[go: up one dir, main page]

JP2630602B2 - Manufacturing method of high density carbon material - Google Patents

Manufacturing method of high density carbon material

Info

Publication number
JP2630602B2
JP2630602B2 JP62282224A JP28222487A JP2630602B2 JP 2630602 B2 JP2630602 B2 JP 2630602B2 JP 62282224 A JP62282224 A JP 62282224A JP 28222487 A JP28222487 A JP 28222487A JP 2630602 B2 JP2630602 B2 JP 2630602B2
Authority
JP
Japan
Prior art keywords
temperature
hot isostatic
isostatic pressing
pressure
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62282224A
Other languages
Japanese (ja)
Other versions
JPH01126269A (en
Inventor
正巳 宮沢
純一 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IIGURU KOGYO KK
Original Assignee
IIGURU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IIGURU KOGYO KK filed Critical IIGURU KOGYO KK
Priority to JP62282224A priority Critical patent/JP2630602B2/en
Publication of JPH01126269A publication Critical patent/JPH01126269A/en
Application granted granted Critical
Publication of JP2630602B2 publication Critical patent/JP2630602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度炭素材料を製造する方法に関するも
のである。
The present invention relates to a method for producing a high-density carbon material.

〔従来の技術〕[Conventional technology]

非酸化物系セラミックスの一つである炭素材料は、メ
カニカルシールや電気接点のための摺動材料、坩堝、化
学反応容器、原子炉用減速材など、多くの分野で利用さ
れている。
Carbon materials, one of non-oxide ceramics, are used in many fields such as sliding materials for mechanical seals and electrical contacts, crucibles, chemical reaction vessels, and moderators for nuclear reactors.

炭素材料は、その用途に応じて、種々の方法で作られ
るが、最も普通には、コークス、カーボンブラック、黒
鉛等の微粉末にタールやピッチなど炭化性のバインダー
を加えて成形し、さらに窒素等の非酸化性気体中約1000
〜1500℃で焼成してバインダーを炭化させる方法が採用
される。なお、この製造法による製品をさらに約2500〜
3000℃に加熱すると、全体が黒鉛質のものになる。この
ような一般的な製造法による炭素材料、特に焼成温度の
低い非黒鉛質のものは、微細な気孔を有し、気体をかな
り自由に透過させ、水や油のような液体もよく吸収す
る。
Carbon materials are produced by various methods depending on the application.However, most commonly, carbonaceous binders such as tar and pitch are added to fine powder of coke, carbon black, graphite, etc. About 1000 in non-oxidizing gas such as
A method of firing at ~ 1500C to carbonize the binder is employed. In addition, the product by this manufacturing method is about 2500 ~
When heated to 3000 ° C, it becomes entirely graphite. Carbon materials made by such general manufacturing methods, especially non-graphitic materials with low firing temperatures, have fine pores, allow gas to permeate freely, and also absorb liquids such as water and oil well. .

上述のような多孔質炭素材料の性質は、それを有利に
利用し得る場合もあるが、欠点となる場合も多い。たと
えば、メカニカルシールなど液体中で使用する密封端面
材では被シール液体が気孔中に侵入して甚だしい場合に
は液漏れを起こし、軽度の侵入の場合でも、液体の種類
によっては腐食や膨潤を起こす。また、多孔質である場
合、同一ブロック内でも密度のバラツキを生じ易く、不
均一熱膨張による変形を起こし易いから、精密機械部品
には使用しにくい。
Although the properties of the porous carbon material as described above can be advantageously used in some cases, it is often a disadvantage. For example, in the case of a sealed end face material used in liquids such as mechanical seals, the liquid to be sealed may enter the pores and cause leakage if severe, and even in the case of slight penetration, corrosion or swelling may occur depending on the type of liquid. . In the case of being porous, it is difficult to use it for precision mechanical parts because the density tends to vary even within the same block, and the deformation tends to occur due to uneven thermal expansion.

多孔質炭素材料の微細気孔を消失させ、気体および液
体を透過させにくいものとする方法には、従来、熱硬化
性合成樹脂等の炭化性有機物を含浸させたのち再焼成し
て有機物を炭化させる方法があった。しかしながら、こ
の方法は、含浸有機物から生成した炭化物がまた微細気
孔を有するものであり、加えて、大きな材料の場合はそ
の芯部まで有機物を含浸させることが困難であるから、
処理効果には限界があった。
Conventionally, the method of eliminating the fine pores of the porous carbon material and making it difficult for gas and liquid to pass therethrough is conventionally carried out by impregnating a carbonizable organic material such as a thermosetting synthetic resin and then re-baking to carbonize the organic material. There was a way. However, in this method, the carbide generated from the impregnated organic substance also has fine pores, and in addition, in the case of a large material, it is difficult to impregnate the organic substance up to the core.
There was a limit to the treatment effect.

したがって、特に高度の気体・液体遮断性能を有する
高密度品を必要とする場合は、金属を含浸させたり、樹
脂含浸と焼成を何度も繰り返すなどの方法を採用するし
かなかった。
Therefore, especially when a high-density product having a high gas / liquid blocking performance is required, a method of impregnating with a metal or repeating resin impregnation and firing many times has been used.

なお、炭素材料以外のセラミックスについては、製造
の最終工程において熱間等方圧加圧法による加工焼結処
理して高密度化する方法が知られている(特開昭57−18
8468,特開昭59−41954等)。しかしながら、多孔質材料
を直接加圧して圧縮することはできないから、そのほと
んどは密閉金属容器もしくはそれに準ずるガラス質被覆
を用い、それらを介して間接的にセラミックス材料を圧
縮するものであり、予備成形体の直接加圧は、熱間等方
圧加圧処理によらなくても極めて高密度の(理論密度の
90%以上の)成形体が得られる窒化ケイ素焼結体にしか
行われていない。
As for ceramics other than carbon materials, there is known a method of processing and sintering by hot isostatic pressing in the final step of production to increase the density (Japanese Patent Laid-Open No. 57-18 / 1982).
8468, JP-A-59-41954, etc.). However, since porous materials cannot be directly pressed and compressed, most of them use a closed metal container or a vitreous coating equivalent to it and compress the ceramic material indirectly through them. The direct pressurization of the body is extremely dense (theoretical density) without hot isostatic pressing.
This process is only performed on silicon nitride sintered bodies from which compacts (over 90%) can be obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

そこで本発明は、上記従来法よりも有効な方法により
多孔質炭素材料を高密度品に改質し、それにより従来よ
りも容易に高密度炭素材料を製造する方法を提供するこ
とを目的とするものである。
Accordingly, an object of the present invention is to provide a method for modifying a porous carbon material into a high-density product by a method more effective than the above-described conventional method, thereby providing a method for producing a high-density carbon material more easily than before. Things.

〔問題点を解決するための手段〕[Means for solving the problem]

上記目的を達成することに成功した本発明は2発明か
らなり、その第一は、微細気孔を内部に有する炭素質成
形体を任意の製造法で製造し、次いで該成形体を、高温
に加熱するとともに高圧非酸化性気体中に置く熱間等方
圧加圧法により加圧処理することを特徴とする高密度炭
素材料の製造法である。
The present invention, which succeeded in achieving the above object, comprises two inventions. First, a carbonaceous molded body having fine pores therein is produced by an arbitrary production method, and then the molded body is heated to a high temperature. And a pressure treatment by a hot isostatic pressing method in a high-pressure non-oxidizing gas.

また本発明の第二は、微細気孔を内部に有する炭素質
成形体を任意の製造法で製造し、次いで該成形体に炭化
性有機物を含浸させ、非酸化性気体中で焼成して上記含
浸させた炭化性有機物を炭化させ、その後、高温に加熱
するとともに高圧非酸化性気体中に置く熱間等方圧加圧
法により加圧処理することを特徴とする高密度炭素材料
の製造法である。
Further, the second aspect of the present invention is to produce a carbonaceous molded article having fine pores therein by an optional production method, then impregnating the molded article with a carbonizable organic substance, and calcining the impregnated carbon dioxide in a non-oxidizing gas. This is a method for producing a high-density carbon material, which comprises carbonizing the carbonized organic material, and then subjecting the carbonized organic material to a high-temperature and high-pressure non-oxidizing gas treatment by a hot isostatic pressing method. .

以下、本発明の製造法についてさらに詳しく説明す
る。
Hereinafter, the production method of the present invention will be described in more detail.

本発明の製造法では、まず前述の常法により、または
他の任意の製造法により、微細気孔を有する(すなわ
ち、焼結工程で消去しきれない微細気孔が残っている)
炭素材料を製造する。すなわち、コークス、カーボンブ
ラック、黒鉛等の炭素質微粉末と炭化性バインダーとの
混合物を成形し、さらに窒素等の非酸化性気体中約1000
〜1500℃で焼成してバインダーを炭化させる。この工程
では特に高密度化を意図する必要はなく、焼成後の成形
体は、全体にわたって微細な気孔が分布する見掛け比重
1.7〜1.8程度の低密度のものであってもさしつかえな
い。第一発明の製造法では、これをそのまま熱間等方圧
加圧法による加圧処理に付する。第二発明の方法では、
加圧処理に先立ち、炭化性有機物含浸処理と焼成を施
す。炭化性有機物としては、フェノール樹脂、フラン樹
脂、エポキシ樹脂等の熱可塑性合成樹脂、タール、ピッ
チなどを用いることができる。含浸処理は、たとえば真
空含浸装置を用いて真空中で脱気してから含浸液に浸漬
する方法により行う。前述のように、被処理物が大型の
場合は芯部までの含浸は至難であるが、本発明の製造法
における含浸は、芯部に気孔が残っても差し支えない。
含浸処理済み成形体は、非酸化性雰囲気で800℃以上に
焼成して炭化性有機物を炭化させる。
In the production method of the present invention, first, micropores are formed by the above-described ordinary method or any other production method (that is, micropores which cannot be completely eliminated in the sintering step remain).
Manufacture carbon materials. That is, a mixture of carbonaceous fine powder such as coke, carbon black, and graphite and a carbonizable binder is formed, and further mixed with a non-oxidizing gas such as nitrogen for about 1000.
Baking at ~ 1500C to carbonize the binder. In this step, it is not necessary to particularly aim at densification, and the fired compact has an apparent specific gravity in which fine pores are distributed throughout.
Even a low density of 1.7 to 1.8 is acceptable. In the production method of the first invention, this is subjected to a pressing treatment by a hot isostatic pressing method as it is. In the method of the second invention,
Prior to the pressure treatment, a carbonizing organic substance impregnation treatment and firing are performed. As the carbonizable organic material, a phenol resin, a furan resin, a thermoplastic synthetic resin such as an epoxy resin, tar, pitch, and the like can be used. The impregnation treatment is performed by, for example, deaeration in a vacuum using a vacuum impregnation apparatus and then immersion in an impregnation liquid. As described above, when the object to be treated is large, impregnation up to the core is extremely difficult. However, in the impregnation in the production method of the present invention, pores may remain in the core.
The impregnated molded body is fired at 800 ° C. or higher in a non-oxidizing atmosphere to carbonize the carbonizable organic matter.

炭化性有機物を含浸焼成する予備的処理の有無にかか
わらず、本発明の製造法における熱間等方圧加圧処理
は、金型やガス不透過性被覆を用いない直接加圧法によ
り行う。処理温度は、約1000〜1500℃が適当である。圧
力に関しては、約500kg/cm2から効果があることが確認
されているが、約1000kg/cm2以上の高圧力のほうが、顕
著な処理効果が達成される。加熱、加圧の方法は、加熱
を先に行い少し遅れて昇圧する方法、その逆の方法、あ
るいは加熱と加圧を同時に行う方法などを、任意に採用
できる。
Regardless of the presence or absence of the preliminary treatment of impregnating and firing the carbonizable organic material, the hot isostatic pressing treatment in the production method of the present invention is performed by a direct pressing method without using a mold or a gas impermeable coating. The processing temperature is suitably about 1000-1500 ° C. It has been confirmed that the pressure is effective from about 500 kg / cm 2, but a remarkable treatment effect is achieved at a high pressure of about 1000 kg / cm 2 or more. As a method of heating and pressurizing, a method of performing heating first and increasing the pressure with a slight delay, a reverse method, or a method of simultaneously performing heating and pressurizing can be arbitrarily adopted.

炭化性有機物の含浸・焼成を施したものであっても、
炭素材料は多数の微細連通気孔を有し、したがって、常
識的には、これに直接高圧気体を作用させても成形体が
圧縮されることはないと考えられる。しかしながら、炭
素材料に特有の現象として、炭化性有機物含浸焼成処理
の有無にかかわらず(つまり、かなり多くの気孔を残し
ている見掛け比重1.7〜1.8程度のものでも)、その理由
はさだかでないが、熱間等方圧加圧法を受けると顕著な
気孔減少を示し、密度が上昇する。このような意外な結
果を生ずることは、従来まったく知られていなかったこ
とである。
Even those that have been impregnated and fired with carbonizable organic matter,
The carbon material has a large number of fine interconnected pores. Therefore, it is generally considered that the compact is not compressed even when the high-pressure gas is directly applied to the pores. However, as a phenomenon peculiar to the carbon material, regardless of the presence or absence of the carbonizing organic material impregnated calcination treatment (that is, even with an apparent specific gravity of about 1.7 to 1.8 leaving a large number of pores), the reason is not obvious. When subjected to the hot isostatic pressing method, a significant decrease in porosity is exhibited, and the density increases. Producing such a surprising result has never been known before.

〔発明の効果〕〔The invention's effect〕

以上のような熱間等方圧加圧処理を行う本発明の製造
法により得られる高密度炭素材料は、表層部も芯部も気
孔がほとんど消失した緻密な組織のものである。大きな
材料を処理した場合における芯部は微量の気孔を残して
いるが、それは極めて微細な独立気孔であるから、芯部
だけに着目しても、処理前の材料とは大いに異なったも
のである。
The high-density carbon material obtained by the production method of the present invention in which the above-described hot isostatic pressing is performed has a dense structure in which the surface layer and the core have almost no pores. When a large material is processed, the core part has a small amount of pores, but since it is extremely fine independent pores, even if focusing only on the core part, it is very different from the material before processing .

本発明の製造法の特に有利な点は、炭素質原料の選択
および原料成形後の最初の焼成において高密度化を意識
する必要がなく、したがって、高価な特殊原料を必要と
せず、また、強度が優れた成形体が得られる比較的低温
の(すなわち、約1200〜1300℃の)焼成条件を採用でき
ることである。
A particular advantage of the production method of the present invention is that there is no need to be aware of densification in the selection of carbonaceous raw materials and the first firing after raw material molding, and therefore, there is no need for expensive special raw materials, and strength Sintering conditions at a relatively low temperature (that is, about 1200 to 1300 ° C.) that can obtain a molded article having excellent heat resistance.

また、熱間等方圧加圧処理も、密閉金属容器やガラス
質被覆を用いない直接ガス加圧であるから、複雑な形状
の成形体にも処理が容易で、処理コストも安くて済む。
Further, the hot isostatic pressing is also a direct gas pressurization without using a closed metal container or a vitreous coating, so that it is possible to easily process a molded article having a complicated shape and to reduce the processing cost.

したがって本発明は、通常の低密度炭素材料を経由し
て高物性高密度炭素材料を容易に製造することを可能に
するとともに炭素材料の優れた特性を従来よりも広い分
野で活用することを可能にする、極めて有意義なもので
ある。
Therefore, the present invention makes it possible to easily produce high-density carbon materials with high physical properties via ordinary low-density carbon materials, and to utilize the excellent properties of carbon materials in a wider field than before. It is extremely significant.

〔実施例〕〔Example〕

以下、実施例を示して本発明を説明する。 Hereinafter, the present invention will be described with reference to examples.

実施例1 天然黒鉛(平均粒度2μ) 20重量% ニードルコークス(平均粒度1μ) 30 〃 フェノール樹脂 10 〃 変質コールタールピッチ 40 〃 上記配合の原料をボールミルで混合し、さらにニーダ
ーで混練処理を行い、冷却後粉砕して成形粉とした。こ
れを常法により成形し、1200℃で焼成した。得られた成
形体を切削加工し、その表面のいわゆる黒皮部分を除い
て、300φ×220φ×50mmの環状供試成形体を作成した。
Example 1 Natural graphite (average particle size: 2μ) 20% by weight Needle coke (average particle size: 1μ) 30 〃 phenolic resin 10 〃 altered coal tar pitch 40 原料 The raw materials having the above composition were mixed by a ball mill, and further kneaded with a kneader. After cooling, it was pulverized to obtain a molding powder. This was molded by a conventional method and fired at 1200 ° C. The obtained molded body was cut to remove a so-called black scale portion on its surface, thereby producing a 300 mm x 220 mm x 50 mm annular test molded body.

この成形体にフラン樹脂含浸処理を施し、800℃で焼
成した。
This molded body was subjected to a furan resin impregnation treatment and fired at 800 ° C.

次いで、焼成済み成形体をそのまま熱間等方圧加圧装
置の圧力容器に入れ、アルゴンによる加圧(最高圧力10
00kg f/cm2)と1350℃の加熱処理を1時間施した。
Next, the fired molded body is directly placed in a pressure vessel of a hot isostatic pressing apparatus, and pressurized with argon (maximum pressure of 10).
00kg f / cm 2 ) and a heat treatment at 1350 ° C. for 1 hour.

実施例2 実施例1の場合と同様にして作られた供試成形体にコ
ールタールピッチ含浸処理と1200℃焼成処理を施した
後、実施例1の場合と同様の熱間等方圧加圧処理を施し
た。
Example 2 A test compact formed in the same manner as in Example 1 was subjected to a coal tar pitch impregnation treatment and a calcination treatment at 1200 ° C., and then subjected to hot isostatic pressing as in Example 1. Processing was performed.

比較例1 実施例1の場合と同様にして作られた供試成形体に13
50℃1時間の再焼成処理を施した。
COMPARATIVE EXAMPLE 1 A test compact produced in the same manner as in Example 1
A refiring treatment was performed at 50 ° C. for 1 hour.

以上の各例について、最終焼成工程における寸法収縮
率および製品の特性値をまとめて表1に示す。なお、特
性値のうち吸水率は、断面が中心を通るように製品を10
mm厚に切断しそれから20mm×8mm×5mmの試験片10個を作
って測定したものであって、水中に入れた試験片を密閉
容器中5kg/cm2の窒素で2時間加圧したときの重量増加
から求めた値である。
Table 1 summarizes the dimensional shrinkage ratio and the characteristic values of the products in the final firing step for each of the above examples. Among the characteristic values, the water absorption is determined by measuring the product so that the cross section passes through the center.
cut into mm thickness be those measured then 20 mm × make a test piece of 10 8 mm × 5 mm, when the pressure 2 hours pressurized test pieces were placed in water at the nitrogen of the closed vessel 5 kg / cm 2 This is a value obtained from weight increase.

表 1 比較例1 実施例1 実施例2 収縮率(%) 0.5 1.2 1.1 見掛比重 1.79 1.88 1.89 ショア硬度 89 93 93 吸水率 3.4 0.54 0.81 また、実施例1および比較例1の各例による製品の切
断面について、気孔分布状態を着色検査液を用いて調べ
た。その結果を図面に示す(気孔存在部が着色されてい
る)。
Table 1 Comparative Example 1 Example 1 Example 2 Shrinkage (%) 0.5 1.2 1.1 Apparent specific gravity 1.79 1.88 1.89 Shore hardness 89 93 93 Water absorption 3.4 0.54 0.81 Further, the products of Examples 1 and Comparative Example 1 About the cut surface, the pore distribution state was examined using a coloring test solution. The result is shown in the drawing (the pore existing portion is colored).

実施例3 人造黒鉛60重量%および変質コールタールピッチ40重
量%の炭素原料をボールミルで混合し、さらにニーダー
で混練処理を行い、冷却後粉砕して成形粉とした。これ
を、常温で、1.5ton/cm2の圧力で成形し、1200℃で焼成
した。得られた成形体を切削加工し、300φ×220φ×50
mmの環状供試成形体を作成した。
Example 3 A carbon material of 60% by weight of artificial graphite and 40% by weight of altered coal tar pitch was mixed by a ball mill, kneaded with a kneader, cooled and pulverized to obtain a molding powder. This was molded at normal temperature under a pressure of 1.5 ton / cm 2 and fired at 1200 ° C. The obtained molded body is cut and processed to 300φ × 220φ × 50
An annular test molded body of mm was prepared.

次いでこれをそのまま熱間等方圧加圧装置の圧力容器
に入れ、アルゴンによる加圧(最高圧力1000kg f/cm2
と1350℃の加熱処理を1時間施した。
Next, this is directly put into a pressure vessel of a hot isostatic pressurizing apparatus, and pressurized with argon (maximum pressure 1000 kg f / cm 2 )
And 1350 ° C. for 1 hour.

比較例2 実施例3の場合と同様にして作られた供試成形体に13
50℃1時間の再焼成処理を施した。
COMPARATIVE EXAMPLE 2 A test molded body made in the same manner as in Example 3
A refiring treatment was performed at 50 ° C. for 1 hour.

上記実施例3および比較例2について、最終焼成工程
における寸法縮小率および製品の特性値をまとめて表2
に示す。
Table 2 summarizes the dimensional reduction ratios and the characteristic values of the products in the final firing step for Example 3 and Comparative Example 2.
Shown in

表 2 比較例2 実施例3 収縮率(%) 0.0 0.9 見掛比重 1.70 1.75 ショア硬度 55 62 吸水率(%) 15 12Table 2 Comparative Example 2 Example 3 Shrinkage (%) 0.0 0.9 Apparent specific gravity 1.70 1.75 Shore hardness 55 62 Water absorption (%) 15 12

【図面の簡単な説明】[Brief description of the drawings]

図面は実施例1および比較例1による製品の芯部に残る
気孔の量を示す切断面着色試料の写真である。 第1図:実施例1 第2図:比較例1
The drawing is a photograph of a cut surface colored sample showing the amount of pores remaining in the core of the products according to Example 1 and Comparative Example 1. FIG. 1: Example 1 FIG. 2: Comparative Example 1

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】微細気孔を内部に有する炭素質成形体を任
意の製造法で製造し、次いで該成形体を、高温に加熱す
るとともに高圧非酸化性気体中に置く熱間等方圧加圧法
により加圧処理することを特徴とする高密度炭素材料の
製造法。
1. A hot isostatic pressing method in which a carbonaceous molded body having fine pores therein is produced by an arbitrary production method, and then the molded body is heated to a high temperature and placed in a high-pressure non-oxidizing gas. A method for producing a high-density carbon material, comprising:
【請求項2】微細気孔を内部に有する炭素質成形体を、
焼成温度1500℃以下の焼成により製造する特許請求の範
囲第1項記載の製造法。
2. A carbonaceous molded article having fine pores therein,
2. The production method according to claim 1, wherein the production is performed by firing at a firing temperature of 1500 ° C. or lower.
【請求項3】熱間等方圧加圧法による加圧処理を温度10
00〜1500℃、気圧500kg f/cm2以上で行う特許請求の範
囲第1項記載の製造法。
3. A pressure treatment by a hot isostatic pressing method at a temperature of 10
2. The method according to claim 1, wherein the method is carried out at a temperature of from 00 to 1500 [deg.] C. and an atmospheric pressure of 500 kg f / cm < 2 > or more.
【請求項4】微細気孔を内部に有する炭素質成形体を任
意の製造法で製造し、次いで該成形体に炭化性有機物を
含浸させ、非酸化性気体中で焼成して上記含浸させた炭
化性有機物を炭化させ、その後、高温に加熱するととも
に高圧非酸化性気体中に置く熱間等方圧加圧法により加
圧処理することを特徴とする高密度炭素材料の製造法。
4. A carbonaceous molded article having fine pores therein is produced by an arbitrary production method, and then the molded article is impregnated with a carbonizable organic substance, and calcined in a non-oxidizing gas to obtain the carbonized article. A method for producing a high-density carbon material, comprising: carbonizing a volatile organic substance; thereafter, heating the mixture to a high temperature and subjecting it to a pressure treatment by a hot isostatic pressing method in a high-pressure non-oxidizing gas.
【請求項5】微細気孔を内部に有する炭素質成形体を、
焼成温度1500℃以下の焼成により製造する特許請求の範
囲第1項記載の製造法。
5. A carbonaceous molded article having fine pores therein,
2. The production method according to claim 1, wherein the production is performed by firing at a firing temperature of 1500 ° C. or lower.
【請求項6】熱間等方圧加圧法による加圧処理を温度10
00〜1500℃、気圧500kg f/cm2以上で行う特許請求の範
囲第1項記載の製造法。
6. A pressure treatment by a hot isostatic pressing method at a temperature of 10
2. The method according to claim 1, wherein the method is carried out at a temperature of from 00 to 1500 [deg.] C. and an atmospheric pressure of 500 kg f / cm < 2 > or more.
JP62282224A 1987-11-10 1987-11-10 Manufacturing method of high density carbon material Expired - Fee Related JP2630602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62282224A JP2630602B2 (en) 1987-11-10 1987-11-10 Manufacturing method of high density carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282224A JP2630602B2 (en) 1987-11-10 1987-11-10 Manufacturing method of high density carbon material

Publications (2)

Publication Number Publication Date
JPH01126269A JPH01126269A (en) 1989-05-18
JP2630602B2 true JP2630602B2 (en) 1997-07-16

Family

ID=17649672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282224A Expired - Fee Related JP2630602B2 (en) 1987-11-10 1987-11-10 Manufacturing method of high density carbon material

Country Status (1)

Country Link
JP (1) JP2630602B2 (en)

Also Published As

Publication number Publication date
JPH01126269A (en) 1989-05-18

Similar Documents

Publication Publication Date Title
US4692418A (en) Sintered silicon carbide/carbon composite ceramic body having fine microstructure
US4525461A (en) Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
US2938807A (en) Method of making refractory bodies
US4179299A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
JP4734674B2 (en) Low CTE isotropic graphite
US4226900A (en) Manufacture of high density, high strength isotropic graphite
IE43834B1 (en) Sintered silicon carbide ceramic body
JPS6143310B2 (en)
EP1761475B1 (en) A process for the manufacturing of dense silicon carbide
US3346678A (en) Process for preparing carbon articles
US4019913A (en) Process for fabricating silicon carbide articles
CA1092615A (en) High density hot pressed thermal shock resistant silicon carbide
US7166550B2 (en) Ceramic composite body of silicon carbide/boron nitride/carbon
EP0178753B1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
JPH01308876A (en) Production of sic sintered compact having high density
US3708451A (en) Method and composition for preparing graphite products
JPS63288974A (en) Manufacturing method of fiber reinforced ceramics
JP2630602B2 (en) Manufacturing method of high density carbon material
US4788018A (en) Method for producing high-density sintered silicon carbide articles
RU2057740C1 (en) Charge for foamceramic material producing
JPH0157075B2 (en)
JPS62138361A (en) Manufacture of high density formed body from carbon material
RU2057100C1 (en) Charge for production of foam ceramic materials
RU2795405C1 (en) Method for obtaining reinforced composite material based on silicon carbide
JPH06172032A (en) Method for producing boron carbide / carbon composite neutron shielding material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees