[go: up one dir, main page]

JP2514035B2 - Catalyst for highly stereoregular polymerization of α-olefins - Google Patents

Catalyst for highly stereoregular polymerization of α-olefins

Info

Publication number
JP2514035B2
JP2514035B2 JP15660487A JP15660487A JP2514035B2 JP 2514035 B2 JP2514035 B2 JP 2514035B2 JP 15660487 A JP15660487 A JP 15660487A JP 15660487 A JP15660487 A JP 15660487A JP 2514035 B2 JP2514035 B2 JP 2514035B2
Authority
JP
Japan
Prior art keywords
catalyst
titanium tetrachloride
polymerization
room temperature
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15660487A
Other languages
Japanese (ja)
Other versions
JPS641707A (en
JPH011707A (en
Inventor
稔 寺野
弘和 曽我
益男 井上
公平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP15660487A priority Critical patent/JP2514035B2/en
Publication of JPS641707A publication Critical patent/JPS641707A/en
Publication of JPH011707A publication Critical patent/JPH011707A/en
Application granted granted Critical
Publication of JP2514035B2 publication Critical patent/JP2514035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はα−オレフイン類の重合に供した際に、高活
性を維持しつつ、極めて高い立体規則性を有する重合体
を得ることのできる高性能触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention can provide a polymer having extremely high stereoregularity while maintaining high activity when subjected to the polymerization of α-olefins. It relates to a high performance catalyst.

〔従来技術とその問題点〕[Prior art and its problems]

プロピレンの立体規則性重合用触媒としては、従来周
知の三塩化チタンと有機アルミニウム化合物を組合せた
触媒以外に、新しい型のいわゆる担持型触媒として四塩
化チタンを塩化マグネシウムに電子供与体と共に担持し
て、有機アルミニウム化合物および電子供与体と組合せ
て用いるものをはじめとする数多くの新型触媒が開発さ
れ提案されている。しかい、これらいずれの触媒におい
ても生成重合体の立体規則性の点に関して改善の余地を
残しており、高い立体規則性を必要とする場合には重合
時に多量の電子供与体を添加使用することが実用上不可
欠とされていた。ところが、斯かる手法をもつてしても
極端に高い立体規則性を有する重合体は得られず、特に
高活性を維持しつつ、しかも極めて高い立体規則性を得
ることは全く不可能であつた。
As a catalyst for stereoregular polymerization of propylene, in addition to a conventionally known catalyst combining titanium trichloride and an organoaluminum compound, titanium tetrachloride is supported on magnesium chloride together with an electron donor as a new type of so-called supported catalyst. Many new catalysts have been developed and proposed, including those used in combination with organoaluminum compounds and electron donors. However, in all of these catalysts, there is room for improvement in terms of stereoregularity of the produced polymer, and if high stereoregularity is required, use a large amount of electron donor during polymerization. Was practically indispensable. However, even with such a method, a polymer having extremely high stereoregularity could not be obtained, and it was completely impossible to obtain extremely high stereoregularity while maintaining particularly high activity. .

また、従来のいわゆる担持型触媒においては触媒中に
含まれるチタン原子に対して圧到的大過剰の有機アルミ
ニウム化合物を用いることが必要であり、これらポリオ
レフインのコストの上昇につながるばかりでなく、生成
重合体にアルミニウム成分残渣として含まれるために、
品質低下の原因ともなつていた。したがつて有機アルミ
ニウム化合物の使用量を減少させることは解決すべき技
術的課題であつたが、単に有機アルミニウム化合物の使
用量を減少させるのみでは触媒の活性が低下し、本発明
者等の知見によれば生成重合体の嵩比重も低下する。
Further, in the conventional so-called supported catalyst, it is necessary to use a predominantly large excess of an organoaluminum compound with respect to titanium atoms contained in the catalyst, which not only leads to an increase in the cost of these polyolefins, but also produces them. In order to be contained as a residue of aluminum component in the polymer,
It was also a cause of quality deterioration. Therefore, reducing the use amount of the organoaluminum compound was a technical problem to be solved, but merely reducing the use amount of the organoaluminum compound lowers the activity of the catalyst. According to this, the bulk specific gravity of the produced polymer is also reduced.

さらに、通常、前記電子供与体は有機アルミニウム化
合物に対して一定のモル比で用いられるため、従来一般
に行なわれてきた方法では、固体触媒成分に対してかな
り多量に使用することが必要であつた。
Furthermore, since the electron donor is usually used in a fixed molar ratio with respect to the organoaluminum compound, it has been necessary to use a considerably large amount with respect to the solid catalyst component in the methods generally used in the past. .

本発明は、かかる従来技術における種々の問題点を解
決し得る新規なα−オレフイン類の高立体規則性重合用
触媒を提供することを目的とするものである。
An object of the present invention is to provide a novel catalyst for highly stereoregular polymerization of α-olefins, which can solve various problems in the prior art.

〔発明の開示〕[Disclosure of Invention]

本発明は、 (I) ジアルコキシマグネシウム(a)を常温で液体
の芳香族炭化水素(b)中に懸濁させ、しかる後に四塩
化チタン(c)および芳香族ジカルボン酸のジエステル
(d)と80℃ないし135℃の温度域で反応させて得られ
た固体物質を分離して、これにさらに四塩化チタン
(c)を反応させて固体生成物を得、該固体生成物に一
般式SiRm(OR′)4-m(式中Rはアルキル基、シクロア
ルキル基、ビニル基またはアリール基であり、R′はア
ルキル基である。Rがアルキル基である場合はそのアル
キル基はR′と同一であつてもよい。mは0≦m<4で
ある。)で表わされるケイ素化合物(e)を接触させ、
次いで有機アルミニウム化合物(f)を接触させること
によつて得られる固体触媒成分; (II)エポキシパラメンタン化合物 および (III)有機アルミニウム化合物 よりなることを特徴とするα−オレフイン類の高立体規
則性重合用触媒を提供するものである。
In the present invention, (I) a dialkoxy magnesium (a) is suspended in a liquid aromatic hydrocarbon (b) at room temperature, and then titanium tetrachloride (c) and a diester (d) of an aromatic dicarboxylic acid are added. 80 to ° C. to separate the solid material obtained by reacting at a temperature range of 135 ° C., this is further reacted with titanium tetrachloride (c) to give a solid product, the general formula SiR m to the solid product (OR ') 4-m (wherein R is an alkyl group, a cycloalkyl group, a vinyl group or an aryl group, and R'is an alkyl group. When R is an alkyl group, the alkyl group is They may be the same, m is 0 ≦ m <4, and a silicon compound (e) represented by
Then, a solid catalyst component obtained by bringing the organoaluminum compound (f) into contact; (II) an epoxyparamenthane compound and (III) an organoaluminum compound, which is characterized by high stereoregularity of α-olefins. A catalyst for polymerization is provided.

本発明に係るオレフイン類重合用触媒において使用さ
れる前記(a)のジアルコキシマグネシウム(以下単に
(a)物質という。)としては、ジエトキシマグネシウ
ム、ジブトキシマグネシウム、ジフエノキシマグネシウ
ム、ジプロポキシマグネシウム、ジイソプトキシマグネ
シウム、ジイソプロポキシマグネシウム等があげられる
が中でもジエトキシマグネシウム、ジプロポキシマグネ
シウムが好ましい。
Examples of the dialkoxymagnesium (a) used in the catalyst for olefin polymerization according to the present invention (hereinafter simply referred to as the substance (a)) include diethoxymagnesium, dibutoxymagnesium, diphenoxymagnesium, and dipropoxymagnesium. , Diisoptoxymagnesium, diisopropoxymagnesium, etc., among which diethoxymagnesium and dipropoxymagnesium are preferable.

本発明に係るオレフイン類重合用触媒で用いられる前
記(b)の常温で液体の芳香族炭化水素(以下単に
(b)物質という。)としてはトルエン、キシレン、エ
チルベンゼン、プロピルベンゼン、プチルベンザンなど
があげられる。
Examples of the above-mentioned (b) aromatic hydrocarbon which is liquid at room temperature and used in the catalyst for polymerization of olefins according to the present invention (hereinafter simply referred to as (b) substance) include toluene, xylene, ethylbenzene, propylbenzene, and butylbenzene. To be

本発明に係るオレフイン類重合用触媒で用いられる前
記(d)の芳香族ジカルボン酸のジエステル(以下単に
(d)物質という。)としては、フタル酸のジエステル
が好ましく、例えば、ジメチルフタレート、ジエチルフ
タレート、ジプロピルフタレート、ジイソプロピルフタ
レート、ジブチルフタレート、ジイソブチルフタレー
ト、ジアミルフタレート、ジイソアミルフタレート、エ
チルブチルフタレート、エチルイソブチルフタレート、
エチルプロピルフタレートなどがあげられる。
As the diester of the aromatic dicarboxylic acid (d) used in the catalyst for olefin polymerization according to the present invention (hereinafter simply referred to as the substance (d)), a diester of phthalic acid is preferable, and examples thereof include dimethyl phthalate and diethyl phthalate. , Dipropylphthalate, diisopropylphthalate, dibutylphthalate, diisobutylphthalate, diamylphthalate, diisoamylphthalate, ethylbutylphthalate, ethylisobutylphthalate,
Examples include ethyl propyl phthalate.

本発明に係るオレフイン類重合用触媒において使用さ
れる前記(e)のケイ素化合物(以下単に(e)物質と
いう。)としてはアルコキシシラン、フエニルアルコキ
シシラン、アルキルアルコキシシラン、ビニルアルコキ
シシラン、シクロアルキルアルコキシシラン、シクロア
ルキルアルキルアルコキシシランなどがあげられるが具
体的例としてテトラメトキシシラン、テトラエトキシシ
ラン、フエニルトリメトキシシラン、フエニルトリエト
キシシラン、フエニルトリプロポキシシラン、フエニル
トリイソプロボキシシラン、ジフエニルジメトキシシラ
ン、ジフエニルジエトキシシラン、エチルトリメトキシ
シラン、メチルトリメトキシシラン、メチルトリエトキ
シシラン、エチルトリエトキシシラン、エチルトリイソ
プロポキシシラン、ビニルトリメトキシシラン、ビニル
トリエトキシシランなどをあげることができる。
Examples of the silicon compound (e) used in the catalyst for olefin polymerization according to the present invention (hereinafter simply referred to as (e) substance) include alkoxysilane, phenylalkoxysilane, alkylalkoxysilane, vinylalkoxysilane, and cycloalkyl. Specific examples thereof include alkoxysilane and cycloalkylalkylalkoxysilane. Tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, phenyltriisopropoxysilane. , Diphenyldimethoxysilane, diphenyldiethoxysilane, ethyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, Cycloalkenyl trimethoxysilane, and the like vinyltriethoxysilane.

本発明に係るオレフイン類重合用触媒において用いら
れる前記(II)のエポキシパラメンタン化合物としては
1,8−エポキシパラメンタンないしはそれにアルキル基
やハロゲンなどの置換基の結合のものの中から選択して
用いることができる。
The epoxy paramenthane compound (II) used in the catalyst for olefin polymerization according to the present invention is
It can be used by selecting from 1,8-epoxy paramenthane or one having an alkyl group or a substituent such as halogen bonded thereto.

本発明に係るオレフイン類重合用触媒において用いら
れる前記(f)または(III)の有機アルミニウム化合
物としては、トリアルキルアルミニウム、ジアルキルア
ルミニウムハライド、アルキルアルミニウムジハライ
ド、アルキルアルミニウムセスキハライドおよびこれら
の混合物があげられる。
Examples of the (f) or (III) organoaluminum compound used in the catalyst for olefin polymerization according to the present invention include trialkylaluminum, dialkylaluminum halide, alkylaluminum dihalide, alkylaluminum sesquihalide and mixtures thereof. To be

前述の固体生成物を得る際の第1の好ましい態様とし
ては、(a)物質を(b)物質中の懸濁させ、しかる後
に四塩化チタンを加え、80℃以上に昇温した後(d)物
質を添加して80℃ないし135℃の温度域で反応させる方
法があげられる。また、第2の好ましい態様としては、
四塩化チタンと(d)物質を室温で添加した後、80℃な
いし135℃の温度域で反応させる方法があげられる。な
お、上述の四塩化チタンは、これを常温で液体の芳香族
炭化水素で希釈して用いることができる。
As a first preferred embodiment for obtaining the solid product, the substance (a) is suspended in the substance (b), titanium tetrachloride is then added, and the temperature is raised to 80 ° C. or higher (d). ) A method of adding a substance and reacting in a temperature range of 80 ° C to 135 ° C. In addition, as a second preferred embodiment,
A method is one in which titanium tetrachloride and the substance (d) are added at room temperature and then reacted in a temperature range of 80 ° C to 135 ° C. The titanium tetrachloride can be used by diluting it with an aromatic hydrocarbon that is liquid at room temperature.

前述の固体触媒成分の調製における各物質の使用割合
は通常(a)物質1gに対し、(d)物質は0.01〜2g、好
ましくは0.1〜1gの範囲であり、四塩化チタンは0.1g以
上、好ましくは1g以上の範囲である。また、(b)物質
は、任意の割合で用いられるが、懸濁液を形成し得る量
であることが必要である。
The proportion of each substance used in the preparation of the above solid catalyst component is usually 0.01 to 2 g, preferably 0.1 to 1 g, for 1 g of the (a) substance, and 0.1 g or more of titanium tetrachloride, It is preferably in the range of 1 g or more. Further, the substance (b) is used in an arbitrary ratio, but it is necessary that the amount is capable of forming a suspension.

さらに、各原料物質の反応および接触は通常0℃から
用いられるチタンハロゲン化物の沸点までの温度で100
時間以下、好ましくは10時間以下の範囲で行なわれる。
Furthermore, the reaction and contact of each raw material is usually 100 ° C at a temperature from 0 ° C to the boiling point of the titanium halide used.
It is carried out for not more than 10 hours, preferably not more than 10 hours.

以上の如くして得られた固体生成物に(e)物質を接
触させ、次いで有機アルミニウム化合物(f)を接触さ
せて固体触媒成分を得るがこの際通常該固体生成物1gに
対し、(e)物質は0.1〜5g、有機アルミニウム化合物
(f)は0.1〜10gの範囲で用いられる。上記の(e)物
質との接触あるいは有機アルミニウム化合物(f)との
接触はいずれも100℃以下の温度で100時間以下、好まし
くは10時間以内行なわれる。
The solid product obtained as described above is contacted with the substance (e) and then with the organoaluminum compound (f) to obtain a solid catalyst component. The substance is used in an amount of 0.1 to 5 g, and the organoaluminum compound (f) is used in an amount of 0.1 to 10 g. The contact with the substance (e) or the contact with the organoaluminum compound (f) is carried out at a temperature of 100 ° C. or lower for 100 hours or less, preferably 10 hours or less.

前記の固体生成物は(e)物質との接触に先だち適当
な有機溶媒を用いて洗浄される。
The solid product is washed with a suitable organic solvent prior to contact with substance (e).

また、上記の(d)物質、(b)物質、四塩化チタン
および(d)物質より得られる固体物質および上記の固
体触媒成分はいずれも必要に応じて適時適当な有機溶媒
を用いて洗浄することが好ましい。
Further, the above-mentioned solid substance obtained from the substance (d), the substance (b), titanium tetrachloride and the substance (d), and the above-mentioned solid catalyst component are all washed with a suitable organic solvent, if necessary. It is preferable.

上述の操作は酸素および水分等の不存在下に行なわれ
ることが好ましい。
The above operation is preferably performed in the absence of oxygen and water.

以上の如くして製造された固体触媒成分は、前述のエ
ポキシパラメンタン化合物および有機アルミニウム化合
物と組合せてオレフイン類重合用触媒を形成する。使用
される有機アルミニウム化合物の量は特に限定されるも
のではないが前述の如き理由で少ない方が好ましく、通
常触媒成分中のチタン原子のモル当りモル比で1〜50の
範囲で用いられる。ただし、十分な性能を得られる範囲
であれば、概略上記モル比を満足していればよい。ま
た、該エポキシパラメンタン化合物は有機アルミニウム
化合物のモル当りモル比で1以下の範囲で用いられる。
The solid catalyst component produced as described above is combined with the above-mentioned epoxy paramenthane compound and organoaluminum compound to form a catalyst for olefin polymerization. The amount of the organoaluminum compound used is not particularly limited, but is preferably small for the reasons described above, and is usually used in the range of 1 to 50 in terms of molar ratio per mole of titanium atom in the catalyst component. However, as long as sufficient performance can be obtained, the above molar ratio may be satisfied. The epoxy paramenthane compound is used in a molar ratio of 1 or less per mol of the organoaluminum compound.

重合は有機溶媒の存在下でも或いは不存在下でも行な
うことができ、またオレフイン単量体は気体および液体
のいずれの状態でも用いることができる。重合温度は20
0℃以下好ましくは100℃以下であり、重合圧力は100kg/
cm2−G以下、好ましくは50kg/cm2−G以下である。
The polymerization can be carried out in the presence or absence of an organic solvent, and the olefin monomer can be used in either gas or liquid state. Polymerization temperature is 20
0 ℃ or less, preferably 100 ℃ or less, the polymerization pressure is 100kg /
cm 2 -G or less, preferably 50 kg / cm 2 -G or less.

本発明に係る触媒を用いて単独重合または共重合され
るα−オレフイン類はプロピレン、1−ブテン等であ
る。
The α-olefins homopolymerized or copolymerized using the catalyst according to the present invention are propylene, 1-butene and the like.

〔発明の効果〕〔The invention's effect〕

本発明に係る触媒によれば従来実用上全く得られなか
つたような高い立体規則性を持つ重合体を得ることがで
き、しかも触媒の活性も高度に維持することができる。
According to the catalyst of the present invention, it is possible to obtain a polymer having a high stereoregularity which has never been obtained in practice, and the activity of the catalyst can be highly maintained.

本発明の触媒によれば従来の技術と比較して、重合時
の有機アルミニウム化合物やケイ素化合物の使用量を著
しく減少させることができる。しかも触媒活性や生成重
合体の嵩比重の低下が起らないという効果があり、この
ことはポリオレフインの製造コストを低減できるという
大きな利点をもたらし、また、有機アルミニウム化合物
やケイ素化合物に起因する生成重合体中の残渣を少なく
できるという利点をもたらす。
According to the catalyst of the present invention, the amount of the organoaluminum compound or silicon compound used during the polymerization can be remarkably reduced as compared with the conventional techniques. Moreover, there is an effect that the catalytic activity and the bulk specific gravity of the produced polymer do not decrease, which brings about a great advantage that the production cost of the polyolefin can be reduced, and the production weight caused by the organoaluminum compound or the silicon compound is reduced. This brings the advantage that the residue in the coalescence can be reduced.

また、本発明の触媒によれば重合時に用いるケイ素化
合物量を大幅に減少することができるため生成重合体に
おける臭気の問題を実質上解決することができ、このこ
とは、特にバルク重合や気相重合体においてより大きな
利点となる。
Further, according to the catalyst of the present invention, the amount of silicon compound used during the polymerization can be significantly reduced, so that the problem of odor in the produced polymer can be substantially solved. Greater advantage in polymers.

さらに、従来、触媒の単位時間当りの活性が、重合の
経過に伴なつて大幅に低下するという、いわゆる高活性
担持型触媒における共通の欠点が存在したが、本発明に
係る触媒においては、重合時間の経過に伴なう活性の低
下が、従来公知の触媒に比較し、極めて小さいため、共
重合等重合時間をより長くする場合にも有用である。
Furthermore, conventionally, there was a common drawback in so-called highly active supported catalysts, in which the activity per unit time of the catalyst was significantly reduced with the progress of polymerization, but in the catalyst according to the present invention, The decrease in activity with the passage of time is extremely small as compared with conventionally known catalysts, and therefore it is also useful when the polymerization time such as copolymerization is prolonged.

さらに付言すると、工業的なオレフイン重合体の製造
においては重合時に水素を共存させることがMI制御など
の点から一般的とされているが、従来の塩化マグネシウ
ムを担体とし、有機カルボン酸エステルを用いた触媒は
水素共存下では活性および立体規則性が大幅に低下する
という欠点を有していた。しかし、本発明に係る触媒を
用いて水素共存下にオレフインの重合を行なつた場合、
特に生成重合体のMIが極めて高い場合においても、活性
および立体規則性は低下しない。工業的なポリオレフイ
ンの製造においては重合装置の能力、後処理工程の能力
などの点で生成重合体の嵩比重が非常に大きな問題とな
るが、本発明に係る触媒は、この点においても、極めて
優れた特性を有している。
In addition, in the industrial production of olefin polymers, coexistence of hydrogen at the time of polymerization is generally considered from the viewpoint of MI control and the like, but conventional magnesium chloride is used as a carrier and organic carboxylic acid ester is used. The catalyst had a drawback that its activity and stereoregularity were significantly reduced in the presence of hydrogen. However, when olefin polymerization is carried out in the coexistence of hydrogen using the catalyst of the present invention,
In particular, the activity and stereoregularity do not decrease even when the MI of the produced polymer is extremely high. In the industrial production of polyolefin, the bulk specific gravity of the produced polymer becomes a very big problem in terms of the ability of the polymerization apparatus, the ability of the post-treatment step, etc., but the catalyst according to the present invention also has an extremely large problem. It has excellent characteristics.

〔実施例、比較例〕[Examples and comparative examples]

以下に、本発明を実施例および比較例によりさらに具
体的に説明する。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1 《固体触媒成分の調製》 窒素ガスで充分に置換され、攪拌機を具備した容量20
0mlの丸底フラスコにジエトキシマグネシウム10gおよび
トルエン80mlを装入して懸濁状態とした。次いでこの懸
濁液にTiCl420mlを加え100℃に昇温してジブチルフタレ
ート2.5mlを加えた。次いで115℃に昇温して2時間攪拌
しながら反応させ固体物質を得た。該固体物質を60℃の
トレエン100mlで3回洗浄し、新たにトルエン80ml、TiC
l420mlを加えて115℃で2時間攪拌しながら反応させ
た。
Example 1 <Preparation of solid catalyst component> Capacity 20 fully replaced with nitrogen gas and equipped with a stirrer
A 0 ml round bottom flask was charged with 10 g of diethoxymagnesium and 80 ml of toluene to make a suspension. Next, 20 ml of TiCl 4 was added to this suspension, the temperature was raised to 100 ° C., and 2.5 ml of dibutyl phthalate was added. Then, the temperature was raised to 115 ° C. and the reaction was performed for 2 hours with stirring to obtain a solid substance. The solid material was washed 3 times with 100 ml of TREEN at 60 ° C. and freshly added with 80 ml of toluene and TiC.
l 4 20 ml was added and the reaction was carried out at 115 ° C. for 2 hours with stirring.

反応終了後40℃のn−ヘプタン200mlによる洗浄を10
回行ない固体生成物を得た。この際、該固体生成物中の
チタン含有率を測定したところ2.82重量%であつた。次
に該固体生成物3gを内容積300mlの攪拌装置付丸底フラ
スコにとり、n−ペプタン100mlおよびジフエニルジメ
トキシシラン1.0mlを加えて充分に攪拌した後、トリイ
ソブチルアルミニウム1.0mlおよびジエチルアルミニウ
ムクロライド0.2mlを加えて室温で2時間攪拌下に反応
させた。反応終了後室温のn−ヘプタン100mlで5回洗
浄し固体触媒成分とした。なお、この際固体触媒成分の
チタン含有率を測定したところ2.56重量%であつた。
After completion of the reaction, wash with 200 ml of n-heptane at 40 ° C for 10
A solid product was obtained by repeating. At this time, the titanium content in the solid product was measured and found to be 2.82% by weight. Next, 3 g of the solid product was placed in a round-bottomed flask having an internal volume of 300 ml and equipped with a stirrer, and 100 ml of n-peptane and 1.0 ml of diphenyldimethoxysilane were added and sufficiently stirred, and then 1.0 ml of triisobutylaluminum and 0.2 ml of diethylaluminum chloride were added. ml was added and the mixture was reacted at room temperature for 2 hours with stirring. After completion of the reaction, it was washed 5 times with 100 ml of room temperature n-heptane to obtain a solid catalyst component. At this time, the titanium content of the solid catalyst component was measured and found to be 2.56% by weight.

《重合》 窒素ガスで完全に置換された内溶液2.0lの攪拌装置付
オートクレーブに、n−ヘプタン700mlを装入し、窒素
ガス雰囲気を保ちつつトリエチルアルミニウム50mg、1,
8−エポキシバラメンタン20mg、次いで前記固体触媒成
分19.5mgを装入した。その後水素ガス150mlを装入し70
℃に昇温してプロプレンガスを導入しつつ6kg/cm2−G
の圧力を維持して2時間の重合を行なつた。重合終了後
得られた固体重合体を別し、80℃に加温して減圧乾燥
した。一方、液を凝縮して重合溶媒に溶存する重合体
の量を(A)とし、固体重合体の量を(B)とする。ま
た得られた固体重合体を沸騰n−ヘプタンで6時間抽出
しn−ヘプタンに不溶解の重合体を得、この量を(C)
とする。
<Polymerization> 700 ml of n-heptane was charged into an autoclave equipped with a stirrer, which was 2.0 l of the inner solution completely replaced with nitrogen gas, and triethylaluminum 50 mg, 1, while maintaining a nitrogen gas atmosphere.
20 mg of 8-epoxy valamantane, then 19.5 mg of the solid catalyst component were charged. After that, charge 150 ml of hydrogen gas to 70
6kg / cm 2 -G while heating to ℃ and introducing propylene gas
Polymerization was carried out for 2 hours while maintaining the above pressure. After completion of the polymerization, the obtained solid polymer was separated, heated to 80 ° C., and dried under reduced pressure. On the other hand, the amount of the polymer dissolved in the polymerization solvent by condensing the liquid is (A), and the amount of the solid polymer is (B). The obtained solid polymer was extracted with boiling n-heptane for 6 hours to obtain a polymer insoluble in n-heptane.
And

固体触媒成分当りの重合活性(D)を式 で表わす。The polymerization activity (D) per solid catalyst component is calculated by the formula Express with.

また結晶性重合体の収率(E)を式 で表わし、全結晶重合体の収率(F)を式 より求めた。また生成重合体中の残留塩素を(G)、生
成重合体のMIを(H)、嵩比重を(I)で表わす。得ら
れた結果は第1表に示す通りである。
Further, the yield (E) of the crystalline polymer is expressed by the formula And the yield (F) of the whole crystalline polymer is expressed by the formula I asked more. The residual chlorine in the produced polymer is represented by (G), the MI of the produced polymer is represented by (H), and the bulk specific gravity is represented by (I). The results obtained are as shown in Table 1.

実施例2 ジフエニルジメトキシシランの代りにフエニルトリエ
トキシシランを用いた以外は実施例1と同様にして実験
を行なつた。なお、この際の固体触媒成分中のチタン含
有率は2.51重量%であつた。重合に際しては固体触媒成
分19.9mgを用いた以外は実施例1と同様にして実験を行
つた。得られた結果は、第1表に示す通りである。
Example 2 An experiment was conducted in the same manner as in Example 1 except that phenyltriethoxysilane was used instead of diphenyldimethoxysilane. The titanium content in the solid catalyst component at this time was 2.51% by weight. An experiment was conducted in the same manner as in Example 1 except that 19.9 mg of the solid catalyst component was used for the polymerization. The obtained results are as shown in Table 1.

実施例3 ジフエニルジメトキシシランの量を1.5mlとした以外
は実施例1と同様にして実験を行なつた。なお、この際
の固体触媒成分中のチタン含有率は2.60重量%であつ
た。重合に際しては固体触媒成分19.2mgを用いた以外
は、実施例1と同様にして実験を行なつた。得られた結
果は第1表に示す通りである。
Example 3 An experiment was conducted in the same manner as in Example 1 except that the amount of diphenyldimethoxysilane was 1.5 ml. The titanium content in the solid catalyst component was 2.60% by weight. An experiment was conducted in the same manner as in Example 1 except that 19.2 mg of the solid catalyst component was used for the polymerization. The results obtained are as shown in Table 1.

比較例1 重合時に1,8−エポキシパラメンタンを使用すること
なく、他は、実施例1と同様にして実験を行なつた。得
られた結果は第1表に示す通りであつた。
Comparative Example 1 An experiment was conducted in the same manner as in Example 1 except that 1,8-epoxy paramenthane was not used during the polymerization. The obtained results are as shown in Table 1.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の理解を助けるための模式的図面であ
る。
FIG. 1 is a schematic drawing for helping understanding of the present invention.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(I)ジアルコキシマグネシウム(a)を
常温で液体の芳香族炭化水素(b)中に懸濁させ、しか
る後に、四塩化チタン(c)および芳香族ジカルボン酸
のジエステル(d)と80℃ないし135℃の温度域で反応
させて得られた固体物質を分離して、これにさらに四塩
化チタン(c)を反応させて固体生成物を得、該固体生
成物に一般式SiRm(OR′)4-m(式中Rはアルキル基、
シクロアルキル基、ビニル基またはアリール基であり、
R′はアルキル基である。Rがアルキル基である場合は
そのアルキル基はR′と同一であつてもよい。mは0≦
m<4である。)で表わされるケイ素化合物(e)を接
触させ、次いで有機アルミニウム化合物(f)を接触さ
せることによつて得られる固体触媒成分; (II)エポキシパラメンタン化合物 および (III)有機アルミニウム化合物 よりなることを特徴とするα−オレフイン類の高立体規
則性重合用触媒。
1. An (I) dialkoxymagnesium (a) is suspended in a liquid aromatic hydrocarbon (b) at room temperature, and then titanium tetrachloride (c) and a diester (d) of an aromatic dicarboxylic acid are suspended. ) With 80 ° C to 135 ° C in a temperature range to separate a solid substance, which is further reacted with titanium tetrachloride (c) to obtain a solid product. SiR m (OR ′) 4-m (wherein R is an alkyl group,
A cycloalkyl group, a vinyl group or an aryl group,
R 'is an alkyl group. When R is an alkyl group, the alkyl group may be the same as R '. m is 0 ≦
m <4. ) A solid catalyst component obtained by contacting a silicon compound (e) represented by the formula (e), and then contacting an organoaluminum compound (f); (II) Epoxy paramenthane compound and (III) Organoaluminum compound A catalyst for highly stereoregular polymerization of α-olefins characterized by:
【請求項2】上記の固体物質を得る際、ジアルコキシマ
グネシウム(a)を常温で液体の芳香族炭化水素(b)
中に懸濁させ、しかる後に四塩化チタン(c)を加え、
80℃以上に昇温した後芳香族ジカルボン酸のジエステル
(d)を添加して80℃ないし135℃の温度域で反応させ
ることよりなる特許請求の範囲第1項記載のα−オレフ
イン類の高立体規則性重合用触媒。
2. An aromatic hydrocarbon (b), which is liquid at room temperature, is obtained by obtaining dialkoxymagnesium (a) when obtaining the above solid substance.
Suspended in it, after which titanium tetrachloride (c) was added,
The method according to claim 1, wherein after the temperature is raised to 80 ° C or higher, the diester (d) of the aromatic dicarboxylic acid is added and the reaction is carried out in the temperature range of 80 ° C to 135 ° C. Stereoregular polymerization catalyst.
【請求項3】前記の固体物質を得る際、四塩化チタン
(c)と芳香族ジカルボン酸のジエステル(d)を室温
で添加した後、80℃ないし135℃の温度域で反応させる
ことよりなる特許請求の範囲第1項記載のα−オレフイ
ン類の高立体規則性重合用触媒。
3. When obtaining the above solid substance, titanium tetrachloride (c) and diester (d) of aromatic dicarboxylic acid are added at room temperature and then reacted in a temperature range of 80 ° C. to 135 ° C. A catalyst for highly stereoregular polymerization of α-olefins according to claim 1.
【請求項4】前記の四塩化チタン(c)を常温で液体の
芳香族炭化水素で希釈して用いる特許請求の範囲第1項
ないし第3項のいずれかに記載のα−オレフイン類の高
立体規則性重合用触媒。
4. A high α-olefin as claimed in any one of claims 1 to 3, wherein the titanium tetrachloride (c) is diluted with a liquid aromatic hydrocarbon at room temperature. Stereoregular polymerization catalyst.
JP15660487A 1987-06-25 1987-06-25 Catalyst for highly stereoregular polymerization of α-olefins Expired - Lifetime JP2514035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15660487A JP2514035B2 (en) 1987-06-25 1987-06-25 Catalyst for highly stereoregular polymerization of α-olefins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15660487A JP2514035B2 (en) 1987-06-25 1987-06-25 Catalyst for highly stereoregular polymerization of α-olefins

Publications (3)

Publication Number Publication Date
JPS641707A JPS641707A (en) 1989-01-06
JPH011707A JPH011707A (en) 1989-01-06
JP2514035B2 true JP2514035B2 (en) 1996-07-10

Family

ID=15631372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15660487A Expired - Lifetime JP2514035B2 (en) 1987-06-25 1987-06-25 Catalyst for highly stereoregular polymerization of α-olefins

Country Status (1)

Country Link
JP (1) JP2514035B2 (en)

Also Published As

Publication number Publication date
JPS641707A (en) 1989-01-06

Similar Documents

Publication Publication Date Title
JP2958923B2 (en) Solid catalyst components and catalysts for olefin polymerization
US4970186A (en) Solid catalyst component for the polymerization of olefins and an olefin polymerization catalyst
EP0830391B1 (en) Method fo the preparation of a catalyst suitable for the polymerisation of an olefin
JPH06104693B2 (en) Catalyst for olefin polymerization
JP2764286B2 (en) Solid catalyst components and catalysts for olefins polymerization
US6268306B1 (en) Method for preparing a catalyst suitable for polymerizing an olefin
JP2514035B2 (en) Catalyst for highly stereoregular polymerization of α-olefins
JP2571057B2 (en) Solid catalyst component for olefin polymerization
JP2587256B2 (en) Solid catalyst components and catalysts for olefin polymerization
JP2585674B2 (en) Solid catalyst components and catalysts for olefins polymerization
JPH0832739B2 (en) Catalyst for highly stereoregular polymerization of α-olefins
JP3074045B2 (en) Solid catalyst components and catalysts for olefin polymerization
JP2598287B2 (en) Solid catalyst components and catalysts for olefins polymerization
JPH0832738B2 (en) Catalyst for olefin polymerization
JP2587243B2 (en) Catalyst components and catalysts for olefins polymerization
JP2614069B2 (en) Solid catalyst components and catalysts for olefins polymerization
JP3436323B2 (en) Solid catalyst components and catalysts for olefin polymerization
JP2587260B2 (en) Solid catalyst components and catalysts for olefins polymerization
JPH0832740B2 (en) Method for polymerizing α-olefins
JP2652543B2 (en) Solid catalyst components and catalysts for olefins polymerization
JP2587261B2 (en) Solid catalyst components and catalysts for olefins polymerization
JPH0830088B2 (en) Catalyst for olefin polymerization
JP2652548B2 (en) Solid catalyst components and catalysts for olefins polymerization
JP2652554B2 (en) Solid catalyst components and catalysts for olefins polymerization
JP2587257B2 (en) Solid catalyst components and catalysts for olefins polymerization