JP2678258B2 - Power system voltage / reactive power control method - Google Patents
Power system voltage / reactive power control methodInfo
- Publication number
- JP2678258B2 JP2678258B2 JP63055517A JP5551788A JP2678258B2 JP 2678258 B2 JP2678258 B2 JP 2678258B2 JP 63055517 A JP63055517 A JP 63055517A JP 5551788 A JP5551788 A JP 5551788A JP 2678258 B2 JP2678258 B2 JP 2678258B2
- Authority
- JP
- Japan
- Prior art keywords
- control
- reactive power
- voltage
- value
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Control Of Electrical Variables (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力系統(以下、系統という。)の電圧・
無効電力の制御方法に係り、特に制御精度を向上させる
のに好適な系統特性定数の補正機能を備えた制御方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a voltage of a power system (hereinafter referred to as a system).
The present invention relates to a reactive power control method, and more particularly to a control method having a function of correcting a system characteristic constant suitable for improving control accuracy.
従来、系統における電圧・無効電力制御は超高圧変電
所において母線電圧とバンク通過無効電力を目標値に維
持するように変圧器のタツプおよび調相設備を自動制御
する装置と火力発電所において昇圧トランスのタツプを
制御することにより送電端の電圧と無効電力出力を目標
値に維持する方式によつて行なわれていた。なお、電圧
・無効電力制御については電気学会技術報告(II部)第
73号(1979年)第36頁〜第70頁に論じられたものが知ら
れている。Conventionally, voltage / reactive power control in grids is a device that automatically controls taps of transformers and phase-modulating equipment to maintain target values of bus voltage and bank passing reactive power in ultra-high voltage substations and step-up transformers in thermal power plants. By controlling the tap of the above, the voltage at the power transmission end and the reactive power output are maintained at the target values. Regarding the voltage and reactive power control, see Technical Report (Part II) of the Institute of Electrical Engineers of Japan.
No. 73 (1979), pages 36 to 70, are discussed.
上記従来の方式によれば、電圧・無効電力制御装置が
分散して設置され、台数が少ない場合には各装置の協調
のとれた運転ができるが、設置台数が増大することによ
り協調のとれた運転が困難となる場合があつた。According to the above-mentioned conventional method, the voltage / reactive power control devices are installed in a distributed manner, and when the number of devices is small, the devices can operate in a coordinated manner. Driving sometimes became difficult.
また、計算機システムにより系統の制御を行なう場合
には、系統をノード・ブランチの接続により模擬したモ
デルを用いるが、モデルに与えられた定数の誤差や計算
時の誤差により、計算により算出した制御後推定値と実
際の制御後の実測値が一致しない等の精度上の問題があ
つた。In addition, when controlling the system with a computer system, a model that simulates the system by connecting nodes and branches is used, but after the control calculated by calculation due to the error of the constant given to the model and the error at the time of calculation There was a problem in accuracy such as the estimated value and the actual measured value after control did not match.
本発明の目的は、電圧・無効電力制御装置の協調をと
りながら電力系統各点の電圧・無効電力の調節を精度良
く行なうことにある。An object of the present invention is to accurately adjust the voltage / reactive power at each point of the power system while coordinating the voltage / reactive power control device.
上記問題点を解決するために、本発明は、電力系統の
電圧・無効電力の制御方法において、電圧・無効電力制
御機器の操作が前記電力系統の電圧・無効電力に与える
影響を示す系統特性定数に基づいて前記電圧・無効電力
制御機器を予測制御操作し、この操作後の電力系統の実
電圧・無効電力値を求め、前記予測制御装置と実電圧・
無効電力値との偏差により前記系統特性定数を修正する
ことを特徴とするものである。In order to solve the above-mentioned problems, the present invention relates to a voltage / reactive power control method of a power system, and a system characteristic constant indicating the influence of the operation of a voltage / reactive power control device on the voltage / reactive power of the power system. Predictive control operation of the voltage / reactive power control device based on the following, to obtain the actual voltage / reactive power value of the power system after this operation, the predictive control device and the actual voltage
It is characterized in that the system characteristic constant is corrected by the deviation from the reactive power value.
すなわち、本発明は電気・無効電力制御を行なうのに
あたつて使用する系統特性定数は制御機器の1操作が電
力系統の各点の電圧・無効電力に与える変化の推定値で
あるため、制御後の実測値により誤差補正が可能である
ことに着目し、この補正により系統特性定数に学習機能
を持たせ、制御精度を向上させるようにしたものであ
る。That is, in the present invention, the system characteristic constant used in performing the electric / reactive power control is an estimated value of the change that one operation of the control device gives to the voltage / reactive power at each point of the power system. Focusing on the fact that the error can be corrected by the actual measurement value obtained later, the correction is made to give the system characteristic constant a learning function to improve the control accuracy.
ここで、系統特性定数の学習機能について以下に説明
する。系統内各点における電圧・無効電力の制御を計算
機システムに導入するため、系統内の制御機器の1操作
が系統内各点の電圧・無効電力に与える影響を示す系統
特性定数を制御量計算に用いる。この系統特性定数は近
似的に考えれば系統のインピーダンスだけの関数で与え
られる定数である。たとえば、第2図の2機系統で考え
ると、各電圧式は、 から、電圧Eおよび無効電力Qを E=1(P,n,y,E1,E2) …(3) Q=2(P,n,y,E1,E2) …(4) とすると が得られ、変化分の形で表すと ΔE=A・Δn+B・Δy …(7) ΔQ=C・Δn+D・Δy …(8) となり、このA,B,C,Dを系統特性定数とする。Aは変圧
器のタツプ操作量Δnに対する電圧Eの変化ΔEの関係
を、Cはタツプ操作量Δnに対する無効電力Qの変化Δ
Qの関係を表わす。Bは調相設備yの操作量Δyに対す
る電圧変化ΔEの関係を、Dは調相設備yの操作量Δy
に対する無効電力の変化ΔQの関係を表わす定数であ
る。これらの系統特性定数A,B,C,Dに対する有効電力の
影響は実用上無視できないため、(1)式(2)式か
ら、電圧Eおよび無効電力Qは となり、各系統特性定数は以下のように表わされる。Here, the learning function of the system characteristic constant will be described below. In order to introduce the control of voltage / reactive power at each point in the system to the computer system, the system characteristic constants showing the effect of one operation of the control device in the system on the voltage / reactive power at each point in the system are calculated for the control amount. To use. This system characteristic constant is a constant given by a function of the impedance of the system only when considered approximately. For example, considering the two-machine system of FIG. Therefore, the voltage E and the reactive power Q are expressed as E = 1 (P, n, y, E 1 , E 2 ) ... (3) Q = 2 (P, n, y, E 1 , E 2 ) ... (4) Then Is obtained and expressed in the form of change, ΔE = A · Δn + B · Δy (7) ΔQ = C · Δn + D · Δy (8), and these A, B, C and D are system characteristic constants. A is the relationship of the change ΔE of the voltage E with respect to the tap operation amount Δn of the transformer, and C is the change Δ of the reactive power Q with respect to the tap operation amount Δn.
Indicates the relationship of Q. B is the relationship of the voltage change ΔE with respect to the manipulated variable Δy of the phase-modulating equipment y, and D is the manipulated variable Δy of the phase-modulating equipment y.
Is a constant representing the relationship of the change ΔQ of the reactive power with respect to. Since the influence of active power on these system characteristic constants A, B, C, D cannot be ignored in practice, the voltage E and reactive power Q can be calculated from equations (1) and (2). And each system characteristic constant is expressed as follows.
ここでE1=E2≒1,n≒1,X1X2y≒0とすると となる。以下同様に となる。以上を多機系統に拡張し、系統インピーダンス
から系統特性定数を得る。 If E 1 = E 2 ≈1, n≈1, X 1 X 2 y ≈0 Becomes Similarly, Becomes The above is extended to the multi-machine system, and the system characteristic constant is obtained from the system impedance.
制御量計算は上記手法により得た系統特性定数を用い
ることにより行なう。いま、調整機器iを1単位上げ方
向(+)に操作することを考えると、系統内j地点の電
圧Vj +およびk地点の無効電力Qk +は次のように変化す
る。The control amount calculation is performed by using the system characteristic constant obtained by the above method. Considering now that the adjusting device i is operated in the direction of increasing by one unit (+), the voltage V j + at the j-th point and the reactive power Q k + at the k-th point in the system change as follows.
Vj +=Vj+Dij …(16) Qk +=Qk+Bik …(17) ここで、VおよびQを運用許容範囲内とするための判
定関数を とすると、操作後の判定関数E+は となるのでこのときの判定関数の変化量ΔEi +は となる。ここで とすると、判定関数の変化量ΔEi +は ΔE1 +=α1−βi …(23) となる。同様に下げ方向(−)に1単位操作した場合の
判定関数の変化量ΔEi -は ΔEi -=αi−βi …(24) となる。βiは変化しない量であるが、αiは制御偏差
ΔV,ΔQにより変化する。判定関数を最小とするために
は ΔEi +=−αi−βi …(25) ΔEi -=αi−βi …(26) を全ての調整機器iについて計算し、それが最大となる
制御機器を選ぶ。ここで選んだ制御機器iが最適制御機
器である。この計算を繰返し、判定関数Eが最小となる
制御機器と制御量の組合せを得る。V j + = V j + D ij (16) Q k + = Q k + B ik (17) Here, the decision function for keeping V and Q within the operation allowable range is Then, the decision function E + after the operation is Therefore, the change amount ΔE i + of the decision function at this time is Becomes here Then, the change amount ΔE i + of the determination function is ΔE 1 + = α1-β i (23). Similarly, the change amount ΔE i − of the determination function when one unit is operated in the lowering direction (−) is ΔE i − = α i −β i (24). β i is an amount that does not change, but α i changes depending on the control deviations ΔV and ΔQ. In order to minimize the decision function, ΔE i + = −α i −β i … (25) ΔE i − = α i −β i … (26) is calculated for all adjusting devices i, and that is the maximum. Choose a control device that The control device i selected here is the optimum control device. This calculation is repeated to obtain the combination of the control device and the control amount that minimizes the judgment function E.
以上によつて選択,決定された制御機器および操作量
に基づき制御を実行する。制御実行後、制御対象機器が
制御卸指令通りの機器値となることを監視し、全機器が
指令通りの機器値となつた時点の電圧,無効電力値を収
集する。系統特性定数補正計算では制御量計算の算出し
た操作御の電圧・無効電力予想値とオンライン収集した
操作後の実電圧・無効電力値を用い、下記の式にて系統
特性定数を補正する。The control is executed based on the control device and the operation amount selected and determined as described above. After the control is executed, it is monitored that the control target devices have the device values according to the control wholesale command, and the voltage and reactive power value at the time when all the devices have the device values according to the command are collected. In the system characteristic constant correction calculation, the operation characteristic voltage / reactive power predicted value calculated by the control amount calculation and the actual voltage / reactive power value after operation collected online are used to correct the system characteristic constant using the following formula.
この(27)式が本発明の中心である系統特性定数の学
習効果を実現する。 This expression (27) realizes the learning effect of the system characteristic constant, which is the center of the present invention.
上記本発明によれば、制御量計算によつて系統内で監
視値を逸脱した電圧・無効電力を目標値に近づけるた
め、最も有効な制御機器の選択と制御量の算出を行なう
ように動作する。それによつて系統内制御機器の協調が
保たれる。According to the present invention, the voltage / reactive power deviating from the monitored value in the system is brought close to the target value by the control amount calculation, so that the most effective control device is selected and the control amount is calculated. . As a result, the coordination of the control devices in the system is maintained.
系統特性定数補正計算は制御量計算が算出した制御機
器の選択と制御量によつて実際の系統に制御を実行した
結果である電圧・無効電力値を収集し、制御量計算の算
出した制御後推定値との誤差算出する。この誤差に基づ
いて制御量計算の基礎データである系統特性定数を補正
するので、次回の制御量計算の精度が向上する。The system characteristic constant correction calculation collects the voltage / reactive power values that are the results of executing control in the actual system according to the selection of the control device calculated by the control amount calculation and the control amount, and after the control calculated by the control amount calculation. Calculate the error from the estimated value. Since the system characteristic constant, which is the basic data for the control amount calculation, is corrected based on this error, the accuracy of the next control amount calculation is improved.
次に、本発明に係る実施例を図面を基づいて説明す
る。Next, an embodiment according to the present invention will be described with reference to the drawings.
第1図に本発明の実施例を示す。この実施例は電力系
統を遠方監視装置を介して計算機システムにより監視制
御する場合の例を示したものである。FIG. 1 shows an embodiment of the present invention. This embodiment shows an example in which the power system is monitored and controlled by a computer system via a remote monitoring device.
遠方監視装置200を通して計算機システムに入力され
る機器の接続状態を示す2値データおよび電圧値・無効
電力値等の数値データは系統監視プログラム301により
状態変化の発生・数値監視違反の発生を監視する。2値
データの状態変化発生時には系統監視プログラム301が
系統特性定数計算308に起動をかける。系統特性定数計
算308は遠方監視装置200を通して入力した最新の2値デ
ータを用いてモデル系統の再構成を行つた後、系統特性
定数を計算し、系統特性定数フアイル307に格納する。
系統監視プログラム301は電圧・無効電力に監視違反を
検出した場合は制御量計算302に起動をかける。制御量
計算302は系統の最新機器値(変圧器のタツプ値・調相
設備の投入台数等)と電圧・無効電力値および系統特性
定数307から、違反値を目標値に近づけるために最も有
効な制御機器の選択と制御量を算出し、制御機器・制御
量フアイルに格納する。また同時に制御実行後の電圧・
無効電力推定値305を計算し、制御推定値フアイルに格
納する。制御量計算302は以上を実行後、制御実行プロ
グラム304を起動する。制御実行プログラム304は制御機
器・制御量フアイルのデータを基に遠方監視装置200へ
制御信号を送出する。制御信号が送出された後、系統監
視プログラム301は制御の対象となつた機器が制御通り
の機器値となることを監視する。機器値が制御通りにな
つた時点での電圧・無効電力値を制御結果フアイルに格
納し、系統特性定数補正計算306を起動する。系統特性
定数補正計算306は制御後推定値フアイルと制御結果フ
アイルから系統特性定数フアイル内の系統特性定数を補
正することにより学習効果を与える。Binary data indicating the connection status of devices input to the computer system through the remote monitoring device 200 and numerical data such as voltage value and reactive power value are monitored by the system monitoring program 301 for occurrence of state change and numerical monitoring violation. . When the state change of binary data occurs, the system monitoring program 301 activates the system characteristic constant calculation 308. The system characteristic constant calculation 308 reconstructs the model system using the latest binary data input through the remote monitoring device 200, then calculates the system characteristic constant and stores it in the system characteristic constant file 307.
When the system monitoring program 301 detects a monitoring violation in voltage / reactive power, it activates the control amount calculation 302. The control amount calculation 302 is the most effective for bringing the violation value close to the target value from the latest equipment value of the system (tapping value of transformer, number of input of phase adjusting equipment, etc.), voltage / reactive power value and system characteristic constant 307. The control device selection and control amount are calculated and stored in the control device / control amount file. At the same time, the voltage
The reactive power estimation value 305 is calculated and stored in the control estimation value file. The control amount calculation 302 starts the control execution program 304 after executing the above. The control execution program 304 sends a control signal to the remote monitoring device 200 based on the data of the control device / control amount file. After the control signal is transmitted, the system monitoring program 301 monitors that the device to be controlled has a device value as controlled. The voltage / reactive power value at the time when the device value is controlled is stored in the control result file, and the system characteristic constant correction calculation 306 is started. The system characteristic constant correction calculation 306 gives a learning effect by correcting the system characteristic constant in the system characteristic constant file from the post-control estimated value file and the control result file.
本実施例では制御機器の協調を保ち精度の高い電圧・
無効電力制御が可能である。また電圧・無効電力値の監
視の結果に関わらず、2値データの状態変化発生時、す
なわち系統構成の変化時に系統特性定数係数308が行な
われるため、電圧・無効電力値の監視違反が発生時には
系統特性定数の計算が不要となり、迅速な制御が可能と
なる効果がある。In this embodiment, the voltage of the high precision voltage
Reactive power control is possible. Further, regardless of the result of monitoring the voltage / reactive power value, the system characteristic constant coefficient 308 is performed when the state change of the binary data occurs, that is, when the system configuration changes. The calculation of system characteristic constants is not required, which has the effect of enabling quick control.
以上の実施例によれば、広域の電力系統の状態を考慮
し、制御機器の協調を保つた系統運用が可能となり、制
御機器の動作を最小化できるので、制御機器の寿命を延
ばし、経済性を高める効果がある。According to the above-described embodiment, the operation of the control device can be minimized in consideration of the state of the power system in a wide area, and the operation of the control device can be minimized. Therefore, the life of the control device can be extended and the economical efficiency can be improved. Has the effect of increasing
また、モデル系統に誤差が含まれる場合でも、誤差を
含んだ系統特性定数を実際の制御の結果により補正する
ため、制御の精度を高める効果がある。Further, even when the model system includes an error, the system characteristic constant including the error is corrected by the result of the actual control, so that there is an effect of improving the control accuracy.
典型的な地方給電所では、電圧および無効電力を制御
するための制御機器が数個から十数個あり、この制御機
器の中から最適な調整機器を選択し、制御量を決定する
ためには系統運用者の経験が必要であるため、系統運用
者の育成のため、訓練と経験の積み重ねが行なわれてき
たが、本発明によれば初心の系統運用者であつても、熟
練の系統運用者と同等の電圧・無効電力制御により目標
電圧・目標無効電力の数%以内に誤差を保つことが可能
になる。In a typical local power station, there are several to a dozen or more control devices for controlling voltage and reactive power. To select the optimum adjustment device from these control devices and determine the control amount, Since a system operator's experience is required, training and experience have been accumulated in order to train the system operator. However, according to the present invention, even an inexperienced system operator can be experienced in system operation. It is possible to keep the error within a few percent of the target voltage / target reactive power by the same voltage / reactive power control as the user.
系統構成の初期値を与える際にインピーダンスに誤差
が含まれると系統特性定数計算によつて算出される系統
定数に誤差が生ずる。この系統定数を誤差のため、制御
結果にも誤差が生じ、誤差を含んだインピーダンスを与
えられた地点の近傍では、制御後推定値と実制御結果と
の間に10%近い偏差を生むことがある。これに対して本
発明では、学習法によつて系統定数に含まれる誤差を排
除していく機能を持つているため、与えられた系統構成
の初期値にかかわらず、計算と制御を繰り返すことによ
つて制御誤差を数%以内に押える効果がある。If the impedance includes an error when the initial value of the system configuration is given, an error occurs in the system constant calculated by the system characteristic constant calculation. This system constant causes an error in the control result, and in the vicinity of the point where the impedance including the error is given, a deviation of about 10% may occur between the post-control estimated value and the actual control result. is there. On the other hand, the present invention has a function of eliminating the error included in the system constant by the learning method. Therefore, the calculation and control are repeated regardless of the initial value of the given system configuration. Therefore, the control error can be suppressed within a few percent.
次に、第3図に第1図の2機系統を実系統に近づけた
例を示す。この系統の開閉器1〜12の入切状態や無効電
力量,電圧および変圧器14のタツプ値等は第1図の遠方
監視装置によつて収集され、開閉器1〜12の入切状態は
2値、それ以外は数値として計算機システムに取込まれ
る。第3図において、無効電力監視点Aにおける無効電
力量Qは Q=Q1−Q2+Q3 であるが、負荷が開閉器12の開放で切り離された場合の
監視点Aの無効電力量Q′は Q′=Q1−Q2 となり、Q3分だけ減少する。Q3分の減少によつてQ′が
A地点の目標値の許容範囲から逸脱した場合について以
下に説明する。Next, FIG. 3 shows an example in which the two-machine system of FIG. 1 is brought closer to the actual system. The on / off state of the switches 1 to 12 of this system, the reactive power amount, the voltage, the tap value of the transformer 14 and the like are collected by the remote monitoring device of FIG. 1, and the on / off states of the switches 1 to 12 are Binary, other values are taken into the computer system as numerical values. In FIG. 3, the reactive power amount Q at the reactive power monitoring point A is Q = Q 1 −Q 2 + Q 3 , but the reactive power amount Q at the monitoring point A when the load is disconnected by opening the switch 12. ′ Becomes Q ′ = Q 1 −Q 2 and decreases by Q 3 . The case where Q ′ deviates from the allowable range of the target value at the point A due to the decrease of Q 3 minutes will be described below.
負荷の接続が開閉器12の開放により切り離された情報
は第2図の遠方監視装置により、開閉器12の2値情報と
して計算機に取り込まれる。この2値情報から系統監視
プログラムは開閉器12の状態変化を検出し、系統構成が
変化したとして系統特性定数計算を起動する。系統特性
定数計算は(12)式から(15)式にて系統特性定数を計
算し、系統特性定数フアイルに格納し、制御量計算を起
動する。制御量計算は第4図の調相コンデンサSC1,SC2,
調相リアクトルSR1,SR2,SR3を系統接続または切り離し
たときに監視点Aの無効電力量が受ける影響を(21)式
から(26)式によつて計算し、第5図のフローチヤート
に従つて最適な調整機器を選択する。無効電力量監視点
Aの目標値とQ′との偏差がQdである時、無効電力を吸
収するSC1を系統から切離したことによつて監視点Aの
無効電力量が増加する量をQc、無効電力を発生させる調
相リアクトルSR1,SR2,SR3のいずれかを系統に接続した
ことによつて監視点Aの無効電力量の増加する量がQrで
あるとする。この時に Qd−Qc>Qd−Qr 目標値の許容範囲≧Qd−Qr であれば、調相リアクタSR1,SR2,SR3を最適制御機器と
して判断し、機器ごとに割付けた番号を持つ機器を選択
する。調相リアクタSR1が制御機器として選択されたと
すると、制御量計算の結果として(6,切→入)が第1図
の制御機器・制御量フアイルに格納される。制御量計算
は制御機器・制御量の計算後、選択した制御機器(調相
リアクトル)SR1が接続された場合のA点の無効電力量Q
eを計算し、制御後推定値フイアルに制御後推定値とし
て格納した後、制御実行プログラムを起動する。制御実
行プログラムは制御機器・制御量フアイルから制御機器
と制御量を取り出し遠方監視装置に対して(開閉器6,
入)の情報を送出する。遠方監視装置は制御実行プログ
ラムから送られてきた(開閉器6,入)の情報により実系
統の開閉器6を切状態から入状態とする。制御実行プロ
グラムの制御情報送出から一定時間(10秒〜30秒)経過
後、監視点Aの無効電力量を制御結果フアイルに格納
し、系統特性定数補正計算を起動する。系統の初期値デ
ータとして与えられるインピーダンスと制御機器に誤差
が含まれない理想値である場合には制御結果は制御後推
定値と一致するが、一般的には系統初期データとして与
えられるインピーダンスと制御機器に含まれる誤差によ
り制御結果と制御後推定値は一定値は一致しない。系統
特性定数補正計算はこの誤差を基に、系統特性定数フア
イルに格納されている系統特性定数(27)式によつて補
正する。次回の制御量計算ではこの補正された系統特性
定数を使用するため計算精度が向上する。これが系統特
性定数補正計算が与える学習効果である。The information that the connection of the load is disconnected by opening the switch 12 is taken into the computer as binary information of the switch 12 by the remote monitoring device of FIG. From this binary information, the system monitoring program detects a change in the state of the switch 12, and starts system characteristic constant calculation assuming that the system configuration has changed. In the system characteristic constant calculation, the system characteristic constants are calculated by the formulas (12) to (15), stored in the system characteristic constant file, and the control amount calculation is started. The control amount calculation is shown in Fig. 4 of the phase adjusting capacitors SC1, SC2,
The effect of the reactive power at the monitoring point A on the connection or disconnection of the phase-shifting reactors SR1, SR2, SR3 is calculated using equations (21) to (26), and the flow chart in Fig. 5 is followed. Select the most suitable adjustment device. When the deviation between the target value of the reactive power amount monitoring point A and Q'is Qd, the amount by which the reactive power amount of the monitoring point A is increased by disconnecting SC1 which absorbs the reactive power from the grid is Qc, It is assumed that the increasing amount of the reactive power at the monitoring point A is Qr due to the connection of any one of the phase-shifting reactors SR1, SR2, and SR3 that generate the reactive power to the grid. At this time, if Qd−Qc> Qd−Qr target value tolerance range ≧ Qd−Qr, the phase-matching reactors SR1, SR2, and SR3 are judged as the optimum control devices, and the device with the number assigned to each device is selected. . Assuming that the phase-shifting reactor SR1 is selected as the control device, (6, OFF → ON) is stored in the control device / control amount file of FIG. 1 as a result of the control amount calculation. After calculating the control device and control amount, the control amount calculation is the reactive power Q at point A when the selected control device (phase modifying reactor) SR1 is connected.
After calculating e and storing it as the post-control estimated value in the post-control estimated value file, the control execution program is started. The control execution program extracts the control device and the control amount from the control device / control amount file, and sends them to the remote monitoring device (switch 6,
Information). The remote monitoring device changes the switch 6 of the actual system from the off state to the on state by the information of (switch 6, on) sent from the control execution program. After a certain time (10 to 30 seconds) has passed from the sending of the control information of the control execution program, the reactive power amount at the monitoring point A is stored in the control result file and the system characteristic constant correction calculation is started. When the impedance given as the initial value data of the system and the ideal value that does not include error in the control equipment are the same as the estimated value after control, the impedance and control given as the initial data of the system are generally used. Due to the error contained in the equipment, the control result and the estimated value after control do not match at a certain value. Based on this error, the system characteristic constant correction calculation is corrected according to the system characteristic constant (27) equation stored in the system characteristic constant file. In the next control amount calculation, the corrected system characteristic constant is used, so that the calculation accuracy is improved. This is the learning effect given by the system characteristic constant correction calculation.
従来は第4図において監視点Aにおける無効電力量の
目標値逸脱が発生した場合の調整機器をSC1,SC2,SR1,SR
2,SR3のいずれにするか決定しているのは系統運用者で
あり、決定方法は経験にたよつていたため、精度の良い
制御は期待できなかつた。本発明によれば系統運用者は
調整機器の選択作業から開放され、計算機による精度の
高い制御が得られる効果がある。Conventionally, in Fig. 4, SC1, SC2, SR1 and SR are used as adjustment devices when the target value of the reactive energy at monitoring point A deviates.
It was the system operator who decided which of 2 or SR3, and the decision method depended on the experience, so accurate control could not be expected. According to the present invention, the system operator is freed from the work of selecting the adjusting device, and there is an effect that highly accurate control by the computer can be obtained.
以上に述べたように、本発明によれば電力系統におけ
る電圧・無効電力制御装置の協調をとりながら、電力系
統各点の電圧・無効電力の調節を精度よく行うことがで
きる。As described above, according to the present invention, it is possible to accurately adjust the voltage / reactive power at each point of the power system while coordinating the voltage / reactive power control device in the power system.
第1図は本発明の実施例を示すブロツク図、第2図は2
機の電源からなる電力系統モデルを示す系統図、第3図
は実際の2機系統モデル例を示す系統図、第4図は他の
2機系統モデル例を示す系統図、第5図は制御計算フロ
ーを示すフローチヤートである。 100……電力系統、200……遠方監視装置、 300……計算システム。FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG.
Diagram showing an electric power system model consisting of the power source of the machine, FIG. 3 is a system diagram showing an example of an actual two-machine system model, FIG. 4 is a system diagram showing another two-machine system model example, and FIG. It is a flow chart showing a calculation flow. 100 ... power system, 200 ... remote monitoring device, 300 ... calculation system.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 憲一 茨城県日立市大みか町5丁目2番1号 株式会社日立製作所大みか工場内 (72)発明者 石塚 幸一 宮城県仙台市一番町3丁目7番1号 東 北電力株式会社内 (72)発明者 佐藤 佳彦 宮城県仙台市一番町3丁目7番1号 東 北電力株式会社内 (72)発明者 小川 哲次 東京都狛江市岩戸北2―11―1 (56)参考文献 特開 昭60−241726(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Morita 5-2-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Omika factory (72) Inventor Koichi Ishizuka 3-7, Ichibancho, Sendai-shi, Miyagi No. 1 Tohoku Electric Power Company (72) Inventor Yoshihiko Sato 3-7-1, Ichibancho, Sendai City, Miyagi Prefecture Tohoku Electric Power Co. (72) Inventor Tetsuji Ogawa 2 Iwatokita, Komae City, Tokyo 11-1 (56) Reference JP-A-60-241726 (JP, A)
Claims (1)
効電力制御機器を用いて、電力系統の電圧・無効電力を
目標値に制御する電圧・無効電力制御方法において、 前記電圧・無効電力制御機器の操作が前記電力系統の電
圧・無効電力に与える影響を示す系統特性定数に基づい
て前記電圧・無効電力制御機器を予測制御操作し、この
予測制御操作に係る予測制御値と、その予測制御操作後
の電力系統の実電圧・無効電力値との偏差を求め、この
偏差に基づいて前記系統特性定数を修正するとともに、
前記予測制御操作に際し前記電圧・無効電力制御機器ご
とに前記予測制御値により制御した場合における電力系
統の電圧・無効電力の制御結果を推定し、この推定によ
り得られた推定値と前記目標値との偏差をそれぞれの前
記電圧・無効電力制御機器について求め、前記偏差に基
づく判定関数が最も小さい電圧・無効電力制御機器を選
択し、この選択された電圧・無効電力制御機器を用い、
この電圧・無効電力制御機器に対応する前記予測制御値
に基づいて前記予測制御操作を行うことを特徴とする電
力系統の電圧・無効電力制御方法。1. A voltage / reactive power control method for controlling a voltage / reactive power of a power system to a target value by using a plurality of voltage / reactive power control devices dispersedly installed in a power system. Predictive control operation of the voltage / reactive power control device based on a system characteristic constant indicating the influence of the operation of the control device on the voltage / reactive power of the power system, and a predictive control value related to the predictive control operation, and its prediction The deviation between the actual voltage and the reactive power value of the power system after the control operation is obtained, and the system characteristic constant is corrected based on this deviation,
In the predictive control operation, the control result of the voltage / reactive power of the power system in the case of controlling by the predictive control value for each of the voltage / reactive power control equipment is estimated, and the estimated value obtained by this estimation and the target value are Of the deviation of each of the voltage / reactive power control equipment, select the voltage / reactive power control equipment having the smallest judgment function based on the deviation, using the selected voltage / reactive power control equipment,
A voltage / reactive power control method for a power system, wherein the predictive control operation is performed based on the predictive control value corresponding to the voltage / reactive power control device.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63055517A JP2678258B2 (en) | 1988-03-09 | 1988-03-09 | Power system voltage / reactive power control method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63055517A JP2678258B2 (en) | 1988-03-09 | 1988-03-09 | Power system voltage / reactive power control method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH01231627A JPH01231627A (en) | 1989-09-14 |
| JP2678258B2 true JP2678258B2 (en) | 1997-11-17 |
Family
ID=13000895
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63055517A Expired - Fee Related JP2678258B2 (en) | 1988-03-09 | 1988-03-09 | Power system voltage / reactive power control method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2678258B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2515076B2 (en) * | 1992-02-28 | 1996-07-10 | 東北電力株式会社 | Method and apparatus for controlling voltage reactive power |
| US20230077417A1 (en) * | 2020-02-12 | 2023-03-16 | Nippon Telegraph And Telephone Corporation | Model management apparatus, model correction method and program |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS60241726A (en) * | 1984-05-15 | 1985-11-30 | 三菱電機株式会社 | Power system control system |
-
1988
- 1988-03-09 JP JP63055517A patent/JP2678258B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPH01231627A (en) | 1989-09-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6188205B1 (en) | Power system control apparatus and power system control method | |
| CN101194404B (en) | Damping Electromechanical Oscillations in Power Systems | |
| US10230239B2 (en) | Hierarchical robust model predictive voltage and VAR control with coordination and optimization of autonomous DER voltage control | |
| US7729810B2 (en) | Electrical power distribution control systems and processes | |
| US6754597B2 (en) | Method and device for assessing the stability of an electric power transmission network | |
| JP3753113B2 (en) | Generator control device | |
| US7956596B2 (en) | Voltage control for electric power systems | |
| EP3958422A1 (en) | Method and computer system for generating a decision logic for a controller | |
| WO2011126732A1 (en) | Systems and method for obtaining a load model and related parameters based on load dynamics | |
| JP5049600B2 (en) | Power distribution system control system | |
| JPH09322404A (en) | Power distribution system controller | |
| CA2649838C (en) | Electrical power distribution control systems and processes | |
| EP0039234A2 (en) | Computerized control system for an electrochemical plant | |
| JP2678258B2 (en) | Power system voltage / reactive power control method | |
| WO2023074058A1 (en) | Power system control device and method | |
| do Nascimento et al. | Control model for distributed generation and network automation for microgrids operation | |
| EP3297114B1 (en) | System and method for regulation of voltage on an electric power system | |
| US7787995B2 (en) | Method and system for controlling an operation of an electrical power network | |
| Zad et al. | An innovative centralized voltage control method for MV distribution systems based on deep reinforcement learning: Application on a real test case in Benin | |
| JP2003259554A (en) | Voltage reactive power monitoring control device and voltage reactive power monitoring control program | |
| CN115795759A (en) | Power grid operation regulation and control method and system based on semi-dynamic topology optimization | |
| Bidgoli | Real-time corrective control in active distribution networks | |
| Nasab et al. | Reactive power management in micro grid with considering power generation uncertainty and state estimation | |
| JP6848234B2 (en) | Voltage monitoring and control device | |
| Otomega et al. | A purely distributed implementation of undervoltage load shedding |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |