JP2605630B2 - Secondary ion mass spectrometry - Google Patents
Secondary ion mass spectrometryInfo
- Publication number
- JP2605630B2 JP2605630B2 JP6176369A JP17636994A JP2605630B2 JP 2605630 B2 JP2605630 B2 JP 2605630B2 JP 6176369 A JP6176369 A JP 6176369A JP 17636994 A JP17636994 A JP 17636994A JP 2605630 B2 JP2605630 B2 JP 2605630B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- sample
- measured
- ion beam
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001004 secondary ion mass spectrometry Methods 0.000 title claims description 9
- 150000002500 ions Chemical group 0.000 claims description 21
- 238000010884 ion-beam technique Methods 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 238000007737 ion beam deposition Methods 0.000 claims description 3
- 238000004949 mass spectrometry Methods 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000000921 elemental analysis Methods 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 150000001793 charged compounds Chemical class 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FQNHWXHRAUXLFU-UHFFFAOYSA-N carbon monoxide;tungsten Chemical group [W].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] FQNHWXHRAUXLFU-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Electron Tubes For Measurement (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、IC、LSI等の不純
物分析に広く用いられている二次イオン質量分析方法
(SIMS)に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary ion mass spectrometry (SIMS) widely used for analyzing impurities such as ICs and LSIs.
【0002】[0002]
【従来の技術】SIMSは、試料の所定箇所(被測定領
域)にCs+ ,O2 + ,Ga+ などのイオンビーム(一
次イオンビーム)やArなどの中性粒子ビームを一次ビ
ームとして照射して発生するイオン(二次イオン)を質
量分析することにより試料表面部に含まれる元素の種類
や濃度を評価する分析方法であるが、例えば、特開平4
−19954号公報に、記載されているように、一次イ
オンビームの密度分布が裾拡がりになっているので、試
料の被測定領域の周辺も、一次イオンビーム照射時にス
パッタエッチングしてしまう。そのため、周辺領域に分
析を行いたい領域(被測定領域)と同等もしくはそれ以
上の濃度の被測定元素が含まれていたりそれと質量電荷
比のほぼ等しい多重イオン(分子イオンや多電荷イオ
ン)が発生する場合には、得られた分析結果は、実際に
は周辺領域の情報を含み、著しく検出下限が悪くなって
しまう。2. Description of the Related Art In a SIMS, a predetermined portion (measured region) of a sample is irradiated with an ion beam (primary ion beam) such as Cs + , O 2 + , Ga + or a neutral particle beam such as Ar as a primary beam. This is an analysis method for evaluating the types and concentrations of elements contained in the surface of a sample by mass analysis of ions (secondary ions) generated by the method.
Since the density distribution of the primary ion beam is widened as described in JP-A-195954, the periphery of the measured area of the sample is also sputter-etched during the irradiation of the primary ion beam. Therefore, multiple ions (molecular ions or multi-charged ions) are generated in the surrounding area that contain the element to be measured in a concentration equal to or higher than the area to be analyzed (measurement area) or have a mass-to-charge ratio almost equal to that. In such a case, the obtained analysis result actually includes information on the surrounding area, and the lower detection limit is significantly deteriorated.
【0003】[0003]
【発明が解決しようとする課題】このような問題を解決
するための一手法が前述の公開公報に開示されている。
すなわち、図4(a)に示すように、半導体基板101
の被測定領域の周辺を集束ビームによりスパッタエッチ
ングして溝103を形成する。残された柱状の被測定領
域102に一次インオンビームをあてることにより周辺
領域からの情報を取り込まないようにする。この手法
は、一次イオンビームが周辺領域に当るのを避けるわけ
ではないけれども、SIMSによる半導体材料の評価
は、不純物プロファイルなどのように深さ方向の分析で
あるので有効である。One technique for solving such a problem is disclosed in the above-mentioned publication.
That is, as shown in FIG.
The groove 103 is formed by subjecting the periphery of the area to be measured to sputter etching with a focused beam. By irradiating a primary in-on beam to the remaining columnar measurement area 102, information from the surrounding area is not taken in. Although this method does not prevent the primary ion beam from hitting the peripheral region, the evaluation of the semiconductor material by SIMS is effective because it is an analysis in the depth direction such as an impurity profile.
【0004】しかし、一次イオンビームで柱状の被測定
領域102をスパッタエッチングする場合、電界分布が
不均一になるので図4(b)に示すように、柱状の被測
定領域102のエッジ102Eに一次イオンビームが集
って不均一にエッチングされるので、正確な深さ方向の
分布を求めることは難しい。However, when the columnar measured region 102 is sputter-etched with the primary ion beam, the electric field distribution becomes non-uniform, and therefore, as shown in FIG. Since the ion beams are gathered and etched unevenly, it is difficult to obtain an accurate distribution in the depth direction.
【0005】本発明の目的は、周辺領域からの妨害情報
を低減できかつ被測定領域を一次イオンビームで均一に
エッチングできる二次イオン質量分析方法を提供するこ
とにある。An object of the present invention is to provide a secondary ion mass spectrometry method capable of reducing interference information from a peripheral area and uniformly etching a measured area with a primary ion beam.
【0006】[0006]
【課題を解決するための手段】本発明は、試料の所定箇
所に所定の一次イオンビームを照射して発生する二次イ
オンを検出して前記試料の元素分析を行なう二次イオン
質量分析方法において、前記所定箇所の周辺を被測定元
素と異なる元素で構成され被測定元素イオンと同一もし
くは近接した質量電荷比の多重イオンを発生する恐れが
前記試料の所定箇所より少ない導電性膜で被覆した後に
前記一次イオンビームを前記所定箇所に照射するという
ものである。導電性膜の形成は集束イオンビーム堆積法
によるのが望しい。SUMMARY OF THE INVENTION The present invention relates to a secondary ion mass spectrometric method for irradiating a predetermined portion of a sample with a predetermined primary ion beam to detect secondary ions generated and performing elemental analysis of the sample. After coating with a conductive film less than the predetermined location of the sample, the periphery of the predetermined location may be composed of an element different from the element to be measured and may generate multiple ions having the same or close mass-to-charge ratio as the element ion to be measured. The primary ion beam is applied to the predetermined location. The formation of the conductive film is preferably performed by a focused ion beam deposition method.
【0007】[0007]
【作用】一次イオンビーム照射時に所定箇所(被測定領
域)の周辺がスパッタエッチングされてもそこからは妨
害情報をもたらす多重イオンの発生が少ないので検出下
限が改善される。また被測定領域のエッチングの均一性
は損なわれない。When a primary ion beam is irradiated, even if the periphery of a predetermined portion (measured region) is sputter-etched, the detection lower limit is improved because there is little generation of multiple ions which cause interference information. In addition, the uniformity of the etching of the area to be measured is not impaired.
【0008】[0008]
【実施例】図1(a)は本発明の第1の実施例を説明す
るための試料の平面図、図1(b)は図1(a)のX−
X線拡大断面図である。FIG. 1A is a plan view of a sample for explaining a first embodiment of the present invention, and FIG.
It is an X-ray enlarged sectional view.
【0009】まず試料としてシリコン基板1の表面に厚
さ0.5μm程度のSiO2 膜2が形成され、SiO2
膜2に設けられた1μm×1μm程度の開口にAs原子
がピーク濃度1×1020/cm3 程度含まれている多結
晶シリコン膜3が形成されているものを準備する。この
多結晶シリコン膜3中のAs原子の濃度分布を測定する
場合について述べる。[0009] First SiO 2 film 2 having a thickness of about 0.5μm on the surface of the silicon substrate 1 is formed as a sample, SiO 2
A film is prepared in which a polycrystalline silicon film 3 is formed in which an opening of about 1 μm × 1 μm provided in the film 2 contains As atoms at a peak concentration of about 1 × 10 20 / cm 3 . A case where the concentration distribution of As atoms in the polycrystalline silicon film 3 is measured will be described.
【0010】多結晶シリコン膜3の周囲を厚さ200〜
400nmの炭素膜4で被覆する。すなわち、集束イオ
ンビーム装置に試料を入れ、被測定領域である多結晶シ
リコン膜3の周辺にスチレン(C8 H8 )ガスを吹き付
けながら20〜40keVに加速されたGa+ ビームを
照射して炭素膜4を形成する。このような集束イオンビ
ーム堆積法は公知であり、例えば、リサーチ・スタディ
ーズ・プレス社(RESEARCH STUDIES
PRESS LTD.)、1991年刊、“フォカスト
・イオンビームズ・フロム・リキッド・メタル・イオン
・ソーシズ”(Focused Ion Beams
from Liquid MetalIon Sour
ces)に記載されている。The thickness around the polycrystalline silicon film 3 is 200 to
It is covered with a carbon film 4 of 400 nm. That is, a sample is put into a focused ion beam apparatus, and a Ga + beam accelerated to 20 to 40 keV is irradiated while blowing a styrene (C 8 H 8 ) gas around the polycrystalline silicon film 3 which is an area to be measured. The film 4 is formed. Such focused ion beam deposition methods are known and are described, for example, in RESEARCH STUDIES.
PRESS LTD. ), 1991, “Focused Ion Beams from Liquid Metal Ion Sources” (Focused Ion Beams)
from Liquid MetalIon Sour
ces).
【0011】次に、試料をSIMS装置の試料ホルダ
(図示しない)に移す。このときシリコン基板1と炭素
膜4とを接続する。被測定領域外に図示した多結晶シリ
コン膜3と同様のものがあればその表面も被測定領域上
の炭素膜4を延在させて被覆しておけば試料ホルダに固
定するとき改めて接続する必要はない。Next, the sample is transferred to a sample holder (not shown) of the SIMS apparatus. At this time, the silicon substrate 1 and the carbon film 4 are connected. If there is a material similar to the polycrystalline silicon film 3 shown outside the region to be measured, the surface of the film should be extended and covered with the carbon film 4 on the region to be measured, and if it is fixed to the sample holder, it must be connected again. There is no.
【0012】次いで、例えばビーム径0.1μmのCs
+ ビームで多結晶シリコン膜3の表面を走査してスパッ
タエッチングを行ないAs+ を検出する。Cs+ ビーム
が炭素膜4に照射されると、図2に示すように、エッジ
4aがエッチングされ易いが多結晶シリコン膜3そのも
のは均一にエッチングされる。SiO2 膜2にCs+ビ
ームが照射されると、Asと質量数が同一の分子イオン
29Si30Si16Oによる妨害情報が発生するが、本実施
例では、SiO2 膜2は炭素膜4で被覆されているので
その恐れはない。炭素膜4中に不純物として含まれてい
る水素と炭素とによって発生する分子インオンC6 H3
による妨害情報が発生するが、分子イオンC6 H3 は合
計原子数が大きいのでその発生確率は著しく小さいと考
えられる。なお、炭素膜4は導電性でありシリコン基板
に接続しているのでCs+ ビームにより帯電する恐れが
ない。測定結果を図3に示す。炭素膜4を形成しない場
合の曲線11に比べて検出下限が約2桁向上した曲線1
2(Asの濃度プロファイル)が得られた。Next, for example, Cs having a beam diameter of 0.1 μm
The surface of the polycrystalline silicon film 3 is scanned with a + beam to perform sputter etching to detect As + . When the carbon film 4 is irradiated with the Cs + beam, as shown in FIG. 2, the edge 4a is easily etched, but the polycrystalline silicon film 3 itself is uniformly etched. When the SiO 2 film 2 is irradiated with a Cs + beam, molecular ions having the same mass number as As
Although interference information due to 29 Si 30 Si 16 O is generated, in this embodiment, there is no danger since the SiO 2 film 2 is covered with the carbon film 4. Molecular ion C 6 H 3 generated by hydrogen and carbon contained as impurities in the carbon film 4
However, the probability of occurrence of the molecular ion C 6 H 3 is considered to be extremely small because the total number of atoms is large. Since the carbon film 4 is conductive and is connected to the silicon substrate, there is no possibility of being charged by the Cs + beam. FIG. 3 shows the measurement results. Curve 1 in which the lower limit of detection is improved by about two orders of magnitude compared to curve 11 in the case where carbon film 4 is not formed
2 (As concentration profile) was obtained.
【0013】次に第2の実施例について説明する。Next, a second embodiment will be described.
【0014】第1の実施例における炭素膜4の替りにタ
ングステン膜を形成する。被測定領域の周囲のSiO2
膜2に、タングステンヘキサカルボニル(W(C
O)6 )ガスを吹きつけながら例えば40keVに加速
されたGa+ ビームを照射して厚さ200〜400nm
のタングステン膜を堆積する。次いで第1の実施例と同
様にCs+ ビームで多結晶シリコン膜の表面をスパッタ
エッチングしてAs+ を検出する。このようにして、図
3の曲線13に示すAsの濃度プロファイルが得られ
た。Asの検出下限が第1の実施例より更に向上してい
るが、本実施例ではAs+ に紛らわしい多重イオンがほ
とんど全く発生しないからである。A tungsten film is formed in place of the carbon film 4 in the first embodiment. SiO 2 around the area to be measured
Tungsten hexacarbonyl (W (C
O) 6 ) Irradiating a Ga + beam accelerated to, for example, 40 keV while blowing a gas to a thickness of 200 to 400 nm
Is deposited. Then, as in the first embodiment, the surface of the polycrystalline silicon film is sputter-etched with a Cs + beam to detect As + . Thus, the concentration profile of As shown by the curve 13 in FIG. 3 was obtained. Although the detection lower limit of As is further improved as compared with the first embodiment, in the present embodiment, almost no multiple ions confusing to As + are generated.
【0015】以上、導電膜の形成と、二次イオン質量分
析とをそれぞれ別の装置を用いて行なう例について説明
したが、二次イオン質量分析装置に2つの一次イオン照
射系を設け、ガス供給系を設ければ、同一装置内で連続
して行なうことも可能である。In the above, an example has been described in which the formation of the conductive film and the secondary ion mass spectrometry are performed using different devices. However, the secondary ion mass spectrometer is provided with two primary ion irradiation systems, If a system is provided, it is possible to carry out continuously in the same apparatus.
【0016】[0016]
【発明の効果】以上説明したように、本発明は、被測定
領域の周辺も被測定元素イオンと同一もしくは近接した
質量電荷比の多重イオンを発生する恐れの少ない導電膜
で被覆した後に二次イオン質量分析を行なうので、多重
イオンによる妨害情報を低減でき検出下限を改善でき
る。また導電膜があっても被測定領域の一次イオンビー
ムによるエッチングの均一性は損なわれないので正確な
深さ方向の分析が可能である。As described above, according to the present invention, the periphery of the area to be measured is covered with a conductive film which is less likely to generate multiple ions having the same or close mass-to-charge ratio as the element ions to be measured, and then the secondary Since ion mass spectrometry is performed, interference information due to multiple ions can be reduced and the lower detection limit can be improved. Further, even if there is a conductive film, the uniformity of the etching by the primary ion beam of the measurement area is not impaired, so that accurate analysis in the depth direction is possible.
【図1】本発明の第1の実施例に使用する試料の平面図
(図1(a))および図1(a)のX−X線断面図(図
1(b))である。FIG. 1 is a plan view (FIG. 1A) of a sample used in a first embodiment of the present invention and a cross-sectional view taken along line XX of FIG. 1A (FIG. 1B).
【図2】第1の実施例の説明のための平面図である。FIG. 2 is a plan view for explaining the first embodiment.
【図3】本発明の説明のための濃度プロファイルを示す
グラフで、曲線11,12および13はそれぞれ従来
例、第1の実施例および第2の実施例による測定結果を
示す。FIG. 3 is a graph showing a density profile for explaining the present invention, wherein curves 11, 12 and 13 show measurement results according to the conventional example, the first embodiment and the second embodiment, respectively.
【図4】従来例の説明のための(a),(b)に分図し
て示す工程順断面図である。FIGS. 4A and 4B are cross-sectional views in the order of steps, which are separately shown in FIGS.
1 シリコン板 2 SiO2 膜 3 多結晶シリコン膜 4,4a 炭素膜 101 半導体基板 102 被測定領域 103 溝1 silicon plate 2 SiO 2 film 3 polycrystalline silicon film 4,4a carbon film 101 semiconductor substrate 102 under test region 103 trench
Claims (3)
ムを照射して発生する二次イオンを検出して前記試料の
元素分析を行なう二次イオン質量分析方法において、前
記所定箇所の周辺を被測定元素と異なる元素で構成され
被測定元素イオンと同一もしくは近接した質量電荷比の
多重イオンを発生する恐れが前記試料の所定箇所より少
ない導電性膜で被覆した後に前記一次イオンビームを前
記所定箇所に照射することを特徴とする二次イオン質量
分析方法。1. A secondary ion mass spectrometry method for irradiating a predetermined portion of a sample with a predetermined primary ion beam to detect secondary ions generated and performing elemental analysis of the sample, wherein the periphery of the predetermined portion is covered. The possibility of generating multiple ions having the same or close mass-to-charge ratio as the element ions to be measured and composed of elements different from the element to be measured is such that the primary ion beam is applied to the predetermined area after coating with a conductive film less than the predetermined area of the sample. Secondary ion mass spectrometry.
を形成する請求項1記載の二次イオン質量分析方法。2. The secondary ion mass spectrometric method according to claim 1, wherein the conductive film is formed by a focused ion beam deposition method.
である請求項1または2記載の二次イオン質量分析方
法。3. The method according to claim 1, wherein the conductive film is a carbon film or a tungsten film.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6176369A JP2605630B2 (en) | 1994-07-28 | 1994-07-28 | Secondary ion mass spectrometry |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6176369A JP2605630B2 (en) | 1994-07-28 | 1994-07-28 | Secondary ion mass spectrometry |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0845463A JPH0845463A (en) | 1996-02-16 |
| JP2605630B2 true JP2605630B2 (en) | 1997-04-30 |
Family
ID=16012421
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP6176369A Expired - Lifetime JP2605630B2 (en) | 1994-07-28 | 1994-07-28 | Secondary ion mass spectrometry |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2605630B2 (en) |
-
1994
- 1994-07-28 JP JP6176369A patent/JP2605630B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0845463A (en) | 1996-02-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Stevie et al. | Applications of focused ion beams in microelectronics production, design and development | |
| Höche et al. | Static-charging mitigation and contamination avoidance by selective carbon coating of TEM samples | |
| Vandervorst et al. | Secondary ion mass spectrometry profiling of shallow, implanted layers using quadrupole and magnetic sector instruments | |
| JPH0328017B2 (en) | ||
| US4992661A (en) | Method and apparatus for neutralizing an accumulated charge on a specimen by means of a conductive lattice deposited on the specimen | |
| US20030080292A1 (en) | System and method for depth profiling | |
| Cuduvally et al. | Potential sources of compositional inaccuracy in the atom probe tomography of InxGa1-xAs | |
| JP2774878B2 (en) | Secondary ion mass spectrometry of multilayer insulation samples | |
| US20040238735A1 (en) | System and method for depth profiling and characterization of thin films | |
| US5563412A (en) | Method of making specimens for an electron microscope | |
| JP2605630B2 (en) | Secondary ion mass spectrometry | |
| US6121624A (en) | Method for controlled implantation of elements into the surface or near surface of a substrate | |
| JP5050568B2 (en) | Depth direction impurity element concentration analysis method | |
| JP2001272363A (en) | Surface analysis method and analyzer for high resistance sample | |
| JP3155570B2 (en) | Focused ion beam mass analysis method and combined ion beam mass spectrometry device | |
| US6278112B1 (en) | Method of setting a base energy level for an Auger electron spectroscopy analysis of a titanium nitride film, and method of analyzing the titanium nitride film | |
| Wang et al. | Case Study of SIMS Analysis on Insulators | |
| JPS6383644A (en) | Ion mass spectroscopic device | |
| JPS62113052A (en) | Element analysis | |
| JP3166152B2 (en) | Impurity measurement method | |
| KR20040032659A (en) | a specimen holder | |
| JPH10173020A (en) | Method of analyzing impurity concentration | |
| US4843238A (en) | Method for identifying a blistered film in layered films | |
| Cohen Simonsen et al. | Quantification of Au deposited on Ni: XPS peak shape analysis compared to RBS | |
| Hösler | Surface analysis at the sidewalls of VLSI patterns—limitations and capabilities of spatially resolved Auger electron spectroscopy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19961203 |