[go: up one dir, main page]

JP2639514B2 - Laser lithography equipment - Google Patents

Laser lithography equipment

Info

Publication number
JP2639514B2
JP2639514B2 JP6180500A JP18050094A JP2639514B2 JP 2639514 B2 JP2639514 B2 JP 2639514B2 JP 6180500 A JP6180500 A JP 6180500A JP 18050094 A JP18050094 A JP 18050094A JP 2639514 B2 JP2639514 B2 JP 2639514B2
Authority
JP
Japan
Prior art keywords
laser
wavelength
quartz glass
light
projection lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6180500A
Other languages
Japanese (ja)
Other versions
JPH0774097A (en
Inventor
達政 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP6180500A priority Critical patent/JP2639514B2/en
Publication of JPH0774097A publication Critical patent/JPH0774097A/en
Application granted granted Critical
Publication of JP2639514B2 publication Critical patent/JP2639514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はレーザリソグラフィ装置
に係り、特に略400nm 以下の好ましくは略300nm以下の
特定光波長領域より発振されたレーザの投影レンズ若し
くはミラー等の光学系に石英ガラス製レンズを用いたレ
ーザステッパ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser lithography apparatus, and more particularly to a quartz glass lens for an optical system such as a projection lens or a mirror of a laser oscillated from a specific light wavelength region of about 400 nm or less, preferably about 300 nm or less. The present invention relates to a laser stepper device using the same.

【0002】[0002]

【従来の技術】従来よりLSI の高集積化は年々着実に進
み、これに伴ない集積回路パターンを描画するリソグラ
フィ装置も、より微細なパターン幅の描画が要求され、
このような微細パターン幅の描画を実現するリソグラフ
ィ装置として現在、比較的高輝度の光源が得られる点及
び高性能の投影レンズが開発されている点等から、ステ
ップアンドリピート方式の投影型露光装置(ステッパ)
が注目されている。
2. Description of the Related Art Conventionally, high integration of LSI has been steadily progressing year by year, and a lithography apparatus for writing an integrated circuit pattern has been required to draw a finer pattern width.
A step-and-repeat type projection exposure apparatus is currently used as a lithography apparatus that realizes such fine pattern width drawing in that a relatively high-luminance light source is obtained and a high-performance projection lens is being developed. (Stepper)
Is attracting attention.

【0003】かかるステッパを用いたリソグラフィ装置
の最大の欠点として露光波長が大きく、回折により解像
力が制限されている事であるが、その解決策には投影レ
ンズの高開口数化と短波長化が挙げられる。
The biggest drawback of a lithographic apparatus using such a stepper is that the exposure wavelength is large and the resolution is limited by diffraction, but the solution is to increase the numerical aperture and shorten the wavelength of the projection lens. No.

【0004】[0004]

【発明が解決しようとする課題】しかしながら投影レン
ズの高開口数化を図った場合必然的に焦点深度が幾何級
数的に浅くなり、現在用いられているg 線波長域(436n
m )の紫外線等を光源として用いた場合、現在鋭意開発
中である4Mbitt或いは16Mbitt のDRAM製造に必要とされ
る、1 μm 以下のパターン幅の形成が極めて困難にな
る。
However, when the numerical aperture of the projection lens is increased, the depth of focus inevitably becomes geometrically shallow, and the currently used g-ray wavelength range (436n
In the case where the ultraviolet light of m) is used as a light source, it is extremely difficult to form a pattern width of 1 μm or less, which is required for manufacturing a 4Mbitt or 16Mbitt DRAM which is currently being eagerly developed.

【0005】一方短波長化を図る為に400nm以下の紫外
線を用いた場合は、通常の光学ガラスでは、使用波長が
365nm付近より光透過率が急激に低下して吸収を始め、
該吸収された紫外線はレンズ温度を上昇させ、焦点位置
やその他の諸性能を狂わせる。
On the other hand, when ultraviolet light of 400 nm or less is used to shorten the wavelength, the wavelength used in ordinary optical glass is
The light transmittance suddenly drops from around 365 nm and starts absorbing,
The absorbed ultraviolet rays increase the lens temperature, and degrade the focal position and other performances.

【0006】この為350〜300nm以下の紫外線領域でも
尚吸収をおこさない投影レンズ材料として石英ガラスを
選択する必要があるが、かかる石英ガラスを用いて形成
したレンズを組込んでステッパ装置を製作した場合は、
収差補正、特に色収差補正がきわめて困難になる。
For this reason, it is necessary to select quartz glass as a projection lens material which does not absorb light even in the ultraviolet region of 350 to 300 nm or less. A stepper device was manufactured by incorporating a lens formed using such quartz glass. If
Aberration correction, especially chromatic aberration correction, becomes extremely difficult.

【0007】そこで近年前記石英ガラスレンズを投影レ
ンズとして用いつつ、色収差補正を不要にする為に、光
源に特定波長域の紫外線が発振可能なレーザ発振器を組
み合わせたスッテパ装置が開発されている。
Therefore, in recent years, a stepper device has been developed in which a light source is combined with a laser oscillator capable of oscillating ultraviolet light in a specific wavelength range in order to eliminate the need for chromatic aberration correction while using the quartz glass lens as a projection lens.

【0008】かかるスッテパ装置に用いる光源として現
在、より短波長化を可能にする為に、波長250nm前後のK
rFレーザ、更には波長190nm前後のArFレーザ等が注目さ
れているが、このような短波長の遠紫外線領域の光源を
用いた場合、投影レンズに例え石英ガラスレンズを用い
ても尚次のような問題を有す。即ち、前記のような短波
長域の光源を用いた場合、例え石英ガラスを用いて投影
レンズを製作したとしても内部に混入された不純物等の
存在により光透過率が減少し、その光吸収によるレンズ
内部温度の上昇により僅かながら焦点位置が狂い、0.8
〜0.5μm以下の微細パターンの形成が極めて困難にな
る。
At present, as a light source used in such a stepper device, in order to make it possible to shorten the wavelength, a light source having a wavelength of about 250 nm is used.
rF lasers, and furthermore, ArF lasers with a wavelength of around 190 nm, have attracted attention.However, when such a short-wavelength light source in the deep ultraviolet region is used, even if a quartz glass lens is used as the projection lens, the following still applies. Problems. That is, when the light source in the short wavelength region as described above is used, even if the projection lens is manufactured using quartz glass, the light transmittance is reduced due to the presence of impurities and the like mixed therein, and the light absorption is caused by the light absorption. The focus position was slightly out of order due to the rise of the lens internal temperature,
It becomes extremely difficult to form a fine pattern of 0.5 μm or less.

【0009】又前記のようなステッパ装置においては一
層の微細パターン化を実現する為に、前記短波長化と併
せて開口数を大にしたり、又コリメートされた光源をス
キャンミラーにより光軸と直交する方向に動かし実質的
に光源像を拡大したりしているが、既存の石英ガラスを
用いた投影レンズでは、光軸とずれた位置で光像を結ぼ
うとすると面内歪が発生し、前記微細パターンの形成が
一層困難となっている。
In the above-mentioned stepper apparatus, in order to realize a further fine patterning, the numerical aperture is increased in conjunction with the shortening of the wavelength, or a collimated light source is orthogonal to the optical axis by a scan mirror. In the projection lens using existing quartz glass, in-plane distortion occurs when trying to form an optical image at a position shifted from the optical axis, It is more difficult to form the fine pattern.

【0010】本発明はかかる従来技術に鑑み、前記投影
レンズに熱歪や面内歪が発生する事なく、特に0.8〜0.5
μm以下の微細パターンの形成を可能にしたステッパそ
の他のレーザリソグラフィ装置を提供する事を目的とす
る。
The present invention has been made in view of the above-mentioned prior art, and does not cause thermal distortion or in-plane distortion in the projection lens, and particularly, in the range of 0.8 to 0.5.
It is an object of the present invention to provide a stepper or other laser lithography apparatus capable of forming a fine pattern of μm or less.

【0011】[0011]

【課題を解決する為の手段】本発明は、光源に400nm以
下の特定波長域の紫外線レーザ光を発振するレーザ発振
器と、三座標方向のいずれの方向からも脈理が認められ
ず、且つ254nmの波長を有する低圧水銀ランプの照
射により蛍光を実質的に発生せず、更に光が透過する区
域において屈折率差△nが5×10-6以下の均質性を有
する合成石英ガラス材からなるレンズその他の光学系と
を含み、前記レーザ光を前記光学系により透過若しくは
反射させながらレチクルを介してSi基板上に、0.8
μm以下のパターン幅を有する集積回路パターンを描画
可能に構成した事を特徴とするレーザステッパ装置その
他のリソグラフィ装置を提案する。
According to the present invention, there is provided a laser oscillator which oscillates an ultraviolet laser beam having a specific wavelength range of 400 nm or less as a light source, a striae which is not recognized from any of three coordinate directions, and which is 254 nm. without substantially generating fluorescence by irradiation of a low-pressure mercury lamp having a wavelength of, a lens made of a synthetic quartz glass member having a refractive index difference △ n has a 5 × 10 -6 or less of homogeneity in yet areas through which light passes Other optical systems, while transmitting or reflecting the laser light by the optical system, 0.8 reticle on a Si substrate via a reticle.
A laser stepper device and other lithography devices characterized in that an integrated circuit pattern having a pattern width of μm or less can be drawn.

【0012】この場合、前記光学系は、金属元素等の不
純物元素を含まない高純度の珪素化合物を、直接火炎法
により加水分解、溶融してなる石英ガラスインゴットを
出発母材として形成される合成石英ガラス材で形成する
のがよい。
In this case, the optical system is formed by using a quartz glass ingot obtained by hydrolyzing and melting a high-purity silicon compound containing no impurity element such as a metal element by a direct flame method as a starting material. It is preferable to use a quartz glass material.

【0013】又、脈理とは、水晶や合成石英ガラスを溶
融成長ー固化する際に発生する屈折率分布の異なる成長
縞を指し、かかる脈理は例えば、干渉計及び歪検査器に
て容易に観察する事が出来る。又蛍光を実質的に発生す
る事がないとは、暗室内で低圧水銀ランプを少なくとも
10分程度照射した場合、目視にて蛍光の発生が認められ
ない事をいう。
[0013] Stria refers to growth fringes having different refractive index distributions generated when a quartz crystal or a synthetic quartz glass is melt-grown and solidified. Such striae can be easily measured by, for example, an interferometer or a strain tester. Can be observed. In addition, it is said that no fluorescent light is generated substantially by using a low-pressure mercury lamp in a dark room at least.
This means that no fluorescence is observed visually when irradiated for about 10 minutes.

【0014】[0014]

【作用】本発明は、前記光学系を構成する例えば投影レ
ンズの光透過率を、低圧水銀ランプの照射により蛍光が
発生しない程度に光透過率を高度に確保した為に、その
特定波長域における使用光源の光吸収における内部温度
の上昇を微小に押える事が出来るとともに、たとえ僅か
に内部温度が上昇しても、三座標方向のいずれの方向か
らも脈理が除去されている為に、熱歪が生じる恐れが少
なく、これにより焦点位置やその他の諸性能が規定精度
範囲内に維持出来る。
According to the present invention, the light transmittance of, for example, a projection lens constituting the optical system is ensured at a high level to the extent that fluorescence is not generated by irradiation with a low-pressure mercury lamp. The rise in internal temperature due to the light absorption of the light source used can be suppressed to a very small extent, and even if the internal temperature rises slightly, striae is removed from any of the three coordinate directions. Distortion is less likely to occur, so that the focal position and other performances can be maintained within a specified accuracy range.

【0015】又本発明による投影レンズは、少なくとも
光が入射される区域において屈折率差Δnが5×10-6
下の均質性を有する為に、コリメートされたレーザ光源
をスキャンミラーにより光軸と直交する方向に動かし実
質的に光源像を拡大して光像を結ぼうとしても面内歪が
発生する恐れがない。
Further, in the projection lens according to the present invention, since the refractive index difference Δn has a homogeneity of 5 × 10 −6 or less in at least the area where light is incident, the collimated laser light source is adjusted to the optical axis by the scan mirror. Even if the light source image is moved in the orthogonal direction to substantially enlarge the light source image to form an optical image, there is no possibility that in-plane distortion will occur.

【0016】更に、前記投影レンズは一般に曲面状の凸
又は凹レンズで形成される為に、三座標方向のいずれか
の方向に脈理が存在すると、脈理部分と他の部分で屈折
率や密度が異なる為に、精密研磨時に微小な波打ち現象
が生じ、表面平滑度や肉厚の均一性の面で問題が生じ、
やはり屈折率のバラツキその他の諸性能に影響する。し
かしながら本発明の投影レンズは三座標方向のいずれの
方向からも脈理が除去されている為に、前記問題点が解
消される。
Furthermore, since the projection lens is generally formed of a curved convex or concave lens, if stria exists in any one of the three coordinate directions, the refractive index and the density of the stria and the other portions are reduced. Because of the difference, a fine waving phenomenon occurs during precision polishing, causing problems in terms of surface smoothness and uniformity of wall thickness,
Again, it affects the refractive index variation and other performances. However, in the projection lens of the present invention, since the stria is removed from any of the three coordinate directions, the above problem is solved.

【0017】従って本発明によれば前記発振器より発振
される、短波長の遠紫外線領域における特定波長域光を
発振するレーザ光源と前記構成の投影レンズを組合せて
なるリソグラフィ装置を用いて集積回路パターンを描画
した場合、前記投影レンズ内に発生する熱歪や面歪が除
去される為に、微細集積回路パターンの描画が可能とな
り、特にウエーハ上のフォトレジストに結像させるパタ
ーン像の線幅を0.8μm以下に設定することが出来る
ために、4Mbitt或いは16Mbitt のDRAM製造を容易に行う
事が出来る。
Therefore, according to the present invention, an integrated circuit pattern is formed by using a lithographic apparatus which combines a laser light source oscillating from the oscillator and oscillating a specific wavelength band light in a short ultraviolet ray region and a projection lens having the above-mentioned configuration. Is drawn, thermal distortion and surface distortion generated in the projection lens are removed, so that a fine integrated circuit pattern can be drawn. In particular, the line width of a pattern image formed on a photoresist on a wafer is reduced. Since the thickness can be set to 0.8 μm or less, DRAM of 4 Mbitt or 16 Mbitt can be easily manufactured.

【0018】[0018]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。先
ず、本発明に用いる投影レンズやミラー等を製造するた
めの光学用石英ガラス部材の製造手順について図2に基
づいて説明する。金属元素等の不純物元素を含まない高
純度の四塩化珪素を酸水素火炎中で、直接火炎法により
加水分解、溶融して石英ガラスインゴット1を製造した
後、該インゴット1を軟化点以上に加熱し冷却する操作
を繰返し行ない、且つ加熱毎に自重による軟化の方向を
変えて内部の脈理を除去する。すなわちこの操作の繰返
しによって石英ガラス塊の三座標方向の脈理が除去され
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Not just. First, a procedure for manufacturing an optical quartz glass member for manufacturing a projection lens, a mirror, and the like used in the present invention will be described with reference to FIG. High-purity silicon tetrachloride that does not contain impurity elements such as metal elements is hydrolyzed and melted in an oxyhydrogen flame by a direct flame method to produce a quartz glass ingot 1, which is then heated to a temperature above its softening point. The cooling operation is repeated, and the direction of softening due to its own weight is changed for each heating to remove internal striae. That is, by repeating this operation, striae of the quartz glass block in the three coordinate directions are removed.

【0019】次にこのようにして脈理を除去した石英ガ
ラス塊を1000℃前後の温度で加熱して歪を除去した石英
ガラス塊2を得、これを寸法に応じた大きさに切断して
光学用石英ガラス部材3を製作する。この石英ガラス部
材3は、暗室内で、波長250nmKrFレーザと対応する254nm
の波長を有する低圧水銀ランプを10分間照射したが蛍光
の発生は目視で認められず、又二光線干渉屈折計を用い
て屈折率差Δnを調べたところ2.5×10-6の均質性を有す
る事が確認された。
Next, the quartz glass block from which the stria is removed in this manner is heated at a temperature of about 1000 ° C. to obtain a quartz glass block 2 from which the distortion is removed, and this is cut into a size corresponding to the dimensions. The optical quartz glass member 3 is manufactured. This quartz glass member 3 has a wavelength of 250 nm and a wavelength of 254 nm corresponding to a KrF laser in a dark room.
Irradiated with a low-pressure mercury lamp having a wavelength of 10 minutes, but no fluorescence was observed visually, and when the refractive index difference Δn was examined using a two-beam interference refractometer, it was found that the homogeneity was 2.5 × 10 -6 The thing was confirmed.

【0020】次にかかる物性を有する石英ガラス部材か
ら本発明の実施例に係るステッパに組込む為の投影レン
ズやミラーを作製した後、図1に示すステッパ装置に組
み込む。
Next, a projection lens and a mirror to be incorporated into the stepper according to the embodiment of the present invention are manufactured from the quartz glass member having such physical properties, and then assembled into the stepper device shown in FIG.

【0021】本図において10はレーザ光を発振するKr
Fエキシマレーザ発振器、11は変向ミラー、12は照
明光学系、13は10倍レチクル、14は前記石英ガラス
部材から製作された投影レンズ、15は石英窓、16は
Si基板である。
In this figure, reference numeral 10 denotes Kr for oscillating laser light.
F excimer laser oscillator, 11 is a turning mirror, 12 is an illumination optical system, 13 is a 10-fold reticle, 14 is a projection lens made of the quartz glass member, 15 is a quartz window, and 16 is a Si substrate.

【0022】かかる実施例によれば、KrFレーザ発振
器10より発振されたKrFレーザ光は、変向ミラー1
1、11、照明光学系12を介して、レチクル4上のパ
ターン面に入射され、該入射により得られるパターン像
を、投影レンズ14を介してSi基板16に結像させ
て、線幅描画を行う事により0.5μm以下のパターン幅を
有する集積回路パターンを得る事が出来た。
According to this embodiment, the KrF laser light oscillated from the KrF laser oscillator 10 is transmitted to the turning mirror 1
1 and 11, the light is incident on the pattern surface on the reticle 4 via the illumination optical system 12, and a pattern image obtained by the incidence is formed on the Si substrate 16 via the projection lens 14 to draw a line width. As a result, an integrated circuit pattern having a pattern width of 0.5 μm or less was obtained.

【0023】[0023]

【発明の効果】以上記載のごとく本発明によれば、前記
投影レンズに熱歪や面内歪が発生する事なく、特に0.8
〜0.5μm以下の微細パターンの形成を可能にしたステッ
パその他のレーザリソグラフィ装置を得ることが出来
る。
As described above, according to the present invention, no thermal distortion or in-plane distortion occurs in the projection lens,
A stepper or other laser lithography apparatus capable of forming a fine pattern of 0.5 μm or less can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例にかかるステッパ装置を示す概
略図である。
FIG. 1 is a schematic view showing a stepper device according to an embodiment of the present invention.

【図2】前記ステッパ装置に組込まれる投影レンズを製
造する材料となるべき光学用石英ガラス部材の製造手順
を示す概略図
FIG. 2 is a schematic view showing a manufacturing procedure of an optical quartz glass member to be a material for manufacturing a projection lens incorporated in the stepper device.

【符号の説明】[Explanation of symbols]

10 KrFエキシマレーザ発振器 14 投影レンズ 16 Si基板 10 KrF excimer laser oscillator 14 Projection lens 16 Si substrate

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源に波長250nm前後のKrFレー
ザ若しくは波長190nm前後のArFレーザ光を発振
するレーザ発振器と、三座標方向のいずれの方向からも
脈理が認められず、且つ254nmの波長を有する低圧
水銀ランプの照射により蛍光を実質的に発生せず、更に
光が透過する区域において屈折率差Δnが2.5×10
−6以下の均質性を有する合成石英ガラス材からなるレ
ンズその他の光学系とを含み、前記レーザ光を前記光学
系により透過若しくは反射させながらレチクルを介して
Si基板上に、0.8μm以下のパターン幅を有する集
積回路パターンを描画可能に構成した事を特徴とするレ
ーザリソグラフイ装置
1. A KrF laser having a wavelength of about 250 nm as a light source.
Or a laser oscillator that emits ArF laser light having a wavelength of about 190 nm , and substantially emits fluorescence when irradiated by a low-pressure mercury lamp having a wavelength of 254 nm without striae in any of the three coordinate directions. No, and the refractive index difference Δn is 2.5 × 10
A lens made of a synthetic quartz glass material having a homogeneity of -6 or less, and a laser beam transmitted or reflected by the optical system while passing or reflecting the laser light on a Si substrate via a reticle; A laser lithography apparatus characterized in that an integrated circuit pattern having a pattern width can be drawn.
【請求項2】 前記光学系が、高純度の珪素化合物を、
直接火炎法によう加水分解、溶融してなる石英ガラスイ
ンゴットを出発母材として形成される合成石英ガラス材
である請求項1記載のレーザリソグラフィ装置
2. The optical system according to claim 1, wherein the high-purity silicon compound is
2. The laser lithography apparatus according to claim 1, wherein the synthetic lithographic glass material is formed using a quartz glass ingot obtained by hydrolysis and melting as in a direct flame method as a starting material.
JP6180500A 1994-07-11 1994-07-11 Laser lithography equipment Expired - Lifetime JP2639514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6180500A JP2639514B2 (en) 1994-07-11 1994-07-11 Laser lithography equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6180500A JP2639514B2 (en) 1994-07-11 1994-07-11 Laser lithography equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62180927A Division JPS6428240A (en) 1987-07-22 1987-07-22 Optical quartz glass member

Publications (2)

Publication Number Publication Date
JPH0774097A JPH0774097A (en) 1995-03-17
JP2639514B2 true JP2639514B2 (en) 1997-08-13

Family

ID=16084331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6180500A Expired - Lifetime JP2639514B2 (en) 1994-07-11 1994-07-11 Laser lithography equipment

Country Status (1)

Country Link
JP (1) JP2639514B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7053017B2 (en) * 2002-03-05 2006-05-30 Corning Incorporated Reduced striae extreme ultraviolet elements

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
「信越石英株式会社技術情報」、SUPRASIL−P10,1986年6月20日
「日経マイクロデバイス」1987年2月号、103〜106頁

Also Published As

Publication number Publication date
JPH0774097A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
US6672109B1 (en) Silica glass member, method for producing the same, and projection aligners using the same
JP3413067B2 (en) Projection optical system and projection exposure apparatus using the same
US6829041B2 (en) Projection optical system and projection exposure apparatus having the same
US6583931B2 (en) Projection optical system, production method thereof, and projection exposure apparatus using it
JP3089955B2 (en) Optical member for optical lithography and projection optical system
EP0823662A2 (en) Projection exposure apparatus
JP5299477B2 (en) Method for producing synthetic quartz glass
JP3646757B2 (en) Projection exposure method and apparatus
JP2000331927A (en) Projection optical system and projection exposure apparatus using the same
TW200305789A (en) Optical projection system, method for making the same, exposure device and exposure method
JP2001060550A (en) Laser beam speckle reduction method and apparatus, and lithographic apparatus
JPH1079337A (en) Projection exposure equipment
JPH0628227B2 (en) Semiconductor exposure equipment
JP4029838B2 (en) Optical member for optical lithography and its evaluation method
US6335786B1 (en) Exposure apparatus
KR20010062343A (en) Projection exposure apparatus and method of manufacturing a device using the projection exposure apparatus
US6727025B1 (en) Photomask and exposure method
EP1063203A1 (en) Silica glass member
JP2639514B2 (en) Laser lithography equipment
JPH0535688B2 (en)
TW200844677A (en) Image forming optical system, exposure equipment and device manufacturing method
JP2002082285A (en) Catadioptric optical system and exposure apparatus having the optical system
TWI437371B (en) Illumination optical device, production method of an illumination optical device, adjusting method of an illumination optical device, exposure device and exposure method
EP0284414B1 (en) Exposure apparatus
JPH0912323A (en) Quartz glass member whose densification due to UV irradiation is suppressed

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11