部を示す図、
第3図はコイル軸に沿った断面の一部を示す図、第4図
は、第3図の一部分の拡大図である。 1……超電導線材、2……ボビン、3……スペーサの
溝、4……絶縁スペーサ、5……接着剤、6……冷却チ
ャネル。FIG. 1 is a perspective view showing a part of an example of a superconducting coil according to the present invention, and FIG. 2 is a view showing a part of a radial cross section thereof,
FIG. 3 is a view showing a part of the cross section along the coil axis, and FIG. 4 is an enlarged view of a part of FIG. 1 ... Superconducting wire, 2 ... Bobbin, 3 ... Spacer groove, 4 ... Insulating spacer, 5 ... Adhesive, 6 ... Cooling channel.
Claims (1)
形成してある絶縁スペーサがコイル周方向に間隔をあけ
て所定ピッチで縦添え状態に配置され、極細多芯フィラ
メントを有する超電導線が前記絶縁スペーサの構内に接
着しながら、かつ、コイル両端で巻線方向をターンしな
がらコイル軸方向に所定間隔をあけて巻線され、その巻
線の各層間におかれる絶縁スペーサはコイル径方向に積
層して上層スペーサと下層スペーサに各々接着され、隣
り合う絶縁スペーサ間で各層の巻線間に生じた空隙が冷
媒の流入する冷却チャネルを構成しているソレノイド型
交流用超電導コイル。1. An insulating spacer having grooves formed at the same pitch as the winding pitch on a winding frame is arranged in a vertically extending state at a predetermined pitch with a gap in the circumferential direction of the coil, and has an ultrafine multicore filament. The superconducting wire is wound at a predetermined interval in the coil axial direction while adhering to the inside of the insulating spacer and turning in the winding direction at both ends of the coil, and the insulating spacer placed between the layers of the winding is Solenoid type AC superconducting coil in which coils are laminated in the radial direction of the coil and adhered to the upper and lower spacers, respectively, and the gaps formed between the windings of the adjacent insulating spacers form cooling channels into which the refrigerant flows. .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62228870A JP2509633B2 (en) | 1987-09-10 | 1987-09-10 | Solenoid type AC superconducting coil |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62228870A JP2509633B2 (en) | 1987-09-10 | 1987-09-10 | Solenoid type AC superconducting coil |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS6471105A JPS6471105A (en) | 1989-03-16 |
| JP2509633B2 true JP2509633B2 (en) | 1996-06-26 |
Family
ID=16883163
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP62228870A Expired - Lifetime JP2509633B2 (en) | 1987-09-10 | 1987-09-10 | Solenoid type AC superconducting coil |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2509633B2 (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2846323B2 (en) * | 1988-09-22 | 1999-01-13 | 古河電気工業株式会社 | AC superconducting wire |
| JP2006203154A (en) * | 2004-04-20 | 2006-08-03 | National Institutes Of Natural Sciences | Superconducting pulse coil, superconducting device using the same, and superconducting power storage device |
| CN102148083B (en) * | 2010-02-09 | 2013-04-03 | 通用电气公司 | Superconducting magnet |
| WO2021149156A1 (en) * | 2020-01-21 | 2021-07-29 | 三菱電機株式会社 | Superconducting coil and manufacturing method for superconducting coil |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6388809A (en) * | 1986-10-01 | 1988-04-19 | Furukawa Electric Co Ltd:The | Pancake type ac superconducting coil |
-
1987
- 1987-09-10 JP JP62228870A patent/JP2509633B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPS6471105A (en) | 1989-03-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4392072A (en) | Dynamoelectric machine stator having articulated amorphous metal components | |
| EP1212760B1 (en) | Rotor assembly with superconducting magnetic coil | |
| US6880228B2 (en) | Method for manufacturing a three-phase transformer | |
| JPH04188709A (en) | Superconducting coil device | |
| JP2001244109A (en) | High temperature superconducting coil device | |
| JP2509633B2 (en) | Solenoid type AC superconducting coil | |
| US6163241A (en) | Coil and method for magnetizing an article | |
| JPH0794317A (en) | Superconducting coil device | |
| JP6005386B2 (en) | Superconducting coil device and manufacturing method thereof | |
| JPH10188692A (en) | Forced cooling type superconducting conductor, method for manufacturing the same, and method for manufacturing forced cooling type superconducting coil | |
| JP3840819B2 (en) | Superconducting coil for induction equipment | |
| RU2273906C1 (en) | Composite superconductor | |
| JPS61271804A (en) | Superconductive electromagnet | |
| JP2829008B2 (en) | Superconducting magnet. Semiconductor single crystal pulling equipment. Nuclear magnetic resonance apparatus and method of manufacturing superconducting magnet | |
| JPH09148120A (en) | Superconductive magnet and its manufacturing method | |
| JPH08293410A (en) | Superconducting magnet | |
| JPS63232404A (en) | AC superconducting coil | |
| JPH10116723A (en) | Superconducting magnet | |
| JP3542222B2 (en) | Superconducting coil | |
| JPH09115722A (en) | Superconducting coil | |
| JPS6238843B2 (en) | ||
| JP3529442B2 (en) | Superconducting coil | |
| JP3147577B2 (en) | Superconducting magnet | |
| JP2624831B2 (en) | Superconducting magnet | |
| JPH10107332A (en) | Permanent current switch |