JP2533203B2 - Video signal processing method - Google Patents
Video signal processing methodInfo
- Publication number
- JP2533203B2 JP2533203B2 JP1288920A JP28892089A JP2533203B2 JP 2533203 B2 JP2533203 B2 JP 2533203B2 JP 1288920 A JP1288920 A JP 1288920A JP 28892089 A JP28892089 A JP 28892089A JP 2533203 B2 JP2533203 B2 JP 2533203B2
- Authority
- JP
- Japan
- Prior art keywords
- video signal
- rch
- gch
- bch
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003672 processing method Methods 0.000 title claims description 4
- 239000011159 matrix material Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
Landscapes
- Processing Of Color Television Signals (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、映像信号の処理方法に関するものである。The present invention relates to a video signal processing method.
(従来の技術) テレビカメラ等から出力された映像信号(電気信号)
は最終的にブラウン管モニタ等で光信号に変換され、光
の明暗で被写体像を表示する。(Prior Art) Video signal (electrical signal) output from a TV camera, etc.
Is finally converted into an optical signal by a cathode ray tube monitor or the like, and the subject image is displayed by the brightness of light.
この際、ブラウン管上に生じる光Loとブラウン管に入
力される電気信号Eoは非線形の関係にあり、式(1)に
示す関係にある。(第6図はその特性図) Lo=K1・Eo1/0.45 ………(1) (K1は定数) 一方、カメラ側の撮像素子での入力光Liとそれにより
生じる電気信号Eiは線形で、式(2)に示す関係にあ
る。(第4図はその特性図) Ei=K2・Li ………(2) (K2は定数) そこで、ブラウン管での非線形特性を補正するため、
カメラ側では式(3)に示すガンマ処理を通常行う。
(第5図はその特性図) Eo=K3・Ei0.45 ………(3) (K3は定数) ところで、映像信号が伝送されてくる途中で混入され
る雑音を考えると、映像信号レベルの小さい黒レベル付
近に混入される雑音の方が、信号レベルの大きい白レベ
ル付近に混入される雑音より(同一振幅の雑音が混入し
た場合でも)、人間の目に感じやすい特性がある。よっ
て、カメラの撮像素子から出力される映像信号を極力前
段でガンマ処理した方が有利である。At this time, the light Lo generated on the cathode ray tube and the electric signal Eo input to the cathode ray tube have a non-linear relationship, and have the relationship shown in the equation (1). (Fig. 6 is its characteristic diagram) Lo = K1 · Eo 1 / 0.45 ……… (1) (K1 is a constant) On the other hand, the input light Li at the camera side image sensor and the electrical signal Ei generated by it are linear. , And the relationship shown in equation (2). (Fig. 4 is its characteristic diagram) Ei = K2 ・ Li ……… (2) (K2 is a constant) Then, in order to correct the non-linear characteristic in the cathode ray tube,
On the camera side, the gamma process shown in equation (3) is normally performed.
(Fig. 5 is the characteristic diagram) Eo = K3 · Ei 0.45 (3) (K3 is a constant) By the way, considering the noise mixed in during the transmission of the video signal, the video signal level is small. The noise mixed in the vicinity of the black level has a characteristic of being more easily perceived by human eyes than the noise mixed in the vicinity of the white level having a large signal level (even when the noise of the same amplitude is mixed). Therefore, it is advantageous to gamma-process the video signal output from the image pickup device of the camera as much as possible in the preceding stage.
また、カメラの撮像素子からの映像信号をデジタル変
換する場合、同一ビット数で量子化すれば第7図に示す
ように、ガンマ処理した信号Eoを量子化する方が、前述
の電気信号Eiを量子化するのに比べ実質信号が圧縮さ
れ、第7図に示す“e"の範囲だけ表現できる明るさが広
がる(ダイナミックレンジが拡大する)効果があり、A/
D変換器の能力を有効に活用できる。Further, when the video signal from the image pickup device of the camera is digitally converted, if it is quantized with the same number of bits, it is better to quantize the gamma-processed signal Eo as shown in FIG. Compared to quantization, the actual signal is compressed, and the brightness that can be expressed in the range of "e" shown in FIG. 7 is expanded (the dynamic range is expanded).
The ability of the D converter can be effectively utilized.
以上のように、極力前段でガンマ処理をすることが雑
音に対しても映像信号のデジタル化にも有効である。As described above, it is effective to perform gamma processing in the front stage as much as possible in order to prevent noise and to digitize a video signal.
しかし、映像信号の色相の補正を行うマトリクス回路
では、赤色チャネル(Rch),緑色チャネル(Gch)およ
び青色チャネル(Bch)の各々の信号をそのチャネル自
身の信号に加減算する。However, in the matrix circuit that corrects the hue of the video signal, each signal of the red channel (Rch), the green channel (Gch) and the blue channel (Bch) is added or subtracted from the signal of the channel itself.
例えばRchでは、 Rm=K4(R−G)+K5(R−B) ……(4) (K4,K5は定数) の処理が行われるため、前述のガンマ処理された明るさ
に対し非線形な信号は、そのままでは加減算できないと
いう問題が生じる。For example, in Rch, the processing of Rm = K4 (R−G) + K5 (R−B) (4) (K4 and K5 are constants) is performed. Causes a problem that it cannot be added or subtracted as it is.
ここで、従来の技術を第2図,第3図を用い説明す
る。Here, the conventional technique will be described with reference to FIGS. 2 and 3.
まず、全回路がアナログ方式で構成されている第2図
の場合について説明する。First, the case of FIG. 2 in which all the circuits are configured in an analog system will be described.
Rch用撮像素子1の出力はRch用プリアンプ4に入力さ
れ、Rch映像信号ERaが得られる。Gch,Bchも同様それぞ
れ専用のプリアンプ5,6に入力され、Gch映像信号EGaと
Bch映像信号EBaを得る。The output of the Rch image pickup device 1 is input to the Rch preamplifier 4, and the Rch video signal ERa is obtained. Similarly, Gch and Bch are also input to dedicated preamplifiers 5 and 6, respectively, and Gch video signal EGa and
Obtain the Bch video signal EBa.
そして、これらRch映像信号ERa,Gch映像信号EGa,Bc
h映像信号EBaはそれぞれ明るさに対し線形の関係にあ
り、そのままアナログ式マトリクス回路7に入力され、
ここに設定されているマトリクス定数によって色相の補
正を行う。Then, these Rch video signals ERa, Gch video signals EGa, Bc
Each of the h video signals EBa has a linear relationship with the brightness and is directly input to the analog matrix circuit 7,
The hue is corrected by the matrix constant set here.
次に、このマトリクス回路7の出力のRch映像信号ER
Maは、Rch用アナログ式ガンマ処理回路8でガンマ処理
され、Rch映像信号E′RMaを得る。Next, the Rch video signal ER output from the matrix circuit 7
Ma is gamma-processed by the Rch analog gamma processing circuit 8 to obtain an Rch video signal E′RMa.
Gch,BchもRchと同様の処理がなされ、Gch映像信号
E′GMaおよびBch映像信号E′BMaが得られる。Gch and Bch are processed in the same manner as Rch, and a Gch video signal E′GMa and a Bch video signal E′BMa are obtained.
前述の第2図の全アナログ方式の回路をデジタル化し
た例を第3図に用い説明する。An example in which the all-analog circuit shown in FIG. 2 is digitized will be described with reference to FIG.
第3図中、Rch用撮像素子1,Gch用撮像素子2およびBc
h用撮像素子3,Rch用プリアンプ4,Gch用プリアンプ5及
びBch用プリアンプ6については第2図と同じである
が、Rch映像信号ERa,Gch映像信号EGaおよびBch映像信
号EBaは色相の調整をする前に、Rch用アナログ式ガン
マ処理回路8,Gch用アナログ式ガンマ処理回路9及びBch
用アナログ式ガンマ処理回路10に入力され、それぞれガ
ンマ処理される。そして、ガンマ処理されたRch映像信
号E′Raは、Rch用A/D変換器11に入力され、ここでアナ
ログ信号からデジタル信号に変換される。Gch,Bchも同
様Gch用A/D変換器12,Bch用A/D変換器13でA/D変換され
る。そして、デジタル変換されたRch映像信号E′Rd,Gc
h映像信号E′GdおよびBch映像信号E′Bdは、次にデジ
タル式マトリクス回路14に入力され、ここに設定されて
いるマトリクス定数によって色相の補正を行う。In FIG. 3, Rch image sensor 1, Gch image sensor 2 and Bc
The image pickup device 3 for h, the preamplifier 4 for Rch, the preamplifier 5 for Bch and the preamplifier 6 for Bch are the same as in FIG. 2, but the hue of the Rch video signal ERa, Gch video signal EGa and Bch video signal EBa is adjusted. Before doing so, Rch analog gamma processing circuit 8, Gch analog gamma processing circuit 9 and Bch
Are input to the analog type gamma processing circuit 10 for gamma processing. Then, the gamma-processed Rch video signal E'Ra is input to the Rch A / D converter 11, where it is converted from an analog signal to a digital signal. Similarly, Gch and Bch are also A / D converted by the Gch A / D converter 12 and the Bch A / D converter 13. Then, the digitally converted Rch video signal E′Rd, Gc
The h video signal E'Gd and the Bch video signal E'Bd are then input to the digital matrix circuit 14, and the hue is corrected by the matrix constant set here.
(発明が解決しようとする課題) 前述の従来技術では、映像信号のデジタル化に際し、
信号の処理手順がガンマ処理,アナログからデジタ
ルへ変換,マトリクス処理(色相調整)、であったた
め、マトリクス処理される映像信号が明るさに対し非線
形になる。このため、Rch,Bch,Gch各々の信号のマトリ
クス処理における加減算が正しく処理できず、理想的な
色相の補正ができないという問題がある。(Problems to be Solved by the Invention) In the above-mentioned conventional technology, when digitizing a video signal,
Since the signal processing procedure is gamma processing, analog-to-digital conversion, and matrix processing (hue adjustment), the image signal subjected to matrix processing becomes non-linear with respect to brightness. Therefore, there is a problem in that the addition and subtraction in the matrix processing of the Rch, Bch, and Gch signals cannot be processed correctly, and ideal hue correction cannot be performed.
本発明ではこれらの欠点を解消するため、信号処理を
デジタル化し、なおかつ明るさに対し線形である信号部
分においてマトリクス処理(色相補正)をし、理想的な
色相補正をすることを目的とするものである。In order to solve these drawbacks, the present invention aims at performing ideal hue correction by digitizing the signal processing and performing matrix processing (hue correction) on the signal portion that is linear with respect to the brightness. Is.
(課題を解決するための手段) 本発明は上記の目的を達成するため、映像信号の処理
手順を、ガンマ処理,アナログ映像信号からデジタ
ル映像信号へ変換,デガンマ処理(ガンマ処理の逆関
数処理),マトリクス処理(色相補正),ガンマ処
理、の順とし、マトリクス処理部へデジタル信号でなお
かつ明るさに対し線形の信号を入力できるようデガンマ
処理手段を挿入したものである。(Means for Solving the Problems) In order to achieve the above object, the present invention implements a video signal processing procedure by gamma processing, converting an analog video signal into a digital video signal, and degamma processing (inverse function processing of gamma processing). The matrix processing (hue correction) and the gamma processing are performed in this order, and a degamma processing means is inserted into the matrix processing unit so that a digital signal and a signal linear to the brightness can be input.
(作用) その結果、ガンマ処理した後、アナログ映像信号から
デジタル映像信号に変換するため、A/D変換器の性能を
有効に活用でき、なおかつマトリクス処理(色相補正)
において、明るさに対し線形のRch,Bch,Gchの各映像信
号を加減算できるため、映像信号レベルが小さい(黒レ
ベル付近)場合でも、大きい(白レベル付近)場合で
も、他のチャネルへ混合する信号比が一定になるため、
映像信号レベルに影響されることなく、色相を一定に保
てるようになる。(Function) As a result, after gamma processing, the analog video signal is converted to a digital video signal, so the performance of the A / D converter can be effectively utilized, and matrix processing (hue correction) is performed.
In R, since the Rch, Bch, and Gch video signals that are linear with respect to brightness can be added or subtracted, they are mixed with other channels regardless of whether the video signal level is low (around the black level) or high (around the white level). Since the signal ratio is constant,
The hue can be kept constant without being affected by the video signal level.
(実施例) 本発明の一実施例を第1図により説明する。(Embodiment) An embodiment of the present invention will be described with reference to FIG.
Rch用撮像素子1,Gch用撮像素子2及びBch用撮像素子
3により電気信号に変換された各々の出力は、Rch用プ
リアンプ4,Gch用プリアンプ5及びBch用プリアンプ6に
入力し、増幅され、Rch営造信号ERa,Gch映像信号EGa,
Bch映像信号EBaを得る。The respective outputs converted into electric signals by the Rch image pickup device 1, the Gch image pickup device 2, and the Bch image pickup device 3 are input to the Rch preamplifier 4, the Gch preamplifier 5, and the Bch preamplifier 6, and are amplified. Rch production signal ERa, Gch video signal EGa,
Obtain the Bch video signal EBa.
次に、Rch映像信号ERa,Gch映像信号EGa及びBch映像
信号EBaはRch用アナログ式ガンマ処理回路8,Gch用アナ
ログ式ガンマ処理回路9及びBch用アナログ式ガンマ処
理回路10に入力し、各々ガンマ処理され、Rch映像信号
E′Ra,Gch映像信号E′Ga及びBch映像信号E′Baを得
る。Next, the Rch video signal ERa, the Gch video signal EGa, and the Bch video signal EBa are input to the Rch analog gamma processing circuit 8, the Gch analog gamma processing circuit 9, and the Bch analog gamma processing circuit 10, respectively. After being processed, Rch video signal E'Ra, Gch video signal E'Ga and Bch video signal E'Ba are obtained.
そして、これらガンマ処理された映像信号をデジタル
化するため、Rch映像信号E′Ra,Gch映像信号E′Ga及
びBch映像信号E′BaはRch用A/D変換器11,Gch用A/D変換
器12およびBch用A/D変換器13に入力され、Rch映像信号
E′Rd,Gch映像信号E′GdおよびBch映像信号E′Bdと
なる。In order to digitize these gamma-processed video signals, the Rch video signal E'Ra, Gch video signal E'Ga, and Bch video signal E'Ba are Rch A / D converter 11 and Gch A / D converter. The signals are input to the converter 12 and the Bch A / D converter 13, and become the Rch video signal E′Rd, the Gch video signal E′Gd and the Bch video signal E′Bd.
ここで、これらRch映像信号E′Rd,Gch映像信号E′G
dおよびBch映像信号E′Bdはガンマ処理されているの
で、色相の補正は直接このままではできない。Here, these Rch video signals E′Rd and Gch video signals E′G
Since the d and Bch video signals E'Bd are gamma-processed, the hue cannot be directly corrected as it is.
そこで、色相の補正をする前に、これらの信号をRch
用デガンマ処理回路17,Gch用デガンマ処理回路18及びBc
h用デガンマ処理回路19に入力し、ガンマ処理された非
線形の映像信号を線形に戻す。そののち、デジタル式マ
トリクス回路14に入力され、ここに設定されたマトリク
ス定数によって色相の調整が行われる。Therefore, before correcting the hue, these signals are converted to Rch.
Degamma processing circuit 17, Gch degamma processing circuit 18 and Bc
It is input to the degamma processing circuit 19 for h, and the non-linear gamma-processed video signal is returned to linear. After that, it is input to the digital matrix circuit 14 and the hue is adjusted by the matrix constant set here.
そしてデジタル式マトリクス回路14の出力は、Rch用
デジタル式ガンマ処理回路20,Gch用デジタル式ガンマ処
理回路21およびBch用デジタル式ガンマ処理回路22に入
力され、ここでガンマ処理され、理想的に色相の補正の
されたRch映像信号E′RMd,Gch映像信号E′GMdおよびB
ch映像信号E′BMdを得る。The output of the digital matrix circuit 14 is input to the Rch digital gamma processing circuit 20, the Gch digital gamma processing circuit 21, and the Bch digital gamma processing circuit 22, where it is gamma-processed and ideally Corrected Rch video signal E'RMd, Gch video signal E'GMd and B
The ch video signal E'BMd is obtained.
(発明の効果) 本発明によれば、映像信号をガンマ処理した後、デジ
タル化しているため、A/D変換器の能力を有効に活用す
ることが出来、なおかつ色相の調整を線形な映像信号の
状態で行える。このため、アナログ式に比べ、デガンマ
処理手段が増えるが、映像信号がデジタル信号のまま処
理できるので、周波数特性、位相特性に優れ、Rch,Gch,
Bch間の特性のばらつきの極めて少ない映像信号処理方
法が実現できる。(Effect of the Invention) According to the present invention, since the video signal is gamma-processed and then digitized, the ability of the A / D converter can be effectively utilized, and the hue adjustment can be performed linearly. It can be done in the state of. Therefore, compared with the analog type, the number of degamma processing means increases, but since the video signal can be processed as a digital signal, it has excellent frequency characteristics and phase characteristics, and Rch, Gch,
It is possible to realize a video signal processing method with very little variation in characteristics between B channels.
第1図は本発明の全体構成を示すブロック図、第2図,
第3図は従来技術の全体構成を示すブロック図、第4図
は撮像素子の入出力特性図、第5図はガンマ処理特性
図、第6図はブラウン管の入出力特性図、第7図はガン
マ処理前後の輝度ダイナミックレンジ比較特性図であ
る。 8:Rch用アナログ式ガンマ処理回路,9:Gch用アナログ式
ガンマ処理回路,10:Bch用アナログ式ガンマ処理回路,1
1:Rch用A/D変換器,12:Gch用A/D変換器,13:Bch用A/D変換
器,14:デジタル式マトリクス回路,17:Rch用デガンマ処
理回路,18:Gch用デガンマ処理回路,19:Bch用デガンマ処
理回路,20:Rch用デジタル式ガンマ処理回路,21:Gch用デ
ジタル式ガンマ処理回路,22:Bch用デジタル式ガンマ処
理回路。FIG. 1 is a block diagram showing the overall configuration of the present invention, FIG.
FIG. 3 is a block diagram showing the overall configuration of the prior art, FIG. 4 is an input / output characteristic diagram of an image sensor, FIG. 5 is a gamma processing characteristic diagram, FIG. 6 is a cathode ray tube input / output characteristic diagram, and FIG. It is a luminance dynamic range comparison characteristic diagram before and behind a gamma process. 8: Rch analog gamma processing circuit, 9: Gch analog gamma processing circuit, 10: Bch analog gamma processing circuit, 1
1: Rch A / D converter, 12: Gch A / D converter, 13: Bch A / D converter, 14: Digital matrix circuit, 17: Rch degamma processing circuit, 18: Gch degamma Processing circuit, 19: Bch degamma processing circuit, 20: Rch digital gamma processing circuit, 21: Gch digital gamma processing circuit, 22: Bch digital gamma processing circuit.
Claims (1)
グ映像信号を非線形処理し、該非線形アナログ映像信号
をデジタル信号に変換後、この非線形処理されたデジタ
ル信号を線形デジタル信号に戻し、その後該線形デジタ
ル信号の状態で色相補正処理を行うことを特徴とする映
像信号処理方法。1. When processing a video signal, first, the analog video signal is subjected to non-linear processing, the non-linear analog video signal is converted into a digital signal, the non-linearly processed digital signal is returned to a linear digital signal, and then the A video signal processing method, wherein hue correction processing is performed in the state of a linear digital signal.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1288920A JP2533203B2 (en) | 1989-11-08 | 1989-11-08 | Video signal processing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1288920A JP2533203B2 (en) | 1989-11-08 | 1989-11-08 | Video signal processing method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH03151789A JPH03151789A (en) | 1991-06-27 |
| JP2533203B2 true JP2533203B2 (en) | 1996-09-11 |
Family
ID=17736511
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1288920A Expired - Lifetime JP2533203B2 (en) | 1989-11-08 | 1989-11-08 | Video signal processing method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2533203B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3439710B2 (en) | 2000-01-20 | 2003-08-25 | 東レ・ダウコーニング・シリコーン株式会社 | Flame retardant organic resin composition |
| US6660787B2 (en) * | 2001-07-18 | 2003-12-09 | General Electric Company | Transparent, fire-resistant polycarbonate compositions |
| KR100698627B1 (en) * | 2004-12-28 | 2007-03-21 | 삼성전자주식회사 | Image contrast improvement device and method |
-
1989
- 1989-11-08 JP JP1288920A patent/JP2533203B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH03151789A (en) | 1991-06-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3208814B2 (en) | Video signal correction device | |
| US5767900A (en) | Digital apparatus for contour enhancement of video signal | |
| JP3277984B2 (en) | Video signal processing device | |
| JP2969773B2 (en) | Color correction device | |
| JP2533203B2 (en) | Video signal processing method | |
| JP3304427B2 (en) | Color image color shift correction device | |
| US5786871A (en) | Constant luminance corrector | |
| US4999702A (en) | Method and apparatus for processing component signals to preserve high frequency intensity information | |
| US5008741A (en) | Method and apparatus for processing component signals to preserve high frequency intensity information | |
| US5745172A (en) | Noise elimination circuit in negative image pickup apparatus | |
| US20060197872A1 (en) | Method for video signal process and method for signal processing apparatus calibration | |
| JPH0440754A (en) | signal converter | |
| JPH0218789B2 (en) | ||
| JPS60143023A (en) | Digital signal processing device | |
| JP2586484B2 (en) | Imaging device | |
| JP3192211B2 (en) | Color television signal processing circuit | |
| US8373779B2 (en) | Imaging apparatus, signal processing circuit, signal processing apparatus, signal processing method, and computer program product | |
| JP3440474B2 (en) | Digital signal processing camera | |
| JP3253316B2 (en) | TV signal transmission equipment | |
| JP2638148B2 (en) | Signal correction device | |
| JPH0767132A (en) | MUSE receiver | |
| SU1141590A1 (en) | Device for reproducing pictures in conventional colours | |
| KR0149873B1 (en) | High Definition TV Signal / Standard TV Signal Converter | |
| JP2850969B2 (en) | Video circuit | |
| JPH05236496A (en) | Color signal correcting device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 13 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 14 |
|
| EXPY | Cancellation because of completion of term | ||
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 14 |