JP2628502B2 - Composite elastic yarn and method for producing the same - Google Patents
Composite elastic yarn and method for producing the sameInfo
- Publication number
- JP2628502B2 JP2628502B2 JP35844092A JP35844092A JP2628502B2 JP 2628502 B2 JP2628502 B2 JP 2628502B2 JP 35844092 A JP35844092 A JP 35844092A JP 35844092 A JP35844092 A JP 35844092A JP 2628502 B2 JP2628502 B2 JP 2628502B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- mol
- ester
- dicarboxylic acid
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims description 50
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 53
- 229920000728 polyester Polymers 0.000 claims description 37
- 239000004814 polyurethane Substances 0.000 claims description 33
- 229920002635 polyurethane Polymers 0.000 claims description 33
- 238000009987 spinning Methods 0.000 claims description 32
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 31
- 239000000835 fiber Substances 0.000 claims description 20
- 238000004804 winding Methods 0.000 claims description 14
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 13
- 125000003118 aryl group Chemical group 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 7
- 125000002723 alicyclic group Chemical group 0.000 claims description 6
- 125000001931 aliphatic group Chemical group 0.000 claims description 6
- 230000009477 glass transition Effects 0.000 claims description 6
- 150000003460 sulfonic acids Chemical class 0.000 claims description 5
- 150000002148 esters Chemical class 0.000 claims description 3
- 239000000306 component Substances 0.000 description 61
- 238000000034 method Methods 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 229920000642 polymer Polymers 0.000 description 16
- 239000005056 polyisocyanate Substances 0.000 description 13
- 229920001228 polyisocyanate Polymers 0.000 description 13
- 239000004677 Nylon Substances 0.000 description 10
- 229920001778 nylon Polymers 0.000 description 10
- -1 polytetramethylene Polymers 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 150000002009 diols Chemical class 0.000 description 9
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 8
- 239000008358 core component Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229920002334 Spandex Polymers 0.000 description 7
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 7
- 239000004759 spandex Substances 0.000 description 7
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 125000005442 diisocyanate group Chemical group 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 238000006068 polycondensation reaction Methods 0.000 description 6
- 229920005862 polyol Polymers 0.000 description 6
- 150000003077 polyols Chemical class 0.000 description 5
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 4
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000012948 isocyanate Substances 0.000 description 4
- 150000002513 isocyanates Chemical class 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000005809 transesterification reaction Methods 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000005886 esterification reaction Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- OJURWUUOVGOHJZ-UHFFFAOYSA-N methyl 2-[(2-acetyloxyphenyl)methyl-[2-[(2-acetyloxyphenyl)methyl-(2-methoxy-2-oxoethyl)amino]ethyl]amino]acetate Chemical compound C=1C=CC=C(OC(C)=O)C=1CN(CC(=O)OC)CCN(CC(=O)OC)CC1=CC=CC=C1OC(C)=O OJURWUUOVGOHJZ-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 3
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 2
- 239000004970 Chain extender Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- XQKKWWCELHKGKB-UHFFFAOYSA-L calcium acetate monohydrate Chemical compound O.[Ca+2].CC([O-])=O.CC([O-])=O XQKKWWCELHKGKB-UHFFFAOYSA-L 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 238000009940 knitting Methods 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000009991 scouring Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 2
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 1
- NVJUHMXYKCUMQA-UHFFFAOYSA-N 1-ethoxypropane Chemical compound CCCOCC NVJUHMXYKCUMQA-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- IAXFZZHBFXRZMT-UHFFFAOYSA-N 2-[3-(2-hydroxyethoxy)phenoxy]ethanol Chemical compound OCCOC1=CC=CC(OCCO)=C1 IAXFZZHBFXRZMT-UHFFFAOYSA-N 0.000 description 1
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- RAADBCJYJHQQBI-UHFFFAOYSA-N 2-sulfoterephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(S(O)(=O)=O)=C1 RAADBCJYJHQQBI-UHFFFAOYSA-N 0.000 description 1
- UZXIJHSJEKWJHP-UHFFFAOYSA-N 4-(4-carboxycyclohexyl)cyclohexane-1-carboxylic acid Chemical compound C1CC(C(=O)O)CCC1C1CCC(C(O)=O)CC1 UZXIJHSJEKWJHP-UHFFFAOYSA-N 0.000 description 1
- JSYUFUJLFRBMEN-UHFFFAOYSA-N 4-sulfobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=C(S(O)(=O)=O)C(C(O)=O)=C1 JSYUFUJLFRBMEN-UHFFFAOYSA-N 0.000 description 1
- HBLRZDACQHNPJT-UHFFFAOYSA-N 4-sulfonaphthalene-2,7-dicarboxylic acid Chemical compound OS(=O)(=O)C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 HBLRZDACQHNPJT-UHFFFAOYSA-N 0.000 description 1
- WNKQDGLSQUASME-UHFFFAOYSA-N 4-sulfophthalic acid Chemical compound OC(=O)C1=CC=C(S(O)(=O)=O)C=C1C(O)=O WNKQDGLSQUASME-UHFFFAOYSA-N 0.000 description 1
- CARJPEPCULYFFP-UHFFFAOYSA-N 5-Sulfo-1,3-benzenedicarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(S(O)(=O)=O)=C1 CARJPEPCULYFFP-UHFFFAOYSA-N 0.000 description 1
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- OWNRRUFOJXFKCU-UHFFFAOYSA-N Bromadiolone Chemical compound C=1C=C(C=2C=CC(Br)=CC=2)C=CC=1C(O)CC(C=1C(OC2=CC=CC=C2C=1O)=O)C1=CC=CC=C1 OWNRRUFOJXFKCU-UHFFFAOYSA-N 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002473 artificial blood Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229940067460 calcium acetate monohydrate Drugs 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- XBZSBBLNHFMTEB-UHFFFAOYSA-N cyclohexane-1,3-dicarboxylic acid Chemical compound OC(=O)C1CCCC(C(O)=O)C1 XBZSBBLNHFMTEB-UHFFFAOYSA-N 0.000 description 1
- LNGJOYPCXLOTKL-UHFFFAOYSA-N cyclopentane-1,3-dicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)C1 LNGJOYPCXLOTKL-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- VNGOYPQMJFJDLV-UHFFFAOYSA-N dimethyl benzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=C1 VNGOYPQMJFJDLV-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- JZZIHCLFHIXETF-UHFFFAOYSA-N dimethylsilicon Chemical compound C[Si]C JZZIHCLFHIXETF-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- 229940082328 manganese acetate tetrahydrate Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- CESXSDZNZGSWSP-UHFFFAOYSA-L manganese(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Mn+2].CC([O-])=O.CC([O-])=O CESXSDZNZGSWSP-UHFFFAOYSA-L 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- LLHSEQCZSNZLRI-UHFFFAOYSA-M sodium;3,5-bis(methoxycarbonyl)benzenesulfonate Chemical compound [Na+].COC(=O)C1=CC(C(=O)OC)=CC(S([O-])(=O)=O)=C1 LLHSEQCZSNZLRI-UHFFFAOYSA-M 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- UMEJBQAJSACPLX-UHFFFAOYSA-K trisodium 4,6-dimethyl-5-sulfonatobenzene-1,3-dicarboxylate Chemical compound [Na+].CC1=C(C(=C(C=C1C(=O)[O-])C(=O)[O-])C)S(=O)(=O)[O-].[Na+].[Na+] UMEJBQAJSACPLX-UHFFFAOYSA-K 0.000 description 1
- NUBZKXFFIDEZKG-UHFFFAOYSA-K trisodium;5-sulfonatobenzene-1,3-dicarboxylate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C1=CC(C([O-])=O)=CC(S([O-])(=O)=O)=C1 NUBZKXFFIDEZKG-UHFFFAOYSA-K 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- 229960000314 zinc acetate Drugs 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
- Multicomponent Fibers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、新規な複合弾性糸に関
する。より詳細には潜在弾性糸であり、又高速紡糸可能
なポリウレタン弾性糸(以下、スパンデックスと略記)
に関する。ここで、潜在弾性糸とは、水処理にてはじめ
てゴム状弾性的性質を発現せしめ得るような糸を指す。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel composite elastic yarn. More specifically, it is a latent elastic yarn and a polyurethane elastic yarn that can be spun at high speed (hereinafter abbreviated as spandex).
About. Here, the latent elastic yarn refers to a yarn that can exhibit rubber-like elastic properties only by water treatment.
【0002】[0002]
【従来の技術】ポリウレタン弾性糸は、その優れた物性
から種々の用途に用いられているが、各種糸加工、編織
等の後工程での糸の取扱い性、操業性に問題がある。2. Description of the Related Art Polyurethane elastic yarns have been used in various applications because of their excellent physical properties, but have problems in yarn handling and operability in post-processes such as various yarn processing and knitting.
【0003】この後工程での取扱い性を向上させるた
め、ウレタン弾性糸の伸度を減少させる方法がある(例
えば、ウレタン弾性糸をナイロン等でカバリングする方
法)。更に又、特公昭55−8606にはポリビス(プ
ロポキシ)エタンアジパミドを主成分とする水溶性ポリ
アミドとポリウレタンとが複合され、水処理にてゴム状
的性質を発現せしめ得る潜在ゴム状弾性を有する複合繊
維が開示されている。[0003] In order to improve the handleability in the subsequent process, there is a method of reducing the elongation of the urethane elastic yarn (for example, a method of covering the urethane elastic yarn with nylon or the like). Furthermore, Japanese Patent Publication No. 55-8606 discloses a composite fiber comprising a water-soluble polyamide mainly composed of polybis (propoxy) ethane adipamide and a polyurethane, and having a latent rubber-like elasticity capable of exhibiting rubber-like properties by water treatment. Is disclosed.
【0004】一方、スパンデックスは、その優れた物性
から種々の用途に用いられているが、その生産速度は、
他の汎用ポリマー(例えば、ナイロン、ポリエステル
等)に比し、劣っているのが現状である(例えば、スパ
ンデックスの紡糸速度は溶融紡糸法の場合約500m/
分)。これは、繊維学会誌VOL.47、P581(1
991)に記述してある如く紡糸速度を上げていくと
糸が配向しやすくなり糸が硬くなること、又、糸の伸
度が大きいため捲取りが困難となり易いためである。従
って、スパンデックス固有の低モジュラスという制約を
越えて高速化を達成するためのブレークスルーは未だ行
われていないのが現状である。[0004] On the other hand, spandex is used for various applications because of its excellent physical properties.
At present, it is inferior to other general-purpose polymers (for example, nylon, polyester, etc.) (for example, the spinning speed of spandex is about 500 m /
Minutes). This is described in the Journal of the Fiber Society of Japan, Vol. 47, P581 (1
This is because, as described in 991), when the spinning speed is increased, the yarn is likely to be oriented and the yarn becomes hard, and it is easy to wind up due to the large elongation of the yarn. Therefore, at present, breakthroughs for achieving higher speeds beyond the low modulus constraint inherent to spandex have not yet been performed.
【0005】[0005]
【発明が解決しようとする課題】このうち、ウレタン弾
性糸をナイロンなどでカバリングする方法は、特殊な装
置を使用する必要があり、又、生産速度が極めて遅いと
いう問題がある。Among these, the method of covering urethane elastic yarn with nylon or the like requires the use of a special device and has a problem that the production speed is extremely slow.
【0006】更に又、鞘成分を水溶性のポリアミド、芯
成分をポリウレタンにした複合弾性繊維は、該ポリアミ
ドの原料であるエーテル結合を有するジアミンの合成に
おいて収率が低く、また得られるポリアミドの熱安定性
と溶融安定性が不安定であり紡糸が困難となるため実用
化には至らなかった。Furthermore, composite elastic fibers having a sheath component made of a water-soluble polyamide and a core component made of a polyurethane have a low yield in the synthesis of a diamine having an ether bond, which is a raw material of the polyamide, and have a low heat resistance. Stability and melt stability were unstable and spinning became difficult, so that it was not put to practical use.
【0007】本発明の目的は、従って、一般の合成繊維
(ナイロンなど)と同様の扱いで布帛状にできしかも精
練、染色工程などの水処理工程によりウレタン弾性糸と
しての性質をほぼ完全に回復させるような新規な複合弾
性糸を提供するにある。また、一般の合成繊維(ナイロ
ンなど)と同等の速度での捲取りが可能で、且つ得られ
る糸のモジュラスが低いスパンデックスを工業上有利
に、且つ、安価に製造する方法を提供するにある。Accordingly, an object of the present invention is to provide a fabric in the same manner as ordinary synthetic fibers (such as nylon), and to almost completely recover the properties as a urethane elastic yarn by a water treatment process such as a scouring or dyeing process. Another object of the present invention is to provide a novel composite elastic yarn. Another object of the present invention is to provide a method for producing a spandex which can be wound at a speed equivalent to that of a general synthetic fiber (eg, nylon) and has a low modulus of the obtained yarn, is industrially advantageous and inexpensive.
【0008】[0008]
【課題を解決するための手段】本発明者らは、上記目的
を達成するため鋭意検討の結果、本発明を完成した。Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and have completed the present invention.
【0009】即ち本発明の複合弾性糸は、ポリウレタン
と水溶性ポリエステルとが繊維断面積比(複合比)で1
/2〜50/1の範囲で接合され且つ該水溶性ポリエス
テルが繊維表面に露出した複合繊維であり、そして前記
水溶性ポリエステルが酸成分としてスルホン酸塩を有す
る芳香族ジカルボン酸及び/又はそのエステル形成誘導
体(A成分)を5〜20モル%、該A成分を除く芳香族
ジカルボン酸及び/又はそのエステル形成誘導体(B成
分)を55モル%以上、及び脂環族ジカルボン酸及び/
又はそのエステル形成誘導体成分(C成分)と脂肪族ジ
カルボン酸及び/又はそのエステル形成誘導体成分(D
成分)とからなり且つ上記C成分とD成分とが0モル%
≦C+4×D≦40モル%の関係を満足し、グリコール
成分としてはエチレングリコール50モル%以上からな
ることを特徴とする。That is, in the composite elastic yarn of the present invention, the polyurethane and the water-soluble polyester have a fiber cross-sectional area ratio (composite ratio) of 1
/ 2 to 50/1 and the water-soluble polyester is a conjugate fiber exposed on the fiber surface, and the water-soluble polyester is an aromatic dicarboxylic acid having a sulfonate as an acid component and / or an ester thereof. 5 to 20 mol% of the derivative (A component), 55 mol% or more of the aromatic dicarboxylic acid excluding the A component and / or its ester-forming derivative (B component), and the alicyclic dicarboxylic acid and / or
Or its ester-forming derivative component (component C) and its aliphatic dicarboxylic acid and / or its ester-forming derivative component (D
Component C) and the above component C and component D are 0 mol%.
It satisfies the relationship of ≦ C + 4 × D ≦ 40 mol%, and the glycol component is composed of 50 mol% or more of ethylene glycol.
【0010】また本発明の製造方法は、酸成分としてス
ルホン酸塩を有する芳香族ジカルボン酸及び/又はその
エステル形成誘導体(A成分)を5〜20モル%、該A
成分を除く芳香族ジカルボン酸及び/又はそのエステル
形成誘導体(B成分)を55モル%以上、及び、脂環族
ジカルボン酸及び/又はそのエステル形成誘導体(C成
分)と脂肪族ジカルボン酸及び/又はそのエステル形成
誘導体(D成分)とからなり、且つ、上記C成分とD成
分とが0モル%≦C+4×D≦40モル%の関係を満足
し、グリコール成分としてはエチレングリコール50モ
ル%以上からなる水溶性ポリエステルとポリウレタンと
を接合し且つ該水溶性ポリエステルを繊維表面に露出さ
せそして、ポリウレタン/水溶性ポリエステルの繊維断
面積比(複合比)を1/2〜5/1の範囲、紡糸速度
1,000〜3,500m/分の速度で且つ紡糸時の延
伸倍率1.5〜5倍で熱の有り又は無しの状態下捲取り
又、上記複合比が6/1〜50/1の範囲の場合は紡糸
速度500〜3,000m/分で熱の無しの状態下延伸
倍率1.4以下で捲き取ることを特徴とする。In the production method of the present invention, the aromatic dicarboxylic acid having a sulfonic acid salt as an acid component and / or an ester-forming derivative thereof (component A) is 5 to 20 mol%;
55 mol% or more of the aromatic dicarboxylic acid and / or its ester-forming derivative (component B) excluding the components, and the alicyclic dicarboxylic acid and / or its ester-forming derivative (component C) and the aliphatic dicarboxylic acid and / or The ester-forming derivative (D component), wherein the C component and the D component satisfy the relationship of 0 mol% ≦ C + 4 × D ≦ 40 mol%, and the glycol component is from 50 mol% or more of ethylene glycol. The water-soluble polyester and the polyurethane are joined together, the water-soluble polyester is exposed on the fiber surface, and the fiber cross-sectional area ratio (composite ratio) of polyurethane / water-soluble polyester is in the range of 1/2 to 5/1, and the spinning speed is adjusted. Winding at a speed of 1,000 to 3,500 m / min and a draw ratio of 1.5 to 5 at the time of spinning with or without heat, and the composite ratio is 6 If the range of 1 to 50/1, characterized in that the take Maki below state under stretching ratio 1.4 without heat at a spinning speed of 500~3,000M / min.
【0011】以下、本発明を詳しく説明する。本発明を
構成する芯成分のポリウレタンとは、熱可塑性ポリウレ
タン又は架橋したポリウレタンを指す。ここで熱可塑性
ポリウレタンとは、高分子ジオールと有機ジイソシアネ
ート及び鎖伸長剤とを反応させて得られるもので溶融紡
糸可能なポリマーを言う。例えば高分子ジオールとして
は、両末端に水酸基を有し、分子量500〜5000の
ポリテトラメチレングリコール、ポリプロピレングリコ
ールなどのエーテル系ポリオール、ポリヘキサメチレン
アジペート、ポリブチレンアジペート、ポリカーボネー
トジオール、ポリカプロラクトンジオールなどのエステ
ル系ポリオール等のグリコール類の単独、または、これ
らの混合物更には共重合ジオール等が挙げられる。Hereinafter, the present invention will be described in detail. The polyurethane as the core component constituting the present invention refers to a thermoplastic polyurethane or a crosslinked polyurethane. Here, the thermoplastic polyurethane refers to a polymer obtained by reacting a polymer diol with an organic diisocyanate and a chain extender, and which can be melt-spun. For example, as a polymer diol, having a hydroxyl group at both ends, polytetramethylene glycol having a molecular weight of 500 to 5000, ether polyols such as polypropylene glycol, polyhexamethylene adipate, polybutylene adipate, polycarbonate diol, polycaprolactone diol and the like Glycols such as ester-based polyols alone, or mixtures thereof, and copolymerized diols may be used.
【0012】鎖延長剤としては、分子量500以下の
1,4−ブタンジオール、エチレングリコール、プロピ
レングリコール、ビスヒドロキシエトキシベンゼンなど
がある。Examples of the chain extender include 1,4-butanediol having a molecular weight of 500 or less, ethylene glycol, propylene glycol, and bishydroxyethoxybenzene.
【0013】有機ジイソシアネートとしては、トリレン
ジイソシアネート(TDI)、4,4′−ジフェニルメ
タンジイソシアネート(MDI)または無黄変性のジイ
ソシアネート例えば、1,6−ヘキサメチレンジイソシ
アネートなど、及びこれらの混合物が挙げられる。The organic diisocyanate includes tolylene diisocyanate (TDI), 4,4'-diphenylmethane diisocyanate (MDI) or a non-yellowing diisocyanate such as 1,6-hexamethylene diisocyanate, and a mixture thereof.
【0014】これら成分から公知の方法で重合されたポ
リウレタンの硬度としてはJIS−A硬度で75〜98
の範囲が好ましい。硬度が75未満になると得られる複
合糸の回復力が劣ること、また実用上の耐熱性が不足す
ることなどの問題が発生するため好ましくない。逆に、
硬度が98を超えるとポリウレタンそのものの回復性が
劣り捲縮構造によらなければ複合糸の回復性は望めない
し、また該ポリウレタンの最適紡糸条件範囲が狭い等の
問題があるため好ましくない。好適には、82〜95の
範囲が良い。The hardness of the polyurethane polymerized from these components by a known method is 75 to 98 in JIS-A hardness.
Is preferable. If the hardness is less than 75, the resulting composite yarn is inferior in resilience and insufficient in practical heat resistance. vice versa,
If the hardness exceeds 98, the recoverability of the polyurethane itself is inferior and the recoverability of the composite yarn cannot be expected unless the crimped structure is used, and the range of optimum spinning conditions for the polyurethane is undesirably small. Preferably, the range of 82 to 95 is good.
【0015】本発明のポリウレタンには、必要に応じ公
知の酸化チタン、紫外線安定剤、紫外線吸収剤、抗菌剤
などを添加することも好ましい。It is also preferable to add known titanium oxide, an ultraviolet stabilizer, an ultraviolet absorber, an antibacterial agent and the like to the polyurethane of the present invention, if necessary.
【0016】複合糸としての更なる耐熱性、更なる回復
性が必要な場合には、ポリイソシアネートと上記ポリウ
レタンとを反応せしめた架橋ポリウレタンを芯成分に配
置すれば良い。この製造方法としては、我々の提案した
方法(特公昭58−46573号公報)、即ち溶融した
熱可塑性ポリウレタンにポリイソシアネートを添加混合
し、紡糸中又は紡糸後にアロファネート架橋結合を完結
させる方法を用いれば良い。In the case where further heat resistance and further recoverability as a composite yarn are required, a crosslinked polyurethane obtained by reacting a polyisocyanate with the above polyurethane may be disposed in the core component. As the production method, a method proposed by us (Japanese Patent Publication No. 58-46573), that is, a method in which a polyisocyanate is added to and mixed with a molten thermoplastic polyurethane to complete the allophanate cross-linking during or after spinning is used. good.
【0017】このポリイソシアネートとしては、ポリオ
ール成分とイソシアネート成分とからなり、分子内に2
個以上好ましくは、2〜3のイソシアネート基を有する
化合物である。ポリオール成分としては、ポリウレタン
の合成に使用する分子量500〜4000の上記ジオー
ルのほか、ジオールとトリオールとを混合し平均官能度
を2〜3にしたものとか、官能度が2〜3の合成ポリオ
ールも好適に用いることができる。一方、イソシアネー
ト成分としては、ポリウレタン合成時に使用される前記
ジイソシアネートとか、有機ジイソシアネートの3量
体、トリメチロールプロパンと有機ジイソシアネートと
の反応物、または、官能度が2〜3の範囲にあるイソシ
アネート(例えば、カルボジイミド変性イソシアネー
ト)等、単体か、これらの混合物を用いることができ
る。The polyisocyanate is composed of a polyol component and an isocyanate component, and has 2
It is a compound having at least two isocyanate groups. As the polyol component, in addition to the above-mentioned diols having a molecular weight of 500 to 4000 used for the synthesis of polyurethane, those obtained by mixing a diol and a triol to have an average functionality of 2 to 3, or a synthetic polyol having a functionality of 2 to 3 It can be suitably used. On the other hand, as the isocyanate component, the diisocyanate used in the synthesis of polyurethane, a trimer of an organic diisocyanate, a reaction product of trimethylolpropane and an organic diisocyanate, or an isocyanate having a functionality of 2 to 3 (for example, , Carbodiimide-modified isocyanate) or a mixture thereof.
【0018】上記両成分の反応は、公知の方法で可能で
あるが、この場合、イソシアネート基含量が過剰となる
ように反応させるのが好ましい。もちろん、この量は、
目的とする耐熱性、回復性などの物性、用いるポリオー
ルによって適宜選択する。The reaction between the above two components can be carried out by a known method. In this case, it is preferable to carry out the reaction so that the isocyanate group content becomes excessive. Of course, this amount
It is appropriately selected depending on the desired physical properties such as heat resistance and recoverability, and the polyol to be used.
【0019】ポリイソシアネートの添加量は、芯成分に
用いるポリウレタンと該ポリイソシアネートとの混合物
に対して通常5〜40重量%の範囲が好ましい。添加量
は、使用するポリイソシアネートのNCO基含量及び種
類により異なるものであるが、添加量が40重量%を超
えると混合不均一で紡糸が不安定となったり、糸の機械
的性質も不満足なものしか得られず、好ましくない。逆
に5重量%未満であると希望する耐熱性が得られず好ま
しくなく、好適には10〜30重量%の範囲がよい。The amount of the polyisocyanate to be added is usually preferably in the range of 5 to 40% by weight based on the mixture of the polyurethane used as the core component and the polyisocyanate. The amount of addition varies depending on the NCO group content and type of the polyisocyanate used, but if the amount exceeds 40% by weight, mixing is uneven and spinning becomes unstable, and the mechanical properties of the yarn are also unsatisfactory. It is not preferable because only things are obtained. Conversely, if it is less than 5% by weight, the desired heat resistance cannot be obtained, which is not preferred, and the range is preferably 10 to 30% by weight.
【0020】このようにして、芯成分中のポリウレタン
にアロファネート架橋を主とする架橋構造ができる。こ
の際、該架橋構造が主としてビューレット結合による場
合には紡糸性が極端に悪くなるので好ましくない。即
ち、ビューレット架橋結合の生成速度がアロファネート
架橋結合のそれに比し大きいため紡糸中の系の粘度が上
昇し安定な紡糸が不可能となり易いからである。In this way, a cross-linked structure mainly containing allophanate cross-links is formed in the polyurethane in the core component. In this case, when the crosslinked structure is mainly formed by burette bonding, spinnability is extremely deteriorated, which is not preferable. That is, since the formation rate of burette cross-linking is higher than that of allophanate cross-linking, the viscosity of the system during spinning increases, and stable spinning tends to be impossible.
【0021】本発明に用いる水溶性ポリエステルとして
は以下の組成からなるものである。The water-soluble polyester used in the present invention has the following composition.
【0022】酸成分のスルホン酸塩を有する芳香族ジカ
ルボン酸及び/又はそのエステル形成誘導体(A成分)
としてはスルホン酸アルカリ金属塩基を有するものが好
ましく、例えば4−スルホイソフタル酸、5−スルホイ
ソフタル酸、スルホテレフタル酸、4−スルホフタル
酸、4−スルホナフタレン−2,7−ジカルボン酸、5
−[4−スルホフェノキシ]イソフタル酸などのアルカ
リ金属塩またはそのエステル形成性誘導体が用いられる
が、5−スルホイソフタル酸ナトリウム塩またはそのエ
ステル形成性誘導体が特に好ましい。これらのスルホン
酸塩基を有するジカルボン酸及び/またはそのエステル
形成性誘導体は、水溶性および耐水性の点から全ジカル
ボン酸成分に対し5〜20モル%の範囲内、好ましくは
6〜12モル%の範囲が良い。この量が5モル%未満と
なると水溶解性が劣るものとなるし、逆に20モル%を
越えると重合時のトラブル、及びチップ化時の操業性不
良などを引き起こし、得られるポリマーの取扱い性、熱
可塑性などに悪影響を及ぼすので好ましくない。Aromatic dicarboxylic acid having a sulfonic acid salt of an acid component and / or an ester-forming derivative thereof (Component A)
Preferred are those having a sulfonic acid alkali metal base, for example, 4-sulfoisophthalic acid, 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid,
An alkali metal salt such as-[4-sulfophenoxy] isophthalic acid or an ester-forming derivative thereof is used, and 5-sulfoisophthalic acid sodium salt or an ester-forming derivative thereof is particularly preferable. These sulfonic acid group-containing dicarboxylic acids and / or ester-forming derivatives thereof are used in an amount of from 5 to 20 mol%, preferably from 6 to 12 mol%, based on the total dicarboxylic acid component from the viewpoint of water solubility and water resistance. Good range. If the amount is less than 5 mol%, the solubility in water becomes poor. On the contrary, if it exceeds 20 mol%, troubles during polymerization and poor operability at the time of chipping are caused, and the resulting polymer is easy to handle. This is not preferred because it has an adverse effect on thermoplasticity and the like.
【0023】上記A成分を除く芳香族ジカルボン酸及び
/又はそのエステル形成誘導体(B成分)としては、テ
レフタル酸及び/又はそのエステル形成誘導体(B1成
分)とイソフタル酸及び/又はそのエステル形成誘導体
(B2成分)であることが原料の入手可能性、工業化性
及び良好なる機械的性質を与える点で好ましく、更には
この量が全ジカルボン酸中55モル%以上である事が好
ましい。55モル%未満であると、得られるポリマーの
物性特に溶融熱安定性、耐熱性が劣るので好ましくな
い。更には、このB1成分/B2成分のモル比が2/8
〜8/2であることがポリマーの非晶性化の点で好まし
い。The aromatic dicarboxylic acid and / or its ester-forming derivative (component B) excluding the above-mentioned component A include terephthalic acid and / or its ester-forming derivative (component B1) and isophthalic acid and / or its ester-forming derivative ( Component B2) is preferred from the viewpoints of availability of raw materials, industrialization and good mechanical properties, and more preferably 55% by mole or more of all dicarboxylic acids. If the amount is less than 55 mol%, the physical properties of the obtained polymer, particularly the melt heat stability and the heat resistance are inferior. Further, the molar ratio of the B1 component / B2 component is 2/8.
88/2 is preferred in terms of making the polymer amorphous.
【0024】脂環族ジカルボン酸及び/又はそのエステ
ル形成誘導体成分(C成分)としては、1,4−シクロ
ヘキサンジカルボン酸、1,3−シクロヘキサンジカル
ボン酸、1,2−シクロヘキサンジカルボン酸、1,3
−シクロペンタンジカルボン酸、4,4′−ビシクロヘ
キシルジカルボン酸等、またはこれらのエステル形成性
誘導体が用いられる。The alicyclic dicarboxylic acid and / or its ester-forming derivative component (component C) includes 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3
-Cyclopentanedicarboxylic acid, 4,4'-bicyclohexyldicarboxylic acid, or the like, or an ester-forming derivative thereof is used.
【0025】更に脂肪族ジカルボン酸及び/又はそのエ
ステル形成誘導体成分(D成分)としては、アジピン
酸、セバシン酸、アゼライン酸等が挙げられる。上記C
成分とD成分とは0モル%≦C+4×D≦40モル%
(C,DはCまたはD成分の全酸成分に対するモル分
率)の関係を満足することが得られるポリマーのブロッ
キングを防ぐのみならず、耐水性の点からも必要であ
る。これはD成分が例えば20モル%、C成分0モル%
である場合、得られるポリマーのガラス転移温度が室温
程度となり取扱い性が不良となる他、ポリマーの物性が
劣るものとなるからである。Further, examples of the aliphatic dicarboxylic acid and / or its ester-forming derivative component (D component) include adipic acid, sebacic acid and azelaic acid. The above C
Component and D component are 0 mol% ≦ C + 4 × D ≦ 40 mol%
(C and D are the mole fractions of the C or D component with respect to the total acid components) It is necessary not only to prevent blocking of the obtained polymer but also from the viewpoint of water resistance. This means that the D component is, for example, 20 mol% and the C component is 0 mol%.
In the case of, the glass transition temperature of the obtained polymer is about room temperature, the handling property is poor, and the physical properties of the polymer are inferior.
【0026】一方、ジオール成分としてはポリエステル
共重合体の紡糸性の点から、エチレングリコールを全グ
リコール成分に対し50モル%以上使用する。又、グリ
コール成分としてエチレングリコール以外に機械的性
質、熱溶融安定性などの点で悪影響を与えない範囲内で
1,4−ブタンジオール、ネオペンチルグリコール、
1,4−シクロヘキサンジメタノール、ジエチレングリ
コール、トリエチレングリコール、ポリエチレングリコ
ール等を併用しても良い。On the other hand, as the diol component, ethylene glycol is used in an amount of 50 mol% or more based on the total glycol component from the viewpoint of the spinnability of the polyester copolymer. In addition, as a glycol component, other than ethylene glycol, mechanical properties, 1,4-butanediol, neopentyl glycol, and the like within a range that does not adversely affect heat melting stability and the like.
1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyethylene glycol and the like may be used in combination.
【0027】本発明に用いる共重合ポリエステルの重合
方法としては、通常の種々の方法が利用できる。例え
ば、ジカルボン酸のジメチルエステルとグリコールのエ
ステル交換反応を行い、メタノールを流出せしめた後、
徐々に減圧し高真空下、重縮合を行う方法、又は、ジカ
ルボン酸とグリコールのエステル化反応を行い、生成し
た水を流出せしめた後、徐々に減圧し、高真空下、重縮
合を行う方法、又は原料としてジカルボン酸のジメチル
エステルとジカルボン酸を併用する場合ジカルボン酸の
ジメチルエステルとグリコールのエステル交換反応を、
更に、ジカルボン酸を加えてエステル化反応を行った
後、高真空下重縮合を行う方法がある。エステル交換触
媒としては酢酸マンガン、酢酸カルシウム、酢酸亜鉛等
を、重縮合触媒としては三酸化アンチモン、酸化ゲルマ
ニウム、ジブチル錫オキシド、チタンテトラブトキシド
など公知のものを使用する事ができる。又、安定剤とし
て燐酸トリメチル、燐酸トリフェニルなどのリン化合
物、イルガノックス1010などのヒンダードフェノー
ル系化合物を使用しても良い。しかし、重合方法、触
媒、安定剤などの種々条件は上述の例に限定されるもの
ではない。As the polymerization method of the copolymerized polyester used in the present invention, various ordinary methods can be used. For example, a transesterification reaction of dimethyl ester of dicarboxylic acid and glycol is performed, and after methanol is allowed to flow,
A method of performing polycondensation under a reduced pressure and a high vacuum, or a method of performing an esterification reaction of a dicarboxylic acid and a glycol and allowing the generated water to flow out, and then gradually reducing the pressure and performing a polycondensation under a high vacuum. Or, when a combination of dimethyl ester of dicarboxylic acid and dicarboxylic acid is used as a raw material, the transesterification reaction of dimethyl ester of dicarboxylic acid with glycol,
Further, there is a method in which a dicarboxylic acid is added to carry out an esterification reaction, followed by polycondensation under high vacuum. As the transesterification catalyst, manganese acetate, calcium acetate, zinc acetate and the like can be used, and as the polycondensation catalyst, known ones such as antimony trioxide, germanium oxide, dibutyltin oxide and titanium tetrabutoxide can be used. As a stabilizer, a phosphorus compound such as trimethyl phosphate or triphenyl phosphate, or a hindered phenol compound such as Irganox 1010 may be used. However, various conditions such as a polymerization method, a catalyst, and a stabilizer are not limited to the above examples.
【0028】本発明に用いる上記ポリエステルは水溶性
を有するが、本発明で述べる所の水溶性とは、物理化学
的に厳密なものではなく、水に溶解及び/又は微分散す
るものを含む。Although the above polyester used in the present invention has water solubility, the term “water solubility” as referred to in the present invention is not strictly physicochemically, but includes those which dissolve and / or finely disperse in water.
【0029】このような水溶性ポリエステルのうち、こ
のガラス転移温度が35〜80℃の範囲であるものが好
ましい。この温度が35℃未満となると、得られる複合
糸の取扱い性が不良となるので好ましくなく、逆に80
℃を越えると水への溶解性が不十分となるので好ましく
ない。上記の範囲であれば、例えば温度50℃以上の熱
水には易溶であるが、50℃未満の水には極めて難溶或
いは粘着性を生じ難いものとなり取扱い性が良好とな
る。ガラス転移温度は、理学(株)製の熱分析装置(T
AS100)で、窒素気流中10℃/minの速度で一
度180℃まで昇温し、その後−150℃まで冷却後再
度昇温して測定する。Among such water-soluble polyesters, those having a glass transition temperature in the range of 35 to 80 ° C. are preferred. If the temperature is lower than 35 ° C., the handleability of the obtained composite yarn becomes poor, which is not preferable.
C. is not preferable because the solubility in water becomes insufficient. Within the above range, for example, it is easily soluble in hot water at a temperature of 50 ° C. or higher, but hardly soluble or less sticky in water at a temperature of less than 50 ° C., and the handleability is improved. The glass transition temperature was measured using a thermal analyzer (T
In AS100), the temperature is once raised to 180 ° C. at a rate of 10 ° C./min in a nitrogen stream, then cooled to −150 ° C., and then raised again for measurement.
【0030】又、水溶性ポリエステルは、溶融紡糸可能
である事が好ましく、例えば180〜300℃の範囲で
流動性を示し発泡、分解などがなく紡糸できることが望
ましい。The water-soluble polyester is preferably capable of being melt-spun. For example, it is desirable that the water-soluble polyester exhibits fluidity in the range of 180 to 300 ° C. and can be spun without foaming or decomposition.
【0031】更に、水溶性ポリエステルに酸化防止剤、
すべり剤などの添加剤を配合しても構わない。Further, an antioxidant is added to the water-soluble polyester,
An additive such as a slipping agent may be blended.
【0032】以上、芯鞘両成分について説明したが、次
に芯鞘の複合比率及び捲取り方法について述べる。ポリ
ウレタン/水溶性ポリエステルの複合比は糸断面積の比
で1/2〜50/1の範囲が好ましい。この比率が1/
2未満になると糸質的に非常に脆いものとなり易く、後
工程において取扱い性が悪くなるし、又溶解すべき量が
多くなるので好ましくない。逆にこの比率が50/1を
越えると、紡糸性が不良となり易い即ち、鞘成分が破れ
易くなるので好ましくない。Having described both the core and sheath components, the composite ratio of the core and sheath and the winding method will now be described. The polyurethane / water-soluble polyester composite ratio is preferably in the range of 1/2 to 50/1 in terms of the yarn cross-sectional area. This ratio is 1 /
If it is less than 2, the yarn is liable to be very brittle, and the handleability in the subsequent step becomes poor, and the amount to be dissolved increases, which is not preferable. Conversely, if the ratio exceeds 50/1, the spinnability tends to be poor, that is, the sheath component is easily broken, which is not preferable.
【0033】更にはこの複合比は用途により変化させる
必要がある。即ち、潜在弾性糸のように原糸の段階で破
断伸度が300%以下にする必要がある場合には、糸断
面積比で1/2〜5/1の範囲が好ましい。且つ、この
時の捲取り方法は、紡糸時熱の有り、又は無しの状態下
延伸倍率1.5〜5倍の範囲で延伸するいわゆるスピン
ドロー法が好ましい。最終捲取り速度は、1,000〜
3,500m/分の範囲が好ましい。即ちこの場合は鞘
成分が配向され易くなるために芯成分もそのため仮セッ
トされ糸としての取扱い性が非常に容易になるからであ
る。この芯/鞘成分の比率が1/2未満になると糸質的
に非常に脆いものとなり易く、延伸などの後工程におい
て取扱い性が悪くなるし(例えば破断伸度が約8%程度
で、切断強度も0.05g/d程度と極めて小さい)、
又溶解すべき量が多くなるので好ましくない。逆にこの
比率が6/1を超えると、得られる複合糸の破断伸度が
大きく又弾性的性質を有するようになり取扱い性が不良
となり良くない。得られる複合糸の破断伸度としては、
300%以下好ましくは150%以下、更に100%の
範囲であることが好ましい。又、強度としては、0.5
g/d以上である事が操業性の点からも好ましい。Further, the composite ratio needs to be changed depending on the application. That is, when the elongation at break is required to be 300% or less at the stage of the original yarn, such as a latent elastic yarn, the yarn cross-sectional area ratio is preferably in the range of 1/2 to 5/1. The winding method at this time is preferably a so-called spin draw method in which the film is drawn at a draw ratio of 1.5 to 5 times with or without heat during spinning. Final winding speed is 1,000 ~
A range of 3,500 m / min is preferred. That is, in this case, since the sheath component is easily oriented, the core component is also provisionally set, and the handleability as a yarn is greatly facilitated. If the ratio of the core / sheath component is less than 1/2, the fiber tends to be very brittle, and the handleability is poor in the subsequent steps such as stretching (for example, when the breaking elongation is about 8%, (The strength is extremely small, about 0.05 g / d.)
Further, the amount to be dissolved increases, which is not preferable. Conversely, if this ratio exceeds 6/1, the resulting composite yarn will have a large elongation at break and have elastic properties, resulting in poor handling properties, which is not good. As the breaking elongation of the obtained composite yarn,
It is preferably within a range of 300% or less, preferably 150% or less, and more preferably 100%. The strength is 0.5
g / d or more is also preferable from the viewpoint of operability.
【0034】更にスパンデックスの紡糸時の生産性を高
める高速紡糸で、原糸の段階で伸度が500%以上とす
る場合には上記芯鞘複合比は6/1〜50/1とするこ
とが好ましい。又この際の捲取り速度は、500〜3,
000m/分で紡糸時に熱の無しの状態下延伸倍率(第
1ゴデットローラと捲取りローラ速度比)1.4倍以下
で捲取る方法が好ましい。通常このような速度でスパン
デックスを製造すると、伸度が減少し且つ応力が非常に
高くなるのに比し本発明の場合、鞘成分が水溶性ポリエ
ステルであるため芯成分の配向が邪魔されるためと考え
られる。Further, in the case of high-speed spinning for increasing the productivity during spinning of spandex, when the elongation is at least 500% at the stage of the original yarn, the above-mentioned core-sheath composite ratio is preferably 6/1 to 50/1. preferable. The winding speed at this time is 500-3,
A method of winding at a draw ratio of 1.4 m or less (the speed ratio of the first godet roller to the take-up roller) under the condition of no heat during spinning at 000 m / min is preferable. Usually, when spandex is produced at such a speed, the elongation is reduced and the stress becomes extremely high, whereas in the case of the present invention, since the sheath component is a water-soluble polyester, the orientation of the core component is hindered. it is conceivable that.
【0035】次に、複合形態としては、繊維表面に上記
水溶性ポリエステルが露出した形状であればどのような
ものでも良い。例えば、芯鞘型、図1に示した十字型な
ど公知の形状を種々用いる事が出来る。このうち、同心
円状の複合形態が芯鞘両成分の重心が一致することが紡
糸安定性の面、得られる糸の均一性、糸の取扱い性の面
からも好ましい。一方、十字型なども、乾式紡糸、湿式
紡糸などでは製造困難なポリウレタンの極細糸が簡単に
得られるので好ましい。この場合、1フィラメント当た
り2デニール以下、例えば0.2デニールの糸も容易に
得られる。一方、該複合糸の断面形状は、円形でも又異
形でも構わない。Next, any composite form may be used as long as the water-soluble polyester is exposed on the fiber surface. For example, various known shapes such as a core-sheath type and a cross shape shown in FIG. 1 can be used. Among these, it is preferable that the concentric composite form has the same center of gravity of both components of the core and the sheath in view of spinning stability, uniformity of the obtained yarn, and handleability of the yarn. On the other hand, a cross shape and the like are also preferable because an ultrafine yarn of polyurethane, which is difficult to produce by dry spinning or wet spinning, can be easily obtained. In this case, a yarn of 2 denier or less, for example, 0.2 denier per filament can be easily obtained. On the other hand, the cross-sectional shape of the composite yarn may be circular or irregular.
【0036】本発明糸のうち、架橋したポリウレタンを
芯とした芯鞘型複合糸の製造方法について説明する。熱
可塑性ポリウレタンを溶融押出しする部分にポリイソシ
アネートを添加し、混合する部分、鞘成分の水溶性ポリ
エステルを溶融押し出しする部分、及び公知の芯鞘型複
合紡糸口金を有する紡糸ヘッドとを備えた溶融複合紡糸
装置により実施することが好適である。A method for producing a core-sheath type composite yarn having a crosslinked polyurethane as a core among the yarns of the present invention will be described. A melt composite comprising a part where a polyisocyanate is added and mixed to a part where a thermoplastic polyurethane is melt-extruded, a part where a water-soluble polyester as a sheath component is melt-extruded, and a spinning head having a known core-sheath type composite spinneret. It is preferable to carry out by a spinning device.
【0037】紡糸中にポリイソシアネートを添加するた
めに用いられる装置としては公知の装置を使用すること
ができる。ポリイソシアネートを溶融状態のポリウレタ
ンに添加・混合する部分には、回転部を有する混練装置
を使用する事も可能であるが、より好ましいのは静止型
混練素子を有する混合装置を用いることである。静止型
混練素子を有する混合装置としては公知の物を用いるこ
とができる。静止型混練素子の形状及びエレメント数
は、使用する条件により異なるものであるが、熱可塑性
ポリウレタンとポリイソシアネートとが複合紡糸口金に
流入する前に充分に混合が完了しているように選定する
ことが肝要であり、通常20〜90エレメント設ける。As a device used for adding the polyisocyanate during spinning, a known device can be used. It is also possible to use a kneading device having a rotating section in the portion where the polyisocyanate is added to and mixed with the polyurethane in a molten state, but it is more preferable to use a mixing device having a stationary kneading element. As the mixing device having the stationary kneading element, a known device can be used. The shape and number of static kneading elements vary depending on the conditions used, but should be selected so that the thermoplastic polyurethane and polyisocyanate are sufficiently mixed before flowing into the composite spinneret. Is essential, and usually 20 to 90 elements are provided.
【0038】このようにして混合されたポリマーを芯成
分とし、別の押出機により鞘成分の水溶性ポリエステル
を溶融し、次いで両者を芯鞘複合口金に導いて紡糸し、
上記の捲取り方法により捲取すれば本発明の複合糸が得
られる。The polymer thus mixed was used as a core component, and the water-soluble polyester as a sheath component was melted by another extruder. Then, both were guided to a core-sheath composite die and spun.
The composite yarn of the present invention can be obtained by winding by the above winding method.
【0039】本発明の糸は、連続フィラメントのまま又
は切断してステープル等に加工したり、他の天然繊維や
合成繊維と交編、交織あるいは混合してウェブ状の繊維
構造物に加工する際に何等特別の装置を必要とせず非常
に加工性がよい。特に本発明の複合弾性糸は、ステープ
ルに切断し他の繊維と混紡糸として用いることができ
る。更には、ウレタン弾性糸を用いたトリコットにおい
てもウレタン弾性糸専用の複雑な整経機を用いる必要が
なく、通常の糸例えばナイロンなどに用いられる整経機
で良く、このようなことは従来の弾性糸では極めて困難
な分野であった。さらには又、耐熱性のあるポリウレタ
ン弾性糸で且つ極細(例えば、一フィラメント当たり
0.2デニール)であるような糸は、従来見あたらな
い。When the yarn of the present invention is processed into staples or the like as it is or cut by continuous filaments, or is knitted, interwoven or mixed with other natural fibers or synthetic fibers to be processed into a web-like fiber structure. It does not require any special equipment and has very good workability. In particular, the composite elastic yarn of the present invention can be cut into staples and used as a blend with other fibers. Further, even in a tricot using urethane elastic yarn, there is no need to use a complicated warping machine dedicated to urethane elastic yarn, and a warping machine used for ordinary yarn such as nylon may be used. This was an extremely difficult field for elastic yarn. Furthermore, a heat-resistant polyurethane elastic yarn which is extremely fine (for example, 0.2 denier per filament) has not been hitherto found.
【0040】本発明糸の加工方法としては、本発明糸を
織編物或いは不織布など布帛状にし、次いで精練、染色
工程等で水により鞘成分を溶解する方法を利用すれば良
い。As a method of processing the yarn of the present invention, a method of forming the yarn of the present invention into a fabric such as a woven or knitted fabric or a nonwoven fabric, and then dissolving the sheath component with water in a scouring or dyeing step may be used.
【0041】[0041]
【本発明の効果】以上のように本発明の糸は、 ・水溶性ポリエステルは重合が容易であり且つ熱溶融安
定性も良好である。 ・得られる複合糸の伸度を自由に調整できる。 ・溶融紡糸法であるため工業生産上有利で、例えば3,
000m/minの高速紡糸での捲取りが可能である。 ・溶解後に残るポリウレタン弾性糸は、驚くべきことに
強度が例えば4g/dでしかも伸度が300%以上であ
り、通常のウレタンでは考えられない強いものとなる。 ・従来のポリウレタン弾性糸では考えられない0.2デ
ニール程度の極細糸も容易に得られる。という特徴を有
している。[Effects of the present invention] As described above, the yarn of the present invention is as follows:-The water-soluble polyester is easy to polymerize and has good hot melt stability. -The elongation of the obtained composite yarn can be freely adjusted.・ Because it is a melt spinning method, it is advantageous in industrial production.
Winding by high-speed spinning at 000 m / min is possible. Surprisingly, the polyurethane elastic yarn remaining after dissolution has a strength of, for example, 4 g / d and an elongation of 300% or more, which is a strong one that cannot be considered with ordinary urethane. -Ultrafine yarn of about 0.2 denier, which cannot be considered with conventional polyurethane elastic yarn, can be easily obtained. It has the feature of.
【0042】以上のように優れた特徴を有するため、種
々の用途に用いることができる。例えば、水着に用いれ
ば工程の短縮化、操業性に優れた製品が、又この他ソッ
クス、インナー、パンストなどにも好適に用いることが
できる。特に極細糸の場合、このような用途に用いれば
従来にないソフト性、風合いを持つ製品が得られる。Since it has excellent characteristics as described above, it can be used for various applications. For example, if it is used for swimwear, a product having a shortened process and excellent operability can be suitably used for socks, innerwear, pantyhose and the like. Particularly in the case of ultrafine yarn, a product having unprecedented softness and texture can be obtained if used for such purposes.
【0043】[0043]
【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれにより限定されるものではない。EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
【0044】実施例1 ・熱可塑性ポリウレタン 分子量1,000のポリテトラメチレングリコール35
00重量部とp,p′−ジフェニルメタンジイソシアネ
ート1220重量部、鎖延長剤として1,4ビス(β−
ヒドロキシエトキシ)ベンゼン245重量部を用いて常
法により合成した。このポリマーのジメチルホルムアミ
ド中25℃で測定した濃度1g/100mlでの相対粘度
は2.12であった。Example 1 Thermoplastic polyurethane Polytetramethylene glycol 35 having a molecular weight of 1,000
00 parts by weight, 1220 parts by weight of p, p'-diphenylmethane diisocyanate, and 1,4 bis (β-
It was synthesized by a conventional method using 245 parts by weight of (hydroxyethoxy) benzene. The relative viscosity of this polymer at a concentration of 1 g / 100 ml measured in dimethylformamide at 25 ° C. was 2.12.
【0045】・ポリイソシアネート 分子量850のポリテトラメチレングリコール850重
量部、p,p′−ジフェニルメタンジイソシアネート5
00重量部とを反応させ粘稠な化合物を得た。この化合
物のNCO重量%は6.2重量%であった。Polyisocyanate 850 parts by weight of polytetramethylene glycol having a molecular weight of 850, p, p'-diphenylmethane diisocyanate 5
By reacting with 100 parts by weight, a viscous compound was obtained. The NCO wt% of this compound was 6.2 wt%.
【0046】・水溶性ポリエステル共重合体 テレフタル酸ジメチル38.74重量部、イソフタル酸
ジメチル31.95重量部、5−スルホイソフタル酸ジ
メチルナトリウム塩10.34重量部、エチレングリコ
ール54.48重量部、酢酸カルシウム一水塩0.07
3重量部、酢酸マンガン四水塩0.024重量部を窒素
気流下において170〜220℃でメタノールを留去し
ながらエステル交換反応を行った後、りん酸トリメチル
0.05重量部、重縮合触媒として三酸化アンチモン
0.04重量部及び1,4−シクロヘキサンジカルボン
酸17.17重量部を加え220〜235℃の反応温度
でほぼ理論量の水を留去しエステル化を行った。その後
更に反応系内を減圧、昇温し最終的に280℃、0.2
mmHgで2時間重縮合を行った。次いで、表1に示す
ような組成比で同様に重合した。Water-soluble polyester copolymer 38.74 parts by weight of dimethyl terephthalate, 31.95 parts by weight of dimethyl isophthalate, 10.34 parts by weight of dimethyl 5-sulfoisophthalate sodium salt, 54.48 parts by weight of ethylene glycol, Calcium acetate monohydrate 0.07
3 parts by weight, a transesterification reaction of 0.024 parts by weight of manganese acetate tetrahydrate under a nitrogen stream at 170 to 220 ° C. while distilling off methanol, and then 0.05 parts by weight of trimethyl phosphate, a polycondensation catalyst 0.04 parts by weight of antimony trioxide and 17.17 parts by weight of 1,4-cyclohexanedicarboxylic acid were added, and almost the theoretical amount of water was distilled off at a reaction temperature of 220 to 235 ° C. to carry out esterification. Thereafter, the pressure inside the reaction system was further reduced and the temperature was raised.
Polycondensation was performed at mmHg for 2 hours. Subsequently, polymerization was carried out in the same manner at a composition ratio shown in Table 1.
【0047】得られたポリマーの評価は以下の方法で行
った。 ガラス転移温度:理学(株)製の熱分析装置(TAS1
00)にて、窒素気流中10℃/minの速度で一度1
80℃まで昇温し、その後−150℃まで冷却後再度昇
温し測定した。 水溶性:ポリエステル共重合体75gに水425gを加
え、95℃で3時間攪拌を行って評価した。The obtained polymer was evaluated by the following method. Glass transition temperature: Thermal analyzer (TAS1) manufactured by Rigaku Corporation
00) at once at a rate of 10 ° C./min in a nitrogen stream.
The temperature was raised to 80 ° C., then cooled to −150 ° C., and the temperature was raised again for measurement. Water solubility: 425 g of water was added to 75 g of the polyester copolymer, and the mixture was stirred at 95 ° C. for 3 hours and evaluated.
【0048】これらのポリマーだけの紡糸を実施した。
ノズル温度230℃、ノズル径0.5mm、捲取り速度
は500m/min、油剤はジメチルシリコン主体の油
剤を付与し、銘柄40デニール1フィラメントの糸を採
取した。この結果を表1に示した。Spinning of these polymers alone was performed.
The nozzle temperature was 230 ° C., the nozzle diameter was 0.5 mm, the winding speed was 500 m / min, the oil agent was a dimethyl silicone-based oil agent, and a brand 40 denier single filament yarn was collected. The results are shown in Table 1.
【0049】[0049]
【表1】 [Table 1]
【0050】表1より、比較例1−1からのポリマーは
乾燥時の取扱い性が不良である上に、これから得られる
糸は膠着が大であったため強伸度は測定しなかった。又
比較例1−2は、5−スルホイソフタル酸ジメチルナト
リウム塩が5モル%未満であり、このポリマーは水に不
溶であった。比較例1−3からの糸は、非常に脆く取扱
い性が不良であった。比較例1−4では、ジオール成分
がジエチレングリコール100%であるので、ガラス転
移温度が室温近くとなった。又、乾燥が非常に困難であ
ったし、取扱い性も不良であったので紡糸は行わなかっ
た。From Table 1, it was found that the polymer from Comparative Example 1-1 had poor handleability during drying, and that the yarn obtained therefrom had a large amount of sticking, so that the elongation was not measured. In Comparative Example 1-2, the content of dimethyl 5-sulfoisophthalic acid sodium salt was less than 5 mol%, and this polymer was insoluble in water. The yarn from Comparative Examples 1-3 was very brittle and poor in handleability. In Comparative Example 1-4, since the diol component was 100% diethylene glycol, the glass transition temperature was close to room temperature. In addition, spinning was not performed because drying was extremely difficult and handling was poor.
【0051】次に、複合糸にした場合の実施例について
述べる。上記熱可塑性ポリウレタンを押出機により溶融
し、この溶融物流れの途中で上記ポリイソシアネートを
15重量%添加した後35エレメントのスタティックミ
キサ(ケニックス社製)によりこれらを充分混練し、他
方実施例1−1の水溶性ポリエステルを別の押出機によ
り溶融し、これらを別々に計量し、同心円状の4ホール
複合口金(ノズル径0.5mm)に導いた。スピンドロ
ー法で捲取機の第1番目のゴデットローラを500m/
分に固定し2番目の延伸用ゴデットローラ(ドローロー
ラ)を第1番目のゴデットローラ速度に対し2〜3倍ま
で変化させ捲取り、繊度40d/2フィラメントの糸を
得た。この他、鞘成分の無い40d/1フィラメントの
ポリウレタン弾性糸を単独紡糸した(比較例1−6)。
以上の紡糸ではジメチルシリコン主体の油剤を用いた。Next, an example in which a composite yarn is used will be described. The thermoplastic polyurethane was melted by an extruder, and the polyisocyanate was added in an amount of 15% by weight in the course of the melt, and then kneaded sufficiently with a 35-element static mixer (manufactured by Kenix). One water-soluble polyester was melted by another extruder, and these were separately weighed and led to a concentric 4-hole composite die (nozzle diameter: 0.5 mm). The first godet roller of the winder is 500 m /
Then, the second godet roller (draw roller) for drawing was changed to 2-3 times the speed of the first godet roller and wound up to obtain a yarn having a fineness of 40d / 2 filament. In addition, a 40 d / 1 filament polyurethane elastic yarn having no sheath component was spun alone (Comparative Example 1-6).
In the above spinning, an oil agent mainly composed of dimethyl silicon was used.
【0052】これらの結果を表2に示した。The results are shown in Table 2.
【0053】[0053]
【表2】 [Table 2]
【0054】この表2より、スピンドロー法で複合比2
/1の場合、温度をかけたり又紡糸時の延伸倍率を上げ
た場合は伸度が減少し強度的にも大きくなることがわか
る。この伸度は通常のナイロン、ポリエステルと同程度
であることがわかる。複合比が15/1の比較例1−5
の場合は伸度的に大きくなり潜在弾性糸としては不十分
であることもわかる。更に実施例の糸は長時間捲取性、
解舒性、たて取り性にもすぐれていた。From Table 2, it is found that the composite ratio 2
In the case of / 1, it is understood that the elongation decreases and the strength increases when the temperature is applied or when the stretching ratio during spinning is increased. It can be seen that this elongation is about the same as ordinary nylon and polyester. Comparative Example 1-5 having a composite ratio of 15/1
In the case of, it is also understood that the elongation becomes large and the latent elastic yarn is insufficient. Furthermore, the yarns of the examples have long winding properties,
It was also excellent in unwinding and set-up.
【0055】実施例1−5の糸を用いて、ナイロントリ
コット製造時の通常の整経機にかけ整経した。更に50
d/12fのナイロンをフロント糸とし整形した本発明
糸をバック糸として編工程にかけた。更に加工工程まで
実施したが問題はなかった。Using the yarn of Example 1-5, the yarn was warped by a normal warping machine used in the production of a nylon tricot. 50 more
The yarn of the present invention shaped as d / 12f nylon as a front yarn was subjected to a knitting process as a back yarn. Further processing was performed, but there was no problem.
【0056】実施例2 次いで、実施例1−5、比較例1−6の糸を1mg/d
の荷重をつけ100℃の熱水下30分間処理し風乾し
た。この時の熱水収縮率(以下熱収と略記)及び熱水処
理後の物性を表3に示した。なお、実施例1−5の糸
は、熱収後には完全に鞘成分が溶解していた。尚、熱収
は次式で求めた。 熱収(%)=(原長−風乾後の長さ)×100/原長Example 2 Next, 1 mg / d of the yarns of Example 1-5 and Comparative Example 1-6 were used.
And treated in hot water of 100 ° C. for 30 minutes and air-dried. Table 3 shows the hot water shrinkage ratio (hereinafter abbreviated as heat collection) and physical properties after the hot water treatment. In addition, the sheath component of the yarn of Example 1-5 was completely dissolved after heat collection. The heat yield was determined by the following equation. Heat yield (%) = (Original length-Length after air drying) x 100 / Original length
【0057】[0057]
【表3】 [Table 3]
【0058】表3から、通常のウレタン弾性糸の強度
1.4g/dに比べ本発明糸の強度が非常に大きい事は
正に驚くべき事である。又、実施例の糸は熱収測定前に
縮んでしまういわゆる自然収縮現象は認められなかっ
た。更に、実施例1−5の糸を150℃で2倍の条件で
延伸処理を施した。この時の熱収は、70%と非常に高
い値を示した。From Table 3, it is quite surprising that the strength of the yarn of the present invention is much higher than the strength of a normal urethane elastic yarn of 1.4 g / d. Also, the so-called spontaneous shrinkage phenomenon in which the yarn of the example shrinks before the heat yield measurement was not observed. Further, the yarn of Example 1-5 was subjected to a stretching treatment at 150 ° C. under twice the conditions. The heat yield at this time showed a very high value of 70%.
【0059】実施例3 実施例1に使用した水溶性ポリエステルと実施例1に述
べた架橋ポリウレタンとを(この際の複合比は1/
2)、図1に示すような十字の型に複合紡糸した。この
時も実施例1と同様の装置でスピンドロー法(延伸倍率
は、2.5倍)により紡糸し、銘柄40d/20fの糸
を得た。この結果を表4に示した。Example 3 The water-soluble polyester used in Example 1 and the crosslinked polyurethane described in Example 1 were mixed (the composite ratio at this time was 1 /
2) Composite spinning into a cross shape as shown in FIG. At this time, the yarn was spun by the spin draw method (drawing ratio: 2.5 times) using the same apparatus as in Example 1 to obtain a yarn of brand name 40d / 20f. The results are shown in Table 4.
【0060】[0060]
【表4】 [Table 4]
【0061】表4より、伸度も小さくナイロンなどの糸
と遜色無い事が分かる。又、本実施例から、1フィラメ
ント当たり1.3デニールの細糸が簡単に得られた。こ
の糸を室温下30%伸長し、次いで190℃の熱風乾燥
機中で1分間熱処理した。その後室温に戻し糸を緩和さ
せ、次に示す式による回復性を計算した。 回復性(%)=(1.3×原長−セットされた長さ)×
100/(1.3×原糸−原長) この結果、糸は溶融切断することもなく、又回復性も2
3%となり耐熱性も充分有る事が分かる。この糸は、衣
料用途のみならず医療用例えば人工血管などにも有用で
あった。From Table 4, it can be seen that the elongation is small and not inferior to yarn such as nylon. Also, from this example, a 1.3 denier thin yarn per filament was easily obtained. The yarn was stretched 30% at room temperature, and then heat-treated in a 190 ° C. hot air dryer for 1 minute. Thereafter, the yarn was returned to room temperature and the yarn was relaxed, and the recoverability was calculated by the following equation. Recoverability (%) = (1.3 × original length−set length) ×
100 / (1.3 × original yarn-original length) As a result, the yarn is not melt-cut and the recovery is 2
It turned out to be 3%, indicating that there is sufficient heat resistance. This yarn was useful not only for clothing but also for medical purposes such as artificial blood vessels.
【0062】実施例4 実施例1〜3において、芯/鞘の複合比を8/1に変
え、ポリウレタン側を芯に、水溶性ポリエステル側を鞘
に同心円上に配置し通常の捲取機で室温下延伸倍率1.
05と一定にし捲取り速度を変化させた他は同様に紡糸
した。比較のためポリイソシアネートを入れたポリウレ
タン単独糸を、同様に捲き取った。銘柄は、40d/1
フィラメントとした。この結果を表5に示した。Example 4 In Examples 1 to 3, the composite ratio of the core / sheath was changed to 8/1, and the polyurethane side was arranged concentrically on the core and the water-soluble polyester side was arranged concentrically on the sheath. Stretching ratio at room temperature 1.
The spinning was performed in the same manner except that the winding speed was changed to a constant value of 05. For comparison, a polyurethane single yarn containing a polyisocyanate was similarly wound up. Brand is 40d / 1
It was a filament. The results are shown in Table 5.
【0063】[0063]
【表5】 [Table 5]
【0064】この表より、紡糸速度を上げて行くと強度
が増し、伸度が減少するが単独糸の比較例4−2の糸と
比べると、紡糸速度3,000m/分のような高速度の
糸でも驚くべきことに伸度、熱収の値が各々大きく、低
くなっており非常に柔らかい糸であることが判る。又、
単に単独糸で紡糸速度を上げた場合(比較例4−3)に
は、非常に固くなる事がわかる。一方、複合比が1/6
の場合は強度が0.06g/dと極端に低く糸切れを起
こすため延伸工程に回すことは困難であった。As can be seen from the table, as the spinning speed increases, the strength increases and the elongation decreases. However, as compared with the single yarn of Comparative Example 4-2, a high spinning speed of 3,000 m / min is obtained. Surprisingly, the elongation and heat yield of each of the yarns are large and low, indicating that the yarn is very soft. or,
It can be seen that when the spinning speed is simply increased with a single yarn (Comparative Example 4-3), the yarn becomes very hard. On the other hand, the composite ratio is 1/6
In case (1), the strength was extremely low at 0.06 g / d, and thread breakage occurred.
【図1】本発明に好適な複合繊維の横断面形状の例を示
す。FIG. 1 shows an example of a cross-sectional shape of a conjugate fiber suitable for the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森重 吉明 山口県山口市大字名田島1418−3 審査官 松縄 正登 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshiaki Morishige 1418-3 Natajima, Yamaguchi, Yamaguchi Prefecture Examiner Masato Matsunawa
Claims (6)
繊維断面積比(複合比)で1/2〜50/1の範囲で接
合され且つ該水溶性ポリエステルが繊維表面に露出した
複合繊維であり、そして前記水溶性ポリエステルが酸成
分としてスルホン酸塩を有する芳香族ジカルボン酸及び
/又はそのエステル形成誘導体(A成分)を5〜20モ
ル%、該A成分を除く芳香族ジカルボン酸及び/又はそ
のエステル形成誘導体(B成分)を55モル%以上、及
び脂環族ジカルボン酸及び/又はそのエステル形成誘導
体(C成分)と脂肪族ジカルボン酸及び/又はそのエス
テル形成誘導体(D成分)とからなり且つ上記C成分と
D成分とが0モル%≦C+4×D≦40モル%の関係を
満足し、グリコール成分としてはエチレングリコール5
0モル%以上からなることを特徴とする複合弾性糸。1. A composite fiber in which a polyurethane and a water-soluble polyester are bonded in a fiber cross-sectional area ratio (composite ratio) of 1/2 to 50/1 and the water-soluble polyester is exposed on a fiber surface; The water-soluble polyester has an aromatic dicarboxylic acid having a sulfonic acid salt as an acid component and / or an ester-forming derivative thereof (Component A) in an amount of 5 to 20 mol%, and an aromatic dicarboxylic acid excluding the component A and / or an ester thereof. 55% by mole or more of the derivative (component B), and an alicyclic dicarboxylic acid and / or an ester-forming derivative thereof (component C) and an aliphatic dicarboxylic acid and / or an ester-forming derivative thereof (component D); The component and the D component satisfy the relationship of 0 mol% ≦ C + 4 × D ≦ 40 mol%, and the glycol component is ethylene glycol 5
A composite elastic yarn comprising at least 0 mol%.
伸度が300%以下である請求項1記載の複合弾性糸。2. The composite elastic yarn according to claim 1, wherein the elongation at break is 300% or less when the composite ratio is 1/2 to 5/1.
断伸度が500%以上である請求項1記載の複合弾性
糸。3. The composite elastic yarn according to claim 1, wherein the elongation at break is 500% or more when the composite ratio is from 6/1 to 50/1.
度が35℃〜80℃である請求項1記載の複合弾性糸。4. The composite elastic yarn according to claim 1, wherein the water-soluble polyester has a glass transition temperature of 35 ° C. to 80 ° C.
族ジカルボン酸及び/又はそのエステル形成誘導体(A
成分)を5〜20モル%、該A成分を除く芳香族ジカル
ボン酸及び/又はそのエステル形成誘導体(B成分)を
55モル%以上、及び、脂環族ジカルボン酸及び/又は
そのエステル形成誘導体(C成分)と脂肪族ジカルボン
酸及び/又はそのエステル形成誘導体(D成分)とから
なり、且つ、上記C成分とD成分とが0モル%≦C+4
×D≦40モル%の関係を満足し、グリコール成分とし
てはエチレングリコール50モル%以上からなる水溶性
ポリエステルとポリウレタンとを接合し且つ該水溶性ポ
リエステルを繊維表面に露出させそして、ポリウレタン
/水溶性ポリエステルの繊維断面積比(複合比)を1/
2〜5/1の範囲、紡糸速度1,000〜3,500m
/分の速度で且つ紡糸時の延伸倍率1.5〜5倍で熱の
有り又は無しの状態下で捲取ることを特徴とする複合弾
性糸の製造方法。5. An aromatic dicarboxylic acid having a sulfonic acid salt as an acid component and / or an ester-forming derivative thereof (A
Component), 5 to 20 mol% of the aromatic dicarboxylic acid and / or its ester-forming derivative (component B) excluding the component A, 55 mol% or more, and the alicyclic dicarboxylic acid and / or its ester-forming derivative ( C) and an aliphatic dicarboxylic acid and / or an ester-forming derivative thereof (D component), and the C component and the D component are 0 mol% ≦ C + 4.
XD ≦ 40 mol%, a water-soluble polyester composed of 50 mol% or more of ethylene glycol as a glycol component is bonded to polyurethane and the water-soluble polyester is exposed on the fiber surface. The fiber cross-sectional area ratio (composite ratio) of polyester is 1 /
Spinning speed of 1,000 to 3,500 m in the range of 2 to 5/1
A method for producing a composite elastic yarn, comprising winding at a rate of / min and a draw ratio of 1.5 to 5 times during spinning with or without heat.
族ジカルボン酸及び/又はそのエステル形成誘導体(A
成分)を5〜20モル%、該A成分を除く芳香族ジカル
ボン酸及び/又はそのエステル形成誘導体(B成分)を
55モル%以上、及び、脂環族ジカルボン酸及び/又は
そのエステル形成誘導体(C成分)と脂肪族ジカルボン
酸及び/又はそのエステル形成誘導体(D成分)とから
なり、且つ、上記C成分とD成分とが0モル%≦C+4
×D≦40モル%の関係を満足し、グリコール成分とし
てはエチレングリコール50モル%以上からなる水溶性
ポリエステルとポリウレタンとを接合し且つ該水溶性ポ
リエステルを繊維表面に露出させそして、ポリウレタン
/水溶性ポリエステルの繊維断面積比(複合比)を6/
1〜50/1の範囲、紡糸速度500〜3,000m/
分で熱の無しの状態下延伸倍率1.4以下で捲取ること
を特徴とする複合弾性糸の製造方法。6. An aromatic dicarboxylic acid having a sulfonic acid salt as an acid component and / or an ester-forming derivative thereof (A
Component), 5 to 20 mol% of the aromatic dicarboxylic acid and / or its ester-forming derivative (component B) excluding the component A, 55 mol% or more, and the alicyclic dicarboxylic acid and / or its ester-forming derivative ( C) and an aliphatic dicarboxylic acid and / or an ester-forming derivative thereof (D component), and the C component and the D component are 0 mol% ≦ C + 4.
XD ≦ 40 mol%, a water-soluble polyester composed of 50 mol% or more of ethylene glycol as a glycol component is bonded to polyurethane and the water-soluble polyester is exposed on the fiber surface. 6 / polyester fiber cross-sectional area ratio (composite ratio)
1-50 / 1, spinning speed 500-3,000m /
A method for producing a composite elastic yarn, comprising winding at a draw ratio of 1.4 or less under heat without heat in a minute.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP36046391 | 1991-12-27 | ||
| JP3-360463 | 1991-12-27 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH05272016A JPH05272016A (en) | 1993-10-19 |
| JP2628502B2 true JP2628502B2 (en) | 1997-07-09 |
Family
ID=18469518
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP35844092A Expired - Fee Related JP2628502B2 (en) | 1991-12-27 | 1992-12-24 | Composite elastic yarn and method for producing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2628502B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019078170A1 (en) * | 2017-10-18 | 2019-04-25 | 旭化成株式会社 | Polyurethane elastic fiber, yarn package of same, and product including same |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104136670B (en) * | 2012-01-31 | 2016-06-01 | 可乐丽股份有限公司 | The manufacture method of conjugated fibre, polyurethane elastomer cloth and silk and polyurethane elastomer cloth and silk |
| CN112410897B (en) * | 2020-11-23 | 2021-10-29 | 华峰化学股份有限公司 | Method for controlling cross-sectional shape of spandex fiber |
-
1992
- 1992-12-24 JP JP35844092A patent/JP2628502B2/en not_active Expired - Fee Related
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019078170A1 (en) * | 2017-10-18 | 2019-04-25 | 旭化成株式会社 | Polyurethane elastic fiber, yarn package of same, and product including same |
| US11781249B2 (en) | 2017-10-18 | 2023-10-10 | Asahi Kasei Kabushiki Kaisha | Polyurethane elastic fiber, yarn package of same, and product including same |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH05272016A (en) | 1993-10-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO1992020844A1 (en) | Potentially elastic conjugate fiber, production thereof, and production of fibrous structure with elasticity in expansion and contraction | |
| EP0569145B1 (en) | Polyester fibers | |
| US5349028A (en) | Polyester fibers | |
| KR0131321B1 (en) | Polyurethane elastic fiber | |
| JP2009091445A (en) | Polyether ester and fiber thereof, finished yarn and woven or knitted goods | |
| JP2653030B2 (en) | Composite yarn | |
| JP2628502B2 (en) | Composite elastic yarn and method for producing the same | |
| JP3140082B2 (en) | New elastic fabric | |
| JPH0457918A (en) | Conjugate yarn | |
| US6270896B1 (en) | Elastic fiber | |
| JP3073774B2 (en) | Polyurethane elastic yarn and method for producing the same | |
| JPH04327209A (en) | Water-soluble fiber | |
| JPH0770278A (en) | Nonsticky, highly elastic mono- or multifilament polyester/polyurethane elastomer thread, its production by melt spinning, and its use | |
| JP2556649B2 (en) | Latent elastic conjugate fiber, method for producing the same, and method for producing a fiber structure having stretch elasticity | |
| JP3694103B2 (en) | Naturally degradable composite fiber and its application products | |
| JP2009299207A (en) | Multi-layered fabric and fiber product | |
| JP3694101B2 (en) | Naturally degradable composite fiber and its application products | |
| JP2988797B2 (en) | Composite yarn | |
| JP2655381B2 (en) | Latent elastic yarn and method for producing the same | |
| JP3694102B2 (en) | Naturally degradable composite fiber and its application products | |
| JPH1129629A (en) | Copolyester and elastic fiber composed thereof | |
| JPH0559616A (en) | Conjugate fiber | |
| JP7237326B2 (en) | Elastic fiber and its manufacturing method | |
| KR930011340B1 (en) | Process for the preparation of elastic fiber | |
| US20220218098A1 (en) | Polyester-Based Monofilament for Toothbrush |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |