[go: up one dir, main page]

JP2770717B2 - Gallium nitride based compound semiconductor light emitting device - Google Patents

Gallium nitride based compound semiconductor light emitting device

Info

Publication number
JP2770717B2
JP2770717B2 JP23468593A JP23468593A JP2770717B2 JP 2770717 B2 JP2770717 B2 JP 2770717B2 JP 23468593 A JP23468593 A JP 23468593A JP 23468593 A JP23468593 A JP 23468593A JP 2770717 B2 JP2770717 B2 JP 2770717B2
Authority
JP
Japan
Prior art keywords
electrode
compound semiconductor
gallium nitride
based compound
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23468593A
Other languages
Japanese (ja)
Other versions
JPH0794783A (en
Inventor
雅之 妹尾
孝夫 山田
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16974837&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2770717(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP23468593A priority Critical patent/JP2770717B2/en
Priority to EP94106587A priority patent/EP0622858B2/en
Priority to KR1019940009055A priority patent/KR100286699B1/en
Priority to TW90209918U priority patent/TW491406U/en
Priority to DE69433926T priority patent/DE69433926T2/en
Priority to DE69425186T priority patent/DE69425186T3/en
Priority to TW083103775A priority patent/TW403945B/en
Priority to EP04012118A priority patent/EP1450415A3/en
Priority to EP99114356A priority patent/EP0952617B1/en
Priority to US08/234,001 priority patent/US5563422A/en
Priority to CN94106935A priority patent/CN1046375C/en
Priority to CNB031458696A priority patent/CN1240143C/en
Priority to CNB03145870XA priority patent/CN1262024C/en
Priority to CNB03145867XA priority patent/CN1240142C/en
Priority to CNB031458688A priority patent/CN1253948C/en
Publication of JPH0794783A publication Critical patent/JPH0794783A/en
Priority to US08/670,242 priority patent/US5767581A/en
Priority to US08/665,759 priority patent/US5652434A/en
Priority to US08/995,167 priority patent/US5877558A/en
Priority to KR1019980022092A priority patent/KR100225612B1/en
Application granted granted Critical
Publication of JP2770717B2 publication Critical patent/JP2770717B2/en
Priority to CNB981183115A priority patent/CN1262021C/en
Priority to US09/209,826 priority patent/US6093965A/en
Priority to KR1019990032148A priority patent/KR100551364B1/en
Priority to US09/448,479 priority patent/US6204512B1/en
Priority to US09/750,912 priority patent/US6507041B2/en
Priority to US10/292,583 priority patent/US6610995B2/en
Priority to KR1020030035961A priority patent/KR100551365B1/en
Priority to US10/609,410 priority patent/US6998690B2/en
Priority to US11/198,465 priority patent/US7205220B2/en
Priority to US11/714,890 priority patent/US7375383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、発光ダイオード、レー
ザーダイオード等に使用される窒化ガリウム系化合物半
導体(InAlGa1−X−YN、0≦X≦1、0
≦Y≦1)が積層されてなる窒化ガリウム系化合物半導
体発光素子に係り、特に、p−n接合を有する窒化ガリ
ウム系化合物半導体発光素子の電極の構造に関する。
BACKGROUND OF THE INVENTION The present invention is a light emitting diode, a gallium nitride-based compound is used in such a laser diode semiconductor (In X Al Y Ga 1- X-Y N, 0 ≦ X ≦ 1,0
The present invention relates to a gallium nitride-based compound semiconductor light-emitting device in which ≦ Y ≦ 1) are stacked, and more particularly, to a structure of an electrode of a gallium nitride-based compound semiconductor light-emitting device having a pn junction.

【0002】[0002]

【従来の技術】従来の窒化ガリウム系化合物半導体発光
素子は、基板上に、n型の窒化ガリウム系化合物半導体
層と、p型ドーパントがドープされた高抵抗なi型の窒
化ガリウム系化合物半導体層とが積層されたいわゆるM
IS構造のものが知られているが、最近になって高抵抗
なi型をp型とする技術(特開平2−257679号公
報、特開平3−218325号公報、特開平5−183
189号公報等)が発表され、p−n接合型の発光素子
が実現可能となってきた。
2. Description of the Related Art A conventional gallium nitride-based compound semiconductor light emitting device comprises an n-type gallium nitride-based compound semiconductor layer and a high-resistance i-type gallium nitride-based compound semiconductor layer doped with a p-type dopant on a substrate. So-called M
Although those having an IS structure are known, recently, a technique of converting a high-resistance i-type into a p-type (JP-A-2-257679, JP-A-3-218325, and JP-A-5-183)
No. 189) has been announced, and a pn junction type light emitting device has become feasible.

【0003】現在のところ、p−n接合型の窒化ガリウ
ム系化合物半導体発光素子は、そのp型窒化ガリウム系
化合物半導体(以下、p層という。)の製造方法が限ら
れているため、通常p層が最上層(即ち、積層終了時の
層)とされる。また、発光素子の基板には透光性、絶縁
性を有するサファイアが使用されるため、発光素子の発
光観測面側は基板側とされることが多い。しかし、基板
側を発光観測面側とするp−n接合型の発光素子は、同
一面側に形成されたp層およびn層の電極をリードフレ
ームに接続する際、1チップを2つのリードフレームに
跨って載置しなければならないので、1チップサイズが
大きくなるという欠点がある。つまり、n層の電極がp
層と接触すると電気的にショートしてしまうため、チッ
プ上の正、負それぞれの電極と2つのリードフレーム幅
と間隔を大きくする必要性から、自然とチップサイズが
大きくなる。従って1枚あたりのウエハーから取れるチ
ップ数が少なくなり、高コストになるという欠点があ
る。
At present, pn junction type gallium nitride-based compound semiconductor light emitting devices are generally limited to p-type gallium nitride-based compound semiconductors (hereinafter referred to as p-layers) because of their limited manufacturing methods. The layer is the uppermost layer (that is, the layer at the end of lamination). Further, since sapphire having a light-transmitting property and an insulating property is used for the substrate of the light-emitting element, the light-emitting observation surface side of the light-emitting element is often the substrate side. However, the pn junction type light emitting element having the substrate side as the light emission observation surface side, when connecting the electrodes of the p layer and the n layer formed on the same surface side to the lead frame, one chip is connected to two lead frames. Therefore, there is a disadvantage that the size of one chip increases. That is, the electrode of the n-layer is p
When a contact is made with the layer, the chip is electrically short-circuited, and the chip size naturally increases due to the necessity of increasing the width and the interval between the positive and negative electrodes on the chip and the two lead frames. Therefore, there is a disadvantage that the number of chips that can be obtained from one wafer is reduced, and the cost is increased.

【0004】一方、電極側を発光観測面とする発光素子
は、1チップを1つのリードフレーム上に載置できるた
めチップサイズを小さくできる。しかも、発光観測面側
から正、負両方の電極を取り出すことができるので、生
産技術上有利であるという利点がある反面、発光観測面
側の電極により発光が阻害されることにより、基板側を
発光観測面とする発光素子に比して外部量子効率が悪い
という欠点がある。また、n層の電極にワイヤーボンデ
ィングする際、ボールが電極からずれてp層と接触して
ショートする危険性がある。
On the other hand, a light emitting element having a light emission observation surface on the electrode side can reduce the chip size because one chip can be mounted on one lead frame. In addition, since both positive and negative electrodes can be taken out from the emission observation surface side, there is an advantage that it is advantageous from the viewpoint of production technology. There is a disadvantage that the external quantum efficiency is lower than that of the light emitting element used as the light emission observation surface. Further, when wire bonding is performed to the electrode of the n-layer, there is a risk that the ball is shifted from the electrode and contacts the p-layer to cause a short circuit.

【0005】[0005]

【発明が解決しようとする課題】我々は、外部量子効率
の問題に対しては、先に、p層側を発光観測面とする発
光素子のp電極を透光性の全面電極とする技術を提案さ
れる。さらに、透光性の全面電極において均一発光を図
るため、透光性の全面電極のボンディング用電極とn電
極とを矩形の基板の対角線上の各隅部に配置することが
提案される。この技術により、上記電極側を発光観測面
とする窒化ガリウム系化合物半導体発光素子の問題は改
善されてきた。しかし、p層に形成した透光性の全面電
極は非常に膜厚が薄いことにより、製造ラインの途中で
傷がつきやすくなり、電極に傷がつくと傷の具合によっ
ては、電流が部分的に流れ、均一な発光が不可能とな
り、外部量子効率が低下するという問題が生じてきた。
In order to solve the problem of external quantum efficiency, we first developed a technique in which the p-electrode of a light-emitting element having the p-layer side as a light-emission observation surface was used as a translucent full-surface electrode. Suggested. Further, in order to achieve uniform light emission from the light-transmitting full-surface electrode, it is proposed to arrange the bonding electrode and the n-electrode of the light-transmitting full-surface electrode at each diagonal corner of a rectangular substrate. With this technique, the problem of the gallium nitride-based compound semiconductor light emitting device having the above-mentioned electrode side as a light emission observation surface has been improved. However, the light-transmitting full-surface electrode formed on the p-layer has a very small thickness, and thus is easily damaged in the middle of the production line. This has caused a problem that uniform light emission becomes impossible and external quantum efficiency is reduced.

【0006】また、全面電極の上に、さらにボンディン
グ用の電極(ボンディングパッド)を形成した場合、ワ
イヤーボンディング時に、ワイヤーに引っ張られ、その
ボンディング用の電極と透明な全面電極とが剥がれやす
くなるか、または全面電極がp層から剥がれやすくなる
という問題が生じてきた。
In the case where a bonding electrode (bonding pad) is further formed on the entire surface electrode, the wire is pulled by the wire during wire bonding, and the bonding electrode and the transparent full-surface electrode are easily peeled off. Or a problem that the entire surface electrode is easily peeled off from the p layer.

【0007】従って、本発明はこのような事情を鑑み成
されたものであり、電極側を発光観測面とし、p−n接
合を有する窒化ガリウム系化合物半導体発光素子におい
て、まずその発光素子の外部量子効率を高めることを第
一の目的とし、次にn層およびp層の電極間のショート
をなくし、信頼性の高い発光素子を実現することを第二
の目的とし、さらに外部量子効率を高めるために形成し
た透光性電極の信頼性を高めることを第三の目的とす
る。
Accordingly, the present invention has been made in view of such circumstances, and in a gallium nitride-based compound semiconductor light emitting device having a pn junction with an electrode side as a light emission observing surface, first, the outside of the light emitting device The first objective is to increase the quantum efficiency, and the second objective is to realize a highly reliable light-emitting element by eliminating a short circuit between the n-layer and p-layer electrodes, and further to increase the external quantum efficiency A third object is to increase the reliability of the light-transmitting electrode formed for this purpose.

【0008】[0008]

【課題を解決するための手段】本発明の窒化ガリウム系
化合物半導体発光素子は、矩形の基板上に、n型窒化ガ
リウム系化合物半導体とp型窒化ガリウム系化合物半導
体とが積層され、上記p型窒化ガリウム系化合物半導体
層にp電極が形成される一方、上記p型窒化ガリウム系
化合物半導体層の一部が除去されて露出されたn型窒化
ガリウム系化合物半導体層にn電極が形成され、同一面
側にn層の電極とp層の電極とが位置し、それらの電極
側を発光観測面側とする窒化ガリウム系化合物半導体発
光素子において、前記p電極がp型窒化ガリウム系化合
物半導体層のほぼ全面に形成された透光性を有する金属
薄膜よりなる第一の電極と、その第一の電極上に形成さ
れたボンディング用の第二の電極とからなり、前記n電
極と前記第二の電極とが、矩形の基板の対角線上にある
半導体層の各隅部に配置されて、その間にある前記第一
の電極面が前記発光観測面とされており、さらに前記n
電極から第二の電極に渡って連続し、前記発光観測面を
なす第一の電極面を覆い、かつ前記n電極と第一の電極
とを絶縁する透光性の保護膜が形成されていることを特
徴とする。なお本願において、透光性とは窒化ガリウム
系化合物半導体の発光を透過するという意味であり、必
ずしも無色透明を意味するものではない。
The gallium nitride-based compound semiconductor light emitting device of the present invention comprises an n-type gallium nitride-based compound semiconductor and a p-type gallium nitride-based compound semiconductor laminated on a rectangular substrate. A p-electrode is formed on the gallium nitride-based compound semiconductor layer, and an n-electrode is formed on the n-type gallium nitride-based compound semiconductor layer that is exposed by removing a part of the p-type gallium nitride-based compound semiconductor layer. An n-layer electrode and a p-layer electrode are positioned on the surface side, and in the gallium nitride-based compound semiconductor light-emitting device having the electrode side as the light emission observation surface side, the p-electrode is a p-type gallium nitride-based compound semiconductor layer. A first electrode formed of a metal thin film having a light-transmitting property formed on almost the entire surface, and a second electrode for bonding formed on the first electrode; and the n-electrode and the second electrode Electric DOO is disposed at each corner of the semiconductor layer located on a diagonal line of the rectangular substrate has been said first electrode surface in between the said light emission observing surface, further wherein n
A light-transmitting protective film is formed continuously from the electrode to the second electrode, covers the first electrode surface forming the emission observation surface, and insulates the n-electrode from the first electrode. It is characterized by the following. In the present application, translucency means that light emitted by a gallium nitride-based compound semiconductor is transmitted, and does not necessarily mean colorless and transparent.

【0009】[0009]

【作用】本発明の発光素子はp層の電極を透光性の第一
の電極としている。第一の電極は透光性であることによ
り、p−n接合界面の発光を電極側から観測することが
できる。さらに第一の電極はp層のほぼ全面に形成して
いるので電流がp層全体に均一に広がり、均一な発光を
得ることができる。また第一の電極の表面に絶縁性の保
護膜を形成していることにより、ボンディング時にn層
の電極のボールが第一の電極に接触してもショートする
ことがない。しかも保護膜も透光性であることにより、
第一の電極を透過する光が保護膜も透過するので、外部
量子効率が低下することが少ない。また、保護膜を第一
の電極の表面に形成しているため、保護膜は第一の電極
を保護し、傷が入りにくくしている。さらにまた保護膜
を第一の電極のほぼ全面に形成する(但し、ワイヤーボ
ンディング位置を除くのは当然である。)ことにより、
ボンディングの際、第一の電極がp層から剥がれるのを
防止する作用がある。
In the light emitting device of the present invention, the electrode of the p-layer is used as the light-transmitting first electrode. Since the first electrode is translucent, light emission at the pn junction interface can be observed from the electrode side. Furthermore, since the first electrode is formed on almost the entire surface of the p-layer, the current spreads uniformly over the entire p-layer and uniform light emission can be obtained. In addition, since the insulating protective film is formed on the surface of the first electrode, a short circuit does not occur even when the ball of the n-layer electrode contacts the first electrode during bonding. Moreover, since the protective film is also translucent,
Since light passing through the first electrode also passes through the protective film, external quantum efficiency is less likely to decrease. Further, since the protective film is formed on the surface of the first electrode, the protective film protects the first electrode and makes it difficult for the first electrode to be damaged. Furthermore, by forming the protective film on almost the entire surface of the first electrode (however, it is natural that the wire bonding position is excluded).
At the time of bonding, it has an effect of preventing the first electrode from peeling off from the p-layer.

【0010】第一の電極の表面にボンディング用の第二
の電極を形成した場合、保護膜を第一の電極と連続して
第二の電極の表面まで形成することにより、第一の電
極、および第二の電極が保護膜により押さえつけられて
カバーされるような状態となり、ボンディング時に第二
の電極が第一の電極から剥がれること、または第一の電
極がp層から剥がれることを防止する作用がある。
When a second electrode for bonding is formed on the surface of the first electrode, a protective film is formed up to the surface of the second electrode so as to be continuous with the first electrode. And a state in which the second electrode is pressed and covered by the protective film to prevent the second electrode from peeling off from the first electrode or the first electrode from peeling off from the p layer during bonding. There is.

【0011】[0011]

【実施例】図1は本発明の一実施例に係る発光素子の構
造を示す模式断面図であり、この素子はサファイア基板
1の上にn型層2とp型層3とを順に積層したホモ構造
の発光素子を示している。
FIG. 1 is a schematic sectional view showing the structure of a light emitting device according to one embodiment of the present invention. In this device, an n-type layer 2 and a p-type layer 3 are sequentially laminated on a sapphire substrate 1. 1 shows a light emitting element having a homo structure.

【0012】p層3の上に形成した第一の電極11は透
光性としているため、前記のようにp−n接合界面の発
光を発光面側に有効に取り出すことができる。しかもp
層3のほぼ全面に形成してあるために、電界が均一に広
がりp−n接合面のほぼ全面に亙って均一な発光が得ら
れる。電極11を透光性にするにはAu、Pt、Al、
Sn、Cr、Ti、Ni等の電極材料を非常に薄く形成
することにより実現可能である。具体的には、蒸着、ス
パッタ等の技術により電極が透光性になるような膜厚で
直接薄膜を形成するか、または薄膜を形成した後、アニ
ーリングを行い電極を透光性にすることができる。電極
11の膜厚は0.001μm〜1μmの厚さで形成する
ことが好ましい。0.001μmよりも薄いと電極抵抗
が大きくなり好ましくない。逆に1μmよりも厚いと電
極が透光性になりにくく実用的ではない。電極材料によ
っても異なるが、第一の電極11がほぼ透明でほとんど
発光を妨げることがなく、また接触抵抗も低い特に実用
的な範囲としては、0.005μm−0.2μmの範囲
が好ましい。
Since the first electrode 11 formed on the p-layer 3 is translucent, light emission at the pn junction interface can be effectively extracted to the light-emitting surface side as described above. And p
Since it is formed on almost the entire surface of the layer 3, the electric field spreads uniformly, and uniform light emission can be obtained over almost the entire pn junction surface. To make the electrode 11 translucent, Au, Pt, Al,
This can be realized by forming an electrode material such as Sn, Cr, Ti, and Ni very thin. Specifically, it is possible to form a thin film directly by a technique such as vapor deposition or sputtering so that the electrode is translucent, or to form a thin film and then anneal to make the electrode translucent. it can. The electrode 11 is preferably formed with a thickness of 0.001 μm to 1 μm. If the thickness is less than 0.001 μm, the electrode resistance increases, which is not preferable. On the other hand, if the thickness is more than 1 μm, the electrode is unlikely to be light-transmitting and is not practical. Although it varies depending on the electrode material, the first electrode 11 is almost transparent, hardly hinders light emission, and has a low contact resistance, and a particularly practical range of 0.005 μm-0.2 μm is preferable.

【0013】本発明の発光素子は、以上のような第一の
電極11の表面に透光性および絶縁性の保護膜13を形
成している。このように保護膜13は第一の電極11の
表面を保護しているため、保護膜が形成された部分は外
部から傷が入りにくい。特に、n層の電極4と、ボンデ
ィング用の第二の電極12との間は、ボンディング時
に、ボールが電極4と電極11との間に跨りショートし
やすいのであるが、保護膜13がそれを防止している。
In the light emitting device of the present invention, a transparent and insulating protective film 13 is formed on the surface of the first electrode 11 as described above. As described above, since the protective film 13 protects the surface of the first electrode 11, the portion where the protective film is formed is hardly damaged from the outside. In particular, between the electrode 4 of the n-layer and the second electrode 12 for bonding, a ball is likely to straddle between the electrode 4 and the electrode 11 during bonding, and the protective film 13 prevents the ball from short-circuiting. Preventing.

【0014】保護膜13の材料は透光性で絶縁性を有し
ていればどのような材料を使用しても良いが、特に好ま
しい材料としてSiO、TiO、Al、Si
等を使用することができる。これらの材料は膜厚
にかかわらず無色透明で、絶縁性であるため、第一の電
極11を透過した発光をほとんど減衰させることなく、
透過させることができる。また保護膜13を形成するに
は、例えばこれらの材料を、所定のマスクを形成したn
層2、あるいは第一の電極11に蒸着、スパッタ等の方
法を用いて形成することができる。
As the material of the protective film 13, any material may be used as long as it is translucent and insulative, but particularly preferred materials are SiO 2 , TiO 2 , Al 2 O 3 , and Si.
3 N 4 or the like can be used. Since these materials are colorless and transparent regardless of the film thickness and are insulative, they hardly attenuate the light emitted through the first electrode 11,
Can be transmitted. Further, in order to form the protective film 13, for example, these materials are formed by forming a predetermined mask on n
It can be formed on the layer 2 or the first electrode 11 by using a method such as vapor deposition or sputtering.

【0015】図2は本発明の他の実施例に係る発光素子
の構造を示す模式断面図であり、図1と異なるところ
は、保護膜13を第一の電極11とn層2とに連続して
形成したことである。このように保護膜13をn層の電
極4、ボンディング用の第二の電極12を残して全面に
形成することにより、発光素子の信頼性が図1の素子に
比べてさらに向上する。
FIG. 2 is a schematic cross-sectional view showing the structure of a light emitting device according to another embodiment of the present invention. The difference from FIG. 1 is that a protective film 13 is connected to the first electrode 11 and the n-layer 2. It was formed. By forming the protective film 13 on the entire surface except the n-layer electrode 4 and the second electrode 12 for bonding, the reliability of the light emitting element is further improved as compared with the element of FIG.

【0016】図3も本発明の他の実施例に係る発光素子
の構造を示す模式断面図である。この発光素子は、保護
膜13を第一の電極11と第二の電極とに連続して形成
しており、さらにn層の電極4にも連続して形成してい
る。このように保護膜13を第二の電極の表面にも連続
して形成することにより、第二の電極は保護膜により押
さえつけられるような構造となるため、第二の電極12
が第一の電極11より剥がれるのを防止することができ
る。また、n層の電極4の上にも形成しているので、n
層の電極4がn層2から剥がれるのも防止でき、特に信
頼性に優れた発光素子を提供することができる。なお、
保護膜13を形成する際、n層の電極4、第二の電極1
2の表面にボンディング可能なように、金属面を露出さ
せた箇所を残しておくことは言うまでもない。
FIG. 3 is a schematic sectional view showing the structure of a light emitting device according to another embodiment of the present invention. In this light-emitting element, the protective film 13 is formed continuously on the first electrode 11 and the second electrode, and further formed continuously on the n-layer electrode 4. By continuously forming the protective film 13 on the surface of the second electrode in this manner, the second electrode has a structure pressed down by the protective film.
Can be prevented from peeling off from the first electrode 11. Also, since it is also formed on the n-layer electrode 4, n
It is also possible to prevent the electrode 4 of the layer from being peeled off from the n-layer 2, and it is possible to provide a light emitting element having particularly excellent reliability. In addition,
When forming the protective film 13, the n-layer electrode 4 and the second electrode 1
Needless to say, a portion where the metal surface is exposed is left so that bonding can be performed on the surface of No. 2.

【0017】図4は本願の他の実施例による発光素子を
電極側からみた平面図である。この発光素子はn層の電
極4と第二の電極12とを対角線上の隅部に配置してい
る。つまり、図3に示す第二の電極12をn層の電極4
と対角線上になるように、第一の電極11の隅部に配置
したものである。このようにn層の電極4と第二の電極
12とを配置することにより、電流がp層3全体に最も
よく広がり、p層3全体を均一に発光させることがで
き、最も発光効率が向上する。さらに保護膜13は図3
と同じく、第一の電極11上と、第二の電極12上と、
n層の電極4上とに連続して形成しており、発光素子の
発光観測面側は保護膜13でほとんど覆われている。
FIG. 4 is a plan view of a light emitting device according to another embodiment of the present invention as viewed from the electrode side. In this light-emitting element, the n-layer electrode 4 and the second electrode 12 are arranged at diagonal corners. That is, the second electrode 12 shown in FIG.
It is arranged at the corner of the first electrode 11 so as to be on a diagonal line. By arranging the n-layer electrode 4 and the second electrode 12 in this manner, the current spreads best throughout the p-layer 3 and the entire p-layer 3 can emit light uniformly, and the luminous efficiency is improved most. I do. Further, the protective film 13 is shown in FIG.
Similarly, on the first electrode 11, on the second electrode 12,
It is formed continuously on the n-layer electrode 4, and the light emission observing surface side of the light emitting element is almost covered with the protective film 13.

【0018】以上、n層とp層とを順に積層したホモ構
造の発光素子について説明したが、本願は同一面側の電
極を発光観測面とする窒化ガリウム系化合物半導体発光
素子であれば、ダブルヘテロ構造、シングルヘテロ構造
等の発光素子の構造は問わず、あらゆる構造に適用でき
る。
Although the light emitting device having the homo structure in which the n-layer and the p-layer are sequentially stacked has been described above, the present invention is directed to a double gallium nitride-based compound semiconductor light-emitting device having an electrode on the same surface as a light emission observation surface. It can be applied to any structure regardless of the structure of the light emitting element such as a hetero structure and a single hetero structure.

【0019】[0019]

【発明の効果】従来の窒化ガリウム系化合物半導体発光
素子はMIS構造であったため、電極間の絶縁は全く考
えられていなかった。しかしp−n接合を有し、同一面
側から電極を取りだした構造の窒化ガリウム系化合物半
導体発光素子では、電極間の絶縁が非常に重要である。
本発明では、保護膜の作用により電極間の絶縁性が格段
に向上して、信頼性に優れた発光素子を提供することが
できる。しかも第一の電極および保護膜とも透光性であ
るため窒化ガリウム系化合物半導体層の発光を電極側か
ら観測でき外部量子効率が向上する。また保護膜により
電極に傷が入ることがなく、さらに電極の剥がれがない
ため、製造歩留が向上する。
Since the conventional gallium nitride-based compound semiconductor light emitting device has the MIS structure, insulation between the electrodes has not been considered at all. However, in a gallium nitride-based compound semiconductor light emitting device having a pn junction and a structure in which electrodes are taken out from the same surface, insulation between the electrodes is very important.
According to the present invention, the insulating property between the electrodes is remarkably improved by the function of the protective film, and a highly reliable light-emitting element can be provided. In addition, since both the first electrode and the protective film are translucent, light emission of the gallium nitride-based compound semiconductor layer can be observed from the electrode side, and external quantum efficiency is improved. In addition, since the protective film does not damage the electrode and the electrode does not peel off, the production yield is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例による発光素子の構造を示
す模式断面図。
FIG. 1 is a schematic sectional view showing the structure of a light emitting device according to one embodiment of the present invention.

【図2】 本発明の他の実施例による発光素子の構造を
示す模式断面図。
FIG. 2 is a schematic sectional view showing a structure of a light emitting device according to another embodiment of the present invention.

【図3】 本発明の他の実施例による発光素子の構造を
示す模式断面図。
FIG. 3 is a schematic sectional view showing a structure of a light emitting device according to another embodiment of the present invention.

【図4】 本発明の他の実施例による発光素子を電極側
からみた平面図。
FIG. 4 is a plan view of a light emitting device according to another embodiment of the present invention as viewed from an electrode side.

【符号の説明】[Explanation of symbols]

1・・・サファイア基板 2・・・n型窒化ガリウム系化合物半導体層 3・・・p型窒化ガリウム系化合物半導体層 4・・・n層の電極 11・・・第一の電極 12・・・第二の電極 13・・・保護膜 DESCRIPTION OF SYMBOLS 1 ... Sapphire substrate 2 ... N-type gallium nitride compound semiconductor layer 3 ... P-type gallium nitride compound semiconductor layer 4 ... N-layer electrode 11 ... First electrode 12 ... Second electrode 13: protective film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−321280(JP,A) 特開 平5−129658(JP,A) 特開 平5−13816(JP,A) 特開 平2−68968(JP,A) 特開 昭56−79482(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 33/00────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-4-321280 (JP, A) JP-A-5-129658 (JP, A) JP-A-5-13816 (JP, A) JP-A-2- 68968 (JP, A) JP-A-56-79482 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 33/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 矩形の基板上に、n型窒化ガリウム系化
合物半導体とp型窒化ガリウム系化合物半導体とが積層
され、上記p型窒化ガリウム系化合物半導体層にp電極
が形成される一方、上記p型窒化ガリウム系化合物半導
体層の一部が除去されて露出されたn型窒化ガリウム系
化合物半導体層にn電極が形成され、同一面側にn層の
電極とp層の電極とが位置し、それらの電極側を発光観
測面側とする窒化ガリウム系化合物半導体発光素子にお
いて、 前記p電極がp型窒化ガリウム系化合物半導体層のほぼ
全面に形成された透光性を有する金属薄膜よりなる第一
の電極と、その第一の電極上に形成されたボンディング
用の第二の電極とからなり、 前記n電極と前記第二の電極とが、矩形の基板の対角線
上にある半導体層の各隅部に配置されて、その間にある
前記第一の電極面が前記発光観測面とされており、 さらに前記n電極から第二の電極に渡って連続し、前記
発光観測面をなす第一の電極面を覆い、かつ前記n電極
と第一の電極とを絶縁する透光性の保護膜が形成されて
いることを特徴とする窒化ガリウム系化合物半導体発光
素子。
An n-type gallium nitride-based compound semiconductor and a p-type gallium nitride-based compound semiconductor are stacked on a rectangular substrate, and a p-electrode is formed on the p-type gallium nitride-based compound semiconductor layer. An n-electrode is formed on the exposed n-type gallium nitride-based compound semiconductor layer after a part of the p-type gallium nitride-based compound semiconductor layer is removed, and the n-layer electrode and the p-layer electrode are located on the same surface side. A gallium nitride-based compound semiconductor light-emitting device having the electrode side as a light emission observation surface side, wherein the p-electrode is formed of a translucent metal thin film formed on almost the entire surface of a p-type gallium nitride-based compound semiconductor layer. One electrode and a second electrode for bonding formed on the first electrode, wherein the n-electrode and the second electrode are each a semiconductor layer on a diagonal line of a rectangular substrate. Located in the corner , The first electrode surface therebetween is the light emission observation surface, and further extends from the n electrode to the second electrode, covering the first electrode surface forming the light emission observation surface, and A gallium nitride-based compound semiconductor light emitting device, wherein a light-transmitting protective film for insulating the n-electrode and the first electrode is formed.
【請求項2】 前記保護膜は前記第一の電極上に形成さ
れる前記第二の電極の表面の一部にも連続して形成され
ていることを特徴とする請求項1に記載の窒化ガリウム
系化合物半導体発光素子。
2. The nitride according to claim 1, wherein the protective film is continuously formed on a part of the surface of the second electrode formed on the first electrode. Gallium compound semiconductor light emitting device.
【請求項3】 前記保護膜は前記n電極の表面の一部に
も連続して形成されていることを特徴とする請求項1に
記載の窒化ガリウム系化合物半導体発光素子。
3. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the protective film is formed continuously on a part of the surface of the n-electrode.
JP23468593A 1993-01-28 1993-09-21 Gallium nitride based compound semiconductor light emitting device Expired - Lifetime JP2770717B2 (en)

Priority Applications (29)

Application Number Priority Date Filing Date Title
JP23468593A JP2770717B2 (en) 1993-09-21 1993-09-21 Gallium nitride based compound semiconductor light emitting device
TW083103775A TW403945B (en) 1993-04-28 1994-04-27 Gallium nitride based III - V group compound semiconductor device having an ohmic electrode and producing method thereof
EP99114356A EP0952617B1 (en) 1993-04-28 1994-04-27 Gallium nitride-based III-V group compound semiconductor device
TW90209918U TW491406U (en) 1993-04-28 1994-04-27 Gallium nitride-based III-V group compound semiconductor device having an ohmic electrode
DE69433926T DE69433926T2 (en) 1993-04-28 1994-04-27 A semiconductor device of a gallium nitride III-V semiconductor compound
DE69425186T DE69425186T3 (en) 1993-04-28 1994-04-27 A gallium nitride III-V semiconductor device semiconductor device and method for its production
EP94106587A EP0622858B2 (en) 1993-04-28 1994-04-27 Gallium nitride-based III-V group compound semiconductor device and method of producing the same
EP04012118A EP1450415A3 (en) 1993-04-28 1994-04-27 Gallium nitride-based III-V group compound semiconductor device
KR1019940009055A KR100286699B1 (en) 1993-01-28 1994-04-27 Gallium Nitride Group 3-5 Compound Semiconductor Light-Emitting Device and Manufacturing Method Thereof
US08/234,001 US5563422A (en) 1993-04-28 1994-04-28 Gallium nitride-based III-V group compound semiconductor device and method of producing the same
CN94106935A CN1046375C (en) 1993-04-28 1994-04-28 Gallium nitride-based III-V compound semiconductor device and manufacturing method thereof
CNB031458696A CN1240143C (en) 1993-04-28 1994-04-28 Gallium nitride-based III-V group compound semiconductor
CNB03145870XA CN1262024C (en) 1993-04-28 1994-04-28 Method for manufacturing gallium nitride-based III-V compound semiconductor device
CNB03145867XA CN1240142C (en) 1993-04-28 1994-04-28 Gallium nitride group compound semiconductor photogenerator
CNB031458688A CN1253948C (en) 1993-04-28 1994-04-28 Gallium nitride-based III-V group compound semiconductor
US08/665,759 US5652434A (en) 1993-04-28 1996-06-17 Gallium nitride-based III-V group compound semiconductor
US08/670,242 US5767581A (en) 1993-04-28 1996-06-17 Gallium nitride-based III-V group compound semiconductor
US08/995,167 US5877558A (en) 1993-04-28 1997-12-19 Gallium nitride-based III-V group compound semiconductor
KR1019980022092A KR100225612B1 (en) 1993-04-28 1998-06-12 Gallium nitride-based iii-v group compound semiconductor
CNB981183115A CN1262021C (en) 1993-04-28 1998-08-11 Gallium nitride-based III-V compound semiconductor device and manufacturing method thereof
US09/209,826 US6093965A (en) 1993-04-28 1998-12-11 Gallium nitride-based III-V group compound semiconductor
KR1019990032148A KR100551364B1 (en) 1993-04-28 1999-08-05 Gallium nitride compound semiconductor light emitting device and electrode formation method thereof
US09/448,479 US6204512B1 (en) 1993-04-28 1999-11-24 Gallium nitride-based III-V group compound semiconductor device and method of producing the same
US09/750,912 US6507041B2 (en) 1993-04-28 2001-01-02 Gallium nitride-based III-V group compound semiconductor
US10/292,583 US6610995B2 (en) 1993-04-28 2002-11-13 Gallium nitride-based III-V group compound semiconductor
KR1020030035961A KR100551365B1 (en) 1993-04-28 2003-06-04 Gallium nitride compound semiconductor light emitting device
US10/609,410 US6998690B2 (en) 1993-04-28 2003-07-01 Gallium nitride based III-V group compound semiconductor device and method of producing the same
US11/198,465 US7205220B2 (en) 1993-04-28 2005-08-08 Gallium nitride based III-V group compound semiconductor device and method of producing the same
US11/714,890 US7375383B2 (en) 1993-04-28 2007-03-07 Gallium nitride based III-V group compound semiconductor device and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23468593A JP2770717B2 (en) 1993-09-21 1993-09-21 Gallium nitride based compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH0794783A JPH0794783A (en) 1995-04-07
JP2770717B2 true JP2770717B2 (en) 1998-07-02

Family

ID=16974837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23468593A Expired - Lifetime JP2770717B2 (en) 1993-01-28 1993-09-21 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2770717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285858B2 (en) 2003-11-14 2007-10-23 Stanley Electric Co., Ltd. Semiconductor device and its manufacture method capable of preventing short circuit of electrodes when semiconductor device is mounted on sub-mount substrate

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JPH10294493A (en) * 1997-02-21 1998-11-04 Toshiba Corp Semiconductor light emitting device
JPH10256602A (en) * 1997-03-12 1998-09-25 Sharp Corp Semiconductor light emitting device
US6268618B1 (en) 1997-05-08 2001-07-31 Showa Denko K.K. Electrode for light-emitting semiconductor devices and method of producing the electrode
JP4597363B2 (en) * 1997-08-29 2010-12-15 クリー インコーポレイテッド Reliable and robust Group III light emitting diodes used in standard packages
US6825501B2 (en) * 1997-08-29 2004-11-30 Cree, Inc. Robust Group III light emitting diode for high reliability in standard packaging applications
JP4810751B2 (en) * 2001-04-19 2011-11-09 日亜化学工業株式会社 Nitride semiconductor device
JP2003168822A (en) * 2001-11-30 2003-06-13 Shin Etsu Handotai Co Ltd Light emitting device and manufacturing method thereof
CN100524855C (en) 2004-03-31 2009-08-05 日亚化学工业株式会社 Nitride semiconductor light emitting device
DE102004037868A1 (en) * 2004-04-30 2005-11-24 Osram Opto Semiconductors Gmbh A radiation emitting and / or receiving semiconductor device and method for patterning a contact on a semiconductor body
JPWO2006028118A1 (en) * 2004-09-08 2008-05-08 ローム株式会社 Semiconductor light emitting device
JP2008263246A (en) * 2008-08-06 2008-10-30 Sanyo Electric Co Ltd Light-emitting device
JP5692348B2 (en) * 2013-12-18 2015-04-01 セイコーエプソン株式会社 Solid state light source device, projector, monitor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679482A (en) * 1979-11-30 1981-06-30 Matsushita Electric Ind Co Ltd Luminous element of semiconductor
JPH0268968A (en) * 1988-09-02 1990-03-08 Sharp Corp Compound semiconductor light emitting device
JP2791448B2 (en) * 1991-04-19 1998-08-27 日亜化学工業 株式会社 Light emitting diode
JP2932769B2 (en) * 1991-06-28 1999-08-09 豊田合成株式会社 Semiconductor light emitting device
JP2666228B2 (en) * 1991-10-30 1997-10-22 豊田合成株式会社 Gallium nitride based compound semiconductor light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285858B2 (en) 2003-11-14 2007-10-23 Stanley Electric Co., Ltd. Semiconductor device and its manufacture method capable of preventing short circuit of electrodes when semiconductor device is mounted on sub-mount substrate
US7470987B2 (en) 2003-11-14 2008-12-30 Stanley Electric Co., Ltd. Semiconductor device and its manufacture method capable of preventing short circuit of electrodes when semiconductor device is mounted on sub-mount substrate

Also Published As

Publication number Publication date
JPH0794783A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
JP3333356B2 (en) Semiconductor device
JP3940438B2 (en) Semiconductor light emitting device
KR100551365B1 (en) Gallium nitride compound semiconductor light emitting device
JP3531475B2 (en) Flip chip type optical semiconductor device
KR101280400B1 (en) Optoelectronic device and the manufacturing method thereof
JP3787202B2 (en) Semiconductor light emitting device
US6812502B1 (en) Flip-chip light-emitting device
CN100423307C (en) Semiconductor light emitting device provided with protection diode element
KR101017395B1 (en) Light emitting device having a plurality of light emitting cells and method of manufacturing same
US20150280086A1 (en) Wafer level light-emitting diode array
US8022430B2 (en) Nitride-based compound semiconductor light-emitting device
JP2770717B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3207773B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
JPH114020A (en) Semiconductor light emitting element, method of manufacturing the same, and semiconductor light emitting device
JP2006100500A (en) Semiconductor light emitting device and manufacturing method thereof
JPH0794782A (en) Gallium nitride compound semiconductor light emitting device
JP3068914U (en) Flip-chip light emitting device
JP3663281B2 (en) Semiconductor light emitting device
US12255269B2 (en) Light emitting device
KR20010088929A (en) AlGaInN LED device and their fabrication method
JP4474892B2 (en) Flip chip type LED
JPH1187771A (en) Nitride semiconductor device
JP4759791B2 (en) Optical semiconductor device and manufacturing method thereof
KR20100075420A (en) Light emitting device having plurality of light emitting cells and method of fabricating the same
JP3303154B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110417

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110417

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 16

EXPY Cancellation because of completion of term