JP2771737B2 - Fabrication method of core expanded optical fiber - Google Patents
Fabrication method of core expanded optical fiberInfo
- Publication number
- JP2771737B2 JP2771737B2 JP4173955A JP17395592A JP2771737B2 JP 2771737 B2 JP2771737 B2 JP 2771737B2 JP 4173955 A JP4173955 A JP 4173955A JP 17395592 A JP17395592 A JP 17395592A JP 2771737 B2 JP2771737 B2 JP 2771737B2
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- core
- electric furnace
- heating
- small electric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、光伝送路として使用さ
れる光ファイバにより作製され、異種光ファイバ間の接
続や光部品と光ファイバとの接続等に用いられるコア拡
大光ファイバの作製方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a core-enlarged optical fiber which is manufactured by using an optical fiber used as an optical transmission line, and which is used for connection between different kinds of optical fibers or connection between an optical component and an optical fiber. It is about.
【0002】[0002]
【従来の技術】コア拡大光ファイバは光ファイバのコア
形成のために添加されたドーピング剤を径方向に拡散さ
せることにより、その拡大したコアを伝搬する光信号の
モード・フィールド径を拡大させた光ファイバである。2. Description of the Related Art In a core-expanded optical fiber, a doping agent added to form an optical fiber core is diffused in a radial direction, thereby increasing the mode / field diameter of an optical signal propagating through the expanded core. Optical fiber.
【0003】コア拡大光ファイバの作製は光ファイバが
溶融せずかつ、コア内のドーピング剤が熱拡散する温度
で光ファイバを加熱することによりおこなわれる。従来
のコア拡大光ファイバの作製方法としては次の3つがあ
った。 1)光ファイバを石英管に真空封入して、電気炉で加熱
する方法 2)マイクロ・バーナを用いて大気中で加熱する方法 3)大気中での放電加熱法[0003] Fabrication of a core-expanded optical fiber is performed by heating the optical fiber at a temperature at which the optical fiber does not melt and the dopant in the core thermally diffuses. There have been the following three methods for producing a conventional core-enlarged optical fiber. 1) A method in which an optical fiber is vacuum-sealed in a quartz tube and heated in an electric furnace. 2) A method in which heating is performed in the atmosphere using a micro burner. 3) A discharge heating method in the atmosphere.
【0004】昭和63年電子情報通信学会春季全国大会
講演論文集C−457の論文「光ファイバ埋込型デバイ
スの一構成法」(川上、白石、相沢)と、1989年電
子情報通信学会春季全国大会講演論文集C−451の論
文「光ファイバ埋込型デバイス用スポットサイズ変換フ
ァイバの試作」(白石、相沢、川上)とにあるように、
1)の方法では30cm程度の長さの光ファイバの被覆を
除去し、石英管に真空封入した後に加熱処理していたた
め、真空封入という前処理が必要である。加熱処理前に
光ファイバを短尺で切断し被覆を除去するため、実際の
使用時には他の被覆された光ファイバに接続する必要が
ある。加熱温度が1400℃程度までしか加えられない
ため、長い熱処理時間を必要とする、等の欠点を有して
いた。上記論文によれば、コア拡大のための熱処理条件
の典型例としては1300℃で5時間の加熱が必要であ
った。[0004] The paper "One Constitution Method of Optical Fiber Embedded Device" (Kawakami, Shiraishi, Aizawa) in C-457, Proceedings of the IEICE Spring National Convention, 1988, and the IEICE Spring National Conference, 1989. As described in the paper of the conference paper C-451 "Prototype of spot size conversion fiber for optical fiber embedded device" (Shiraishi, Aizawa, Kawakami)
In the method (1), the coating of the optical fiber having a length of about 30 cm is removed, and the optical fiber is heat-treated after being vacuum-sealed in a quartz tube. Therefore, a pretreatment of vacuum-sealing is necessary. Before the heat treatment, the optical fiber is cut in a short length to remove the coating, so that it is necessary to connect to another coated optical fiber in actual use. Since the heating temperature can be applied only up to about 1400 ° C., it has a disadvantage that a long heat treatment time is required. According to the above-mentioned article, heating at 1300 ° C. for 5 hours was necessary as a typical example of the heat treatment conditions for expanding the core.
【0005】2)の方法はエレクトロニクスレター27
巻21号(1991年)の頁1968〜1969の論
文"THERMALL-DIFFUSED EXPANDED CORE FIBRES FOR LOW-
LOSS AND INEXPENSIVE PHOTONIC COMPONENTS" BY H.HAN
AFUSA, M.HORIGUCHI,AND J.NODA にあるように、加熱時
間は大幅に短縮されるが、加熱手段がバーナであるため
炎のゆらぎと経時変化を止めることは本質的に困難であ
り、得られるコア径の再現性に乏しく、光ファイバの長
さ方向の拡大コアの径分布が滑らかでない等の欠点を有
していた。また、コア拡大範囲が炎の大きさにより制限
され、広い範囲の拡大は困難であった。図5に上記論文
に記載されたFig.1 を示す。同図はモード・フィールド
径の加熱時間依存性を示しているが、モード・フィール
ド径がばらついている様子が解る。図6は上記論文に記
載されたFig.2である。同図はモード・フィールド径の
光ファイバ長さ方向の分布を示しているが、対称性及び
なだらかさに欠けていることが解る。また、コア拡大の
範囲はバーナを光ファイバの長さ方向に振ってもあまり
拡大されていない。The method 2) is based on the electronic letter 27.
Vol. 21 (1991), pages 1968-1969, "THERMALL-DIFFUSED EXPANDED CORE FIBERS FOR LOW-
LOSS AND INEXPENSIVE PHOTONIC COMPONENTS "BY H.HAN
As described in AFUSA, M. HORIGUCHI, AND J. NODA, the heating time is greatly reduced, but it is essentially difficult to stop the fluctuation and the aging of the flame because the heating means is a burner. However, there is a drawback that the reproducibility of the core diameter is poor and the diameter distribution of the enlarged core in the length direction of the optical fiber is not smooth. Further, the core expansion range is limited by the size of the flame, and it is difficult to expand a wide range. Fig. 5 shows Fig. 1 described in the above paper. This figure shows the dependence of the mode field diameter on the heating time. It can be seen that the mode field diameter varies. FIG. 6 is FIG. 2 described in the above paper. This figure shows the distribution of the mode field diameter in the length direction of the optical fiber, but it can be seen that the symmetry and the smoothness are lacking. Further, the range of the core expansion is not greatly expanded even if the burner is swung in the length direction of the optical fiber.
【0006】また、3)の方法はエレクトロニクスレタ
ー27巻17号(1991年)の頁1597〜1599
の論文”SIMPLE FUSION SPLICING TECHNIQUE FOR REDUC
INGSPLICING LOSS BETWEEN STANDARD SINGLEMODE FIBRE
S AND ERBIUM-DOPED FIBRE"BY H.Y.TAM にあるように、
再現性は2)の方法よりも優れるものの、加熱範囲が1
mm以下と2)の方法よりも更に狭く、拡大コア径の長さ
方向の変化が急激となるため、光伝送損失の増加を抑え
たままのコア拡大の上限が制限されていた。また、コア
拡大面を切断し光部品を接続する場合は切断面の位置精
度は0.1mm以下を必要とし実用上問題であった。これら
の理由により3)の方法の適用例は異種光ファイバの接
続のみであり、適用範囲が制限されていた。The method 3) is described in Electronics Letters, Vol. 27, No. 17, 1991, pp. 1597-1599.
Paper “SIMPLE FUSION SPLICING TECHNIQUE FOR REDUC
INGSPLICING LOSS BETWEEN STANDARD SINGLEMODE FIBER
As in S AND ERBIUM-DOPED FIBER "BY HYTAM,
Although the reproducibility is superior to the method of 2), the heating range is 1
mm or less and the change in the length direction of the enlarged core diameter is sharper than in the method of 2), so that the upper limit of the core enlargement while suppressing the increase in the optical transmission loss is limited. Further, when connecting the optical component by cutting the enlarged core surface, the positional accuracy of the cut surface needs to be 0.1 mm or less, which is a practical problem. For these reasons, the application example of the method 3) is only connection of heterogeneous optical fibers, and the application range is limited.
【0007】[0007]
【発明が解決しようとする課題】以上の状況より明らか
なように、従来のコア拡大光ファイバ作製技術では大気
中で電気炉による熱処理は困難であった。As is apparent from the above situation, it has been difficult to perform a heat treatment with an electric furnace in the air in the conventional core-enlarged optical fiber manufacturing technique.
【0008】一方、本発明者らは、光ファイバの延伸・
融着などの加熱を施す光ファイバ加工用小型電気炉を先
に堤案した(特開平3−187937号公報参照)。か
かる小型電気炉は図7に示すように、両端が開口し、割
り2が軸方向に設けられて、光ファイバ4を収容するア
ルミナ絶縁管(炉心管)1に、白金箔3がくし状に接続
固定したものであり、白金箔3に両端から電流を流して
白金箔3を発熱体としてアルミナ絶縁管1を加熱するこ
とで、光ファイバ4の延伸・融着を施している。[0008] On the other hand, the present inventors have proposed an optical fiber drawing and
A small electric furnace for processing an optical fiber for heating such as fusion was first proposed (see Japanese Patent Application Laid-Open No. 3-187937). As shown in FIG. 7, such a small electric furnace has both ends open, a split 2 is provided in the axial direction, and a platinum foil 3 is connected in a comb shape to an alumina insulating tube (furnace tube) 1 for housing an optical fiber 4. The optical fiber 4 is stretched and fused by applying a current to the platinum foil 3 from both ends and heating the alumina insulating tube 1 using the platinum foil 3 as a heating element.
【0009】そこで、この小型電気炉を用いて大気中で
コア拡大光ファイバを作製することとしたが、炉外に露
出した部分の光ファイバの温度が上昇して光ファイバ4
に曲がりが生じ易く、再現性の観点より実用的でなく、
問題があった。Therefore, the core-expanded optical fiber is manufactured in the atmosphere using this small electric furnace. However, the temperature of the optical fiber exposed outside the furnace rises and the optical fiber 4
Is easy to bend, which is not practical from the viewpoint of reproducibility,
There was a problem.
【0010】本発明は、かかる事情に鑑みなされたもの
であり、その目的は特性に優れ、適用範囲が広いと共
に、生産性及び再現性の良いコア拡大光ファイバの作製
方法を提供することにある。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of manufacturing a core-enlarged optical fiber having excellent characteristics, a wide application range, and high productivity and reproducibility. .
【0011】[0011]
【課題を解決するための手段】前記目的を達成する本発
明に係るコア拡大光ファイバの作製方法は、光ファイバ
のコア形成のために添加されたドーピング剤が加熱拡散
されてなるコア拡大光ファイバの作方法において、加熱
手段として小型電気炉を用い、大気中で、光ファイバの
炉中心付近の最高温度を1500℃〜1700℃とし、
炉両端で900℃以下の温度として熱処理することを特
徴とする。According to the present invention, there is provided a method of manufacturing a core-expanded optical fiber, comprising the steps of: In the method of the above, using a small electric furnace as a heating means, in the atmosphere, the maximum temperature near the furnace center of the optical fiber is 1500 ℃ ~ 1700 ℃,
The heat treatment is performed at a temperature of 900 ° C. or less at both ends of the furnace.
【0012】[0012]
【実施例】以下、本発明の効果を示す好適な実施例を説
明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments showing the effects of the present invention will be described below.
【0013】実施例1 第1の実施例として、コア拡大処理用小型電気炉加熱に
よるモード・フィールド径変化の加熱条件依存性の例を
示す。まず、コア拡大光ファイバの作製手順を示す。用
いた光ファイバがGeO2 をドープしてコアを形成した
石英系単一モード光ファイバで、コア径7.3μm、比屈
折率差0.32%、ファイバ外径125μm、UV被覆外
径250μmの標準的な単一モード光ファイバとした。
熱処理前に55mmの長さで被覆を除去し、裸光ファイバ
部の表面をアセトンで洗浄した。この裸光ファイバ部を
2つの固定治具の間に固定し、その中央部を光ファイバ
加工用小型電気炉に挿入して、熱処理をおこなった。 Embodiment 1 As a first embodiment, an example of the dependence of the mode / field diameter change on heating conditions by heating a small electric furnace for core enlargement processing will be described. First, a manufacturing procedure of the core-enlarged optical fiber will be described. The optical fiber used is a silica-based single mode optical fiber having a core formed by doping GeO 2 and having a core diameter of 7.3 μm, a relative refractive index difference of 0.32%, a fiber outer diameter of 125 μm, and a UV coating outer diameter of 250 μm. A standard single mode optical fiber was used.
Before the heat treatment, the coating was removed to a length of 55 mm, and the surface of the bare optical fiber was washed with acetone. The bare optical fiber portion was fixed between two fixing jigs, and the central portion thereof was inserted into a small electric furnace for processing an optical fiber to perform a heat treatment.
【0014】この熱処理は裸光ファイバの炉中心付近の
最高温度を1500〜1700℃とすると共に、炉両端
近傍の温度を900℃以下として行うこととした。ここ
で、最高温度を1500〜1700℃とするのは170
0℃を超えて加熱した場合光ファイバの表面が融点以上
となり蒸発し、好ましくないからであり、又、1500
℃よりも低い場合には加熱に時間がかかり好ましくない
からである。また、炉両端近傍の温度を900℃以下と
するのは、900℃を超えた場合光ファイバに曲がりが
生じ易く好ましくないからである。よって、本実施例に
おいては炉芯管を長くし、炉の中心温度をコア拡大処理
のための温度(1500〜1700℃)に設定しても、
炉両端での光ファイバの温度が900℃を超えないよう
にした。This heat treatment is performed so that the maximum temperature of the bare optical fiber near the center of the furnace is 1500 to 1700 ° C. and the temperature near both ends of the furnace is 900 ° C. or less. Here, the maximum temperature is set to 1500 to 1700 ° C.
This is because, when heating is performed at a temperature exceeding 0 ° C., the surface of the optical fiber evaporates due to its melting point or higher, which is undesirable.
If the temperature is lower than ° C, heating takes a long time, which is not preferable. The reason why the temperature near both ends of the furnace is 900 ° C. or lower is that if the temperature exceeds 900 ° C., the optical fiber is likely to bend, which is not preferable. Therefore, in this embodiment, even if the furnace core tube is lengthened and the center temperature of the furnace is set to the temperature for core expansion processing (1500 to 1700 ° C.),
The temperature of the optical fiber at both ends of the furnace did not exceed 900 ° C.
【0015】図1は、用いたコア拡大処理用小型電気炉
の構造を示す図であって、同図中、10はコア拡大処理
用小型電気炉、11は内径2mm,長さ50mmのアルミナ
絶縁管、12は合金薄膜抵抗体熱源、13は電流端子で
両側の電流端子の間隔は35mm、14は発泡アルミナの
断熱材、15はアルミナ絶縁管11を保持するための耐
火セメント、16は熱処理する光ファイバを各々図示し
ている。また、アルミナ絶縁管11及び発泡アルミナの
断熱材14には、上面に幅0.4mmの長さ方向の割り1
7,18が各々入れられている。光ファイバ16はこの
割り17,18を通して横方向よりコア拡大処理用小型
電気炉10に挿入されるため特に切断する必要はなく、
任意の長さの光ファイバの任意の点でコア拡大処理がお
こなえる。FIG. 1 is a view showing the structure of a small electric furnace for core enlargement treatment used, in which 10 is a small electric furnace for core enlargement treatment, and 11 is an alumina insulation having an inner diameter of 2 mm and a length of 50 mm. A tube, 12 is an alloy thin film resistor heat source, 13 is a current terminal, the distance between current terminals on both sides is 35 mm, 14 is a heat insulating material of foamed alumina, 15 is a refractory cement for holding the alumina insulating tube 11, and 16 is heat treatment. Each optical fiber is shown. In addition, the alumina insulating tube 11 and the insulating material 14 of foamed alumina are provided on the upper surface with a width of 0.4 mm in the length direction.
7, 18 are respectively inserted. Since the optical fiber 16 is inserted into the small electric furnace 10 for core enlargement processing from the lateral direction through the splits 17 and 18, there is no need to cut the optical fiber 16 in particular.
The core enlargement process can be performed at an arbitrary point on an optical fiber having an arbitrary length.
【0016】図2は、1.31μmLD光源で測定した、
1600℃加熱時の加熱中心部のモード・フィールド径
の加熱時間依存性を示している。この加熱時の炉両端で
光ファイバの加熱温度は約800℃であった。モード・
フィールド径はばらつき少なく、ほぼ1つの曲線上にの
って単調に増加していることが判る。モード・フィール
ド径が2倍となる加熱時間は約55分で、従来の真空封
入する電気炉加熱法と比較して処理時間が1/5程度に
短縮されていることになる。FIG. 2 shows the results measured with a 1.31 μm LD light source.
The heating time dependence of the mode field diameter at the center of heating at 1600 ° C. is shown. The heating temperature of the optical fiber at both ends of the furnace during this heating was about 800 ° C. mode·
It can be seen that the field diameter is small and increases monotonically on almost one curve. The heating time for doubling the mode / field diameter is about 55 minutes, which means that the processing time is reduced to about 1/5 as compared with the conventional vacuum-filled electric furnace heating method.
【0017】図3はモード・フィールド径の光ファイバ
の長さ方向の分布を示す図である。モード・フィールド
径は対称的に、滑らかに分布していることが判る。ここ
では長さ50mmの小型電気炉を用いたが、炉長を変える
ことによりコア拡大範囲は拡大され、よりなだらかなコ
ア径分布を得ることができる。FIG. 3 shows the distribution of the mode field diameter in the longitudinal direction of the optical fiber. It can be seen that the mode and field diameters are distributed symmetrically and smoothly. Although a small electric furnace having a length of 50 mm was used here, the core expansion range was expanded by changing the furnace length, and a more gentle core diameter distribution could be obtained.
【0018】この手順及び結果から判るように、従来の
真空封入する電気炉加熱法と比較し、光ファイバを短尺
に切断する必要がない。被覆を必要以上の長さに除去す
る必要がない、石英管に光ファイバを真空封入する必要
がない、熱処理時間が格段に短縮化される等の利点があ
る。As can be seen from this procedure and the results, there is no need to cut the optical fiber into a short length as compared with the conventional vacuum-filled electric furnace heating method. There are advantages that there is no need to remove the coating to an unnecessarily long length, there is no need to vacuum-enclose the optical fiber in the quartz tube, and the heat treatment time is significantly shortened.
【0019】また、マイクロバーナ加熱法と比較し、得
られる拡大コア径の再現性に優れる、拡大コア径の光フ
ァイバの長さ方向の分布が滑らかで対称性に優れる、コ
ア拡大の範囲を変化させることができる等の利点を有す
る。Compared with the micro burner heating method, the obtained enlarged core diameter is excellent in reproducibility, the distribution of the enlarged core diameter in the longitudinal direction of the optical fiber is smooth and excellent in symmetry, and the range of the core expansion is changed. It has the advantage that it can be performed.
【0020】さらに、放電加熱法と比較しコア拡大範囲
を広くなだらかにできるため、より大きくコアを拡大す
ることが可能となる、光部品接続等への適用範囲が制限
されないという利点を有する。Further, since the core expansion range can be made wider and gentler than the discharge heating method, there is an advantage that the core can be expanded more greatly and the application range to optical component connection and the like is not limited.
【0021】また前述した特願平1−326087号公
報に示す光ファイバ加工用小型電気炉を用いただけの場
合と比較し、コア拡大処理中に光ファイバに曲がりが生
じない利点を有する。すなわち、同公報による光ファイ
バ加工用小型電気炉では、加工する光ファイバの被覆除
去長さを抑えるために、全長が短くできる端子構造を採
用しているが、そのため炉外に露出した部分の光ファイ
バの温度が上昇して光ファイバが軟化し、その部分での
温度分布が外乱の影響を受け安定しないため、曲がりの
原因となっていたが、本方法によりその欠点を克服し
た。Also, as compared with the case of using only a small electric furnace for processing an optical fiber disclosed in Japanese Patent Application No. 1-326087, there is an advantage that the optical fiber is not bent during the core enlarging process. That is, the small electric furnace for processing optical fibers according to the publication employs a terminal structure capable of shortening the entire length in order to suppress the length of coating removal of the optical fiber to be processed. The optical fiber was softened due to the rise in the fiber temperature, and the temperature distribution in that portion was not stable due to the influence of disturbance. This caused bending, but this method has overcome the drawback.
【0022】実施例2 次に前述したコア拡大処理用小型電気炉10を用いたコ
ア拡大光ファイバ作製の一実施例を説明する。 Embodiment 2 Next, an embodiment of manufacturing a core-expanded optical fiber using the aforementioned small electric furnace 10 for core-expansion processing will be described.
【0023】図4は本実施例を説明する図であって、コ
ア拡大処理用小型電気炉を用いた、コア拡大光ファイバ
作製装置を示す。図中、10はコア拡大処理用小型電気
炉、21はコア拡大処理用小型電気炉の昇降装置、22
a,22bはファイバ固定台、23は光ファイバ、24
は被覆が除去された光ファイバのコア拡大部、25は光
源、26は受光器、27はコア拡大処理用小型電気炉の
電源、28は制御装置を各々図示する。FIG. 4 is a view for explaining the present embodiment, and shows an apparatus for producing a core-expanded optical fiber using a small electric furnace for core expansion processing. In the figure, 10 is a small electric furnace for core enlargement processing, 21 is a lifting apparatus for a small electric furnace for core enlargement processing, 22
a and 22b are fiber fixing bases, 23 is an optical fiber, 24
Denotes an enlarged portion of the core of the optical fiber from which the coating has been removed, 25 denotes a light source, 26 denotes a light receiver, 27 denotes a power source of a small electric furnace for core expansion processing, and 28 denotes a control device.
【0024】上記構成において、先ず、光ファイバ23
のコアを拡大させたい部分の被覆を除去し、洗浄した
後、ファイバ固定台22a,22bに一定の張力で固定
する。次に、コア拡大処理小型電気炉10を昇降装置2
1により上昇させ、アルミナ絶縁管の中央に光ファイバ
のコア拡大部24を挿入する。制御装置28によりコア
拡大処理用小型電気炉10の温度を設定温度まで上昇さ
せ、その温度においてコア拡大部24を設定時間加熱し
た後、加熱を終了させ、コア拡大処理用小型電気炉20
を降下させて、処理を終了する。In the above configuration, first, the optical fiber 23
After removing the coating on the portion where the core is desired to be enlarged and washing it, the core is fixed to the fiber fixing tables 22a and 22b with a constant tension. Next, the small electric furnace 10 for core enlargement treatment
1 and insert the core enlarged portion 24 of the optical fiber into the center of the alumina insulating tube. The controller 28 raises the temperature of the small electric furnace 10 for core enlargement processing to a set temperature, heats the core enlargement section 24 at that temperature for a set time, ends the heating, and ends the small electric furnace 20 for core enlargement processing.
And the process ends.
【0025】加熱中は光ファイバに接続された光源25
と受光器26により伝送損失の変化を監視できるが、処
理条件が確立されればこれらの光伝送の監視は必ずしも
必要とはしない。During heating, the light source 25 connected to the optical fiber
The change in the transmission loss can be monitored by the optical receiver 26 and the optical receiver 26. However, if the processing conditions are established, the monitoring of these optical transmissions is not always necessary.
【0026】本装置の維持はコア拡大処理用小型電気炉
が消耗した場合に新しい電気炉との交換とそれに伴う調
節をするだけであり、操作も含め特に熟練者を必要とは
しない。The maintenance of this apparatus only requires the replacement of a new electric furnace and the corresponding adjustment when the small electric furnace for core enlargement processing is exhausted, and does not require any special skilled person including the operation.
【0027】従来の光ファイバを真空封入する電気炉加
熱装置は本体の他にファイバを真空封入する装置を別途
必要とし、操作には手間と時間を要しただけでなく、専
門的な熟練者を必要としたが、本方法によりこの問題を
解決できた。The conventional electric furnace heating apparatus for vacuum-sealing an optical fiber requires a separate apparatus for vacuum-sealing the fiber in addition to the main body. This operation not only requires labor and time, but also requires a specialized expert. Although needed, this method solved this problem.
【0028】従来のマイクロバーナ加熱装置は燃焼ガス
の流量を精密に制御する必要があり、更にマイクロバー
ナを光ファイバの長さ方向に振る必要があったため、操
作に熟練を要し、装置が複雑化し、高価なものとなって
いたが、本方法により装置が簡略化され、廉価に製造で
きる。The conventional micro-burner heating device requires precise control of the flow rate of the combustion gas, and furthermore, it is necessary to swing the micro-burner in the length direction of the optical fiber. Although this method has been expensive and expensive, the present method simplifies the apparatus and can be manufactured at low cost.
【0029】また、従来の放電加熱装置により得られる
コア拡大光ファイバはコアの拡大範囲が狭いため、適用
範囲が制限されていたが、本方法により適用範囲が拡大
された。The application range of the core-expanded optical fiber obtained by the conventional discharge heating apparatus was limited because the expansion range of the core was narrow, but the application range was expanded by the present method.
【0030】更に、特開平3−187937号公報によ
る光ファイバ加工用小型電気炉を用いただけの装置は、
コア拡大処理中に光ファイバに曲がりが生じ易く、再現
性の観点より実用的でなかったが、本方法により、再現
性の良いコア拡大処理ができるようになった。Further, an apparatus only using a small electric furnace for processing an optical fiber disclosed in JP-A-3-187937 is
Although the optical fiber is likely to bend during the core enlargement processing and is not practical from the viewpoint of reproducibility, the present method has enabled the core enlargement processing with good reproducibility.
【0031】[0031]
【発明の効果】以上説明したように、本発明の方法によ
り大気中で電気炉によるコア拡大処理が可能となるか
ら、光ファイバを短尺に切断する必要がない、被覆を必
要以上の長さに除去する必要がない、石英管に光ファイ
バを真空封入する必要がない、熱処理時間が格段に短縮
化される、得られる拡大コア径の再現性に優れる、拡大
コア径の光ファイバの長さ方向の分布が滑らかで対称性
に優れる、コア拡大の範囲を変化させることができる、
熱処理中に光ファイバに曲がりが生じない等の利点があ
る。装置としては、装置構成が単純になる、安価にな
る、操作が簡単になる、維持が単純になる、適用範囲が
制限されない等の利点がある。As described above, the method of the present invention makes it possible to expand the core by an electric furnace in the atmosphere, so that it is not necessary to cut the optical fiber into a short length, and the length of the coating can be made longer than necessary. No need to remove, no need to vacuum-enclose optical fiber in quartz tube, remarkably shortened heat treatment time, excellent reproducibility of obtained enlarged core diameter, lengthwise direction of optical fiber with enlarged core diameter Distribution is smooth and excellent in symmetry, the range of core enlargement can be changed,
There is an advantage that the optical fiber is not bent during the heat treatment. The device has advantages such as a simple device configuration, low cost, simple operation, simple maintenance, and unlimited application range.
【図1】第1の実施例で用いたコア拡大処理用小型電気
炉の概略図である。FIG. 1 is a schematic view of a small electric furnace for core enlargement processing used in a first embodiment.
【図2】同実施例の1.3μmLD光源で測定した160
0℃加熱時の加熱中心部のモード・フィールド径の加熱
時間依存性を示すグラフである。FIG. 2 shows 160 measured with the 1.3 μmL D light source of the same example.
It is a graph which shows the heating time dependence of the mode field diameter of the center of heating at the time of 0 degreeC heating.
【図3】同実施例のモード・フィールド径の光ファイバ
の長さ方向の分布を示すグラフである。FIG. 3 is a graph showing the distribution of the mode field diameter in the length direction of the optical fiber of the embodiment.
【図4】第2は実施例の、コア拡大処理用小型電気炉を
用いたコア拡大光ファイバ作製装置の概略図である。FIG. 4 is a schematic view of an apparatus for manufacturing a core-enlarged optical fiber using a small electric furnace for core-enlargement processing according to an embodiment.
【図5】エレクトロニクスレター27巻21号(199
1年)の頁1968〜1969の論文"THERMALL-DIFFUS
ED EXPANDED CORE FIBRES FOR LOW-LOSS AND INEXPENSI
VE PHOTONIC COMPONENTS" BY H.HANAFUSA, M.HORIGUCH
I,AND J.NODA のFig.1 を示す図である。FIG. 5 Electronics Letter, Vol. 27, No. 21 (199)
1 year) on pages 1968-1969 "THERMALL-DIFFUS
ED EXPANDED CORE FIBERS FOR LOW-LOSS AND INEXPENSI
VE PHOTONIC COMPONENTS "BY H.HANAFUSA, M.HORIGUCH
It is a figure which shows Fig.1 of I, AND J.NODA.
【図6】同論文のFig.2 を示す図である。FIG. 6 is a diagram showing FIG. 2 of the same paper.
【図7】従来技術に係る光ファイバ加工用小型電気炉の
概略図である。FIG. 7 is a schematic view of a small electric furnace for processing an optical fiber according to the prior art.
10 コア拡大処理用小型電気炉 11 アルミナ絶縁管 12 合金薄膜抵抗体熱源 13 電流端子 14 発泡アルミナの断熱材 15 耐火セメント 16 光ファイバ 17 アルミナ絶縁管の割り 18 断熱材の割り 21 コア拡大処理用小型電気炉の昇降装置 22a,22b ファイバ固定台 23 光ファイバ 24 光ファイバのコア拡大部 25 光源 26 受光器 27 コア拡大処理用小型電気炉の電源 28 制御装置 DESCRIPTION OF SYMBOLS 10 Small electric furnace for core expansion processing 11 Alumina insulating tube 12 Heat source of alloy thin film resistor 13 Current terminal 14 Insulation material of foamed alumina 15 Refractory cement 16 Optical fiber 17 Splitting of alumina insulating tube 18 Splitting of heat insulating material 21 Small size for core expansion processing Electric furnace elevating device 22a, 22b Fiber fixing stand 23 Optical fiber 24 Optical fiber core enlargement part 25 Light source 26 Photodetector 27 Power supply of small electric furnace for core enlargement processing 28 Controller
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−98202(JP,A) 特開 平4−65326(JP,A) 特開 平3−187937(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02B 6/10 G02B 6/14────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-98202 (JP, A) JP-A-4-65326 (JP, A) JP-A-3-187937 (JP, A) (58) Field (Int.Cl. 6 , DB name) G02B 6/10 G02B 6/14
Claims (1)
たドーピング剤が加熱拡散されてなるコア拡大光ファイ
バの作製方法において、加熱手段として小型電気炉を用
い、大気中で、光ファイバの炉中心付近の最高温度を1
500℃〜1700℃とし、炉両端で900℃以下の温
度として熱処理することを特徴とするコア拡大光ファイ
バの作製方法。In a method for manufacturing a core-enlarged optical fiber, wherein a doping agent added to form an optical fiber core is heated and diffused, a small electric furnace is used as a heating means, and the optical fiber furnace is heated in the air. The maximum temperature near the center is 1
A method for producing a core-expanded optical fiber, wherein the heat treatment is performed at a temperature of 500 ° C. to 1700 ° C. and 900 ° C. or less at both ends of a furnace.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4173955A JP2771737B2 (en) | 1992-07-01 | 1992-07-01 | Fabrication method of core expanded optical fiber |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4173955A JP2771737B2 (en) | 1992-07-01 | 1992-07-01 | Fabrication method of core expanded optical fiber |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0618726A JPH0618726A (en) | 1994-01-28 |
| JP2771737B2 true JP2771737B2 (en) | 1998-07-02 |
Family
ID=15970155
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP4173955A Expired - Lifetime JP2771737B2 (en) | 1992-07-01 | 1992-07-01 | Fabrication method of core expanded optical fiber |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2771737B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002131558A (en) * | 2000-10-20 | 2002-05-09 | Sumitomo Electric Ind Ltd | Optical fiber element and method of manufacturing the same |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2843654B2 (en) * | 1990-06-29 | 1999-01-06 | 日本電信電話株式会社 | Thermal diffusion method of optical fiber |
| JPH0498202A (en) * | 1990-08-17 | 1992-03-30 | Nippon Telegr & Teleph Corp <Ntt> | Method for controlling expansion of mode field diameter of optical fiber |
-
1992
- 1992-07-01 JP JP4173955A patent/JP2771737B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0618726A (en) | 1994-01-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0409447B1 (en) | Method of making fiber optic couplers | |
| JP2903185B2 (en) | Achromatic fiber optic coupler and method of manufacturing the same | |
| US5017206A (en) | Method of providing a 1xN fiber optic coupler | |
| JPH04253003A (en) | Optical communication system | |
| EP0432421B1 (en) | Chlorine-doped optical component | |
| JPH0735922A (en) | Mach-zehnder device and manufacture thereof | |
| JP2001318262A (en) | Optical fiber element manufacturing method and optical fiber element | |
| JP2004528598A (en) | Optical fiber fusion splicing with controlled mode field diameter expansion matching | |
| JP2618500B2 (en) | Optical fiber connection method | |
| JP2004205654A (en) | Spot size converting optical fiber component and its manufacturing method | |
| JP2771737B2 (en) | Fabrication method of core expanded optical fiber | |
| JP3746619B2 (en) | Fusion splicing method of optical fiber | |
| US4983195A (en) | Method of making fiber optic coupler with longitudinal protrusions | |
| CA1323195C (en) | Method of reproducibly making fiber optic coupler | |
| JP2693649B2 (en) | Device for expanding mode field diameter of optical fiber | |
| JP2918585B2 (en) | Optical fiber coupler manufacturing equipment | |
| JP2004361846A (en) | Glass fiber fusion splicing method | |
| JPH0560936A (en) | Optical coupling circuit and method of manufacturing optical coupling circuit | |
| US6705772B2 (en) | Optical fiber splicing method and optical fiber | |
| JP2002207138A (en) | Optical fiber element manufacturing method and optical fiber element | |
| JPH07248426A (en) | Optical fiber fusion splicing method | |
| JPH0756048A (en) | Optical fiber coupler and manufacturing method thereof | |
| JP2000338340A (en) | Optical fiber core diameter expansion method | |
| JPH06148461A (en) | Optical fiber coupler manufacturing method | |
| HK22097A (en) | Method of making fiber optic couplers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980331 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090417 Year of fee payment: 11 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090417 Year of fee payment: 11 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100417 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100417 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110417 Year of fee payment: 13 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 14 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 15 |
|
| EXPY | Cancellation because of completion of term | ||
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 15 |