JP2513234B2 - Oxygen concentration detector manufacturing method - Google Patents
Oxygen concentration detector manufacturing methodInfo
- Publication number
- JP2513234B2 JP2513234B2 JP62142873A JP14287387A JP2513234B2 JP 2513234 B2 JP2513234 B2 JP 2513234B2 JP 62142873 A JP62142873 A JP 62142873A JP 14287387 A JP14287387 A JP 14287387A JP 2513234 B2 JP2513234 B2 JP 2513234B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen concentration
- concentration detector
- layer
- ceramic
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は電極と拡散律速層との間に閉空間を有する酸
素濃度検出器の製造方法に関するものである。Description: TECHNICAL FIELD The present invention relates to a method for manufacturing an oxygen concentration detector having a closed space between an electrode and a diffusion-controlling layer.
(従来の技術) 酸素濃度検出器は従来種々のものが知られているが、
そのうちの一つとして限界電流式酸素濃度検出器が開発
されている。この限界電流式酸素濃度検出器は板状の酸
素イオン透過性固体電解質の両面に電極を設けて素子本
体とし、この素子本体の両電極間に一定の電圧を印加す
ると、一方の電極(陰極)側から他方の電極(陽極)側
へ酸素イオンが透過するので、その際少なくとも一方の
電極から入る(又は出る)酸素イオン量を制限すると被
測定ガス中の酸素濃度に応じて両電極間に限界電流が流
れることを利用したものである。(Prior Art) Although various types of oxygen concentration detectors have been known,
A limiting current type oxygen concentration detector has been developed as one of them. This limiting current type oxygen concentration detector is an element body with electrodes on both sides of a plate-shaped oxygen ion permeable solid electrolyte, and when a constant voltage is applied between both electrodes of this element body, one electrode (cathode) Since oxygen ions permeate from one side to the other electrode (anode) side, limiting the amount of oxygen ions entering (or leaving) at least one of the electrodes at that time causes a limit between both electrodes depending on the oxygen concentration in the measured gas. It utilizes the fact that an electric current flows.
この限界電流式酸素濃度検出器とては、例えば、素子
本体の一方の電極面への酸素の拡散速度を律速させる方
法として、電極面上に直接多孔質セラミック容射層を形
成した酸素濃度検出器が従来知られているが、第3図又
は第6図に示すように電極と多孔質セラミック溶射層と
の間に閉空間を設けることにより低温作動性が良く、出
力低下のない酸素濃度検出器が特開昭60−13256号で提
案されている。第3図中、21は酸素イオン透過性固体電
解質セル、22はセル21上に設けられた陰極、23は陽極を
示し、24はセラミック溶射層26を支持するためのアルミ
ナホルダー、31はハウジング、32はセラミックチューブ
を示す。この検出器は次のように製作する。This limiting current type oxygen concentration detector is, for example, as a method for limiting the diffusion rate of oxygen to one electrode surface of the element body, an oxygen concentration detection method in which a porous ceramic sprayed layer is formed directly on the electrode surface is used. Although a vessel is conventionally known, by providing a closed space between the electrode and the porous ceramic sprayed layer as shown in FIG. 3 or FIG. A container is proposed in Japanese Patent Laid-Open No. 60-13256. In FIG. 3, 21 is an oxygen ion permeable solid electrolyte cell, 22 is a cathode provided on the cell 21, 23 is an anode, 24 is an alumina holder for supporting the ceramic sprayed layer 26, 31 is a housing, 32 indicates a ceramic tube. This detector is manufactured as follows.
固体電解質セル21は、例えばイットリアを8%添加し
たジルコニア粉末を成形する。この粉末成形体のセル21
のテーパ部分21′と上面の一部に白金ペーストを塗布
し、しかる後焼成して、粉末成形体を焼結すると同時に
陰極取り出し用リード部22′を形成する。焼成後、セル
21の上下表面に白金メッキを施し、不要な部分を削り落
すことにより陰極22及び陽極23を形成する。一方、セラ
ミック溶射層は第4図に示すように中央部に開口部を有
するアルミナホルダー24を用い、このアルミナホルダー
24の開口部に下面よりよく研磨した金属板などの当て板
25をあて、上方よりセラミックを溶射して厚さ500μの
多孔質容射層26を形成する。その後当て板25をはずし、
得られた溶射層26付きアルミナホルダー24を固体電解質
セル2上にかぶせ、無機接着剤27で両者の当接部を封着
固定し、溶射層26とセル21との間に閉鎖された空間20を
有する酸素濃度検出素子S0を形成する。次いで該検出素
子S0をセラミックヒーター31′を内蔵した円筒状のセラ
ミック製ハウジング31内に装置し、該ハウジング31内に
セラミックチューブ32を嵌挿し、検出素子S0を押えて固
定して目的とする検出器を得る。なお、図中、33,34は
リード線を示す。The solid electrolyte cell 21 is made of, for example, zirconia powder containing 8% yttria. Cell 21 of this powder compact
Platinum paste is applied to the taper portion 21 'and a part of the upper surface thereof, and then the paste is fired to sinter the powder compact and simultaneously form a lead portion 22' for taking out the cathode. After firing, cell
The upper and lower surfaces of 21 are plated with platinum, and unnecessary portions are scraped off to form the cathode 22 and the anode 23. On the other hand, for the ceramic sprayed layer, an alumina holder 24 having an opening at the center is used as shown in FIG.
A backing plate such as a metal plate that is better polished than the bottom surface in the 24 openings
25 is applied and the ceramic is sprayed from above to form a porous spray layer 26 having a thickness of 500 μm. Then remove the backing plate 25,
The obtained alumina holder 24 with the sprayed layer 26 is covered on the solid electrolyte cell 2, and the contact portion between the two is sealed and fixed with an inorganic adhesive 27, and a space 20 closed between the sprayed layer 26 and the cell 21 is obtained. Forming an oxygen concentration detecting element S 0 . Next, the detection element S 0 is installed in a cylindrical ceramic housing 31 having a built-in ceramic heater 31 ′, a ceramic tube 32 is fitted in the housing 31, and the detection element S 0 is pressed and fixed. Get the detector to do. In the figure, 33 and 34 indicate lead wires.
また、セラミック溶射層26は第5図に示すようにアル
ミナホルダー24の開口部に平均細孔径10〜50μmの非常
にポーラスなセラミックフィルタ28を無機接着剤で固定
し、このセラミックフィルタ28上に上記と同様にしてセ
ラミック溶射層26を設けるようにすることもできる。Further, as shown in FIG. 5, the ceramic sprayed layer 26 has a very porous ceramic filter 28 having an average pore diameter of 10 to 50 μm fixed to the opening of the alumina holder 24 by an inorganic adhesive, and the ceramic filter 28 is coated with the above The ceramic sprayed layer 26 may be provided in the same manner as in.
また、第6図の酸素濃度検出器は、長方形平板状の固
体電解質セル21の端部の表裏両面にそれぞれ対応させて
陰極22、陽極23を形成した素子本体に適用した例で、上
記と同様にして得た四角形のセラミック溶射層26付きア
ルミナホルダー24を、陰極22と溶射層26との間に隙間が
あるように設けて酸素濃度検出素子としたものである。
図中、35はセラミック支持板を示す。Further, the oxygen concentration detector of FIG. 6 is an example applied to the element body in which the cathode 22 and the anode 23 are formed so as to correspond to the front and back surfaces of the end of the rectangular flat plate-shaped solid electrolyte cell 21, respectively. The rectangular alumina holder 24 with the ceramic sprayed layer 26 obtained in the above was provided so that there was a gap between the cathode 22 and the sprayed layer 26 to form an oxygen concentration detecting element.
In the figure, 35 indicates a ceramic support plate.
更に、第7図及び第8図に示すように、異なった大き
さの窓をあけたプレートを重ね、その上から多孔質セラ
ミックス溶射層を形成し、同時に閉空間を設けた板状酸
素濃度検出器が特願昭61−196987号で提案されている。
図中、41及び45はプレート、42及び44はスペーサ、43は
固体電解質、46及び47aは窓、47は空間、48,49,50,51,5
2及び53は電極、54は大気導入路、そして56はセラミッ
クス多孔質層を表わす。更にまた、同様な板状空燃比検
出器が特願昭61−178407号で提案されている。Further, as shown in FIG. 7 and FIG. 8, plates having different sizes of windows are overlapped, a porous ceramic sprayed layer is formed on the plates, and at the same time, a plate-shaped oxygen concentration detection is provided with a closed space. A vessel is proposed in Japanese Patent Application No. 61-196987.
In the figure, 41 and 45 are plates, 42 and 44 are spacers, 43 is a solid electrolyte, 46 and 47a are windows, 47 is a space, 48, 49, 50, 51, 5
2 and 53 are electrodes, 54 is an air introduction path, and 56 is a ceramic porous layer. Furthermore, a similar plate-like air-fuel ratio detector is proposed in Japanese Patent Application No. 61-178407.
(発明が解決しようとする問題点) しかしながら、上記の特願昭60−13256号で開示され
た電極とセラミック多孔質層との間に閉空間を有する酸
素濃度検出器は低温作動性及び耐久性に優れるが、第3
図に示すように接着構造によって閉空間を作るため、気
密性確保が難しく、また、第4図及び第5図に示すよう
に、予め、別ピースにてセラミック溶射層を作り、後か
ら組み付けるため、部品数が多く、小型部品のため、工
程が煩雑である。更に、ヒーターが一番冷却される外側
に位置するため、ヒーター効率が悪く、大電力を要する
という問題もある。(Problems to be Solved by the Invention) However, the oxygen concentration detector having a closed space between the electrode and the ceramic porous layer disclosed in the above-mentioned Japanese Patent Application No. 60-13256 has low temperature operability and durability. Excellent, but the third
As shown in the figure, it is difficult to secure airtightness because a closed space is created by the adhesive structure. Also, as shown in FIGS. 4 and 5, a ceramic sprayed layer is made in advance with another piece, and then assembled later. Since the number of parts is large and the parts are small, the process is complicated. Further, since the heater is located on the outermost side where it is cooled most, there is a problem that the heater efficiency is poor and a large amount of electric power is required.
また、第7図乃至第8図に示す実願昭61−196987号及
び実願昭61−178407号で開示された板状の積層型酸素濃
度検出器は上記の問題点は解決しているが、セラミック
多孔質層56がスペーサー42の厚さ以上でないと閉空間47
が作れず、更にまた、狭い部分へ、均一な厚さで溶射コ
ーティングするのが難しく、熱により、プレート41とセ
ラミック多孔質層56との間にクラックが入りやすいとい
う問題がある。Although the plate-shaped laminated oxygen concentration detector disclosed in Japanese Patent Application Nos. 61-196987 and 61-178407 shown in FIGS. 7 to 8 solves the above problems, , If the ceramic porous layer 56 is not thicker than the spacer 42, the closed space 47
However, there is a problem that it is difficult to perform thermal spray coating on a narrow portion with a uniform thickness, and heat easily causes cracks between the plate 41 and the ceramic porous layer 56.
本発明は上記の問題点を解決するためのもので、電極
とセラミック多孔質層との間に閉空間を有する酸素濃度
検出器を容易に製造することができる方法を提供するこ
とを目的とするものである。The present invention is intended to solve the above problems, and an object of the present invention is to provide a method capable of easily manufacturing an oxygen concentration detector having a closed space between an electrode and a ceramic porous layer. It is a thing.
(問題点を解決するための手段) 本発明の酸素濃度検出器の製造方法は、電極と拡散律
速層との間に閉空間を有する積層型酸素濃度検出器の製
造において、酸素濃度の測定電極上にガス導入用の孔に
よって外部と連通した空間を存在させて該電極を覆って
なる素子を焼成一体化した後、前記孔を有機物で塞ぎ、
そこへその孔を覆うように所定の厚さの多孔質セラミッ
ク溶射層を形成し、その後、加熱して前記有機物を酸
化、気化させて除去することを特徴とするものとする。(Means for Solving Problems) A method for manufacturing an oxygen concentration detector according to the present invention is an electrode for measuring an oxygen concentration in the manufacture of a laminated oxygen concentration detector having a closed space between an electrode and a diffusion-controlling layer. After the element for covering the electrode is integrated by firing by making a space communicating with the outside by a hole for introducing gas, the hole is closed with an organic substance,
It is characterized in that a porous ceramic sprayed layer having a predetermined thickness is formed therein so as to cover the pores, and then heated to oxidize and vaporize and remove the organic matter.
本発明において、ガス導入用の孔を塞ぐ有機物は、特
に限定されないが、その例として紙やプラスチック、例
えばポリエチレン、ポリプロピレン、ポリエステルなど
を挙げることができる。In the present invention, the organic substance that closes the gas introduction hole is not particularly limited, but examples thereof include paper and plastics such as polyethylene, polypropylene, and polyester.
(作 用) セラミックグリーンシートを積層して電極と拡散律速
層との間に閉空間を数する酸素濃度検出器を製造するに
際して酸素濃度測定電極上にガス導入用の孔によって外
部と連通した空間を存在させて該電極を覆うことによ
り、該電極上に容易に空間を設けることができる。その
後その孔を有機物を塞いで、その孔の上にその孔を覆う
ようにセラミックを溶射すると、該有機物は若干は分解
しても、溶射されたセラミックを支持するため、その孔
の上にその孔を覆うように所定の厚さの多孔質セラミッ
ク溶射層を形成でき、その結果その孔は該溶射層によっ
て塞がれる。その後高温酸化雰囲気で該有機物を消失さ
せることにより、酸素濃度検出器の電極と孔の上に形成
された拡散律速層である多孔質セラミック溶射層との間
に閉鎖された空間を設けることができる。(Operation) When manufacturing an oxygen concentration detector in which ceramic green sheets are laminated to form a closed space between the electrode and the diffusion-controlling layer, a space that communicates with the outside through a gas introduction hole on the oxygen concentration measurement electrode A space can be easily provided on the electrode by making the electrode exist and covering the electrode. After that, when the hole is covered with an organic substance and a ceramic is sprayed on the hole so as to cover the hole, the organic substance supports the sprayed ceramic even if the organic substance is slightly decomposed. A porous ceramic sprayed layer of a predetermined thickness can be formed over the holes so that the holes are closed by the sprayed layer. Then, the organic matter is eliminated in a high-temperature oxidizing atmosphere, whereby a closed space can be provided between the electrode of the oxygen concentration detector and the porous ceramic sprayed layer which is the diffusion-controlling layer formed on the hole. .
(実施例) 本発明を一実施例により図面を参照して説明する。(Example) The present invention will be described by way of an example with reference to the drawings.
第1図(a)に示すように、板状の酸素イオン透過性
固体電解質3の一方の端部近傍の両面に該固体電解質3
を挟み、表裏で一対となるように印刷の手法によってPt
等からなる電極6,7及び電極8,9の2対を設けた。次いで
外形が該固体電解質3とほぼ同様で、上記電極に相当す
る位置に発熱体13を印刷の手法によって設けたセラミッ
クからなるプレート5の上に大気導入路12を形成するた
めの、外形が該固体電解質3とほぼ同様で、一端が開放
された額状のスペーサ4を開放端側が発熱体13の反対側
となるように重ね、その上に上記固体電解質3を電極6,
7,8,9が発熱体13の上になるように重ねた。更に、その
上に外形が固体電解質3とほぼ同様で、電極7,8に相当
する位置に窓を有するセラミックからなるスペーサ2を
該窓が両電極上にかるように重ね、そしてその上に外形
が固体電解質3とほぼ同様で電極7,8の間に相当する位
置に孔10を有するプレート1を該孔10が電極7,8の間の
上になるように重ね、焼成一体化した。As shown in FIG. 1 (a), the solid electrolyte 3 is formed on both surfaces in the vicinity of one end of the plate-shaped oxygen ion permeable solid electrolyte 3.
Pt by the printing method so that it becomes a pair on the front and back
Two pairs of electrodes 6 and 7 and electrodes 8 and 9 composed of the same are provided. Next, the outer shape is almost the same as that of the solid electrolyte 3, and the outer shape for forming the atmosphere introduction path 12 on the plate 5 made of ceramic in which the heating element 13 is provided at a position corresponding to the electrode by a printing method is used. Almost the same as the solid electrolyte 3, a frame-shaped spacer 4 having one end opened is laid so that the open end side is the opposite side of the heating element 13, and the solid electrolyte 3 is placed on the electrode 6,
The layers 7, 8 and 9 were placed on the heating element 13. Further, a spacer 2 made of ceramic having an outer shape substantially similar to that of the solid electrolyte 3 and having windows at positions corresponding to the electrodes 7 and 8 is laid thereon so that the windows are placed on both electrodes, and the outer shape is formed thereon. The plate 1 having substantially the same structure as that of the solid electrolyte 3 and having the holes 10 at positions corresponding to the positions between the electrodes 7 and 8 was stacked so that the holes 10 were located above the electrodes 7 and 8 and integrated by firing.
次に上記で焼成して得られた素子の孔10(径2mm)に
第1図(b)に示すようにプレート1の上面から普通紙
14を、巻いて円柱状にして埋め込み、プレート1と紙14
が面一となるようにした。Then, in the hole 10 (diameter 2 mm) of the element obtained by firing as described above, as shown in FIG.
14 is rolled up into a cylindrical shape and embedded, and plate 1 and paper 14
Was made to be the same.
次に第1図(c)に示すように孔10を紙14で塞いだ素
子に、それを回転させながらMgO・Al2O3のスピネル粉
(平均粒径40μm)をプラズマガン15で溶射した。孔10
が紙14によってプレート1と面一となるように塞がれて
いるため、孔10内には溶射セラミックは入り込まず、素
子の周囲に厚さ500μmの多孔質セラミック溶射層を形
成することができた。Next, as shown in FIG. 1 (c), spinel powder of MgO.Al 2 O 3 (average particle size 40 μm) was sprayed by a plasma gun 15 on the element in which the hole 10 was closed with paper 14 while rotating the element. . Hole 10
Is covered with the paper 14 so as to be flush with the plate 1, so that the sprayed ceramic does not enter the hole 10 and a porous ceramic sprayed layer having a thickness of 500 μm can be formed around the element. It was
次に溶射層16を形成した素子を大気雰囲気にて1000℃
の炉で1時間加熱して、孔10に埋め込んだ紙14を酸化
し、気化させ、多孔質セラミック溶射層16から素子外部
へ蒸発させて、該孔10から紙14を取り除き、第1図
(d)に示すような電極7,8と拡散律速層である多孔質
セラミック溶射層16との間に閉空間を有する酸素濃度検
出器を得た。なお、紙を高温酸化雰囲気で消失させる際
加圧下で行ってもよい。Next, the element on which the sprayed layer 16 is formed is heated to 1000 ° C.
1 hour, the paper 14 embedded in the holes 10 is oxidized, vaporized, and evaporated from the porous ceramic sprayed layer 16 to the outside of the element, and the paper 14 is removed from the holes 10 to obtain the structure shown in FIG. An oxygen concentration detector having a closed space between the electrodes 7 and 8 and the porous ceramic sprayed layer 16 which is the diffusion-controlling layer as shown in d) was obtained. In addition, when the paper is made to disappear in a high temperature oxidizing atmosphere, it may be performed under pressure.
該酸素濃度検出器の電極6,7を大気から閉空間へ酸素
を送り込むポンプセルとして用い、電極8,9を測定電極
として用い、一定の電圧を印加して、エンジン排気ガス
雰囲気の空燃比(A/F)を変化させ、その電流値を読ん
だ。この出力特性を第2図に示す。ポンプセルとしての
電極6,7にリッチ状態においてもある一定の電圧を印加
しておき、酸素ガスを大気導入口12から閉空間11へ供給
することにより、電極8,9で測定可能な出力電流を得、
リッチからリーンまでの空燃比において空燃比に対して
比例した出力電流が得られた。The electrodes 6 and 7 of the oxygen concentration detector are used as pump cells for sending oxygen from the atmosphere to the closed space, the electrodes 8 and 9 are used as measurement electrodes, a constant voltage is applied, and the air-fuel ratio (A / F) was changed and the current value was read. This output characteristic is shown in FIG. A certain voltage is applied to the electrodes 6 and 7 as pump cells even in a rich state, and oxygen gas is supplied from the air inlet 12 to the closed space 11 to provide an output current that can be measured by the electrodes 8 and 9. Get
An output current proportional to the air-fuel ratio was obtained in the air-fuel ratio from rich to lean.
(発明の効果) 本発明の酸素濃度検出器の製造方法は、上記構成とし
たため、多孔質セラミックを溶射する際に溶射用当て
板、マスキング材等の専用治具を必要とせず、また、板
空間を形成するための接合を必要とせず、簡単に製造す
ることができる。(Effects of the Invention) Since the method for manufacturing an oxygen concentration detector of the present invention has the above-described configuration, a dedicated jig such as a thermal spraying patch plate or a masking material is not required when spraying the porous ceramic, and It does not require joining to form a space and can be easily manufactured.
更に、素子の外側を溶射層で覆うので、多孔質セラミ
ック溶射層を均一かつ所定の厚さに形成でき、更にま
た、形成された溶射層は素子に幅広く付着しているた
め、剥れにくいなど多くの利点を有するものである。Further, since the outer side of the element is covered with the thermal spray layer, the porous ceramic thermal spray layer can be formed uniformly and with a predetermined thickness. Furthermore, since the formed thermal spray layer adheres widely to the element, it is hard to peel off. It has many advantages.
第1図(a),(b),(c),及び(d)は本発明の
一実施例の酸素濃度検出器の製造工程を説明する断面
図、 第2図は本発明の一実施例の酸素濃度検出器の出力特性
を示すグラフ、 第3図は従来の溶射層を接合した円筒型酸素濃度検出器
の断面図、 第4図は従来の溶射層を形成したホルダーの断面図、 第5図は従来のフィルタ上に溶射層を形成したホルダー
の断面図、 第6図は従来の溶射層を接合した板状酸素濃度検出器の
断面図、 第7図は従来の溶射層を直接形成した積層型酸素濃度検
出器の断面図、 第8図は第7図の酸素濃度検出器の分解斜視図を表わ
す。 図中、 1……プレート、2……スペーサ 3……固体電解質、6,7,8,9……電極 10……孔、11……空間 14……紙、16……溶射層1 (a), (b), (c), and (d) are cross-sectional views for explaining the manufacturing process of the oxygen concentration detector of one embodiment of the present invention, and FIG. 2 is one embodiment of the present invention. FIG. 3 is a graph showing the output characteristics of the oxygen concentration detector of FIG. 3, FIG. 3 is a sectional view of a cylindrical oxygen concentration detector in which a conventional sprayed layer is joined, and FIG. 4 is a sectional view of a holder in which a conventional sprayed layer is formed. Fig. 5 is a sectional view of a holder in which a sprayed layer is formed on a conventional filter, Fig. 6 is a sectional view of a plate-shaped oxygen concentration detector in which a sprayed layer of the related art is joined, and Fig. 7 is a direct sprayed layer of the conventional type. FIG. 8 is a sectional view of the laminated oxygen concentration detector, and FIG. 8 is an exploded perspective view of the oxygen concentration detector of FIG. In the figure, 1 ... plate, 2 ... spacer 3 ... solid electrolyte, 6,7,8,9 ... electrode 10 ... hole, 11 ... space 14 ... paper, 16 ... sprayed layer
Claims (1)
積層型酸素濃度検出の製造において、酸素濃度の測定電
極上にガス導入用の孔によって外部と連通した空間を存
在させて該電極を覆ってなる素子を焼成一体化した後、
前記孔を有機物で塞ぎ、そこへその孔を覆うように所定
の厚さの多孔質セラミック溶射層を形成し、その後、加
熱して前記有機物を酸化、気化させて除去することを特
徴とする閉空間を有する酸素濃度検出器の製造方法。1. In the production of a laminated oxygen concentration detector having a closed space between an electrode and a diffusion-controlling layer, a space communicating with the outside is present on the oxygen concentration measuring electrode by a gas introduction hole. After firing and integrating the elements covering the electrodes,
The hole is closed with an organic substance, a porous ceramic sprayed layer having a predetermined thickness is formed thereon so as to cover the hole, and then heated to oxidize and vaporize the organic substance to remove the closed layer. Method of manufacturing oxygen concentration detector having space.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62142873A JP2513234B2 (en) | 1987-06-08 | 1987-06-08 | Oxygen concentration detector manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62142873A JP2513234B2 (en) | 1987-06-08 | 1987-06-08 | Oxygen concentration detector manufacturing method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS63307352A JPS63307352A (en) | 1988-12-15 |
| JP2513234B2 true JP2513234B2 (en) | 1996-07-03 |
Family
ID=15325582
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP62142873A Expired - Lifetime JP2513234B2 (en) | 1987-06-08 | 1987-06-08 | Oxygen concentration detector manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2513234B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3855483B2 (en) | 1998-08-25 | 2006-12-13 | 株式会社デンソー | Stacked air-fuel ratio sensor element |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH065220B2 (en) * | 1983-07-04 | 1994-01-19 | トヨタ自動車株式会社 | Oxygen concentration detector |
| JPS60135756A (en) * | 1983-12-24 | 1985-07-19 | Ngk Insulators Ltd | Production of electrochemical cell |
-
1987
- 1987-06-08 JP JP62142873A patent/JP2513234B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPS63307352A (en) | 1988-12-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0259175B1 (en) | Electrochemical gas sensor, and method for manufacturing the same | |
| KR970003278B1 (en) | Sensor element | |
| EP0294085B1 (en) | Electrochemical elements | |
| JPH03503084A (en) | Sensor element that measures the gas components of a gas mixture | |
| JPS6252450A (en) | Electrochemical element and its manufacture | |
| US20070012566A1 (en) | Multilayer ceramic NOx gas sensor device | |
| JPH04332474A (en) | Method for forming an electronically conductive composite layer on a device substrate containing a solid electrolyte | |
| JPH06502015A (en) | Sensor element for limiting current sensor for detection of λ value of mixed gas | |
| JP3534612B2 (en) | Flat limit current sensor | |
| JPH08122287A (en) | Measuring device and method of concentration of gas component | |
| JP2513234B2 (en) | Oxygen concentration detector manufacturing method | |
| JPS58109846A (en) | Element for oxygen detection and its preparation | |
| JPH0516543B2 (en) | ||
| JPH01201149A (en) | Composite gas sensor | |
| JP2612584B2 (en) | Manufacturing method of oxygen detection element | |
| JPS62198748A (en) | oxygen sensor | |
| JPS62144063A (en) | Limiting current type oxygen sensor | |
| JPH065220B2 (en) | Oxygen concentration detector | |
| JPH07167833A (en) | Gas sensor | |
| JPH03120456A (en) | oxygen sensor | |
| JP3509329B2 (en) | Oxygen concentration detection element | |
| JPH0723735Y2 (en) | Oxygen concentration sensor | |
| JPS60259948A (en) | Electrochemical apparatus | |
| JPS6311644Y2 (en) | ||
| Nakagawa et al. | Electrode Reaction at Fixed Platinum Film—Fixation of Platinum Film on Stabilized-Zirconia Electrolyte and Its Effect on the Electrode Performance of the Solid-Electrolyte Fuel Cell— |