[go: up one dir, main page]

JP2610638B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method

Info

Publication number
JP2610638B2
JP2610638B2 JP63046528A JP4652888A JP2610638B2 JP 2610638 B2 JP2610638 B2 JP 2610638B2 JP 63046528 A JP63046528 A JP 63046528A JP 4652888 A JP4652888 A JP 4652888A JP 2610638 B2 JP2610638 B2 JP 2610638B2
Authority
JP
Japan
Prior art keywords
crystal
single crystal
growth
solution
supersaturation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63046528A
Other languages
Japanese (ja)
Other versions
JPH01219090A (en
Inventor
長武 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP63046528A priority Critical patent/JP2610638B2/en
Publication of JPH01219090A publication Critical patent/JPH01219090A/en
Application granted granted Critical
Publication of JP2610638B2 publication Critical patent/JP2610638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、大粒径でかつ均一相の単結晶を製造する方
法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a single crystal having a large grain size and a uniform phase.

〔従来の技術とその課題〕[Conventional technology and its problems]

近年、レーザー発振を利用した光情報、光通信の分野
で、化合物の持つ機能を単結晶の形で利用する機会が増
加している。特に耐環境性、光源に対する耐久性、及び
分子設計による機能の付与のし易さ等の観点から有機物
単結晶の役割が増加している。有機物単結晶を実際の応
用分野に工業的に利用するに際しては、精度よく一定の
寸法に加工する必要がある為に、切り出す単結晶は可能
な限り大きなものが望ましい。さらに又、充分な機能を
発揮させるためには、格子欠陥や変態現象によって生ず
る結晶の不均一性を極力さけなければならない。
2. Description of the Related Art In recent years, in the field of optical information and optical communication using laser oscillation, opportunities to utilize the functions of compounds in the form of single crystals are increasing. In particular, the role of the organic single crystal is increasing from the viewpoints of environmental resistance, durability against a light source, ease of imparting a function by molecular design, and the like. When an organic single crystal is used industrially in an actual application field, it is necessary to process it to a certain size with high precision. Therefore, it is desirable to cut out a single crystal as large as possible. Furthermore, in order to exhibit a sufficient function, it is necessary to minimize the non-uniformity of crystals caused by lattice defects and transformation phenomena.

有機化合物で単結晶化させるための方法としては、有
機化合物それ自体が一般的に融点が低く融点以下におい
ても分解し易いことから、他の単結晶生成法に較べ、溶
液法により単結晶を育成する方法が最も好ましい。溶液
法には、溶液温度一定冷却速度法と溶液温度一定法があ
る。本来有機化合物それ自身が対称性の低いこと、さら
に結晶状態ではファンデルワールス結合という弱い分子
間結合によって結晶状態が可能となるため分子方向性に
乱れが生じ易い。その上微妙な温度条件の変化により変
態現象が生じる等の理由により、溶液の温度変化を伴う
溶液温度一定冷却速度法は、均一相の結晶を育成すると
いう点で好ましくない。
As a method for forming a single crystal with an organic compound, since the organic compound itself generally has a low melting point and is easily decomposed even below the melting point, a single crystal is grown by a solution method as compared with other single crystal generation methods. Is most preferred. The solution method includes a solution temperature constant cooling rate method and a solution temperature constant method. Originally, the organic compound itself has low symmetry, and in a crystalline state, a weak intermolecular bond called van der Waals bond allows a crystalline state to be formed. In addition, a constant solution temperature cooling rate method involving a temperature change of the solution is not preferable in that a uniform phase crystal is grown, for example, because a transformation phenomenon occurs due to a subtle change in temperature conditions.

又、溶液温度一定法、即ち溶液の過飽和度が一定のも
とでの結晶析出法では、育成単結晶の小さいとき、つま
り単結晶表面積の小さいときには、その単結晶表面積に
比して大きく表面積が増加する。一方単結晶が成長し、
単結晶表面積が大きくなってくると、育成単結晶の小さ
いときに比べて、表面積の増加が小さくなり、従って結
晶線成長速度が小さくなってくる。つまり、一定溶液温
度、一定溶液過飽和度に保って単結晶育成を行おうとす
ると、育成開始後の結晶線成長速度は大きいが単結晶が
成長してくるにつれて、結晶線成長速度は低下し、早期
に大単結晶を得るのが難しくなる。
Also, in the solution temperature constant method, that is, in the crystal precipitation method in which the degree of supersaturation of the solution is constant, when the grown single crystal is small, that is, when the single crystal surface area is small, the surface area is large compared to the single crystal surface area. To increase. On the other hand, a single crystal grows,
When the single crystal surface area is increased, the increase in the surface area is smaller than when the grown single crystal is small, and thus the crystal line growth rate is reduced. In other words, when trying to grow a single crystal while maintaining a constant solution temperature and a constant solution supersaturation degree, the crystal line growth rate after the start of growth is large, but as the single crystal grows, the crystal line growth rate decreases, It becomes difficult to obtain a large single crystal.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者は以上の点に鑑み、簡便な方法で尚かつ、工
業的にも実用化が可能な巨大で均一な単結晶を溶液法で
開発すべく鋭意研究に取り組み、本発明を完成させたも
のである。
In view of the above, the present inventor has worked diligently to develop a huge and uniform single crystal that can be practically used industrially by a solution method, with a simple method, and completed the present invention. Things.

即ち、本発明は、単結晶を溶液中より得るに際して、
単結晶の大きさを検知することにより、単結晶育成槽の
溶液の濃度を過飽和度が1.1以下の範囲内で逐次上昇す
るよう調整し、単結晶の結晶線成長速度を制御すること
を特徴とする単結晶の製造方法を提供するものである。
That is, the present invention, when obtaining a single crystal from the solution,
By detecting the size of the single crystal, the concentration of the solution in the single crystal growing tank is adjusted so that the degree of supersaturation is gradually increased within the range of 1.1 or less, and the crystal line growth rate of the single crystal is controlled. And a method for producing a single crystal.

本発明は、溶液濃度を操作し、もって過飽和度を調整
し、結晶線成長速度を制御しようとするものである。
The present invention seeks to control the crystal line growth rate by manipulating the solution concentration, thereby adjusting the degree of supersaturation.

本発明では以下に例示するような手段で、溶液濃度を
操作しよとするものであるが、これらの手段のみならず
溶液濃度を操作できる方法であれば他の手段であっても
可能である。
In the present invention, the solution concentration is manipulated by means as exemplified below, but other means may be used as long as the solution concentration can be manipulated as well as these means. .

溶液濃度の操作法は次の方法がある。 There are the following methods for operating the solution concentration.

(ア) 一定温度に保った結晶化溶質溶解槽と結晶育成
槽を分離し、両槽を溶液が循環するようにつなぎ、溶解
槽から育成槽へ流れる部分において流量調節を行い、結
晶育成槽の濃度を調節する。
(A) Separating the crystallized solute dissolution tank and the crystal growth tank maintained at a constant temperature, connecting both tanks so that the solution circulates, and adjusting the flow rate in the part flowing from the dissolution tank to the growth tank, Adjust the concentration.

(イ) 結晶化溶質溶解槽と結晶育成槽を分離し、両槽
を溶液が循環するようにつなぎ、溶解槽の温度を変化さ
せることにより、結晶育成槽の濃度を調節する。
(A) Separating the crystallization solute dissolving tank and the crystal growing tank, connecting both tanks so that the solution circulates, and changing the temperature of the dissolving tank to adjust the concentration of the crystal growing tank.

(ウ) 結晶育成槽の溶媒の蒸発域に気体を流動させて
溶媒の蒸発速度を制御することにより、槽内の濃度を調
節する。
(C) The concentration in the tank is adjusted by controlling the evaporation rate of the solvent by flowing gas into the evaporation area of the solvent in the crystal growth tank.

(エ) 結晶育成槽の溶媒の蒸発域に減圧操作を加える
ことにより溶媒の蒸発速度を制御し、槽内の濃度を調節
する。
(D) The evaporation rate of the solvent is controlled by applying a pressure reducing operation to the evaporation area of the solvent in the crystal growing tank, and the concentration in the tank is adjusted.

以上の方法はシーケンス的に自動制御を行っても、又
手動操作によってもよい。又これらの方法を種々組み合
わせてもよい。
In the above method, automatic control may be performed in a sequence or manual operation may be performed. Further, these methods may be variously combined.

結晶線成長速度の調節時期としては、結晶線成長速度
が少なくとも1mm/day以上であり、好ましくは2mm/day以
上である。
The timing for adjusting the crystal line growth rate is such that the crystal line growth rate is at least 1 mm / day, preferably 2 mm / day or more.

結晶線成長速度の調節の仕方としては、結晶育成槽の
溶液濃度を、調節前より上げる、つまり過飽和度を上げ
ることにより達成する。溶液濃度をいったん調節した後
も、単結晶の育成を続けていくとやがて結晶線成長速度
は低下してくる。その場合は、再度溶液濃度を調整し、
調整前より高濃度、従って高過飽和度にする。つまり、
単結晶の育成とともに、結晶線成長速度を制御するため
に、溶液の濃度を結晶育成開始時には低過飽和度に保
ち、単結晶の成長とともに高過飽和度に保つようにす
る。結晶育成開始時の溶液過飽和度並びに調整による過
飽和度の変化分は、対象物質、操作条件の違いによる二
次核発生がおさえられる過飽和度1.1以下、過飽和変化
分0.001以下で操作するのがよい。好ましくは結晶育成
開始時には過飽和度1.00001〜1.01、更に好ましくは1.0
0001〜1.0001に保ち、単結晶の成長とともに過飽和度1.
00003〜1.08、更に好ましくは1.00005〜1.01とし、特に
好ましくは結晶育成開始時には過飽和度が1.00001〜1.0
0003、単結晶の成長とともに過飽和度1.00025〜1.0005
である。
The method of adjusting the crystal line growth rate is achieved by increasing the solution concentration in the crystal growing tank from before the adjustment, that is, by increasing the degree of supersaturation. Even after the concentration of the solution is adjusted, the growth rate of the crystal line gradually decreases as the growth of the single crystal continues. In that case, adjust the solution concentration again,
A higher concentration, and thus a higher supersaturation, than before adjustment. That is,
In order to control the crystal line growth rate together with the growth of the single crystal, the concentration of the solution is kept at a low supersaturation level at the start of crystal growth, and is maintained at a high supersaturation level as the single crystal grows. The solution supersaturation at the start of crystal growth and the change in supersaturation due to adjustment are preferably controlled to a supersaturation of 1.1 or less and a supersaturation change of 0.001 or less, at which secondary nucleation due to differences in the target substance and operating conditions is suppressed. Preferably at the start of crystal growth supersaturation 1.00001 ~ 1.01, more preferably 1.0
0001 ~ 1.0001, supersaturation 1.
00003 to 1.08, more preferably 1.00005 to 1.01, and particularly preferably, the degree of supersaturation is 1.00001 to 1.0 at the start of crystal growth.
[0003] With the growth of the single crystal, the degree of supersaturation is 1.00025-1.0005.
It is.

単結晶育成の最適操作温度としては、単結晶物質の熱
分解温度以下で、溶媒物質の沸点以下の温度にするのが
よい。
The optimal operating temperature for growing a single crystal is preferably a temperature not higher than the thermal decomposition temperature of the single crystal substance and not higher than the boiling point of the solvent substance.

得ようとする単結晶化合物は無機物及び有機物を問わ
ないが、本発明の方法は、得るのがより困難な有機物、
中でもファンデルワールス結合にのみ分子間が結合する
分子性結晶(チオ尿素、オクタン、ニトロベンゼン、ス
テアリン酸、シュウ酸、ペンタエリスリトール)の場合
に、その効果を一層発揮する。
The single crystal compound to be obtained may be inorganic or organic, but the method of the present invention is more difficult to obtain organic,
In particular, in the case of a molecular crystal (thiourea, octane, nitrobenzene, stearic acid, oxalic acid, pentaerythritol) in which intermolecular bonds are formed only in Van der Waals bonds, the effect is further exhibited.

本発明の方法は、特に各種用途(オプトエレクトロニ
クス用素子、光学素子、量子エレクトロニクス用素子
等)への適合性から考え、単結晶育成後の加工が容易な
ように、結晶長2cm以上の大型単結晶の育成に最適であ
る。
The method of the present invention is particularly suitable for various applications (elements for optoelectronics, optical elements, elements for quantum electronics, etc.). Ideal for growing crystals.

結晶線成長速度はビデオカメラなどで育成槽内の結晶
長をモニターし、単位時間ごとの大きさの変化より求め
る。又、溶液濃度は、屈折計などを用いて測定する。以
上のように測定した結晶線成長速度と溶液濃度より、結
晶線成長速度が一定に保てるように、溶液濃度を高め、
過飽和度を増大させるようにする。
The crystal line growth rate is determined by monitoring the crystal length in the growth tank using a video camera or the like and determining the change in the size per unit time. The solution concentration is measured using a refractometer or the like. From the crystal line growth rate and the solution concentration measured as described above, the solution concentration was increased so that the crystal line growth rate could be kept constant,
Try to increase the degree of supersaturation.

使用する装置は結晶長を観察するためには透明な素材
(ガラス製、アクリル樹脂製、ポリカーボネート樹脂
製、ポリスチレン樹脂製など)のものが好ましいが、こ
れらに限らず、光ファイバー等の利用などにより、結晶
育成槽内の結晶長が観察できれば不透明であってもよ
い。溶液濃度を検知する場合、容器は透明−不透明を問
わないが、屈折計へ溶液を導く循環系や他の濃度検出手
段(センサー)の取りつけが必要である。
The apparatus used is preferably made of a transparent material (glass, acrylic resin, polycarbonate resin, polystyrene resin, etc.) in order to observe the crystal length, but is not limited to these, and by using an optical fiber or the like, It may be opaque as long as the crystal length in the crystal growth tank can be observed. When detecting the concentration of the solution, the container may be transparent or opaque, but a circulating system for guiding the solution to the refractometer or other concentration detecting means (sensor) is required.

本発明を実施するにあたっては、通常使用される単結
晶を得る他の方法の併用も可能であり、溶液温度一定冷
却速度法を併用したり、更に出発時に結晶育成槽を所定
の過冷却温度に保つのも有効な方法である。好ましくは
種晶の使用も有効な方法であり、使用する種晶は結晶化
目的化合物と同一組成のものであっても、場合によって
はエピタキシャル成長可能な他の化合物であってもよ
い。
In practicing the present invention, it is also possible to use a combination of other methods for obtaining a commonly used single crystal, a solution temperature constant cooling rate method, and furthermore, the crystal growth tank is cooled to a predetermined supercooling temperature at the start. Keeping is also an effective method. Preferably, the use of a seed crystal is also an effective method. The seed crystal to be used may have the same composition as the compound to be crystallized, or may be another compound capable of epitaxial growth in some cases.

〔実施例〕〔Example〕

以下、実施例をもって本発明を詳述するが、本発明は
これら実施例に限定されるものでない。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

実施例1 温度25℃、60%湿度の恒温恒湿室内に図1に示すよう
な二槽循環方式の装置を組み立て、尿素の単結晶を成長
させた。
Example 1 A two-chamber circulation type apparatus as shown in FIG. 1 was assembled in a constant temperature and humidity room at a temperature of 25 ° C. and a humidity of 60% to grow a single crystal of urea.

結晶育成槽1、結晶化溶質溶解槽2は共にジャケット
付の1容量のガラス製容器であり、結晶育成槽1につ
いては恒温槽3より、結晶化溶質溶解槽2については恒
温槽4よりの循環水により±0.1℃の制御温度を得た。
The crystal growing tank 1 and the crystallized solute dissolving tank 2 are both 1-volume glass containers with a jacket. The crystal growing tank 1 is circulated from the thermostat 3 and the crystallized solute dissolving tank 2 is circulated from the thermostat 4. A controlled temperature of ± 0.1 ° C. was obtained with water.

結晶化物質として尿素、溶媒として水を用いた。市販
尿素(和光純薬(株)製試薬特級)を、2度再結晶し、
さらに10-3Torr、90℃において昇華することにより不純
物濃度が1ppm以下にいたるまで精製したものを用い、水
は水道水をイオン交換した後3回蒸留したものを用い
た。
Urea was used as a crystallizing substance, and water was used as a solvent. A commercial urea (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was recrystallized twice,
Further, a substance purified by sublimation at 10 −3 Torr and 90 ° C. to an impurity concentration of 1 ppm or less was used, and water obtained by ion-exchanging tap water and then distilling three times was used.

(110)/(110)面間距離2mmの種晶6を白金線の先
に取りつけ、結晶育成槽1中に吊るし、ビデオカメラ8
により結晶成長の様子をモニターし、結晶線成長速度の
制御が図れるように1、2両槽を結ぶ定量ポンプ5で結
晶化溶質溶解槽2から結晶育成槽1への流量を調節し、
尿素単結晶の育成を図った。
A seed crystal 6 having a (110) / (110) face-to-face distance of 2 mm was attached to the tip of a platinum wire, hung in a crystal growing tank 1, and a video camera 8
To monitor the state of crystal growth, and adjust the flow rate from the crystallization solute dissolving tank 2 to the crystal growing tank 1 by the quantitative pump 5 connecting the two tanks so that the crystal line growth rate can be controlled.
Urea single crystal was grown.

単結晶育成は、結晶育成槽1、結晶化溶質溶解槽2共
に45℃とし、結晶育成槽1を45℃飽和状態とする。その
後結晶育成槽1を44℃に冷却し、種晶を吊るした。この
とき、結晶化溶質溶解槽2は45℃に保っており、種晶添
加直後より流量0.2ml/minで結晶化溶質溶解槽2より結
晶育成槽1へ溶液を循環させた。種晶添加直後つまり単
結晶育成開始直後の過飽和度は1.000013で、結晶線成長
速度は100.8mm/dayであった。60分後過飽和度は変化し
ていないが結晶線成長速度は30.6mm/dayに低下し、この
とき(110)/(110)面間距離(以下「結晶長」とい
う)は4.2mmであった。さらに24時間後には結晶線成長
速度3.9mm/dayまで低下した。このときの結晶長は10.7m
mであった。この時点において結晶線成長速度を増大す
べく、過飽和度を上昇させるため結晶育成槽1への結晶
化溶質溶解槽2よりの流入流量を0.3ml/minに上昇させ
た。この調節操作直後の過飽和度は1.000027であり、結
晶線成長速度は4.4mm/dayとなった。48時間後結晶線成
長速度は2.9mm/dayまで低下し、この時点において流入
流量を0.4ml/minに上昇させた。この操作直後の過飽和
度は1.00003で、結晶線成長速度は3.9mm/dayである。さ
らに72時間後結晶線成長速度2.6mm/day、結晶長29.8mm
であった。この72時間後において流入流量を0.5ml/day
に上昇させた。この操作直後の過飽和度は1.000038、結
晶線成長速度は3.3mm/dayであり、この後100時間まで単
結晶の育成を続けた。100時間後の結晶長は26.2mmであ
り、平均結晶線成長速度は6.24mm/dayであった。
For single crystal growth, both the crystal growing tank 1 and the crystallized solute dissolving tank 2 are set to 45 ° C., and the crystal growing tank 1 is saturated at 45 ° C. Thereafter, the crystal growing tank 1 was cooled to 44 ° C., and a seed crystal was suspended. At this time, the crystallization solute dissolution tank 2 was maintained at 45 ° C., and the solution was circulated from the crystallization solute dissolution tank 2 to the crystal growth tank 1 at a flow rate of 0.2 ml / min immediately after the seed crystal was added. The degree of supersaturation immediately after seed crystal addition, that is, immediately after the start of single crystal growth, was 1.000013, and the crystal growth rate was 100.8 mm / day. After 60 minutes, the degree of supersaturation did not change, but the growth rate of the crystal line decreased to 30.6 mm / day, and at this time, the distance between (110) / (110) planes (hereinafter referred to as “crystal length”) was 4.2 mm. . After 24 hours, the crystal growth rate was reduced to 3.9 mm / day. The crystal length at this time is 10.7m
m. At this point, in order to increase the crystal growth rate, the inflow rate from the crystallized solute dissolution tank 2 into the crystal growth tank 1 was increased to 0.3 ml / min in order to increase the degree of supersaturation. The degree of supersaturation immediately after this adjustment operation was 1.000027, and the crystal growth rate was 4.4 mm / day. After 48 hours, the crystal growth rate was reduced to 2.9 mm / day, at which point the flow rate was increased to 0.4 ml / min. Immediately after this operation, the degree of supersaturation is 1.00003, and the crystal growth rate is 3.9 mm / day. After 72 hours, the crystal line growth rate is 2.6mm / day, and the crystal length is 29.8mm
Met. After 72 hours, the inflow rate is 0.5 ml / day
Was raised. Immediately after this operation, the degree of supersaturation was 1.000038, and the crystal line growth rate was 3.3 mm / day. Thereafter, the growth of the single crystal was continued until 100 hours. The crystal length after 100 hours was 26.2 mm, and the average crystal growth rate was 6.24 mm / day.

実施例2 実施例1と同様の系、装置を用い、さらに同一の前処
理を行った後、種晶を添加した。単結晶育成時の操作
は、結晶化溶質溶解槽2から結晶育成槽1への循環流量
は0.2ml/min一定とし、結晶化溶質溶解槽2の温度を育
成開始時から24時間後までは45℃、24時間後から48時間
後までは45.5℃、48時間後から72時間後までは46℃、以
後単結晶育成終了時まで46.5℃に保った。結晶育成終了
時(育成開始後、100時間後)の尿素単結晶の結晶長は2
7.5mmであり、平均結晶線成長速度は6.55mm/dayを保つ
ことができた。
Example 2 Using the same system and apparatus as in Example 1, and after performing the same pretreatment, a seed crystal was added. The operation during single crystal growth is as follows: the circulating flow rate from the crystallized solute dissolving tank 2 to the crystal growing tank 1 is fixed at 0.2 ml / min, and the temperature of the crystallized solute dissolving tank 2 is 45 hours from the start of the growth until 24 hours later. The temperature was kept at 45.5 ° C. from 24 hours to 48 hours, 46 ° C. from 48 hours to 72 hours, and 46.5 ° C. until the end of single crystal growth. The crystal length of the urea single crystal at the end of crystal growth (100 hours after the start of crystal growth) is 2
The average crystal growth rate was maintained at 6.55 mm / day.

比較例1 実施例1,2と同様の系、装置で、同様の前処理を行っ
た後、種晶を添加した。単結晶育成時の操作は、結晶化
溶質溶解槽2から結晶育成槽1への循環流量は0.2ml/mi
n一定、結晶化溶質溶解槽2の温度を45℃一定、結晶育
成槽1の温度44℃一定とし100時間まで単結晶を育成し
た。単結晶育成初期には実施例1,2と同様に比較的早い
結晶線成長速度を示したが時間がたつにつれて低下して
きた。100時間後の結晶長は15.2mmであり、平均結晶線
成長速度は3.60mm/dayであった。
Comparative Example 1 After the same pretreatment was performed using the same system and apparatus as in Examples 1 and 2, a seed crystal was added. The operation at the time of growing a single crystal is as follows. The circulation flow rate from the crystallization solute dissolving tank 2 to the crystal growing tank 1 is 0.2 ml / mi.
The temperature of the crystallization solute dissolving tank 2 was kept constant at 45 ° C. and the temperature of the crystal growing tank 1 was kept constant at 44 ° C., and a single crystal was grown up to 100 hours. In the early stage of single crystal growth, a relatively fast crystal line growth rate was shown as in Examples 1 and 2, but it decreased with time. The crystal length after 100 hours was 15.2 mm, and the average crystal growth rate was 3.60 mm / day.

実施例3 25℃,60%湿度の恒温恒湿室内に図2に示すような溶
媒蒸発除去式の装置を組み立て、尿素の単結晶をメタノ
ール溶液中で育成した。メタノール(和光純薬(株)製
試薬特級)にナトリウムを添加することにより水分を除
去し、さらに蒸留により99.9%以上に精製した。尿素の
前処理については実施例1と同様である。結晶長2mmの
種晶を白金線の先に取り付け、結晶育成槽1中に吊る
し、定量ポンプ5を用いて気体流入口13より所定の流量
で空気を流して、槽内のメタノール蒸気を置換すること
により、溶媒のメタノールの安定な蒸発を促し、尿素の
単結晶を育成した。
Example 3 A solvent evaporation removal type apparatus as shown in FIG. 2 was assembled in a constant temperature and humidity room at 25 ° C. and 60% humidity, and a single crystal of urea was grown in a methanol solution. Water was removed by adding sodium to methanol (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), and further purified by distillation to 99.9% or more. Pretreatment of urea is the same as in the first embodiment. A seed crystal having a crystal length of 2 mm is attached to the tip of a platinum wire, suspended in the crystal growing tank 1, and air is flowed at a predetermined flow rate from the gas inlet 13 using the metering pump 5 to replace methanol vapor in the tank. As a result, stable evaporation of the solvent methanol was promoted, and a single crystal of urea was grown.

単結晶育成開始時において結晶成長槽1内の溶液は45
℃飽和状態に対し44℃に保っており、種晶添加直後より
空気を流入させた。空気の流入流量は単結晶育成開始時
より24時間後までは200ml/hr、24時間後から48時間後ま
では250ml/hr、48時間後から72時間後までは300ml/hr、
以後単結晶育成終了時(結晶育成開始100時間後)まで3
50ml/hrに保った。結晶育成終了時の尿素単結晶の結晶
長は29.6mmであり、平均結晶成長速度は7.05mm/dayを保
つことができた。
At the start of single crystal growth, the solution in crystal growth tank 1 contains 45
The temperature was kept at 44 ° C with respect to the saturated state at 0 ° C, and air was introduced immediately after the seed crystal was added. The flow rate of air is 200 ml / hr from the start of single crystal growth until 24 hours, 250 ml / hr from 24 hours to 48 hours, 300 ml / hr from 48 hours to 72 hours,
3 until the end of single crystal growth (100 hours after crystal growth starts)
It was kept at 50 ml / hr. At the end of the crystal growth, the crystal length of the urea single crystal was 29.6 mm, and the average crystal growth rate could be maintained at 7.05 mm / day.

実施例4 実施例3と同様の系、装置を用い、尿素の単結晶をメ
タノール溶液中より成長させた。ただし、このとき気体
流入口13は封じている。
Example 4 Using the same system and apparatus as in Example 3, a single crystal of urea was grown from a methanol solution. However, at this time, the gas inlet 13 is sealed.

尿素・メタノールの精製については実施例3と同様で
ある。
Purification of urea / methanol is the same as in Example 3.

結晶長2mmの種晶を白金線の先に取り付け、結晶育成
槽中1に吊るし、定量ポンプ5を用いて減圧し、溶媒で
あるメタノール蒸気の排出を促し、尿素の単結晶を成長
させた。メタノールは定量ポンプ5通過後トラップし、
メタノールトラップ量より吸引量を定めた。結晶育成開
始時において、結晶育成槽1内の溶液は45℃飽和状態に
対し44℃に保っており、種晶添加直後よりポンプを作動
し吸引減圧操作を行った。種晶添加直後より24時間後ま
でをメタノールトラップ量1ml/hrで、24時間後より48時
間後まで1.5ml/hr、48時間後より72時間後まで2.0ml/h
r、さらにその後は2.5ml/hrで結晶育成終了時(育成開
始100時間)まで吸引減圧を行った。結晶育成終了時の
尿素単結晶の結晶長は18.6mmであり、平均結晶線成長速
度は4.41mm/dayであった。
A seed crystal having a crystal length of 2 mm was attached to the tip of a platinum wire, hung in a crystal growing tank 1 and depressurized using a metering pump 5, to promote the discharge of methanol vapor as a solvent to grow a single crystal of urea. Methanol is trapped after passing through the metering pump 5,
The amount of suction was determined from the amount of methanol trap. At the start of the crystal growth, the solution in the crystal growth tank 1 was kept at 44 ° C. with respect to the 45 ° C. saturated state, and the pump was operated immediately after the addition of the seed crystal to perform suction and pressure reduction. A methanol trap volume of 1 ml / hr from immediately after seed crystal addition to 24 hours later, 1.5 ml / hr from 24 hours to 48 hours later, 2.0 ml / h from 48 hours to 72 hours later
r, and then, the pressure was reduced at 2.5 ml / hr until crystal growth was completed (100 hours after the start of growth). At the end of the crystal growth, the crystal length of the urea single crystal was 18.6 mm, and the average crystal growth rate was 4.41 mm / day.

比較例2 空気を強制的に流動させずに開放系にする以外は実施
例3と同様にして尿素の単結晶を育成した。
Comparative Example 2 A single crystal of urea was grown in the same manner as in Example 3, except that the system was opened without forcibly flowing air.

結晶育成初期には実施例3や実施例4と同様の結晶線
成長速度で示したが、時間がたち、単結晶が大きくなる
につれそれは低下してきた。育成開始100時間後の結晶
長は8.46mmであり、平均結晶線成長速度は2.0mm/dayで
あった。
In the initial stage of crystal growth, the crystal growth rate was the same as that in Example 3 or Example 4. However, as the time elapses, the crystal growth rate decreases as the size of the single crystal increases. 100 hours after the start of the growth, the crystal length was 8.46 mm, and the average crystal growth rate was 2.0 mm / day.

以上の結果をまとめて、表1に示す。 Table 1 summarizes the above results.

〔発明の効果〕 本発明の方法で従来では難しいといわれていた有機化
合物の単結晶化が可能となり、均一結晶相で大粒径の巨
大結晶が育成できる。本発明で得られた巨大な結晶は使
用目的に応じて加工され、光学素子等として、光情報、
光通信などの緒分野に利用が可能である。
[Effects of the Invention] The method of the present invention enables single crystallization of an organic compound, which was conventionally considered difficult, and can grow a large crystal with a uniform crystal phase and a large grain size. The huge crystal obtained by the present invention is processed according to the purpose of use, and as optical elements, optical information,
It can be used in fields such as optical communication.

【図面の簡単な説明】 図1は本発明の方法に使用する装置の一例を示す概略
図、図2は別の装置の例を示す概略図である。 1……結晶育成槽,2……結晶化溶質溶解槽, 3,4……恒温槽,5……定量ポンプ, 6……種晶,7……攪拌翼,8……カメラ, 9……熱電対,10……温度記録計, 11……溶質,12……ポンプ,13……気体流入口
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing an example of an apparatus used in the method of the present invention, and FIG. 2 is a schematic view showing another example of an apparatus. 1 ... crystal growing tank, 2 ... crystallized solute dissolving tank, 3,4 ... constant temperature bath, 5 ... constant volume pump, 6 ... seed crystal, 7 ... stirring blade, 8 ... camera, 9 ... Thermocouple, 10… Temperature recorder, 11… Solute, 12… Pump, 13… Gas inlet

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単結晶を溶液中より得るに際して、単結晶
の大きさを検知することにより、単結晶育成槽の溶液の
濃度を過飽和度が1.1以下の範囲内で逐次上昇するよう
調整し、単結晶の結晶線成長速度を制御することを特徴
とする単結晶の製造方法。
1. When a single crystal is obtained from a solution, the concentration of the solution in the single crystal growing tank is adjusted so as to gradually increase the supersaturation within a range of 1.1 or less by detecting the size of the single crystal, A method for producing a single crystal, comprising controlling a growth rate of a single crystal crystal line.
【請求項2】単結晶育成槽の溶液の濃度を結晶育成開始
時には過飽和度1.00001〜1.01に保ち、単結晶の成長と
ともに過飽和度1.00003〜1.08に調整する請求項1記載
の製造方法。
2. The method according to claim 1, wherein the concentration of the solution in the single crystal growing tank is maintained at a supersaturation of 1.00001 to 1.01 at the start of crystal growth, and is adjusted to 1.00003 to 1.08 as the single crystal grows.
【請求項3】単結晶育成槽の溶液の濃度を結晶育成開始
時には過飽和度1.00001〜1.0001に保ち、単結晶の成長
とともに過飽和度1.00005〜1.01に調整する請求項2記
載の製造方法。
3. The method according to claim 2, wherein the concentration of the solution in the single crystal growing tank is maintained at a supersaturation of 1.00001 to 1.00001 at the start of crystal growth, and is adjusted to 1.00005 to 1.01 as the single crystal grows.
【請求項4】結晶育成開始時の過飽和度が1.00001〜1.0
0003であり、単結晶の成長時の過飽和度が1.00025〜1.0
005である請求項3記載の製造方法。
4. The supersaturation degree at the start of crystal growth is 1.00001 to 1.0.
0003, and the degree of supersaturation during growth of the single crystal is 1.00025 to 1.00025.
The production method according to claim 3, wherein the production method is 005.
【請求項5】単結晶化させる物質が有機物である請求項
1,2,3又は4記載の製造方法。
5. The substance to be single-crystallized is an organic substance.
The production method according to 1, 2, 3 or 4.
【請求項6】単結晶化させる有機物が分子性化合物であ
る請求項5記載の製造方法。
6. The method according to claim 5, wherein the organic substance to be single-crystallized is a molecular compound.
JP63046528A 1988-02-29 1988-02-29 Single crystal manufacturing method Expired - Fee Related JP2610638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046528A JP2610638B2 (en) 1988-02-29 1988-02-29 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046528A JP2610638B2 (en) 1988-02-29 1988-02-29 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH01219090A JPH01219090A (en) 1989-09-01
JP2610638B2 true JP2610638B2 (en) 1997-05-14

Family

ID=12749783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046528A Expired - Fee Related JP2610638B2 (en) 1988-02-29 1988-02-29 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP2610638B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006029830B4 (en) * 2006-06-27 2011-02-24 Schmidt-Köksal, Michael Process and device for producing pyroelectric single crystals
FR2909687B1 (en) * 2006-12-06 2009-03-27 Centre Nat Rech Scient CRYSTALLINE GROWTH IN SOLUTION UNDER STATIONARY CONDITIONS
KR101834978B1 (en) * 2009-04-15 2018-03-06 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Low temperature continuous circulation reactor for the aqueous synthesis of ZnO films, nanostructures, and bulk single crystals

Also Published As

Publication number Publication date
JPH01219090A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
Sudha et al. Supersaturation dependent nucleation control and separation of mono, ortho and unstable polymorphs of paracetamol by swift cooling crystallization technique
US3943181A (en) Separating optically pure d-l-isomers of menthol, neomenthol and isomenthol
JP2610638B2 (en) Single crystal manufacturing method
US20110142741A1 (en) Crystal growth in solution under static conditions
JP5929480B2 (en) Method for purifying methacrylic acid
JP5833127B2 (en) Apparatus and method for crystallizing inorganic or organic substances
Sato et al. Occurrence of stearic acid polymorphs from cyclohexane solutions
CA2418966A1 (en) Method for producing tagatose crystals
EP0654291B1 (en) Method of crystallizing organic chemicals
US20230219014A1 (en) Contained production of pharmaceutically pure crystals
Goodrum Solution top-seeding: Growth of GeO2 polymorphs
KR100342148B1 (en) Method of Purifying Carbazole Ester Precursors of 6-Chloro-α-Methyl-Carbazole-2-Acetic Acid
McPherson The growth of microcrystals for time resolved serial crystallography
JPH0329039B2 (en)
SU1726570A1 (en) Method of preparation of single crystals of lead chloride
SU1152952A1 (en) Method of crystallizing l-tryptophan
SU810673A1 (en) Method of preparing optically active isomers of n-acetyl-alpha-aminobenzylacetic acid ammonium salt
Silambarasan et al. Growth of high quality bulk size single crystals of inverted solubility lithium sulphate monohydrate
SU1684357A1 (en) Method of growing single crystals of potassium hydrogen phthalate
EP0090866B1 (en) Optical resolution process for dl-cysteine
JP4293949B2 (en) Continuous production method for maltitol-containing crystals
Watanabe Growth of Neodymium Pentaphosphate Single Crystals by the Flux Seeded Technique
JPH0687685A (en) Production of single crystal
Soboleva et al. Growth of single crystals of NaH2PO4 (NaDP), NaH2PO4· H2O (NaDP· H2O), and NaH2PO4· 2H2O (NaDP· 2H2O) sodium dihydrogenphosphate based on the analysis of the Na2O-P2O5-H2O phase diagram
RU1806135C (en) Method of thiourea synthesis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees