JP2778831B2 - Endothelin antagonist peptide - Google Patents
Endothelin antagonist peptideInfo
- Publication number
- JP2778831B2 JP2778831B2 JP5511561A JP51156192A JP2778831B2 JP 2778831 B2 JP2778831 B2 JP 2778831B2 JP 5511561 A JP5511561 A JP 5511561A JP 51156192 A JP51156192 A JP 51156192A JP 2778831 B2 JP2778831 B2 JP 2778831B2
- Authority
- JP
- Japan
- Prior art keywords
- trp
- tyr
- phe
- fmoc
- ile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
【発明の詳細な説明】 技術分野 本発明は、エンドセリン拮抗作用を有する新規ペプチ
ドおよびその合成中間体に関する。本ペプチドは優れた
エンドセリン拮抗作用を有し、高血圧、喘息、脳卒中、
狭心症、急性腎不全、心筋梗塞、脳血管攣縮などの治療
剤として有用である。Description: TECHNICAL FIELD The present invention relates to a novel peptide having endothelin antagonism and a synthetic intermediate thereof. This peptide has excellent endothelin antagonism, high blood pressure, asthma, stroke,
It is useful as a therapeutic agent for angina pectoris, acute renal failure, myocardial infarction, cerebral vasospasm and the like.
背景技術 エンドセリンは強力かつ持続的な血管収縮作用を有す
る環状ペプチドであり、高血圧、喘息、急性腎不全、心
筋梗塞、脳卒中、狭心症および脳血管攣縮に関与する物
質の一つと考えられている。したがって、エンドセリン
に拮抗しこの作用を阻害する物質はこれらの病気の治療
ならびに予防において有用と期待される。BACKGROUND ART Endothelin is a cyclic peptide having a strong and sustained vasoconstrictor action, and is considered to be one of the substances involved in hypertension, asthma, acute renal failure, myocardial infarction, stroke, angina pectoris and cerebral vasospasm . Therefore, substances that antagonize endothelin and inhibit this action are expected to be useful in the treatment and prevention of these diseases.
従来式(A)で表わされる環状ペプチドは、エンドセ
リン拮抗作用を示すことが知られている(特開平3−13
0299号公報): (式中、UはD−ValまたはD−allo−Ile、R1は水素ま
たはアミノ保護基、R2は水素またはカルボキシル保護基
を意味する)。It is known that the cyclic peptide represented by the formula (A) exhibits an endothelin antagonism (Japanese Patent Laid-Open No. 3-13 / 1990).
No. 0299): (Where U is D-Val or D-allo-Ile, R 1 is hydrogen or amino protecting group, R 2 is hydrogen or carboxyl protecting group).
発明の開示 本発明者らはエンドセリン拮抗作用を示す生理活性物
質を天然界より見いだすことを目的に、数多くの微生物
の生産物について研究を重ねた結果、土壌より新たに分
離したストレプトマイセス属に属する微生物の培養物か
らエンドセリン拮抗作用、エンドセリンによる細胞内カ
ルシウム濃度上昇抑制作用および細胞内グアノシン−
3′,5′−環状一リン酸濃度抑制作用などを有する物質
を単離し、RES−701−1、RES−701−2およびRES−701
−3と命名した。さらに研究を重ねた結果、これらの物
質の構造を決定するとともに、これらの化合物の新規誘
導体も合成し、本発明を完成した。DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted repeated studies on products of many microorganisms for the purpose of finding a physiologically active substance exhibiting endothelin antagonism from the natural world. Endothelin antagonism, inhibition of intracellular calcium elevation by endothelin, and intracellular guanosine-
A substance having a 3 ′, 5′-cyclic monophosphate concentration inhibitory action and the like was isolated, and RES-701-1, RES-701-2 and RES-701 were isolated.
-3. As a result of further studies, the structures of these substances were determined, and novel derivatives of these compounds were also synthesized, thereby completing the present invention.
本発明によれば、下記式(I)で表わされるペプチド
化合物またはその薬理学的に許容される塩が提供され
る: X−A−Trp−B−Gly−Thr−E−G−Y (I) {式中、 AはAsnまたはAspを表わし、 BはHisまたはLysを表わし、 EはAlaまたはSerを表わし、 GはAlaまたはProを表わし、 XはX1−Glyまたは を表わし、 Yはヒドロキシ、低級アルコキシ、アミノ、 −Zを表わし、 〔ここで、X1およびX3は水素、ベンジルオキシカルボニ
ル、t−ブチルオキシカルボニル、9−フルオレニルメ
チルオキシカルボニルまたはカルボニル置換もしくは非
置換の低級アルカノイルを表わし、 X2およびY2は水素を表わし、 Y1はヒドロキシ、低級アルコキシまたはアミノを表わす
か、 またはX1、Y1およびX2、Y2はそれぞれ一緒になってX1−
Y1およびX2−Y2が単結合を表わし、 Zはヒドロキシ、低級アルコキシ、ベンジルオキシ、ベ
ンズヒドリルオキシ、 Gly−Z1(式中、Z1はヒドロキシ、低級アルコキシ、ベ
ンジルオキシまたはベンズヒドリルオキシを表わすか、
X1と一緒になってX1−Z1が単結合を表わす)、 Ala−Z1(式中、Z1は前記と同義である)、 Val−Z1(式中、Z1は前記と同義である)、 Trp−Z1(式中、Z1は前記と同義である)、 Trp−Gly−Z1(式中、Z1は前記と同義である)、 Trp−Asn−Tyr−Tyr−Trp−Z1(式中、Z1は前記と同義
である)、 Trp−Phe−Phe−Asn−Tyr−Tyr−7Hyt−Z1,(式中、Z1
は前記と同義であり、7Hytは7−ヒドロキシトリプトフ
ァンを表わす)、 Trp−Ile−Ile−Trp−Z1(式中、Z1は前記と同義であ
る)、 Trp−Val−Tyr−Phe−W−His−Leu−Asp−Ile−Ile−T
rp−Z1(式中、Z1は前記と同義であり、WはAla、Serま
たはCysを表わす)、 Trp−W−His−Leu−Asp−Ile−Ile−Trp−Z1,(式
中、Z1およびWは前記と同義である)、 Trp−Val−Tyr−Tyr−W−His−Leu−Asp−Ile−Ile−T
rp−Z1(式中、Z1およびWは前記と同義である)、 Trp−Leu−Tyr−Phe−W−His−Gln−Asp−Val−Ile−T
rp−Z1(式中、Z1およびWは前記と同義である)、 Trp−Val−Tyr−Phe−W−Phe−Phe−Asn−Tyr−Tyr−T
rp−Z1(式中、Z1およびWは前記と同義である)、 Trp−Phe−Phe−Asn−Tyr−Tyr−W−His−Leu−Asp−I
le−Ile−Trp−Z1(式中、Z1およびWは前記と同義であ
る)、 Trp−Phe−Phe−Asn−Tyr−Tyr−Asn−Ile−Ile−Trp−
Z1(式中、Z1は前記と同義である)、 またはJ−Phe−M−Q−Tyr−R−T−Z1 (式中、 JはTrpまたは単結合、 MはPheまたは単結合、 QはAsnまたは単結合、 RはTyrまたは単結合、 TはTrp、 Ala、 Phe、 Tyr, Trp−Trp、 Asn−Tyr−Tyr−Trp、 Trp−Asn−Tyr−Tyr−Trp、 Trp−Val−Tyr−Phe−W−His−Leu− Asp−Ile−Ile−Trp(式中、Wは前記と同義である)、 または単結合を表し、 J、M、Q、RおよびTの少なくとも2つ以上が同時に
単結合を表わすことはなく、Z1は前記と同義であ
る)〕}。According to the present invention, there is provided a peptide compound represented by the following formula (I) or a pharmacologically acceptable salt thereof: XA-Trp-B-Gly-Thr-EGY (I ) {Wherein A represents Asn or Asp, B represents His or Lys, E represents Ala or Ser, G represents Ala or Pro, X represents X 1 -Gly or Y represents hydroxy, lower alkoxy, amino, Wherein X 1 and X 3 represent hydrogen, benzyloxycarbonyl, t-butyloxycarbonyl, 9-fluorenylmethyloxycarbonyl or a carbonyl-substituted or unsubstituted lower alkanoyl, and X 2 and Y 2 represents hydrogen, Y 1 represents hydroxy, lower alkoxy or amino, or X 1 , Y 1 and X 2 , Y 2 together represent X 1 −
Y 1 and X 2 —Y 2 represent a single bond, Z is hydroxy, lower alkoxy, benzyloxy, benzhydryloxy, Gly-Z 1 (wherein Z 1 is hydroxy, lower alkoxy, benzyloxy or benzhi Stands for drilloxy,
X 1 and together represent X 1 -Z 1 is a single bond), in Ala-Z 1 (wherein, Z 1 is as defined above), in Val-Z 1 (wherein, Z 1 is and wherein Trp-Z 1 (wherein, Z 1 is as defined above), Trp-Gly-Z 1 (where Z 1 is as defined above), Trp-Asn-Tyr-Tyr -Trp-Z 1 (wherein Z 1 is as defined above), Trp-Phe-Phe-Asn-Tyr-Tyr-7Hyt-Z 1 , wherein Z 1
Is as defined above, 7Hyt represents 7-hydroxytryptophan), Trp-Ile-Ile-Trp-Z 1 (wherein Z 1 is as defined above), Trp-Val-Tyr-Phe-W -His-Leu-Asp-Ile-Ile-T
rp-Z 1 (wherein, Z 1 has the same meaning as described above, and W represents Ala, Ser or Cys), Trp-W-His-Leu-Asp-Ile-Ile-Trp-Z 1 , wherein , Z 1 and W are as defined above), Trp-Val-Tyr- Tyr-W-His-Leu-Asp-Ile-Ile-T
rp-Z 1 (wherein Z 1 and W are as defined above), Trp-Leu-Tyr-Phe-W-His-Gln-Asp-Val-Ile-T
rp-Z 1 (wherein Z 1 and W are as defined above), Trp-Val-Tyr-Phe-W-Phe-Phe-Asn-Tyr-Tyr-T
rp-Z 1 (wherein Z 1 and W are as defined above), Trp-Phe-Phe-Asn-Tyr-Tyr-W-His-Leu-Asp-I
le-Ile-Trp-Z 1 (wherein Z 1 and W are as defined above), Trp-Phe-Phe-Asn-Tyr-Tyr-Asn-Ile-Ile-Trp-
Z 1 (wherein, Z 1 is as defined above), or J-Phe-MQ-Tyr-R-T-Z 1 (where J is Trp or a single bond, M is Phe or a single bond , Q is Asn or a single bond, R is Tyr or a single bond, T is Trp, Ala, Phe, Tyr, Trp-Trp, Asn-Tyr-Tyr-Trp, Trp-Asn-Tyr-Tyr-Trp, Trp-Val -Tyr-Phe-W-His-Leu-Asp-Ile-Ile-Trp (wherein W is as defined above) or a single bond, and at least two of J, M, Q, R and T not represent a single bond or at the same time, Z 1 is as defined above)]}.
また、本発明により式(I)で表わされるペプチド化
合物を合成するために有用な、下記式(II)で表わされ
る中間体が提供される: X4−J−Phe−M−Q−Tyr−R−T−Z2 (II) (式中、X4は水素、ベンジルオキシカルボニル、t−
ブチルオキシカルボニルまたは9−フルオレニルメチル
オキシカルボニルを表わし、Z2はヒドロキシ、低級アル
コキシ、ベンジルオキシまたはベンズヒドリルオキシを
表わし、J、M、Q、RおよびTは前記と同義であ
る)。The present invention also provides an intermediate represented by the following formula (II), which is useful for synthesizing the peptide compound represented by the formula (I): X 4 -J-Phe-MQ-Tyr- R-T-Z 2 (II) (wherein X 4 is hydrogen, benzyloxycarbonyl, t-
Represents butyloxycarbonyl or 9-fluorenylmethyloxycarbonyl, Z 2 is hydroxy, lower alkoxy, represents a benzyloxy or benzhydryloxy, J, M, Q, R and T are as defined above).
以下上記式(I)で表わされるペプチド化合物を化合
物(I)といい、他の式番号の化合物についても同様で
ある。Hereinafter, the peptide compound represented by the above formula (I) is referred to as compound (I), and the same applies to compounds having other formula numbers.
上記式(I)および(II)の定義において、低級アル
キルおよび低級アルコキシのアルキル部分は、直鎖もし
くは分岐状の炭素数1〜6の、例えば、メチル、エチ
ル、プロピル、イソプロピル、ブチル、イソブチル、se
c−ブチル、tert−ブチル、ペンチル、ネオペンチル、
ヘキシル、イソヘキシル等が挙げられ、低級アルカノイ
ルは、直鎖もしくは分岐状の炭素数1〜6の、例えば、
ホルミル、アセチル、プロピオニル、ブチリル、バレリ
ル、ピバロイル、ペンタノイル等が挙げられる。In the definitions of the above formulas (I) and (II), the lower alkyl and the alkyl moiety of the lower alkoxy are linear or branched having 1 to 6 carbon atoms, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, se
c-butyl, tert-butyl, pentyl, neopentyl,
Hexyl, isohexyl and the like, and the lower alkanoyl is a linear or branched C1-6, for example,
Examples include formyl, acetyl, propionyl, butyryl, valeryl, pivaloyl, pentanoyl and the like.
化合物(I)の薬理学的に許容される塩としては、酸
付加塩、金属塩、有機塩基付加塩が挙げられる。具体的
には、薬理上許容される酸付加塩としては、塩酸塩、硫
酸塩、リン酸塩等の無機酸塩、酢酸塩、マレイン酸塩、
フマル酸塩、酒石酸塩、クエン酸塩等の有機酸塩が挙げ
られ、薬理上許容される金属塩としてはナトリウム塩、
カリウム塩等のアルカリ金属塩、マグネシウム塩、カル
シウム塩等のアルカリ土類金属塩、アルミニウム塩、亜
鉛塩等が挙げられる。薬理上許容される有機塩基として
はメチルアミン、エチルアミン、アニリン等の一級アミ
ン、ジメチルアミン、ジエチルアミン、ピロリジン、ピ
ペリジン、モルホリン、ピペラジン等の二級アミン、ト
リメチルアミン、トリエチルアミン、N,N−ジメチルア
ニリン、ピリジン等の三級アミンおよびアンモニア等が
挙げられる。The pharmacologically acceptable salts of compound (I) include acid addition salts, metal salts, and organic base addition salts. Specifically, pharmacologically acceptable acid addition salts include hydrochlorides, sulfates, inorganic salts such as phosphates, acetates, maleates,
Organic salts such as fumarate, tartrate, and citrate are mentioned, and pharmacologically acceptable metal salts include sodium salts,
Examples thereof include alkali metal salts such as potassium salts, alkaline earth metal salts such as magnesium salts and calcium salts, aluminum salts, and zinc salts. Examples of pharmacologically acceptable organic bases include primary amines such as methylamine, ethylamine and aniline, secondary amines such as dimethylamine, diethylamine, pyrrolidine, piperidine, morpholine and piperazine, trimethylamine, triethylamine, N, N-dimethylaniline and pyridine. And tertiary amines and ammonia.
次に化合物(I)および(II)の製造法について説明
する。Next, the method for producing the compounds (I) and (II) will be described.
化合物(I)中、下記の構造を有するRES−701−1,RES
−701−2およびRES−701−3については、ストレプト
マイセス(Streptomyces)属に属し、RES−701−1生産
能、RES−701−2生産能およびRES−701−3生産能を有
する微生物を培地に培養し、培養液中にRES−701−1、
RES−701−2およびRES−701−3を生成蓄積させ、該培
養物からRES−701−1、RES−701−2およびRES−701−
3を採取することによって製造される。In compound (I), RES-701-1, RES having the following structure:
For -701-2 and RES-701-3, microorganisms belonging to the genus Streptomyces and having RES-701-1, RES-701-2, and RES-701-3 producing ability are used. After culturing in a medium, RES-701-1,
RES-701-2 and RES-701-3 are produced and accumulated, and RES-701-1, RES-701-2 and RES-701- are produced from the culture.
3 is obtained.
具体的に好適な例として、本発明者らにより愛知県北
設楽郡付近の土壌より新たに採取したストレプトマイセ
スに属する放線菌ストレプトマイセス・エスピーRE−70
1株および山口県都濃郡付近の土壌より新たに採取したR
E−629株が挙げられる。 As a specific preferred example, an actinomycetes Streptomyces sp. RE-70 belonging to Streptomyces newly collected from soil near Kitashitara-gun, Aichi Prefecture by the present inventors.
1 strain and R newly collected from soil near Tono-gun, Yamaguchi Prefecture
E-629 strain.
ストレプトマイセス・エスピーRE−701株の菌学的性
質は以下の通りである。The bacteriological properties of the Streptomyces sp. Strain RE-701 are as follows.
I.形態 RE−701株は、一般に使用されている寒天培地で、隔
壁を有し、分岐する気中菌糸および基生菌糸を形成す
る。なお、基生菌糸の特徴的な分断はみられない。ま
た、胞子嚢および菌核の形成は見いだされない。I. Morphology The strain RE-701 is a commonly used agar medium having a partition wall and forming branched aerial hyphae and basal hyphae. In addition, the characteristic division | segmentation of a base hypha is not seen. Also, no sporangia and sclerotium formation is found.
胞子は気中菌糸より単純分枝した胞子柄に10個以上の
長い鎖状に形成され、その形態は屈曲状あるいは螺旋状
である。成熟した胞子は大きさが0.4〜0.5μm×0.6〜
0.8μmの楕円形であり、その表面は平滑で鞭毛を持た
ない。The spores are formed in a spore stalk that is simply branched from the aerial hyphae in the form of 10 or more long chains, and the shape is bent or spiral. Mature spores are 0.4-0.5 μm × 0.6-
It is 0.8 μm elliptical and its surface is smooth and has no flagella.
II.各種培地上での生育状態 RE−701株は、一般に使用されている合成および天然
培地で普通もしくは旺盛な生育を示し、灰色系統の気中
菌糸を形成する。一方、基生菌糸は灰白色から茶色を示
す。可溶性色素はほとんど生産されない。II. Growth on Various Media The RE-701 strain shows normal or vigorous growth on commonly used synthetic and natural media, and forms gray aerial hyphae. On the other hand, the basic mycelium shows a grayish white to brown. Little soluble dye is produced.
各種培地上での28℃、10日間培養したときの生育およ
び色の特徴を下記に示す。なお、色の表示はColor Horm
ony Manual(Container Corporation of America)によ
る色の分類に従った。The characteristics of growth and color when cultured on various media at 28 ° C. for 10 days are shown below. The color display is Color Horm
The color classification according to the ony Manual (Container Corporation of America) was followed.
1.グルコース・アスパラギン寒天培地 生育、裏面の色:普通、パティー(1 1/2ec) 気中菌糸:普通、ホワイト(a) 可溶性色素:無し 2.グリセロール・アスパラギン寒天培地 生育、裏面の色:貧弱、オイスターホワイト(b) 気中菌糸:やや貧弱、ホワイト(a) 可溶性色素:無し 3.シュクロース・硝酸塩寒天培地 生育、裏面の色:普通、パティー(1 1/2ec) 気中菌糸:普通、グレー(f) 可溶性色素:無し 4.スターチ・無機塩寒天培地 生育、裏面の色:普通、ライトアンティークゴールド
(1 1/2ic) 気中菌糸:豊富、グレー(g) 可溶性色素:無し 5.チロシン寒天培地 生育、裏面の色:貧弱、ライトタン(3gc) 気中菌糸:貧弱、ライドベージュ(3ec) 可溶性色素:無し 6.栄養寒天培地 生育、裏面の色:普通、ハニーゴールド(2ic) 気中菌糸:やや貧弱、ホワイト(a) 可溶性色素:無し 7.麦芽エキス・酵母エキス寒天培地 生育、裏面の色:良好、マスターゴールド(2ne) 気中菌糸:普通、ホワイト(a) 可溶性色素:無し 8.オートミール寒天培地 生育、裏面の色:やや良好、ホワイト(1 1/2lg) 気中菌糸:貧弱、チャコールグレー(o) 可溶性色素:無し III.生理的性質 RE−701株の生理的諸性質を以下に示す。生育温度範
囲は6日間、その他は28℃、2週間後の観察結果を記述
する。1. Glucose-asparagine agar medium Growth, back color: normal, patty (1 1 / 2ec) Aerial hypha: normal, white (a) Soluble pigment: none 2. Glycerol-asparagine agar growth, back color: poor , Oyster White (b) Aerial hyphae: slightly poor, white (a) Soluble pigment: none 3. Sucrose / nitrate agar medium Growth, back color: normal, patty (1 1 / 2ec) Aerial hyphae: normal, Gray (f) Soluble pigment: None 4. Starch / inorganic salt agar medium Growth, back color: Normal, light antique gold (1 1/2 ic) Aerial hyphae: Abundant, gray (g) Soluble pigment: None 5. Tyrosine Agar medium Growth, back color: poor, light tan (3gc) Aerial hyphae: poor, ride beige (3ec) Soluble pigment: none 6. Nutrient agar medium Growth, back color: normal, honey gold (2ic) Medium hyphae: slightly poor, white (a) soluble pigment: none 7. Malt extract / yeast extract agar medium Growth, back color: good, master gold (2ne) Aerial hyphae: normal, white (a) soluble pigment: none 8. Oatmeal agar medium Growth, back color: slightly good, white (1 1/2 lg) Aerial hyphae: poor, charcoal gray (o) Soluble pigment: none III. Physiological properties Physiological properties of strain RE-701 It is shown below. The observation results are as follows: growth temperature range: 6 days, others: 28 ° C, 2 weeks later.
(1)炭素源の利用性;基礎培地としてプリドハム・ゴ
ットリーブ無機培地(ISP9号)を使用した。(1) Utilization of carbon source; Pridham-Gottlieb inorganic medium (ISP9) was used as a basal medium.
RE−701株は、D−グルコース、D−フラクトース、
シュクロース、イノシトール、ラフィノース、D−マン
ニトールを資化するが、D−アラビノース、L−ラムノ
ースは資化しない。D−キシロースの資化は不明であ
る。RE-701 strain is D-glucose, D-fructose,
Sucrose, inositol, raffinose and D-mannitol are assimilated, but D-arabinose and L-rhamnose are not assimilated. The assimilation of D-xylose is unknown.
(2)ミルクに対する作用:凝固あり、液化無し (3)澱粉の加水分解作用:あり (4)生育温度範囲:7〜41℃ (5)メラノイド色素の生成:無し (6)ゼラチンの液化作用:無し IV.細胞壁組成 全菌体加水分解によるジアミノピメリン酸の分析で
は、LL−ジアミノピメリン酸のみが検出された。(2) Action on milk: coagulation, no liquefaction (3) Starch hydrolysis action: yes (4) Growth temperature range: 7 to 41 ° C (5) Melanoid pigment formation: no (6) Gelatin liquefaction: None IV. Cell wall composition In the analysis of diaminopimelic acid by hydrolysis of whole cells, only LL-diaminopimelic acid was detected.
以上気中菌糸上に形成される胞子鎖およびジアミノピ
メリン酸の立体型などから、本菌株は放線菌の中でスト
レプトマイセス属に分類される。Based on the spore chain formed on the aerial mycelium and the stereotype of diaminopimelic acid, this strain is classified into Streptomyces among actinomycetes.
従って、本菌株をストレプトマイセス・エスピーRE−
701(Streptomyces sp.RE−701)と命名した。本菌株
は、平成3年10月29日付で工業技術院微生物工業技術研
究所に微工研条寄第3624号(FERM BP−3624)として寄
託してある。Therefore, this strain was transformed into Streptomyces sp.
701 (Streptomyces sp. RE-701). This strain has been deposited on October 29, 1991 with the Institute of Microbial Industry and Technology, National Institute of Advanced Industrial Science and Technology under the name of Microtechnical Research Institute Deposit No. 3624 (FERM BP-3624).
ストレプトマイセス・エスピーRE−629株の菌学的性
質は以下の通りである。The bacteriological properties of Streptomyces sp. Strain RE-629 are as follows.
I.形態 RE−629株は、一般に使用されている寒天培地で、隔
壁を有し、分岐する気中菌糸および基生菌糸を形成す
る。なお、基生菌糸の特徴的な分断はみられない。ま
た、胞子嚢および菌核の形成は見いだされない。I. Morphology The strain RE-629 is a commonly used agar medium, having a septum and forming branched aerial hyphae and basal hyphae. In addition, the characteristic division | segmentation of a base hypha is not seen. Also, no sporangia and sclerotium formation is found.
胞子は気中菌糸より単純分枝した胞子柄に10個以上の
長い鎖状に形成され、その形態は屈曲状あるいは螺旋状
である。成熟した胞子は大きさが0.7〜0.8μm×0.7〜
1.0μmの楕円形であり、その表面は平滑で鞭毛を持た
ない。The spores are formed in a spore stalk that is simply branched from the aerial hyphae in the form of 10 or more long chains, and the shape is bent or spiral. Mature spores are 0.7-0.8 μm x 0.7-
It has an elliptical shape of 1.0 μm, and its surface is smooth and has no flagella.
II.各種培地上での生育状態 RE−629株は、一般に使用されている合成および天然
培地で普通もしくは旺盛な生育を示し、灰色系統の気中
菌糸を形成する。一方、基生菌糸は灰白色から茶色を示
す。培地により茶色系統の可溶性色素が産生されること
もある。II. Growth on Various Media The strain RE-629 shows normal or vigorous growth on commonly used synthetic and natural media, and forms aerial hyphae of a gray strain. On the other hand, the basic mycelium shows a grayish white to brown. The medium may produce a brown colored soluble pigment.
各種培地上での28℃、14日間培養したときの生育およ
び色の特徴を下記に示す。なお、色の表示はColor Horm
ony Manual(Container Corporation of America)によ
る色の分類に従った。The characteristics of growth and color when cultured on various media at 28 ° C. for 14 days are shown below. The color display is Color Horm
The color classification according to the ony Manual (Container Corporation of America) was followed.
1.グリセロール・アスパラギン寒天培地 生育、裏面の色:良好、バンブー(2gc) 気中菌糸:良好、ナチュラル(2dc) 可溶性色素:無し 2.スターチ・無機塩寒天培地 生育、裏面の色:良好、ダルゴールド(2ng) 気中菌糸:豊富、シルバーグレー(3fe) 可溶性色素:有 3.麦芽エキス・酵母エキス寒天培地 生育、裏面の色:良好、オークブラウン(4pi) 気中菌糸:良好、シルバーグレー(3fe) 可溶性色素:有 4.オートミール寒天培地 生育、裏面の色:普通、オリーブ(1 1/2pl) 気中菌糸:普通、ランプブラック(o) 可溶性色素:有 III.生理的性質 RE−629株の生理的諸性質を以下に示す。生育温度範
囲は5日間、その他は28℃、2週間後の観察結果を記述
する。1. Glycerol / Asparagine agar medium Growth, back color: good, bamboo (2gc) Aerial hyphae: good, natural (2dc) Soluble pigment: none 2. Starch / inorganic salt agar medium Growth, back color: good, dull Gold (2ng) Aerial hyphae: Abundant, silver gray (3fe) Soluble pigment: Yes 3. Malt extract / Yeast extract agar medium Growth, back color: good, oak brown (4pi) Aerial hyphae: good, silver gray ( 3fe) Soluble dye: Yes 4. Oatmeal agar medium Growth, back color: Normal, olive (1 1 / 2pl) Aerial hyphae: Normal, lamp black (o) Soluble dye: Yes III. Physiological properties RE-629 strain The physiological properties of are shown below. The observation results are as follows: the growth temperature range is 5 days, the others are 28 ° C, and 2 weeks later.
(1)炭素源の利用性;基礎培地としてプリドハム・ゴ
ットリーブ無機培地(ISP9号)を使用した。(1) Utilization of carbon source; Pridham-Gottlieb inorganic medium (ISP9) was used as a basal medium.
RE−629株は、D−グルコース、D−フラクトース、
シュクロース、イノシトール、ラフィノース、D−マン
ニトールおよびD−キシロースを資化するが、L−ラム
ノースは資化しない。L−アラビノースの資化は不明で
ある。The RE-629 strain is D-glucose, D-fructose,
It assimilates sucrose, inositol, raffinose, D-mannitol and D-xylose, but not L-rhamnose. The utilization of L-arabinose is unknown.
(2)生育温度範囲:13〜43℃ (3)メラノイド色素の生成: (a)ペプトン・イースト・鉄寒天培地:無し (b)チロシン寒天培地:無し IV.細胞壁組成 全菌体加水分解によるジアミノピメリン酸の分析で
は、LL−ジアミノピメリン酸のみが検出された。(2) Growth temperature range: 13-43 ° C (3) Production of melanoid pigment: (a) Peptone yeast / iron agar medium: None (b) Tyrosine agar medium: None IV. Cell wall composition Diaminopimelin by whole cell hydrolysis Analysis of the acid detected only LL-diaminopimelic acid.
以上気中菌糸上に形成される胞子鎖およびジアミノピ
メリン酸の立体型などから、本菌株は放線菌の中でスト
レプトマイセス属に分類される。Based on the spore chain formed on the aerial mycelium and the stereotype of diaminopimelic acid, this strain is classified into Streptomyces among actinomycetes.
従って、本菌株をストレプトマイセス・エスピーRE−
629(Streptomyces sp.RE−629)と命名した。本菌株
は、平成4年12月17日付で工業技術院微生物工業技術研
究所に微工研条寄第4126号(FERM BP−4126)として寄
託してある。Therefore, this strain was transformed into Streptomyces sp.
629 (Streptomyces sp. RE-629). This strain was deposited on December 17, 1992 with the Research Institute of Microbial Industry, National Institute of Advanced Industrial Science and Technology, Japan, as No. 4126 (FERM BP-4126).
RE−701株およびRE−629株の培養に際しては、放線菌
の培養に用いられる通常の培養方法が適用される。用い
られる培地は菌の資化しうる炭素源、窒素源、無機物等
を程よく含有する培地であれば天然培地、合成培地いず
れでも用いうる。In culturing the strains RE-701 and RE-629, a usual culture method used for culturing actinomycetes is applied. As the medium to be used, any natural medium or synthetic medium may be used as long as the medium contains a carbon source, a nitrogen source, an inorganic substance, and the like which can be assimilated by bacteria.
炭素源としては、グルコース、フラクトース、シュク
ロース、スタビロース、澱粉、テキストリン、マンノー
ス、マルトース、糖蜜等の炭水化物、クエン酸、リンゴ
酸、酢酸、フマール酸などの有機酸、メタノール、エタ
ノール等のアルコール、メタン、エタン、プロパン、n
−パラフィン等の炭化水素、グルタミン酸等のアミノ酸
あるいはグリセロール等が用いられる。As the carbon source, glucose, fructose, sucrose, stabilose, starch, carbohydrates such as textulin, mannose, maltose, molasses, citric acid, malic acid, acetic acid, organic acids such as fumaric acid, alcohols such as methanol and ethanol, Methane, ethane, propane, n
-Hydrocarbons such as paraffin, amino acids such as glutamic acid, and glycerol are used.
窒素源としては塩化アンモニウム、硫酸アンモニウ
ム、硝酸アンモニウム、リン酸アンモニウム等のアンモ
ニウム塩、アスパラギン酸、グルタミン、シスチン、ア
ラニン等のアミノ酸、尿素、ペプトン、肉エキス、酵母
エキス、乾燥酵母、コーン・スチープ・リカー、大豆
粉、綿実粕、大豆カゼイン、カザミノ酸、ファーマメデ
ィア(プロクターアンド ギャンブル社製)等が用いら
れる。As a nitrogen source, ammonium salts such as ammonium chloride, ammonium sulfate, ammonium nitrate and ammonium phosphate, amino acids such as aspartic acid, glutamine, cystine and alanine, urea, peptone, meat extract, yeast extract, dried yeast, corn steep liquor, Soybean flour, cottonseed meal, soybean casein, casamino acid, Pharmamedia (procter and gambling), and the like are used.
無機物としてはリン酸一カリウム、リン酸二カリウ
ム、リン酸二ナトリウム、硫酸マグネシウム、硫酸第一
鉄、硫酸マンガン、硫酸銅、硫酸コバルト、硫酸亜鉛、
パントテン酸カルシウム、モリブデン酸アンモニウム、
硫酸アルミニウムカリウム、炭酸バリウム、炭酸カルシ
ウム、塩化コバルト、食塩等が用いられる。As inorganic substances, monopotassium phosphate, dipotassium phosphate, disodium phosphate, magnesium sulfate, ferrous sulfate, manganese sulfate, copper sulfate, cobalt sulfate, zinc sulfate,
Calcium pantothenate, ammonium molybdate,
Potassium aluminum sulfate, barium carbonate, calcium carbonate, cobalt chloride, salt and the like are used.
その他必要に応じて培地にサイアミンなどのビタミン
等菌体の増殖あるいはRES−701−1、RES−701−2およ
びRES−701−3の生産を促進する物質を加えることがで
きる。In addition, if necessary, a substance which promotes the growth of bacterial cells such as vitamins such as thiamine or the production of RES-701-1, RES-701-2 and RES-701-3 can be added to the medium.
用いられる微生物が特定の物質を要求する場合は、も
ちろん生育に必要な物を加えることが必要である。If the microorganism used requires a specific substance, it is of course necessary to add what is needed for growth.
培養は振盪培養法、通気攪拌培養法等により、20〜40
℃の温度で中性付近のpHで行われる。3〜7日の培養に
よってRES−701−1、RES−701−2およびRES−701−3
の蓄積量が最大に達し、培養は完了する。The culture is performed by shaking culture, aeration stirring culture, etc.
The reaction is carried out at a temperature around 0 ° C. and near neutral pH. RES-701-1, RES-701-2 and RES-701-3 after 3-7 days of culture.
Has reached the maximum, and the culture is completed.
培養物中に蓄積したRES−701−1、RES−701−2およ
びRES−701−3を培養液から単離採取するに際しては、
通常の培養液から生理活性物質を採取する方法が適用さ
れる。菌体内に蓄積したRES−701−1、RES−701−2お
よびRES−701−3を菌体から単離採取する際には、通常
の生理活性物質を菌体から採取する方法が適用される。
例えば培養物から濾過、遠心分離などにより菌体を取得
し、メタノール、アセトンなどの有機溶媒を用いて抽出
する。ついで、抽出物を分配、吸着樹脂、シリカゲル、
化学修飾シリカゲル、逆相シリカゲル、アルミナ、セル
ロース、珪藻土、珪酸マグネシウム、イオン交換樹脂、
あるいはゲル濾過等のカラムクロマトグラフィーもしく
は薄層クロマトグラフィーにより精製してRES−701−
1、RES−701−2およびRES−701−3を得ることができ
る。When RES-701-1, RES-701-2 and RES-701-3 accumulated in the culture were isolated and collected from the culture,
A method of collecting a physiologically active substance from a normal culture solution is applied. When RES-701-1, RES-701-2 and RES-701-3 accumulated in the cells are isolated and collected from the cells, the usual method of collecting physiologically active substances from the cells is applied. .
For example, cells are obtained from the culture by filtration, centrifugation, etc., and extracted using an organic solvent such as methanol or acetone. Then, the extract was distributed, the adsorption resin, silica gel,
Chemically modified silica gel, reverse phase silica gel, alumina, cellulose, diatomaceous earth, magnesium silicate, ion exchange resin,
Alternatively, it is purified by column chromatography such as gel filtration or thin-layer chromatography to obtain RES-701-
1, RES-701-2 and RES-701-3 can be obtained.
上記工程中のRES−701−1、RES−701−2およびRES
−701−3の検出は、シリカゲル薄層クロマトグラフィ
ー上で展開後、ヨウ素反応または50%硫酸を噴霧し加熱
により呈色することによるか、あるいは、C−18逆相シ
リカゲルカラムを用いた高速液体クロマトグラフィー
(以下HPLCという)で波長253.7nmの吸収を測定するこ
とにより行う。RES-701-1, RES-701-2 and RES in the above process
The detection of -701-3 can be performed by developing on a silica gel thin layer chromatography and then spraying with an iodine reaction or 50% sulfuric acid and coloring by heating, or a high-performance liquid using a C-18 reverse phase silica gel column. The measurement is performed by measuring the absorption at a wavelength of 253.7 nm by chromatography (hereinafter referred to as HPLC).
また、化合物(I)および(II)は上記微生物を培養
することにより製造されるRES−701−1、RES−701−2
およびRES−701−3を含め、合成的手段により製造する
こともできる。Compounds (I) and (II) are produced by culturing the above microorganisms.
And RES-701-3, and can also be produced by synthetic means.
すなわち、本発明の化合物(I)および(II)はAppl
ied Biosystems,Inc.,U.S.A(ABI社)製ペプチド合成機
又は島津製作所製ペプチド合成機上にて、適当に側鎖保
護したNα−t−ブチルオキシカルボニル−アミノ酸等
を用いるか、あるいは適当に側鎖保護したNα−9−フ
ルオレニルメチルオキシカルボニル−アミノ酸等を用
い、同社の合成プログラムに従い、合成することにより
得られる。That is, the compounds (I) and (II) of the present invention
On a peptide synthesizer manufactured by ied Biosystems, Inc., USA (ABI) or a peptide synthesizer manufactured by Shimadzu Corporation, use Nα-t-butyloxycarbonyl-amino acid or the like appropriately protected with a side chain, or use an appropriate side chain. It is obtained by using a chain-protected Nα-9-fluorenylmethyloxycarbonyl-amino acid or the like according to the company's synthesis program.
また化合物(I)中の環状ペプチドは、適当に側鎖保
護した部分ペプチドを上述の合成機あるいは一般的な液
相ペプチド合成法(“ペプチド合成の基礎と実験”泉屋
信夫ら、丸善)にしたがって下記のように合成し、ベン
ゾトリアゾール−1−イル−オキシ−トリス−ピロリジ
ノ−フォスフォニウムヘキサフルオロフォスフェート
(PyBOP)等の縮合剤を用い、環化部分ペプチドを得
て、さらにペプチド合成機あるいは液相合成法を用い、
あるいは両法を適宜組合わせて得られるC末側ペプチド
を縮合することにより得られる。なお、C末側ペプチド
としては、例えば化合物(II)が有効に使用できる。The cyclic peptide in the compound (I) can be obtained by subjecting a partial peptide appropriately protected in a side chain to the above-mentioned synthesizer or a general liquid-phase peptide synthesis method (“Basic and Experimental Peptide Synthesis” by Nobuo Izumiya et al., Maruzen). The cyclized partial peptide was synthesized using a condensing agent such as benzotriazol-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBOP) as described below. Using the liquid phase synthesis method,
Alternatively, it can be obtained by condensing a C-terminal peptide obtained by appropriately combining both methods. As the C-terminal peptide, for example, compound (II) can be effectively used.
化合物(I)および(II)の原料となる保護アミノ酸
は、ABI社、島津製作所、国産化学(株)、Nova bioche
m社およびペプチド研究所(株)から入手することがで
きる。 ABI, Shimadzu, Kokusan Chemical Co., Ltd., Nova bioche
It can be obtained from m and Peptide Research Institute.
この様にして得られる化合物(I)および(II)は、
逆相系カラムを用いたHPLCあるいは前記した各種クロマ
トグラフィーにより精製することができる。Compounds (I) and (II) thus obtained are
It can be purified by HPLC using a reversed-phase column or the above-described various chromatography.
化合物(I)の薬理上許容しうる塩を取得するときは
常法に従う。すなわち、化合物(I)の酸付加塩および
有機塩基付加塩は、対応する酸あるいは有機塩基の水溶
液に化合物(I)を溶解し、凍結乾燥することによって
得られる。また化合物(I)の金属塩は、対応する金属
イオンを含む水溶液に化合物(I)を溶解しゲル濾過も
しくはHPLCで精製することによって得られる。When obtaining a pharmacologically acceptable salt of compound (I), a conventional method is used. That is, the acid addition salt and the organic base addition salt of the compound (I) can be obtained by dissolving the compound (I) in an aqueous solution of the corresponding acid or organic base, and freeze-drying. The metal salt of compound (I) can be obtained by dissolving compound (I) in an aqueous solution containing the corresponding metal ion and purifying the solution by gel filtration or HPLC.
次に化合物(I)および(II)の具体例を第1表に示
す。Next, specific examples of the compounds (I) and (II) are shown in Table 1.
次に代表的な化合物(I)の薬理作用について試験例
で説明する。 Next, the pharmacological action of the representative compound (I) will be described in Test Examples.
試験例1.エンドセリンによる細胞内カルシウム濃度上昇
に対する化合物(I)の抑制作用 ラット胸部大動脈平滑筋由来の細胞株A1O(ATCC CRL
1476)を10%牛胎児血清(ハイクローン社製)入りダル
ベッコ変法イーグル培地(日水製薬株式会社製)を用い
て、底がカバーガラスのディシュに接着培養し実験に用
いた。培養細胞を生理的実験液〔NaCl 130mM,KCl 2.5m
M,CaCl2 1mM,MgSO4 1mM,NaH2PO4 1mM,N−(2−ヒドロ
キシエチル)−ピペラジン−N′−2−エタンスルホン
酸(HEPES)10mM,グルコース15mM,牛血清アルブミンBSA
(シグマ社製)2mg/ml,pH7.4〕で洗浄後、fura−2/AM
(カルシウム蛍光指示薬、同仁化学研究所製)10μMを
加え1時間インキュベートした。Test Example 1. Inhibitory effect of compound (I) on endothelin-induced increase in intracellular calcium concentration Cell line A1O (ATCC CRL) derived from rat thoracic aortic smooth muscle
1476) was adhered to a dish with a cover glass on the bottom using a Dulbecco's modified Eagle's medium (manufactured by Nissui Pharmaceutical Co., Ltd.) containing 10% fetal bovine serum (manufactured by HiClone) and used for experiments. The cultured cells were placed in a physiological test solution (NaCl 130 mM, KCl 2.5 m
M, CaCl 2 1 mM, MgSO 4 1 mM, NaH 2 PO 4 1 mM, N- (2-hydroxyethyl) -piperazine-N′-2-ethanesulfonic acid (HEPES) 10 mM, glucose 15 mM, bovine serum albumin BSA
(Manufactured by Sigma) 2 mg / ml, pH 7.4] and then fura-2 / AM
10 μM (calcium fluorescent indicator, manufactured by Dojindo Laboratories) was added and incubated for 1 hour.
生理的実験液で洗浄後、化合物(I−1)(最終濃度
1μg/ml)を含む実験液1mlあるいは化合物(I−1)
を含まない実験液1mlでディッシュを満たし、エンドセ
リン(最終濃度0.3nM)を添加した。励起波長340nmおよ
び380nmの紫外光による510nmの蛍光強度をARGUS200シス
テム(浜松ホトニクス社製)で測定することにより、個
々の細胞の細胞内カルシウム濃度およびその変化を測定
した。After washing with a physiological test solution, 1 ml of a test solution containing the compound (I-1) (final concentration 1 μg / ml) or the compound (I-1)
The dish was filled with 1 ml of an experimental solution containing no, and endothelin (final concentration: 0.3 nM) was added. The intracellular calcium concentration of each cell and its change were measured by measuring the fluorescence intensity at 510 nm by ultraviolet light with excitation wavelengths of 340 nm and 380 nm using an ARGUS200 system (Hamamatsu Photonics).
結果 化合物(I−1)無添加群(細胞数201個)と試験化
合物(I−1)添加群(最終濃度1μg/ml、細胞数171
個)でエンドセリン(最終濃度0.3nM)添加による細胞
内カルシウム濃度の増加量を測定したところ、化合物
(I−1)存在下での細胞内カルシウム濃度の増加量は
化合物(I−1)が存在しない場合の細胞内カルシウム
濃度の増加量の46%であった。Results Compound (I-1) -free group (201 cells) and test compound (I-1) -added group (final concentration 1 μg / ml, cell number 171)
The increase in the intracellular calcium concentration due to the addition of endothelin (final concentration 0.3 nM) was measured in the presence of compound (I-1). The increase in intracellular calcium concentration when not performed was 46%.
試験例2.エンドセリン受容体拮抗作用 4℃にて牛肺臓組織を緩衝液A(1mM MaHCO3、5mMエ
チレンジアミン4酢酸、5μg/ml ロイペプチン、5μ
g/ml ペプスタチンA、40μM フェニルメチルスルフ
ォニルフルオリド、pH8.3)中ポリトロン(タイプPT10/
35、Kinematica Gmbh社製)を用いて均質化した。Test Example 2. Endothelin receptor antagonism At 4 ° C., bovine lung tissue was treated with buffer A (1 mM MaHCO 3 , 5 mM ethylenediaminetetraacetic acid, 5 μg / ml leupeptin, 5 μm).
g / ml pepstatin A, 40 μM phenylmethylsulfonyl fluoride, pH 8.3) polytron (type PT10 /
35, manufactured by Kinematica GmbH).
得られた懸濁液を4℃にて8,000gで10分間遠心分離
し、得られた上清液を4℃、40,000gで60分間遠心分離
し、固形物を得た。得られた固形物を緩衝液Aに懸濁
し、再び4℃にて40,000gで60分間遠心分離した。得ら
れた固形物をタンパク質含量が2mg/mlとなるように懸濁
溶液として調製し、膜画分液とした。緩衝液B(50mMト
リス−塩酸、1mMエチレンジアミン4酢酸、0.2%牛血清
アルブミン、pH7.6)1mlあたり膜画分液7μlを加えて
膜画分溶液を調製した。The obtained suspension was centrifuged at 8,000 g for 10 minutes at 4 ° C., and the resulting supernatant was centrifuged at 40,000 g for 60 minutes at 4 ° C. to obtain a solid. The obtained solid was suspended in buffer A and centrifuged again at 4 ° C. at 40,000 g for 60 minutes. The obtained solid was prepared as a suspension solution so that the protein content was 2 mg / ml, and was used as a membrane fraction. 7 μl of the membrane fraction solution was added to 1 ml of buffer B (50 mM Tris-HCl, 1 mM ethylenediaminetetraacetic acid, 0.2% bovine serum albumin, pH 7.6) to prepare a membrane fraction solution.
非標識エンドセリン−1(最終濃度100nM)添加また
は化合物(I−1)添加または化合物(I−2)添加ま
たはいずれも無添加の膜画分溶液に125I−エンドセリン
−1(約30,000cpm)を加えた。これら混合物を25℃に
て2時間静置した後、グラスフィルターGF/B(Whatman
社製)にてろ過した。フィルターを緩衝液C(50mMトリ
ス−塩酸、1mMエチレンジアミン4酢酸、pH7.6)にて洗
浄後、グラスフィルター上の放射活性を測定し、受容体
および非特異的に結合した125I−エンドセリン量を測定
し、以下の式にしたがってエンドセリン受容体結合阻害
率を計算した。 125 I-endothelin-1 (about 30,000 cpm) was added to the membrane fraction solution to which unlabeled endothelin-1 (final concentration: 100 nM) was added, compound (I-1) was added, or compound (I-2) was added, or none was added. added. After allowing these mixtures to stand at 25 ° C. for 2 hours, a glass filter GF / B (Whatman
(Trade name). After washing the filter with buffer C (50 mM Tris-HCl, 1 mM ethylenediaminetetraacetic acid, pH 7.6), the radioactivity on the glass filter was measured, and the amount of 125 I-endothelin bound to the receptor and non-specifically was determined. It measured and calculated the endothelin receptor binding inhibition rate according to the following formula.
阻害率=(C−A/C−B)×100 (%) A:RES−701−1またはRES−701−2存在下の放射活性 B:非標識エンドセリン−1存在下の放射活性 C:RES−701−1、RES−701−2、非標識エンドセリン−
1いずれも無添加での放射活性 結果 エンドセリン−1の結合を50%阻害するRES−701−1
の濃度(IC50)は25nMであり、エンドセリン−1の結合
を50%阻害するRES−701−2の濃度(IC50)は55nMであ
った。Inhibition rate = (CA / CB) × 100 (%) A: Radioactivity in the presence of RES-701-1 or RES-701-2 B: Radioactivity in the presence of unlabeled endothelin-1 C: RES -701-1, RES-701-2, unlabeled endothelin-
1. Radioactivity without any addition Result RES-701-1 that inhibits endothelin-1 binding by 50%
Concentration (IC 50) is 25 nM, the concentration (IC 50) of RES-701-2 to inhibit the binding of endothelin-1 of 50% was 55 nM.
試験例3.エンドセリンによる細胞内グアノシン−3′,
5′−環状−リン酸濃度上昇に対する化合物(I)の抑
制作用 Ishiiら〔The Journal of Pharmacology and Experim
ental Therapeutics259,3,1102−1108(1991)〕の文献
記載の方法により評価を行った。Test Example 3. Intracellular guanosine-3 'by endothelin,
Inhibitory effect of compound (I) on increase in 5'-cyclic-phosphate concentration Ishii et al. [The Journal of Pharmacology and Experim
ental Therapeutics 259 , 3, 1102-1108 (1991)].
化合物(I−1)(最終濃度3μg/ml)または化合物
(I−2)(最終濃度3μg/ml)を含む実験液あるいは
いずれも無添加の実験液に、エンドセリン−1(最終濃
度1nM)を添加した。Cyclic GMP Assay Kit(ヤマサ醤
油製)で細胞内グアノシン−3′,5′−環状一リン酸濃
度を測定することとにより、その変化を測定した。Endothelin-1 (final concentration 1 nM) was added to a test solution containing compound (I-1) (final concentration 3 μg / ml) or compound (I-2) (final concentration 3 μg / ml) or a test solution without any of them. Was added. The change was measured by measuring the intracellular guanosine-3 ', 5'-cyclic monophosphate concentration using a Cyclic GMP Assay Kit (manufactured by Yamasa Shoyu).
結果 化合物(I−1)3μg/ml存在下でのエンドセリン1n
Mによる細胞内グアノシン−3′,5′−環状一リン酸濃
度の増加量はエンドセリン1nM単独添加による細胞内グ
アノシン−3′,5′−環状一リン酸濃度の増加量の0%
であった。化合物(I−2)3μg/ml存在下でのエンド
セリン1nMによる細胞内グアノシン−3′,5′−環状一
リン酸濃度の増加量はエンドセリン1nM単独添加による
細胞内グアノシン−3′,5′−環状一リン酸濃度の増加
量の17%であった。化合物(I−1)3μg/mlおよび化
合物(I−2)3μg/mlの投与によってエンドセリン1n
Mによる細胞内グアノシン−3′,5′−環状一リン酸濃
度の上昇が抑制された。Results Endothelin 1n in the presence of 3 μg / ml of compound (I-1)
The increase in intracellular guanosine-3 ', 5'-cyclic monophosphate concentration by M was 0% of the increase in intracellular guanosine-3', 5'-cyclic monophosphate concentration by the addition of 1 nM endothelin alone.
Met. The increase in intracellular guanosine-3 ', 5'-cyclic monophosphate concentration by 1 nM endothelin in the presence of compound (I-2) at 3 µg / ml was determined by the addition of 1 nM endothelin alone to guanosine-3', 5'-intracellular. The increase in cyclic monophosphate concentration was 17%. Administration of 3 μg / ml of compound (I-1) and 3 μg / ml of compound (I-2) resulted in endothelin 1n
The increase in intracellular guanosine-3 ', 5'-cyclic monophosphate concentration by M was suppressed.
試験例4.エンドセリンレセプター拮抗作用 試験例2における牛肺臓組織を牛小脳組織に変え、試
験化合物として、第2表に示す化合物を使う以外は試験
例2と同様の方法により、エンドセリン受容体結合阻害
率を求めた。Test Example 4 Endothelin receptor antagonism Inhibition of endothelin receptor binding by the same method as in Test Example 2 except that bovine lung tissue in Test Example 2 was changed to bovine cerebellar tissue and the compounds shown in Table 2 were used as test compounds. The rate was determined.
結果を第2表に示す。 The results are shown in Table 2.
試験例5.エンドセリンによる気道収縮に対する化合物
(I)の抑制作用 本発明化合物のin vivoにおける気道収縮抑制作用を
C.トウベイら〔C.Touvay et.al.,European Journal of
Pharmacology,176 23−33(1990)〕の文献記載の方法
を一部改変した方法により評価した。即ち、予めプロプ
ラノロール(3mg/kg)を静脈内投与しβ遮断状態にした
Hartley系雄モルモットを用い、麻酔した後気管カニュ
ーレを挿入固定し人工呼吸器に接続した。次にGallamin
e triethiodide(Sigma社製)で自発呼吸を停止した
後、一定流量で人工呼吸を行った。気管カニューレの側
路に呼吸用量の測定装置を接続し、気道の収縮によって
変化する空気流出量を測定し気道収縮の指標とした。エ
ンドセリン−3(1.5μmol/l;ペプチド研究所製)を体
重100g当たり0.1ml静脈内に注入した。注入直後から気
道収縮(空気流出量が増加)が認められ、30秒および3
分をピークとする初期と遅発の二相性の気道収縮反応が
惹起された。この気道収縮反応に対し、化合物(I−
1)の溶解液(ジメチルスルホキシド:生理食塩水=1:
1)をエンドセリン−3を注入する前に静脈内に投与し
ておくと、溶解液のみを投与したコントロールに比べ気
道収縮反応が抑制された。 The bronchoconstriction inhibitory action in in vivo inhibitory activity present invention compounds of compounds against bronchoconstriction (I) according to Test Example 5. Endothelin
C. Touvay et.al., European Journal of
Pharmacology, 176 23-33 (1990)]. That is, propranolol (3 mg / kg) was intravenously administered in advance to be in a β-blocked state.
Using a male Hartley guinea pig, after anesthesia, a tracheal cannula was inserted and fixed and connected to a ventilator. Then Gallamin
After stopping spontaneous respiration with e triethiodide (manufactured by Sigma), artificial respiration was performed at a constant flow rate. A respiratory dose measuring device was connected to the bypass of the tracheal cannula, and the amount of air outflow that changed due to airway constriction was measured and used as an index of airway constriction. Endothelin-3 (1.5 μmol / l; manufactured by Peptide Laboratories) was injected intravenously at 0.1 ml per 100 g body weight. Immediately after the injection, airway constriction (increased air outflow) was observed, and 30 seconds and 3
An early and late biphasic airway constriction response was elicited with a peak in minutes. The compound (I-
Dissolution solution of 1) (dimethyl sulfoxide: saline = 1:
When 1) was intravenously administered before injecting endothelin-3, the airway constriction reaction was suppressed as compared with the control to which only the lysate was administered.
化合物(I−1)の気道収縮抑制作用の評価は、エン
ドセリン−3注入後30秒(初期相)および3分(遅発
相)の2点で行い、抑制率は以下の式に従って算出し
た。The evaluation of the airway contraction inhibitory effect of the compound (I-1) was performed at two points: 30 seconds (initial phase) and 3 minutes (late phase) after endothelin-3 injection, and the inhibition rate was calculated according to the following formula.
抑制率(%)=(a−b)/b×100 a:化合物(I−1)非投与群(コントロール)の気道収
縮 b:化合物(I−1)投与群の気道収縮 この結果により、化合物(I−1)が生体内において
もエンドセリン−3に対する拮抗作用を有し、気道収縮
を抑制することが確認された。Inhibition rate (%) = (ab) / b × 100 a: airway constriction of compound (I-1) non-administration group (control) b: airway constriction of compound (I-1) administration group From these results, it was confirmed that compound (I-1) has an antagonistic effect on endothelin-3 even in a living body and suppresses airway constriction.
試験例6.急性毒性 体重20±1gのddy系マウス3匹からなる投与群に化合
物(I−1)を腹腔内投与した。投与後七日間死亡例を
観察し最小致死量(MLD)を求めた。結果は300mg/kg以
上であった。Test Example 6. Acute toxicity Compound (I-1) was intraperitoneally administered to an administration group consisting of three ddy mice weighing 20 ± 1 g. Seven days after administration, death cases were observed and the minimum lethal dose (MLD) was determined. The result was more than 300mg / kg.
発明を実施するための最良の形態 以下の実施例で、使用したアミノ酸およびその保護基
に関する略号は生化学命名に関するIUPAC−IUB委員会
(IUPAC−IUB Commission on Biochemical Nomenclatur
e)の勧告〔Biochemistry,11,1726(1972)〕に従っ
た。BEST MODE FOR CARRYING OUT THE INVENTION In the examples below, the abbreviations for the amino acids and their protecting groups used are in the IUPAC-IUB Commission on Biochemical Nomenclatur.
The recommendation of e) [Biochemistry, 11 , 1726 (1972)] was followed.
アミノ酸及び保護基は以下の意味を有する。Amino acids and protecting groups have the following meanings.
Gly:グリシン Val:L−バリン Ile:L−イソロイシン Leu:L−ロイシン Glx:L−グルタミン酸あるいはL−グルタミン Gln:L−グルタミン Ser:L−セリン Thr:L−スレオニン Asp:L−アスパラギン酸 Asn:L−アスパラギン Lys:L−リジン Tyr:L−チロシン Cys:L−システイン Phe:L−フェニルアラニン Trp:L−トリプトファン His:L−ヒスチジン Pro:L−プロリン Asx:L−アスパラギン酸あるいはL−アスパラギン t−Boc:t−ブチルオキシカルボニル Me:メチル Bzl:ベンジル Bzl(NO2):4−ニトロベンジル Cl−Z:2−クロロベンジルオキシカルボニル Br−Z:2−ブロモベンジルオキシカルボニル 4−CH3Bzl:4−メチルベンジル t−Bu:tert−ブチル Bom:ベンジルオキシメチル Trt:トリチル Fmoc:9−フルオレニルメチルオキシカルボニル Z;ベンジルオキシカルボニル CHO:ホルミル Ac:アセチル CHPh2:ベンズヒドリル 側鎖保護アミノ酸は次のように表す。Gly: glycine Val: L-valine Ile: L-isoleucine Leu: L-leucine Glx: L-glutamine or L-glutamine Gln: L-glutamine Ser: L-serine Thr: L-threonine Asp: L-aspartic acid Asn: L-asparagine Lys: L-lysine Tyr: L-tyrosine Cys: L-cysteine Phe: L-phenylalanine Trp: L-tryptophan His: L-histidine Pro: L-proline Asx: L-aspartic acid or L-asparagine t- Boc: t-butyloxycarbonyl Me: methyl Bzl: benzyl Bzl (NO 2 ): 4-nitrobenzyl Cl-Z: 2-chlorobenzyloxycarbonyl Br-Z: 2-bromobenzyloxycarbonyl 4-CH 3 Bzl: 4 - methylbenzyl t-Bu: tert-butyl Bom: benzyloxymethyl Trt: trityl Fmoc: 9--fluorenylmethyloxycarbonyl Z; benzyloxycarbonyl CHO: formyl Ac: acetyl CHPh 2: Nzuhidoriru side chain protected amino acids are expressed as follows.
Trp(CHO):Nln−ホルミル−L−トリプトファン t−Boc−Tyr(Br−Z):Nα−t−ブチルオキシカルボ
ニル−O−2−ブロモベンジルオキシカルボニル−L−
チロシン t−Boc−His(Bom):Nα−t−ブチルオキシカルボニ
ル−Nlm−ベンジルオキシメチル−L−ヒスチジン Asp(Ot−Bu):アスパラギン酸−β−t−ブチルエス
テル t−Boc−Thr(Bzl):Nα−t−ブチルオキシカルボニ
ル−O−ベンジル−L−スレオニン t−Boc−Asp(OBzl):Nα−t−ブチルオキシカルボニ
ル−L−アスパラギン酸−β−ベンジルエステル t−Boc−Cys(4−CH3Bzl):Nα−t−ブチルオキシカ
ルボニル−S−4−メチルベンジル−L−システイン Fmoc−Asp(Ot−Bu)−OH:Nα−9−フルオレニルメチ
ルオキシカルボニル−L−アスパラギン酸−β−t−ブ
チルエステル Fmoc−Tyr(t−Bu)−OH:Nα−9−フルオレニルメチ
ルオキシシカルボニル−O−t−ブチル−L−チロシン Fmoc−Asn(Trt)−OH:Nα−9−フルオレニルメチルカ
ルボニル−Nγ−トリチル−L−アスパラギン Fmoc−His(Trt)−OH:Nα−9−フルオレニルメチルカ
ルボニル−Nlm−トリチル−L−ヒスチジン Fmoc−Thr(t−Bu)−OH:Nα−9−フルオレニルメチ
ルオキシカルボニル−O−t−ブチル−L−スレオニン Fmoc−Gln(Trt)−OH:Nα−9−フルオレニルメチルカ
ルボニル−Nδ−トリチル−L−グルタミン Fmoc−Lys(Z)−OH:Nα−9−フルオレニルメチルオ
キシカルボニル−Nε−カルボベンゾキシ−L−リジン Fmoc−Lys(t−Boc)−OH:Nα−9−フルオレニルメチ
ルカルボニル−Nε−t−ブチルオキシカルボニル−L
−リジン 反応溶媒及び反応試薬の略号は以下の意味を有する。Trp (CHO): N ln -formyl-L-tryptophan t-Boc-Tyr (Br-Z): Nα-t-butyloxycarbonyl-O-2-bromobenzyloxycarbonyl-L-
Tyrosine t-Boc-His (Bom): Nα-t-butyloxycarbonyl-N lm -benzyloxymethyl-L-histidine Asp (Ot-Bu): aspartic acid-β-t-butyl ester t-Boc-Thr ( Bzl): Nα-t-butyloxycarbonyl-O-benzyl-L-threonine t-Boc-Asp (OBzl): Nα-t-butyloxycarbonyl-L-aspartic acid-β-benzyl ester t-Boc-Cys ( 4-CH 3 Bzl): Nα -t- butyloxycarbonyl -S-4-methylbenzyl -L- cysteine Fmoc-Asp (Ot-Bu) -OH: Nα-9- -fluorenylmethyloxycarbonyl -L- aspartic Acid-β-t-butyl ester Fmoc-Tyr (t-Bu) -OH: Nα-9-Fluorenylmethyloxysicarbonyl-Ot-butyl-L-tyrosine Fmoc-Asn (Trt) -OH: Nα -9-Fluorenylmethylcarbonyl- γ- trityl -L- aspartic Fmoc-His (Trt) -OH: Nα-9- -fluorenylmethyl carbonyl -N lm - trityl -L- histidine Fmoc-Thr (t-Bu) -OH: Nα-9- full Oleynylmethyloxycarbonyl-Ot-butyl-L-threonine Fmoc-Gln (Trt) -OH: Nα-9-Fluorenylmethylcarbonyl-Nδ-trityl-L-glutamine Fmoc-Lys (Z) -OH: Nα-9-Fluorenylmethyloxycarbonyl-Nε-carbobenzoxy-L-lysine Fmoc-Lys (t-Boc) -OH: Nα-9-Fluorenylmethylcarbonyl-Nε-t-butyloxycarbonyl-L
-Lysine The abbreviations for the reaction solvent and the reaction reagent have the following meanings.
DCC:ジシクロヘキシルカルボジイミド DEPC:ジエチルフォスフォロシアニデート HONSu:N−ヒドロキシスクシンイミド PyBOP:ベンゾトリアゾール−1−イル−オキシ−トリス
−ピロリジノ−フォスフォニウムヘキサフルオロフォス
フェート HOBt:N−ヒドロキシベンゾトリアゾール NMM:N−メチルモルホリン DMF:N,N−ジメチルホルムアミド TFA:トリフルオロ酢酸 TosOH:p−トルエンスルホン酸 Pd/C:パラジウム−炭素触媒 TEA:トリエチルアミン なお,以下の実施例1、3、6〜10、および参考例1
および2はABI社のペプチド合成機430A型を用い、ABI社
の試薬及び溶媒を用いてABI社の合成プログラムにより
合成機を運転してペプチドを合成した。アミノ酸の縮合
反応は対称酸無水物として標準の条件で行った。DCC: dicyclohexylcarbodiimide DEPC: diethylphosphorocyanidate HONSu: N-hydroxysuccinimide PyBOP: benzotriazol-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate HOBt: N-hydroxybenzotriazole NMM: N -Methylmorpholine DMF: N, N-dimethylformamide TFA: Trifluoroacetic acid TosOH: p-Toluenesulfonic acid Pd / C: Palladium-carbon catalyst TEA: Triethylamine The following Examples 1, 3, 6 to 10 and Reference Example 1
In Nos. 2 and 3, peptides were synthesized using an ABI peptide synthesizer model 430A and operating a synthesizer using ABI reagents and solvents according to an ABI synthesis program. The amino acid condensation reaction was carried out under standard conditions as a symmetric acid anhydride.
また、実施例16、17、21〜40、および参考例3および
4は島津製作所のペプチド合成機PSSM8を用い、島津製
作所の試薬及び溶媒を用いて同社の合成プログラムによ
り合成機を運転してペプチドを合成した。アミノ酸の縮
合反応はFmoc法[ペプチド合成の基礎と実験 泉屋信夫
ら(丸善)]により標準の条件で行つた。。In Examples 16, 17, 21 to 40, and Reference Examples 3 and 4, a peptide synthesizer was operated by Shimadzu's synthesis program using Shimadzu's reagents and solvents, using Shimadzu's peptide synthesizer PSSM8. Was synthesized. Amino acid condensation reactions were performed under standard conditions by the Fmoc method [Basic and Experimental Peptide Synthesis Nobuo Izumiya et al. (Maruzen)]. .
発明を実施するための最良の形態 実施例1.化合物(I−1)(RES−701−1) 種菌として、ストレプトマイセス・エスピーRE−701
株を用い、第一種培地としてグルコース10g/l、ビーフ
エキストラクト(極東製薬工業製)3g/l、粉末酵母エキ
スS(日本製薬製)5g/l、バクトトリプトン(ディフコ
社製)5g/l、リン酸一カリウム1g/l、硫酸マグネシウム
7水和物0.5g/l、炭酸カルシウム2g/l、pH7.2の培地を
用いる。種菌1白金耳を、50ml太型試験管に入れた上記
培地10mlに植菌し、28℃で5日間振盪培養した。BEST MODE FOR CARRYING OUT THE INVENTION Example 1. Compound (I-1) (RES-701-1) As the inoculum, Streptomyces sp. RE-701
Using the strain as a first-class medium, glucose 10 g / l, beef extract (manufactured by Far East Pharmaceutical Industries) 3 g / l, powdered yeast extract S (manufactured by Nippon Pharmaceutical) 5 g / l, bactotripton (manufactured by Difco) 5 g / l A medium containing 1 g / l of monopotassium phosphate, 0.5 g / l of magnesium sulfate heptahydrate, 2 g / l of calcium carbonate, and pH 7.2 is used. One platinum loop of the inoculum was inoculated into 10 ml of the above medium placed in a 50 ml thick test tube, and cultured with shaking at 28 ° C for 5 days.
この第一種培養液9mlを2l容バッフル付きエルレンマ
イヤーフラスコに入った300mlの第二種培地に植菌し
た。第二種培地の組成は第一種培地の組成と同じであっ
た。第二種培養は28℃で2日間行った。この第二種培養
液300mlを30l容のステンレス製ジャーファーメンター中
の第三種培地9.7lに植菌した。第三種培地の組成は第一
種培地の組成と同じであった。第三種培養は28℃で3日
間通気攪拌方式(回転数250rpm,通気量10l/min)により
行った。この第三種培養液10lを200l容ステンレス製ジ
ャーファーメンター中の主発酵培地90lに植菌した。主
発酵培地としてはグルコース40g/l、可溶性デンプン40g
/l、大豆粉10g/l、コーン・スチープ・リカー5g/l、乾
燥酵母5g/l、リン酸一カリウム0.5g/l、塩化コバルト1
μg/l、硫酸ニッケル1μg/l、硫酸亜鉛10μg/l、リン
酸マグネシウム0.5g/l、pH7.0の培地を用いた。この主
発酵培養は28℃で4日間通気攪拌方式(回転数200rpm、
通気量100l/min)により行った。9 ml of this first-type culture was inoculated into 300 ml of a second-type medium in an Erlenmeyer flask with a 2 l baffle. The composition of the second type medium was the same as the composition of the first type medium. The second seed culture was performed at 28 ° C. for 2 days. 300 ml of the second seed culture was inoculated into 9.7 l of the third seed medium in a 30-liter stainless steel jar fermenter. The composition of the third medium was the same as the composition of the first medium. The third seed culture was performed at 28 ° C. for 3 days by aeration and agitation (rotational speed 250 rpm, aeration 10 l / min). 10 l of this third seed culture was inoculated into 90 l of the main fermentation medium in a 200 l stainless steel jar fermenter. The main fermentation medium is glucose 40g / l, soluble starch 40g
/ l, soy flour 10g / l, corn steep liquor 5g / l, dry yeast 5g / l, monopotassium phosphate 0.5g / l, cobalt chloride 1
A medium of μg / l, nickel sulfate 1 μg / l, zinc sulfate 10 μg / l, magnesium phosphate 0.5 g / l, pH 7.0 was used. The main fermentation culture is aerated at 28 ° C for 4 days (rotation speed 200rpm,
The air flow rate was 100 l / min).
得られた培養液100lを連続遠心分離して菌体を分別
し、得られた菌体にアセトン70lを添加し攪拌後、濾過
した。得られた濾液を減圧下濃縮してアセトンを除去
後、ダイヤイオンHP−20カラム(5l)に通塔し、吸着さ
せた。カラムを50%メタノール25lで洗浄後、メタノー
ルで溶出を行った。RES−701−1を含む画分を集め、水
で希釈後、50%メタノールで充填したダイヤイオンHP−
20SSカラム(2.5l)に通塔し、吸着させた。70%メタノ
ール7.5lで洗浄後、80%メタノールで溶出を行い、RES
−701−1を含む画分を集めて減圧下で濃縮乾固するこ
とにより2.2gの淡褐色固体を得た。得られた固体をメタ
ノールに溶解し、メタノールで充填したHP−20カラム
(2l)に通塔後、メタノールで溶出した。RES−701−1
を含む画分を集め、減圧下濃縮乾固することにより350m
gの白色固体を得た。得られた固体をメタノールに溶解
した後、下記の条件で分取HPLC(LC−8システム、島津
製作所製)を用いて分取精製を行った。得られたRES−7
01−1を含む画分をセップパックC−18(ウォーターズ
社製)で処理することによりTFAを除去し、減圧下濃縮
乾固することにより、RES−701−1の乾燥粉末20mgを得
た。100 l of the obtained culture was continuously centrifuged to separate the cells, 70 l of acetone was added to the obtained cells, and the mixture was stirred and filtered. The obtained filtrate was concentrated under reduced pressure to remove acetone, and then passed through a Diaion HP-20 column (5 l) for adsorption. The column was washed with 25 l of 50% methanol and eluted with methanol. Fractions containing RES-701-1 were collected, diluted with water, and then filled with Diaion HP-
The mixture was passed through a 20SS column (2.5 L) and adsorbed. After washing with 7.5 l of 70% methanol, elution was performed with 80% methanol.
The fractions containing -701-1 were collected and concentrated to dryness under reduced pressure to obtain 2.2 g of a light brown solid. The obtained solid was dissolved in methanol, passed through a HP-20 column (2 l) filled with methanol, and eluted with methanol. RES-701-1
Is collected, concentrated under reduced pressure to dryness to 350 m
g of white solid were obtained. After the obtained solid was dissolved in methanol, preparative purification was performed using preparative HPLC (LC-8 system, manufactured by Shimadzu Corporation) under the following conditions. Obtained RES-7
The fraction containing 01-1 was treated with Seppak C-18 (manufactured by Waters) to remove TFA, and concentrated to dryness under reduced pressure to obtain 20 mg of a dry powder of RES-701-1.
HPLC分取条件 カラム:SH−363−10(C−18逆相シリカゲル、ワイエム
シイ社製) 溶離液:0.1%TFA溶液−アセトニトリル(30%−65%)
直線状濃度勾配 分離時間:20分 流速:25ml/min RES−701−1の理化学的性質を以下に示す。HPLC preparative conditions Column: SH-363-10 (C-18 reverse phase silica gel, manufactured by YMC) Eluent: 0.1% TFA solution-acetonitrile (30% -65%)
Linear concentration gradient Separation time: 20 minutes Flow rate: 25 ml / min The physicochemical properties of RES-701-1 are shown below.
なお理化学的性質は以下の機器により測定した。The physicochemical properties were measured by the following instruments.
マススペクトル:日本電子 JMS−SX102A(FAB法により
測定) アミノ酸分析はBidlingmeyer.B.A.等〔J.Chromatogr.,3
36,93(1984)〕の方法で実施した。加水分解は塩酸蒸
気中110℃で22時間実施した。加水分解物のアミノ酸組
成はWaters Pico Tagアミノ酸分析計で分析した。なお
トリプトファンのみは松原等〔Biochem.Biophys.Res.Co
mmun.,35,175(1969)〕の方法で加水分解し日本電子製
JLC−300アミノ酸分析計で分析した。なお、実測値はAl
aの値を1.00として表わした。Mass spectrum: JEOL JMS-SX102A (measured by FAB method) Amino acid analysis was performed by Bidlingmeyer.BA etc. [J. Chromatogr., 3
36 , 93 (1984)]. The hydrolysis was carried out in hydrochloric acid vapor at 110 ° C. for 22 hours. The amino acid composition of the hydrolyzate was analyzed using a Waters Pico Tag amino acid analyzer. For tryptophan only, see Matsubara et al. [Biochem.Biophys.Res.Co.
mmun., 35 , 175 (1969)]
Analysis was performed using a JLC-300 amino acid analyzer. The measured value is Al
The value of a was expressed as 1.00.
質量分析〔FABMS〕: 測定値2042.8722、計算値2042.8614(12C103H115N23O23
+Hとして) アミノ酸分析:実測値(理論値):Asx 2.54(3)、Gly
2.13(2)、His 0.93(1)、Thr 1.00(1)、Ala
1.00(1)、Pro 1.15(1)、Try 1.95(2)、Phe 2.
06(2)、Trp 2.54(3) アミノ酸の立体配置は、加水分解後(+)−1−(9
−フルオレニル)エチルクロロホルメートで誘導体化
し、逆相HPLCで分析したところすべてL型であった。Mass spectrometry [FABMS]: Found 2042.8722, calcd 2042.8614 (12 C 103 H 115 N 23 O 23
Amino acid analysis: Actual value (theoretical value): Asx 2.54 (3), Gly
2.13 (2), His 0.93 (1), Thr 1.00 (1), Ala
1.00 (1), Pro 1.15 (1), Try 1.95 (2), Phe 2.
06 (2), Trp 2.54 (3) The configuration of the amino acid is (+)-1- (9
-Fluorenyl) ethyl chloroformate was derivatized and analyzed by reverse phase HPLC to find that it was all L-form.
アミノ酸の一次構造は、0.05N塩酸中108℃で2時間部
分加水分解し、HPLCで分離して得た部分加水分解ペプチ
ドの自動エドマン分解(470Aプロテインシーケンサー、
120AオンラインPTHアミノ酸分析計、ABI社製)、及びFA
B−MSスペクトル分析により決定した。また、C末端の
トリプトファンはヒドラジン分解法〔赤堀等,Bull.Che
m.Soc.Jap.,25,214(1967)〕により同定した。The primary structure of the amino acid was partially hydrolyzed in 0.05N hydrochloric acid at 108 ° C. for 2 hours and then subjected to automated Edman degradation of a partially hydrolyzed peptide obtained by separation by HPLC (470A protein sequencer,
120A Online PTH Amino Acid Analyzer, ABI) and FA
Determined by B-MS spectral analysis. In addition, tryptophan at the C-terminal can be obtained by a hydrazinolysis method [Akahori et al.
m. Soc. Jap., 25 , 214 (1967)].
また、RES−701−1のRf値を各種展開剤により薄層ク
ロマトグラフィーで展開し測定した。検出は、ヨウ素反
応、硫酸発色、または253.7nmの紫外線照射法により行
った。Further, the Rf value of RES-701-1 was measured by developing it with thin layer chromatography using various developing agents. Detection was performed by an iodine reaction, sulfuric acid coloring, or ultraviolet irradiation at 253.7 nm.
展開条件1 薄層;キーセルゲル60F254(メルク社製、Art.5629) 展開溶媒;クロロホルム:メタノール:エタノール:水
=10:4:4:2 展開方法;室温、上昇法、15〜60分 Rf値:0.4 展開条件2 薄層および展開方法は展開条件1と同様 展開溶媒;100%メタノール Rf値;0.6 展開条件3 展開方法は展開条件1と同様 薄層;RP−18(メルク社製、Art.13724) 展開溶媒;80%メタノール Rf値;0.3 展開条件4 展開方法は展開条件1と同様 薄層;RP−18(メルク社製、Art.13724) 展開溶媒;90%アセトニトリル Rf値;0.4 実施例2.化合物(I−2)(RES−701−2) 種菌として、ストレプトマイセス・エスピーRE−701
株を用い、種菌1白金耳を、4本の250mlエルレンマイ
ヤーフラスコに入れた第一種培地〔グルコース 10g/
l、可溶性でんぷん 10g/l、ビーフエキストラクト(極
東製薬工業製) 3g/l、粉末酵母エキスS(日本製薬
製) 5g/l、バクトトリプトン(ディフコ社製)5g/l、
リン酸一カリウム 1g/l、硫酸マグネシウム7水和物0.
5g/l、炭酸カルシウム 2g/l、LG−109(信越化学製)
0.5g/l(pH7.2)〕40mlにそれぞれ植菌し、28℃で3日
間振盪培養した。Expand Conditions 1 thin layer; Kiserugeru 60F 254 (Merck, Art.5629) developing solvent; chloroform: methanol: ethanol: water = 10: 4: 4: 2 deployment method; room temperature rise process, 15 to 60 minutes Rf value : 0.4 Developing condition 2 Thin layer and developing method are the same as developing condition 1. Developing solvent; 100% methanol Rf value; 0.6 Developing condition 3 Developing method is the same as developing condition 1. Thin layer; RP-18 (Merck, Art. 13724) Developing solvent; 80% methanol Rf value; 0.3 Developing condition 4 Developing method is the same as developing condition 1. Thin layer; RP-18 (Merck, Art. 13724) Developing solvent; 90% acetonitrile Rf value; 0.4 Example 2. Compound (I-2) (RES-701-2) As the inoculum, Streptomyces sp. RE-701
Using a strain, one loopful of the inoculum was placed in four 250 ml Erlenmeyer flasks in a first-class medium [glucose 10 g /
l, soluble starch 10g / l, beef extract (Kyokuto Pharmaceutical) 3g / l, powdered yeast extract S (Nippon Pharmaceutical) 5g / l, bactotripton (Difco) 5g / l,
Monopotassium phosphate 1g / l, magnesium sulfate heptahydrate 0.
5g / l, calcium carbonate 2g / l, LG-109 (Shin-Etsu Chemical)
0.5 g / l (pH 7.2)], and cultured with shaking at 28 ° C for 3 days.
この第一種培養液10mlを6本の2l容バッフル付きエル
レンマイヤーフラスコに入れた300mlの第二種培地にそ
れぞれ植菌した。第二種培地の組成は第一種培地の組成
と同じであった。第二種培養は28℃で2日間行った。こ
の第二種培養液1800mlを200l容のステンレス製ジャーフ
ァーメンター中の第三種培地100lに植菌した。第三種培
地の組成は第一種培地の組成と同じであった。第三種培
養は28℃で27時間通気攪拌方式(回転数220rpm、通気量
60l/min)により行った。この第三種培養液100lを2,000
l容ステンレス製ジャーファーメンター中の主発酵培地
1,000lに植菌する。主発酵培地としては可溶性デンプン
50g/l、乾燥酵母 30g/l、リン酸一カリウム 0.5g/
l、リン酸マグネシウム 0.5g/l、LG−109(信越化学
製)0.5g/l、pH7.0の培地を用いた。この主発酵培養は2
8℃で3日間通気攪拌方式(回転数140rpm、通気量400l/
min)により行った。10 ml of this first-type culture was inoculated into 300 ml of a second-type medium placed in six Erlenmeyer flasks each having a 2 L baffle. The composition of the second type medium was the same as the composition of the first type medium. The second seed culture was performed at 28 ° C. for 2 days. 1800 ml of the second seed culture was inoculated into 100 liter of the third seed medium in a 200-liter stainless steel jar fermenter. The composition of the third medium was the same as the composition of the first medium. The third seed culture is aerated and agitated at 27 ° C for 27 hours (rotation speed: 220 rpm, aeration volume)
60 l / min). Add 100l of this third seed culture to 2,000
Main fermentation medium in l-volume stainless steel jar fermenter
Inoculate 1,000 l. Soluble starch as the main fermentation medium
50g / l, dried yeast 30g / l, monopotassium phosphate 0.5g /
l, magnesium phosphate 0.5 g / l, LG-109 (Shin-Etsu Chemical) 0.5 g / l, pH 7.0 medium was used. This main fermentation culture is 2
Ventilation stirring method at 8 ° C for 3 days (rotation speed 140rpm, ventilation volume 400l /
min).
得られた培養液1,000lにn−プロピルアルコール400l
および濾過助剤を添加し、充分攪拌し、フィルタープレ
スによる濾過を行った。濾液に水を添加し、n−プロピ
ルアルコール濃度20%とし、ダイヤイオンHP−20(三菱
化成工業(株)製)を充填した50lカラムに通塔した。R
ES−701−2を吸着させ、60%メタノール200lで洗浄
し、80%メタノール250lで溶出した。RES−701−2を含
む画分150lに水および酢酸アンモニウムを加え、50mM酢
酸アンモニウムを含む30%メタンールでpH7.0とし、30
%メタノール、50mM酢酸アンモニウムを含む30%メタノ
ール(pH7.0)で充填したセパビーズFP−DA13(三菱化
成工業(株)製)カラム(15l)に通塔し、50mM酢酸ア
ンモニウムを含む30%メタノール(pH7.0)15l、次に、
1M酢酸アンモニウムを含む30%メタノール(pH7.0)45l
で洗浄し、0.6M酢酸を含む50%メタノール60lで溶出す
る。RES−701−2を含む画分を集め、50%メタノールで
充填したHP−20SSカラム(10l)に通塔し、50%メタノ
ール、次に70%メタノールで洗浄し、75%メタノールで
溶出した。RES−701−2を含む画分を集め、減圧乾固
し、褐色固体を得た。これを25%アセトニトリルに溶解
し、下記の条件下で分取HPLC(綜研化学製)を用いて分
取を繰り返し行った。400 l of n-propyl alcohol was added to 1,000 l of the obtained culture solution.
Then, a filter aid was added, the mixture was sufficiently stirred, and filtered by a filter press. Water was added to the filtrate to make the concentration of n-propyl alcohol 20%, and the mixture was passed through a 50-liter column filled with Diaion HP-20 (manufactured by Mitsubishi Kasei Kogyo Co., Ltd.). R
ES-701-2 was adsorbed, washed with 200 l of 60% methanol and eluted with 250 l of 80% methanol. Water and ammonium acetate were added to 150 l of the fraction containing RES-701-2, and the pH was adjusted to 7.0 with 30% methaneol containing 50 mM ammonium acetate.
% Methanol and 30% methanol (pH 7.0) containing 50 mM ammonium acetate, and passed through a column (15 l) filled with Sepabeads FP-DA13 (manufactured by Mitsubishi Kasei Kogyo Co., Ltd.). pH 7.0) 15 l, then
45L of 30% methanol (pH 7.0) containing 1M ammonium acetate
And elute with 60 liters of 50% methanol containing 0.6M acetic acid. The fractions containing RES-701-2 were collected, passed through an HP-20SS column (10 l) packed with 50% methanol, washed with 50% methanol, then with 70% methanol, and eluted with 75% methanol. The fractions containing RES-701-2 were collected and dried under reduced pressure to obtain a brown solid. This was dissolved in 25% acetonitrile, and fractionation was repeatedly performed using preparative HPLC (manufactured by Soken Chemical) under the following conditions.
担体:ODS AQ S−50(YMC社製) 溶離液:アセトニトリル(25%−50%)直線状勾配 分離時間:250分 サンプル量:500mg/回 流速:250ml/min 保持時間3.5時間から4.5時間の画分を分取し、減圧乾固
することにより、RES−701−2の乾燥粉末を800mgを得
た。Carrier: ODS AQ S-50 (manufactured by YMC) Eluent: acetonitrile (25% -50%) linear gradient Separation time: 250 minutes Sample amount: 500 mg / time Flow rate: 250 ml / min Retention time of 3.5 to 4.5 hours Fractions were collected and dried under reduced pressure to obtain 800 mg of a dry powder of RES-701-2.
RES−701−2の理化学的性質を以下に示す。The physicochemical properties of RES-701-2 are shown below.
なお理化学的性質は以下の機器により測定した。The physicochemical properties were measured by the following instruments.
マススペクトル:日本電子 JMS−HX110A(FAB法により
測定) アミノ酸分析はBidlingmeyer.B.A.等〔J.Chromatogr.,3
36,93(1984)〕の方法で実施した。加水分解は塩酸蒸
気中110℃で22時間実施した。加水分解物のアミノ酸組
成はWaters Pico Tagアミノ酸分析計で分析した。なお
トリプトファンのみはR.J.Simpson等〔J.Biol.Chem.,25
1,1936(1976)〕の方法で加水分解し上記アミノ酸分析
計で分析した。なお、実測値はAlaの値を1.00として表
わした。Mass spectrum: JEOL JMS-HX110A (measured by FAB method) Amino acid analysis was performed by Bidlingmeyer.BA [J. Chromatogr., 3
36 , 93 (1984)]. The hydrolysis was carried out in hydrochloric acid vapor at 110 ° C. for 22 hours. The amino acid composition of the hydrolyzate was analyzed using a Waters Pico Tag amino acid analyzer. For tryptophan only, use RJ Simpson et al. (J. Biol. Chem., 25
1, 1936 (1976)] and analyzed by the amino acid analyzer described above. In addition, the actual measurement value represented the value of Ala as 1.00.
質量分析:測定値 2058.8496 アミノ酸分析:実測値(理論値):Asx 2.61(3)、Gly
2.25(2)、His 0.92(1)、Thr 1.02(1)、Ala
1.00(1)、Pro 1.14(1)、Tyr 1.74(2)、Phe 1.
90(2)、Trp 2.15(2) アミノ酸の立体配置は、加水分解後(+)−1−(9
−フルオレニル)エチルクロロホルメートで誘導体化
し、逆相HPLCで分析したところすべてL型であった。Mass spectrometry: measured value 2058.8496 Amino acid analysis: actual measured value (theoretical value): Asx 2.61 (3), Gly
2.25 (2), His 0.92 (1), Thr 1.02 (1), Ala
1.00 (1), Pro 1.14 (1), Tyr 1.74 (2), Phe 1.
90 (2), Trp 2.15 (2) The configuration of the amino acid is (+)-1- (9
-Fluorenyl) ethyl chloroformate was derivatized and analyzed by reverse phase HPLC to find that it was all L-form.
C末端アミノ酸以外の一次構造は、0.1N塩酸中108℃
で2時間部分加水分解し逆相HPLCで分離して得た部分加
水分解ペプチドの自動エドマン分解(470Aプロテインシ
ークエンサー、120AオンラインPTHアミノ酸分析計、ABI
社製)、及びFAB−MSスペクトル分析により決定した。The primary structure other than the C-terminal amino acid is 108 ° C in 0.1N hydrochloric acid.
Automated Edman degradation of partially hydrolyzed peptides obtained by partial hydrolysis with HPLC for 2 hours and separation by reverse phase HPLC (470A protein sequencer, 120A online PTH amino acid analyzer, ABI
And FAB-MS spectrum analysis.
C末端アミノ酸はヒドラジン分解法〔赤堀等、Bull.Che
m.Soc.Jap.,25,214(1964)〕及びカルボキシペプチダ
ーゼA(シグマ社製)消化後、逆相HPLCでC末端アミノ
酸を分離し、前述FAB−MSスペクトル分析ならびにNMRス
ペクトル分析(Bruker社製,AM500,1H−500MHz)により
7−ヒドロキシトリプトファンと同定した。アミノ酸配
置は旋光度計(日本分光DIP−370)によりL型であるこ
とが判明した。The C-terminal amino acid is determined by a hydrazinolysis method [Akahori et al., Bull.
m. Soc. Jap., 25 , 214 (1964)] and carboxypeptidase A (manufactured by Sigma), and the C-terminal amino acid was separated by reversed-phase HPLC. The FAB-MS spectrum analysis and NMR spectrum analysis (Bruker) Ltd., was identified as aM500, 1 H-500MHz) by 7-hydroxy-tryptophan. The amino acid configuration was determined to be L-type by a polarimeter (JASCO DIP-370).
実施例3.化合物(I−3)(RES−701−3) 種菌として、ストレプトマイセス・エスピーRE−629
株を用い、種菌1白金耳を、4本の250mlエルレンマイ
ヤーフラスコに入れた第一種培地〔グルコース10g/l、
可溶性でんぷん10g/l、ビーフエキストラクト(極東製
薬工業製)3g/l、粉末酵母エキスS(日本製薬製)5g/
l、バクトトリプトン(ディフコ社製)5g/l、リン酸一
カリウム1g/l、硫酸マグネシウム7水和物0.5g/l、炭酸
カルシウム2g/l、LG−109(信越化学製)0.5g/l(pH7.
2)〕40mlにそれぞれ植菌し、28℃で3日間振盪培養し
た。この第一種培養液10mlを6本の2l容バッフル付きエ
ルレンマイヤーフラスコに入れた300mlの第二種培地に
それぞれ植菌した。第二種培地の組成は第一種培地の組
成と同じであった。第二種培養は28℃で2日間行った。
この第二種培養液1800mlを200l容のステンレス製ジャー
ファーメンター中の主発酵培地100lに植菌した。主発酵
培地としては可溶性デンプン50g/l、乾燥酵母30g/l、リ
ン酸一カリウム 0.5g/l、リン酸マグネシウム0.5g/l、
LG−109(信越化学製)0.5g/l、pH7.0の培地を用いた。
この主発酵培地は28℃で3日間通気攪拌方式(回転数14
0rpm、通気量400l/min)により行った。得られた培養液
100lにn−プロピルアルコール40lおよび濾過助剤を添
加し、充分攪拌し、フィルタープレスによる濾過を行っ
た。濾液に水を添加し、n−プロピルアルコール濃度20
%とし、ダイヤイオンHP−20(三菱化成工業(株)製)
を充填した5lカラムに通塔した。RES−701−3を吸着さ
せた後、60%メタノール20lで洗浄し、80%メタノール2
5lで溶出した。RES−701−3を含む画分15lに水および
酢酸アンモニウムを加え、50mM酢酸アンモニウムを含む
30%メタノールでpH7.0とし、50mM酢酸アンモニウムを
含む30%メタノール(pH7.0)で充填したセパビーズFP
−DA13(三菱化成工業(株)製)カラム(1.5l)に通塔
し、50mM酢酸アンモニウムを含む30%メタノール(pH7.
0)1.5l、次に、1M酢酸アンモニウムを含む30%メタノ
ール(pH7.0)4.5lで洗浄し、0.6M酢酸を含む50%メタ
ノール 6lで溶出した。RES−701−3を含む画分を集
め、50%メタノールで充填したHP−20SSカラム(1)
に通塔し、50%メタノール、次に70%メタノールで洗浄
し、75%メタノールで溶出した。RES−701−3を含む画
分を集め、減圧乾固し、褐色固体を得た。これを25%ア
セトニトリルに溶解し、下記の条件下で分取HPLC(島津
製作所製)を用いて分取を繰り返し行った。Example 3. Compound (I-3) (RES-701-3) Streptomyces sp. RE-629 as the inoculum
Using a strain, one loopful of the inoculum was placed in four 250 ml Erlenmeyer flasks in a first-class medium [glucose 10 g / l,
10g / l soluble starch, 3g / l beef extract (Kokuto Pharmaceutical), 5g / powder yeast extract S (Nippon Pharmaceutical)
l, bactotripton (Difco) 5g / l, monopotassium phosphate 1g / l, magnesium sulfate heptahydrate 0.5g / l, calcium carbonate 2g / l, LG-109 (Shin-Etsu Chemical) 0.5g / l (pH 7.
2)] 40 ml of each was inoculated, and cultured with shaking at 28 ° C. for 3 days. 10 ml of this first-type culture was inoculated into 300 ml of a second-type medium placed in six Erlenmeyer flasks each having a 2 L baffle. The composition of the second type medium was the same as the composition of the first type medium. The second seed culture was performed at 28 ° C. for 2 days.
1800 ml of this second seed culture was inoculated into 100 l of the main fermentation medium in a 200 l stainless steel jar fermenter. The main fermentation medium is soluble starch 50 g / l, dry yeast 30 g / l, monopotassium phosphate 0.5 g / l, magnesium phosphate 0.5 g / l,
A medium of LG-109 (Shin-Etsu Chemical Co., Ltd.) 0.5 g / l, pH 7.0 was used.
The main fermentation medium was aerated and agitated at 28 ° C. for 3 days (at 14 rpm).
0 rpm, aeration 400 l / min). Obtained culture solution
To 100 l, n-propyl alcohol (40 l) and a filter aid were added, sufficiently stirred, and filtered by a filter press. Water was added to the filtrate and the n-propyl alcohol concentration was 20
%, Diaion HP-20 (manufactured by Mitsubishi Kasei Kogyo Co., Ltd.)
And passed through a 5 l column. After adsorbing RES-701-3, it was washed with 20 l of 60% methanol,
Eluted in 5 l. Water and ammonium acetate are added to 15 l of the fraction containing RES-701-3, containing 50 mM ammonium acetate
Sepabeads FP, pH 7.0 with 30% methanol, filled with 30% methanol (pH 7.0) containing 50 mM ammonium acetate
-Passed through a column (1.5 l) of DA13 (manufactured by Mitsubishi Kasei Kogyo Co., Ltd.) and passed through 30% methanol (pH 7.
0) 1.5 l, then washed with 4.5 l of 30% methanol (pH 7.0) containing 1 M ammonium acetate and eluted with 6 l of 50% methanol containing 0.6 M acetic acid. Fractions containing RES-701-3 were collected and HP-20SS column packed with 50% methanol (1)
And washed with 50% methanol, then with 70% methanol and eluted with 75% methanol. The fractions containing RES-701-3 were collected and dried under reduced pressure to obtain a brown solid. This was dissolved in 25% acetonitrile, and fractionation was repeated using preparative HPLC (manufactured by Shimadzu Corporation) under the following conditions.
カラム:ODS(径5cm、長さ50cm)(YMC社製) 溶離液:アセトニトリル(25%−50%)直線状勾配 分離時間:250分 サンプル量:10mg/回 流速:30ml/min 保持時間から180から210分の画分を繰り返し分取し、減
圧乾固することにより、RES−701−3の乾燥粉末を7mg
得た。Column: ODS (diameter 5 cm, length 50 cm) (manufactured by YMC) Eluent: acetonitrile (25% -50%) linear gradient Separation time: 250 minutes Sample amount: 10 mg / time Flow rate: 30 ml / min 180 from retention time From 210 minutes, and dried under reduced pressure to obtain 7 mg of a dry powder of RES-701-3.
Obtained.
RES−701−3の理化学的性質を以下に示す。 The physicochemical properties of RES-701-3 are shown below.
なお理化学的性質は以下の機器により測定した。 The physicochemical properties were measured by the following instruments.
マススペクトル:日本電子 JMS−HX110A アミノ酸分析は実施例2と同様に行った。なお実測値は
Pheの値を2.00として表わした。Mass spectrum: JEOL JMS-HX110A Amino acid analysis was performed in the same manner as in Example 2. The measured value is
The value of Phe was expressed as 2.00.
a)質量分析:測定値 2059.4626 b)アミノ酸分析 実測値(理論値):Asx 3.16
(3)、Ser 0.90(1)、Gly 1.97(2)、His 0.96
(1)、Thr 0.89(1)、Pro 1.12(1)、Tyr 1.92
(2)、Phe 2.00(2)、Trp 2.91(3) アミノ酸の配置は、加水分解後(+)−1−(9−フ
ルオレニル)エチルクロロホルメートで誘導体化し逆相
HPLCで分離することによりすべてL型であることが判明
した。a) Mass spectrometry: measured value 2059.4626 b) amino acid analysis Actual value (theoretical value): Asx 3.16
(3), Ser 0.90 (1), Gly 1.97 (2), His 0.96
(1), Thr 0.89 (1), Pro 1.12 (1), Tyr 1.92
(2), Phe 2.00 (2), Trp 2.91 (3) The amino acid configuration was reversed after hydrolysis by derivatization with (+)-1- (9-fluorenyl) ethyl chloroformate.
All were separated into the L form by HPLC.
一次構造は、0.1N塩酸中108℃で2時間部分加水分解
し逆相HPLCで分離して得たペプチドの自動エドマン分解
(470Aプロテインシークエンサー、120Aオンライン PT
Hアミノ酸分析計、ABI社製)、及びFABMSスペクトル分
析(日本電子製、JMS−HX110A)により決定した。The primary structure was determined by automated Edman degradation (470A protein sequencer, 120A online PT) of the peptide obtained by partial hydrolysis in 0.1N hydrochloric acid at 108 ° C for 2 hours and separation by reverse phase HPLC.
H amino acid analyzer, manufactured by ABI) and FABMS spectrum analysis (manufactured by JEOL Ltd., JMS-HX110A).
C末端アミノ酸はヒドラジン分解法〔赤堀等,Bull.Ch
em.Soc.Jap.,25,214(1964)〕により分析したところ、
トリプトファンと確認された。The C-terminal amino acid is determined by a hydrazinolysis method [Akahori et al., Bull.
em.Soc.Jap., 25 , 214 (1964)]
It was identified as tryptophan.
実施例4. 化合物(I−4):H−Gly−Asn−Trp−His−Gly−Thr
−Ala−Pro−Asp−Trp−Phe−Phe−AsN−Tyr−Tyr−Trp
−OHの合成 ABI社の合成プログラムに従い、t−Boc−Trp(CHO)
0.5mmolが結合した担体樹脂0.73gを自動合成機の反応器
に入れ、次の操作を行つた。Example 4. Compound (I-4): H-Gly-Asn-Trp-His-Gly-Thr
-Ala-Pro-Asp-Trp-Phe-Phe-AsN-Tyr-Tyr-Trp
Synthesis of -OH According to the synthesis program of ABI, t-Boc-Trp (CHO)
0.73 g of the carrier resin to which 0.5 mmol was bound was put into a reactor of an automatic synthesizer, and the following operation was performed.
(a)33%TFAを含む塩化メチレン溶液を加えて混合物
を1分20秒間撹拌し、該溶液を排出した。(A) A methylene chloride solution containing 33% TFA was added, and the mixture was stirred for 1 minute and 20 seconds, and the solution was discharged.
(b)50%TFAを含む塩化メチレン溶液を加えて混合物
を18分30秒間攪拌し、該溶液を排出した。(B) A methylene chloride solution containing 50% TFA was added, and the mixture was stirred for 18 minutes and 30 seconds, and the solution was discharged.
(c)塩化メチレンで担体樹脂を3回洗浄した。(C) The carrier resin was washed three times with methylene chloride.
(d)10%ジイソプロピルエチルアミンを含む塩化メチ
レン溶液を加えて混合物を1分間撹拌し、該溶液を排出
し、この操作をもう1回くり返した。(D) A methylene chloride solution containing 10% diisopropylethylamine was added and the mixture was stirred for 1 minute, the solution was drained and this operation was repeated once more.
(e)DMFで担体樹脂を5回洗浄した。(E) The carrier resin was washed five times with DMF.
こうしてTrp(CHO)の結合した担体樹脂を得た。 Thus, a carrier resin to which Trp (CHO) was bound was obtained.
(f)この担体樹脂にt−Boc−Tyr(Br−Z)の対称酸
無水物2.0mmolを含むDMF溶液4mlを加え、混合物を18分
間攪拌し、該溶液を排出した。(F) To this carrier resin was added 4 ml of a DMF solution containing 2.0 mmol of t-Boc-Tyr (Br-Z) symmetrical anhydride, and the mixture was stirred for 18 minutes and the solution was discharged.
(g)塩化メチレンで担体樹脂を5回洗浄した。(G) The carrier resin was washed five times with methylene chloride.
このようにして、t−Boc−Tyr(Br−Z)−Trp(CH
O)が担体上に合成された。次に、上記(a)〜(e)
の脱保護工程を行つた後、(f)の工程でt−Boc−Tyr
(Br−Z)−OHの対称酸無水物を加えて縮合反応を行
い、次いで(g)の洗浄工程を経て、t−Boc−Tyr(Br
−Z)−Tyr(Br−Z)−Trp(CHO)を担体樹脂上に合
成した。以下、工程(f)には順次t−Boc−Asn−OH,t
−Boc−Phe−OH,t−Boc−Phe−OH,t−Boc−Trp(CHO)
−OH,t−Boc−Asp(OBzl)−OH,t−Boc−Pro−OH,t−Bo
c−Ala−OH,t−Boc−Thr(Bzl)−OH,t−Boc−Gly−OH,
t−Boc−His(Bom)−OH,t−Boc−Trp(CHO)−OH,t−B
oc−Asn−OHおよびt−Boc−Gly−OHを用い、工程
(a)〜(g)を順次繰り返して保護ペプチドの結合し
た担体樹脂2.0gを得た。Thus, t-Boc-Tyr (Br-Z) -Trp (CH
O) was synthesized on the support. Next, the above (a) to (e)
After performing the deprotection step of t-Boc-Tyr in step (f)
A condensation reaction is carried out by adding a symmetric acid anhydride of (Br-Z) -OH, and then, through a washing step (g), t-Boc-Tyr (Br
-Z) -Tyr (Br-Z) -Trp (CHO) was synthesized on a carrier resin. Hereinafter, in step (f), t-Boc-Asn-OH, t
-Boc-Phe-OH, t-Boc-Phe-OH, t-Boc-Trp (CHO)
-OH, t-Boc-Asp (OBzl) -OH, t-Boc-Pro-OH, t-Bo
c-Ala-OH, t-Boc-Thr (Bzl) -OH, t-Boc-Gly-OH,
t-Boc-His (Bom) -OH, t-Boc-Trp (CHO) -OH, t-B
Using oc-Asn-OH and t-Boc-Gly-OH, the steps (a) to (g) were sequentially repeated to obtain 2.0 g of a carrier resin having a protected peptide bonded thereto.
得られた担体樹脂のうち0.8gを用い、これに1,2−エ
タンジチオール0.8ml,ジメチルスルフィド0.8ml,アニソ
ール0.2mlを加え3時間放置し、フッ化水素18mlを加え
て70分間氷冷下攪拌した、次いでフッ化水素を減圧除去
し、担体樹脂に酢酸エチル100mlを加え0.5時間攪拌し
た。濾過して得られた担体樹脂にDMF100mlを加えて1時
間攪拌した。担体樹脂を全自動高速冷却遠心機(RS−20
型、トミー精工)にかけ、10,000rpmで10分間遠心分離
し上清液を得た。この上清液のDMFを濃縮機(ROTARY VA
CUUM EVAPORATOR N−2型 東京理化器機)で除去し、2
M 酢酸で再溶解し粗生成物を得た。この粗生成物を逆
相カラム(CAPCELL PACK C18 SG−120 30×250mm 資生
堂製)を用いたHPLCにて精製した。0.1%TFAと0〜90%
アセトニトリルを用いた直線濃度勾配で溶出し220nmに
て検出し化合物(I−4)を含む画分を得た。この画分
を凍結乾燥して18.2mgの化合物(I−4)を得た。Using 0.8 g of the obtained carrier resin, 0.8 ml of 1,2-ethanedithiol, 0.8 ml of dimethyl sulfide and 0.2 ml of anisole were added thereto, and the mixture was left for 3 hours. 18 ml of hydrogen fluoride was added, and the mixture was cooled on ice for 70 minutes. After stirring, hydrogen fluoride was removed under reduced pressure, 100 ml of ethyl acetate was added to the carrier resin, and the mixture was stirred for 0.5 hour. 100 ml of DMF was added to the carrier resin obtained by filtration, and the mixture was stirred for 1 hour. Fully automatic high-speed cooling centrifuge (RS-20)
(Tomy Seiko), and centrifuged at 10,000 rpm for 10 minutes to obtain a supernatant. The DMF of this supernatant is concentrated in a concentrator (ROTARY VA
Remove with CUUM EVAPORATOR N-2 type Tokyo Rikaki
Redissolved in M acetic acid to obtain a crude product. This crude product was purified by HPLC using a reversed-phase column (CAPCELL PACK C18 SG-120 30 × 250 mm manufactured by Shiseido). 0.1% TFA and 0-90%
The fraction was eluted with a linear concentration gradient using acetonitrile and detected at 220 nm to obtain a fraction containing compound (I-4). This fraction was freeze-dried to obtain 18.2 mg of compound (I-4).
化合物(I−4)の質量分析は日本電子JMS−HX110A
を用いて行ない、アミノ酸分析は実施例2と同様に行っ
た。Mass spectrometry of compound (I-4) was performed by JEOL JMS-HX110A.
The amino acid analysis was performed in the same manner as in Example 2.
以下の実施例においても質量分析およびアミノ酸分析
は実施例4と同様に行なった。In the following Examples, mass spectrometry and amino acid analysis were performed in the same manner as in Example 4.
質量分析〔FABMS〕:2062(M+H) アミノ酸分析:Asx2.5(3),Gly2.2(2),His1.1
(1),Thr1.1(1)Ala1.1(1),Pro1.1(1),Tyr2.
1(2),Phe1.9(2),(Trpは分析せず) 実施例5. 化合物(I−5) cyclo(Gly−Asn−Trp−His−Gly−Thr−Ala−Pro−A
sp−Trp−Phe−Phe−Asn−Tyr−Tyr−Trp)の合成 実施例4に従って合成した化合物(I−4)のTFA塩
1.84mgを0.35mlのメタノールに溶解し、次いで5%塩酸
−メタノール溶液を1.7μl加え、室温で1時間放置し
た。その後、ゲル濾過カラム〔セファデックスG−15
(ファルマシア社製),44×9mmI.D.〕を用いメタノール
で溶出し、化合物(I−4)を含む画分を得た。次に、
溶媒を減圧留去し、化合物(I−4)の塩酸塩1.25mgを
得た。化合物(I−4)の塩酸塩0.2mgを乾燥DMF0.3ml
に溶解し、乾燥DMFで調製した0.4mg/mlのHOBt、0.61mg/
mlのDCCを氷冷下それぞれ順に0.1mlずつ加えた。反応溶
液を氷冷下2時間放置し、室温に戻し一昼夜放置した。
不溶物を遠心分離(15000rpm×5分、0℃)により除去
し、上清液を逆相HPLCで精製した。逆相カラムは、YMC
社製YMC Pack ODS−AM312(150×6mmI.D.)を用いた。
0.1%TFAと0〜90%のアセトニトリルを用いた直線濃度
勾配で溶出し、220nmにて検出し、化合物(I−1)を
5%、化合物(I−5)を95%含む画分を得た。この画
分の溶媒を減圧下留去し、0.01mgの残渣を得た。これを
エタノール50μlに溶解し、イオンペア剤を用いた逆相
HPLCにより精製した。逆相カラムは、YMC社製 YMC Pac
k ODS−AM312(150×6mmI.D.)を用い、36%アセトニト
リルを含む1mMテトラエチルアンモニウムヒドロキシ
ド、0.1Mリン酸一ナトリウム水溶液(pH=3.3)で溶出
した。化合物(I−1)を含む画分を減圧下溶媒留去
し、再び0.1%TFAと0〜90%のアセトニトリルを用いた
直線濃度勾配による逆相HPLCで精製し、減圧下溶媒を留
去し、化合物(I−1)を0.5μg得た。Mass spectrometry [FABMS]: 2062 (M + H) Amino acid analysis: Asx2.5 (3), Gly2.2 (2), His1.1
(1), Thr1.1 (1) Ala1.1 (1), Pro1.1 (1), Tyr2.
1 (2), Phe1.9 (2), (Trp was not analyzed) Compound (I-5) cyclo (Gly-Asn-Trp-His-Gly-Thr-Ala-Pro-A
Synthesis of sp-Trp-Phe-Phe-Asn-Tyr-Tyr-Trp) TFA salt of compound (I-4) synthesized according to Example 4.
1.84 mg was dissolved in 0.35 ml of methanol, then 1.7 μl of 5% hydrochloric acid-methanol solution was added, and the mixture was allowed to stand at room temperature for 1 hour. Thereafter, a gel filtration column [Sephadex G-15]
(Manufactured by Pharmacia), 44 × 9 mm ID] to elute with methanol to obtain a fraction containing the compound (I-4). next,
The solvent was distilled off under reduced pressure to obtain 1.25 mg of compound (I-4) hydrochloride. 0.2 mg of the hydrochloride of compound (I-4) in 0.3 ml of dry DMF
0.4 mg / ml HOBt prepared in dry DMF, 0.61 mg /
0.1 ml of each DCC was added in order under ice cooling. The reaction solution was left under ice cooling for 2 hours, returned to room temperature, and left overnight.
Insoluble matter was removed by centrifugation (15000 rpm × 5 minutes, 0 ° C.), and the supernatant was purified by reverse phase HPLC. Reversed phase column is YMC
YMC Pack ODS-AM312 (150 × 6 mm I.D.) manufactured by the company was used.
Elution was performed with a linear concentration gradient using 0.1% TFA and 0 to 90% acetonitrile, detection was performed at 220 nm, and a fraction containing 5% of compound (I-1) and 95% of compound (I-5) was obtained. Was. The solvent of this fraction was distilled off under reduced pressure to obtain 0.01 mg of a residue. This was dissolved in 50 μl of ethanol, and reversed phase using an ion pair agent.
Purified by HPLC. The reversed-phase column is YMC Pac manufactured by YMC.
Using k ODS-AM312 (150 × 6 mm ID), elution was carried out with 1 mM tetraethylammonium hydroxide containing 36% acetonitrile and 0.1 M aqueous monosodium phosphate (pH = 3.3). The fraction containing the compound (I-1) is evaporated under reduced pressure, and the residue is purified again by reversed-phase HPLC using a linear concentration gradient using 0.1% TFA and 0 to 90% acetonitrile. 0.5 μg of compound (I-1) was obtained.
同様にして、化合物(I−5)を25μg得た。 Similarly, 25 μg of the compound (I-5) was obtained.
化合物(I−1) 質量分析〔FABMS〕:2044(M+H) アミノ酸分析:Asx2.5(3),Gly2.2(2),His1.1
(1),Thr1.1(1),Ala1.1(1),Pro1.1(1),Tyr
2.1(2),Phe1.9(2),(Trpは分析せず) 化合物(I−5) 質量分析〔FABMS〕:2044(M+H) アミノ酸分析:Asx2.5(3),Gly2.2(2),His1.1
(1),Thr1.1(1),Ala1.1(1),Pro1.1(1),Tyr
2.1(2),Phe1.9(2),(Trpは分析せず) 実施例6. 化合物(I−6):H−Cys−Asn−Trp−His−Gly−Thr
−Ala−Pro−Cys−Trp−Phe−Phe−Asn−Tyr−Tyr−Trp
−OHの合成 t−Boc−Trp(CHO)が結合した担体樹脂及び保護ア
ミノ酸として順次t−Boc−Tyr(Br−Z)−OH,t−Boc
−Tyr(Br−Z)−OH,t−Boc−Asn−OH,t−Boc−Phe−O
H,t−Boc−Phe−OH,t−Boc−Trp(CHO)−OH,t−Boc−C
ys(4−CH3Bzl)−OH,t−Boc−Pro−OH,t−Boc−Ala−
OH,t−Boc−Thr(Bzl)−OH,t−Boc−Gly−OH,t−Boc−
His(Bom)−OH,t−Boc−Trp(CHO)−OH,t−Boc−Asn
−OHおよびt−Boc−Cys(4−CH3Bzl)−OH,を用い、
実施例4と同様にして保護ペプチドの結合した担体樹脂
2.0gを得た。この得られた担体樹脂のうち0.8gを実施例
4と同様にフッ化水素処理からHPLCによる精製に至る処
理をして298.4mgの化合物(I−6)を得た。Compound (I-1) Mass spectrometry [FABMS]: 2044 (M + H) Amino acid analysis: Asx2.5 (3), Gly2.2 (2), His1.1
(1), Thr1.1 (1), Ala1.1 (1), Pro1.1 (1), Tyr
2.1 (2), Phe1.9 (2), (Trp is not analyzed) Compound (I-5) Mass spectrometry [FABMS]: 2044 (M + H) Amino acid analysis: Asx2.5 (3), Gly2.2 (2 ), His1.1
(1), Thr1.1 (1), Ala1.1 (1), Pro1.1 (1), Tyr
2.1 (2), Phe1.9 (2), (Trp was not analyzed) Example 6. Compound (I-6): H-Cys-Asn-Trp-His-Gly-Thr
-Ala-Pro-Cys-Trp-Phe-Phe-Asn-Tyr-Tyr-Trp
Synthesis of -OH t-Boc-Tyr (Br-Z) -OH, t-Boc as a carrier resin to which t-Boc-Trp (CHO) is bound and a protected amino acid
-Tyr (Br-Z) -OH, t-Boc-Asn-OH, t-Boc-Phe-O
H, t-Boc-Phe-OH, t-Boc-Trp (CHO) -OH, t-Boc-C
ys (4-CH 3 Bzl) -OH, t-Boc-Pro-OH, t-Boc-Ala-
OH, t-Boc-Thr (Bzl) -OH, t-Boc-Gly-OH, t-Boc-
His (Bom) -OH, t-Boc-Trp (CHO) -OH, t-Boc-Asn
-OH and t-Boc-Cys (4- CH 3 Bzl) -OH, using,
Carrier resin bonded with protected peptide in the same manner as in Example 4.
2.0 g were obtained. 0.8 g of the obtained carrier resin was subjected to treatment from hydrogen fluoride treatment to purification by HPLC in the same manner as in Example 4 to obtain 298.4 mg of compound (I-6).
質量分析〔FABMS〕:2096(M+H) アミノ酸分析:Asx1.7(2),Gly1.0(1),His1.0
(1),Thr1.0(1),Ala1.0(1),Pro1.0(1),Tyr
2.0(2),Phe2.0(2),Cys1.9(2),(Trpは分析せ
ず) 実施例7. 実施例6で得られた化合物(I−6)3mgを無水メタ
ノール10mlに溶解し、50mMトリス塩酸緩衝液(pH7.5)
0.2mlを氷冷下加えた。次いで、1.6mMのグルタチオン酸
化型を含む含水メタノール溶液(V/V:5/1)1mlを添加し
た、室温下16時間撹拌した。次いで、反応液を塩酸でpH
4に調整し、実施例5と同様な方法により逆相HPLCで精
製し化合物(I−7)を1.5mg取得した。Mass spectrometry [FABMS]: 2096 (M + H) Amino acid analysis: Asx1.7 (2), Gly1.0 (1), His1.0
(1), Thr1.0 (1), Ala1.0 (1), Pro1.0 (1), Tyr
2.0 (2), Phe2.0 (2), Cys1.9 (2), (Trp not analyzed) 3 mg of the compound (I-6) obtained in Example 6 was dissolved in 10 ml of anhydrous methanol, and 50 mM Tris-HCl buffer (pH 7.5) was dissolved.
0.2 ml was added under ice cooling. Next, 1 ml of a hydrated methanol solution (V / V: 5/1) containing 1.6 mM glutathione oxidized form was added, and the mixture was stirred at room temperature for 16 hours. Then, the reaction solution was adjusted to pH with hydrochloric acid.
The mixture was adjusted to 4 and purified by reverse phase HPLC in the same manner as in Example 5 to obtain 1.5 mg of compound (I-7).
質量分析〔FABMS〕:2094(M+H) アミノ酸分析:Asx1.8(2),Gly1.0(1),His1.0
(1),Thr0.9(1),Ala1.0(1),Pro1.0(1),Tyr
2.0(2),Phe1.9(2),(Cys,Trpは分析せず 実施例8. 化合物(I−7)0.2mgをDMF0.2mlに溶解し、40μMED
TAを含む20mMナトリウム燐酸緩衝液(pH7.2)100μlを
添加し、氷冷下N−アセチルコハク酸イミド50μgを加
え、10℃下16時間撹拌した。得られた反応液を塩酸でpH
4に調整し、実施例5と同様な方法により逆相HPLCで精
製し化合物(I−8)を110μg取得した。Mass spectrometry [FABMS]: 2094 (M + H) Amino acid analysis: Asx1.8 (2), Gly1.0 (1), His1.0
(1), Thr0.9 (1), Ala1.0 (1), Pro1.0 (1), Tyr
2.0 (2), Phe1.9 (2), (Cys, Trp were not analyzed. 0.2 mg of the compound (I-7) was dissolved in 0.2 ml of DMF, and 40 μMED
100 μl of 20 mM sodium phosphate buffer (pH 7.2) containing TA was added, 50 μg of N-acetylsuccinimide was added under ice cooling, and the mixture was stirred at 10 ° C. for 16 hours. PH of the resulting reaction solution with hydrochloric acid
The mixture was adjusted to 4 and purified by reverse phase HPLC in the same manner as in Example 5 to obtain 110 μg of the compound (I-8).
質量分析〔FABMS〕:2136(M+H) アミノ酸分析:Asx1.8(2),Gly1.0(1),His1.0
(1),Thr0.9(1),Ala1.0(1),Pro1.0(1),Tyr
2.0(2),Phe1.9(2),(Cys,Trpは分析せず) 実施例9. 化合物(II−9):H−Trp−Phe−Phe−Asn−Tyr−Tyr−
Trp−OHの合成 t−Boc−Trp(CHO)が結合した担体樹脂およびN−
保護アミノ酸として順次t−Boc−Tyr(Br−Z)−OH,t
−Boc−Tyr(Br−Z)−OH,t−Boc−Asn−OH,t−Boc−P
he−OH,t−Boc−Phe−OH,およびt−Boc−Trp(CHO)−
OHを用い、実施例4と同様な方法により保護ペプチドの
結合した担体樹脂1.35gを得た。このうち0.8gを実施例
4と同様な方法よりに合成ペプチドをフッ化水素処理し
て樹脂から切り出し、2M酢酸に溶解し、凍結乾燥するこ
とにより、46.2mgの粗生成物を得た。このうち4.0mgを
実施例4と同様の方法によりHPLCで精製し、2.4mgの化
合物(II−9)を得た。Mass spectrometry [FABMS]: 2136 (M + H) Amino acid analysis: Asx1.8 (2), Gly1.0 (1), His1.0
(1), Thr0.9 (1), Ala1.0 (1), Pro1.0 (1), Tyr
2.0 (2), Phe1.9 (2), (Cys, Trp not analyzed) Example 9. Compound (II-9): H-Trp-Phe-Phe-Asn-Tyr-Tyr-
Synthesis of Trp-OH Carrier resin to which t-Boc-Trp (CHO) is bound and N-
T-Boc-Tyr (Br-Z) -OH, t
-Boc-Tyr (Br-Z) -OH, t-Boc-Asn-OH, t-Boc-P
he-OH, t-Boc-Phe-OH, and t-Boc-Trp (CHO)-
1.35 g of a carrier resin having a protected peptide bonded thereto was obtained in the same manner as in Example 4 using OH. Of these, 0.8 g of the synthetic peptide was treated with hydrogen fluoride in the same manner as in Example 4, cut out of the resin, dissolved in 2M acetic acid, and lyophilized to obtain 46.2 mg of a crude product. Of these, 4.0 mg was purified by HPLC in the same manner as in Example 4 to obtain 2.4 mg of compound (II-9).
質量分析〔FABMS〕:1126(M+H) アミノ酸分析:Asx1.0(1),Phe2.0(2),Tyr2.0
(2),(Trpは分析せず) 実施例10. 化合物(II−10):H−Trp−Phe−Asn−Tyr−Tyr−Trp−
OHの合成 t−Boc−Trp(CHO)が結合した担体樹脂およびN−
保護アミノ酸として順次t−Boc−Tyr(Br−Z)−OH,t
−Boc−Tyr(Br−Z)−OH,t−Boc−Asn−OH,t−Boc−P
he−OHおよびt−Boc−Trp(CHO)−OHを用い、実施例
4と同様な方法により保護ペプチドの結合した担体樹脂
1.3gを得た。このうち0.8gを実施例4と同様な方法によ
りフッ化水素処理して樹脂から切り出し、2M酢酸に溶解
し、凍結乾燥することにより、215.2mgの粗生成物を得
た。このうち4.0mgを実施例4と同様な方法によりHPLC
で精製し、2.0mgの化合物(II−10)を得た。Mass spectrometry [FABMS]: 1126 (M + H) Amino acid analysis: Asx1.0 (1), Phe2.0 (2), Tyr2.0
(2), (Trp was not analyzed) Example 10. Compound (II-10): H-Trp-Phe-Asn-Tyr-Tyr-Trp-
Synthesis of OH t-Boc-Trp (CHO) bound carrier resin and N-
T-Boc-Tyr (Br-Z) -OH, t
-Boc-Tyr (Br-Z) -OH, t-Boc-Asn-OH, t-Boc-P
Using he-OH and t-Boc-Trp (CHO) -OH, a carrier resin bound with a protected peptide in the same manner as in Example 4.
1.3 g was obtained. Of these, 0.8 g was treated with hydrogen fluoride in the same manner as in Example 4, cut out from the resin, dissolved in 2M acetic acid, and lyophilized to obtain 215.2 mg of a crude product. 4.0 mg thereof was subjected to HPLC by the same method as in Example 4.
Then, 2.0 mg of compound (II-10) was obtained.
質量分析〔FABMS〕:979(M+H) アミノ酸分析:Asx0.9(1),Tyr2.1(2),Phe1.0
(1),(Trpは分析せず) 実施例11. 化合物(II−11):H−Trp−Phe−Phe−Asn−Tyr−Trp−
OHの合成 t−Boc−Trp(CHO)が結合した担体樹脂およびN−
保護アミノ酸として順次t−Boc−Tyr(Br−Z)−OH,t
−Boc−Asn−OH,t−Boc−Phe−OH,t−Boc−Phe−OHおよ
びt−Boc−Trp(CHO)−OHを用い、実施例4と同様な
方法により保護ペプチドの結合した担体樹脂1.2gを得
た。このうち0.8gを実施例4と同様に合成な方法により
フッ化水素処理により樹脂から切り出し、2M酢酸に溶解
し、凍結乾燥することにより、264.7mgの粗生成物を得
た。このうち8.0mgを実施例4と同様な方法によりHPLC
で精製し、4.7mgの化合物(II−11)を得た。Mass spectrometry [FABMS]: 979 (M + H) Amino acid analysis: Asx0.9 (1), Tyr2.1 (2), Phe1.0
(1), (Trp is not analyzed) Example 11. Compound (II-11): H-Trp-Phe-Phe-Asn-Tyr-Trp-
Synthesis of OH t-Boc-Trp (CHO) bound carrier resin and N-
T-Boc-Tyr (Br-Z) -OH, t
-Boc-Asn-OH, t-Boc-Phe-OH, t-Boc-Phe-OH and t-Boc-Trp (CHO) -OH, and a carrier to which a protected peptide is bound in the same manner as in Example 4. 1.2 g of resin was obtained. Of these, 0.8 g was cut out of the resin by hydrogen fluoride treatment in the same manner as in Example 4, dissolved in 2 M acetic acid, and lyophilized to obtain 264.7 mg of a crude product. 8.0 mg of this was subjected to HPLC by the same method as in Example 4.
And 4.7 mg of the compound (II-11) was obtained.
質量分析〔FABMS〕:963(M+H) アミノ酸分析:Asx0.8(1),Tyr1.1(1),Phe2.2
(2),(Trpは分析せず) 実施例12. 化合物(II−12):H−Trp−Phe−Phe−Tyr−Tyr−Trp−
OHの合成 t−Boc−Trp(CHO)が結合した担体樹脂およびN−
保護アミノ酸として順次t−Boc−Tyr(Br−Z)−OH,t
−Boc−Tyr(Br−Z)−OH,t−Boc−Phe−OH,t−Boc−P
he−OHおよびt−Boc−Trp(CHO)−OHを用い、実施例
4と同様な方法により保護ペプチドの結合した担体樹脂
1.3gを得た。このうち0.8gを実施例4と同様な方法によ
りフッ化水素処理して樹脂から切り出し、2M酢酸に溶解
し、凍結乾燥することにより243.4mgの粗生成物を得
た。このうち78.0mgを実施例4と同様な方法によりHPLC
で精製し、12.2mgの化合物(II−12)を得た。Mass spectrometry [FABMS]: 963 (M + H) Amino acid analysis: Asx0.8 (1), Tyr1.1 (1), Phe2.2
(2), (Trp is not analyzed) Example 12. Compound (II-12): H-Trp-Phe-Phe-Tyr-Tyr-Tyr-
Synthesis of OH t-Boc-Trp (CHO) bound carrier resin and N-
T-Boc-Tyr (Br-Z) -OH, t
-Boc-Tyr (Br-Z) -OH, t-Boc-Phe-OH, t-Boc-P
Using he-OH and t-Boc-Trp (CHO) -OH, a carrier resin bound with a protected peptide in the same manner as in Example 4.
1.3 g was obtained. Of these, 0.8 g was treated with hydrogen fluoride in the same manner as in Example 4, cut out from the resin, dissolved in 2M acetic acid, and freeze-dried to obtain 243.4 mg of a crude product. 78.0 mg of this was subjected to HPLC in the same manner as in Example 4.
And 12.2 mg of compound (II-12) was obtained.
質量分析〔FABMS〕:1012(M+H) アミノ酸分析:Tyr2.0(2),Phe2.0(2),(Trpは分
析せず) 実施例13. 化合物(II−13):H−Phe−Phe−Asn−Tyr−Tyr−Trp−
OHの合成 t−Boc−Trp(CHO)が結合した担体樹脂およびN−
保護アミノ酸として順次t−Boc−Tyr(Br−Z)−OH,t
−Boc−Tyr(Br−Z)−OH,t−Boc−Asn−OH,t−Boc−P
he−OHおよびt−Boc−Phe−OHを用い、実施例4と同様
な方法により保護ペプチドの結合した担体樹脂1.2gを得
た。このうち0.8gを実施例4と同様な方法によりフッ化
水素処理して樹脂から切り出し、2M酢酸に溶解し、凍結
乾燥し、285.5mgの粗生成物を得た。このうち150.0mgを
実施例4と同様な方法によりHPLCで精製し、39.1mgの化
合物(II−13)を得た。Mass spectrometry [FABMS]: 1012 (M + H) Amino acid analysis: Tyr2.0 (2), Phe2.0 (2), (Trp was not analyzed) Example 13. Compound (II-13): H-Phe-Phe -Asn-Tyr-Tyr-Trp-
Synthesis of OH t-Boc-Trp (CHO) bound carrier resin and N-
T-Boc-Tyr (Br-Z) -OH, t
-Boc-Tyr (Br-Z) -OH, t-Boc-Asn-OH, t-Boc-P
Using he-OH and t-Boc-Phe-OH, 1.2 g of a carrier resin having a protected peptide bonded thereto was obtained in the same manner as in Example 4. Of these, 0.8 g was treated with hydrogen fluoride in the same manner as in Example 4, cut out from the resin, dissolved in 2M acetic acid, and freeze-dried to obtain 285.5 mg of a crude product. Of these, 150.0 mg was purified by HPLC in the same manner as in Example 4 to obtain 39.1 mg of compound (II-13).
質量分析〔FABMS〕:940(M+H) アミノ酸分析:Asx0.8(1),Tyr2.0(2),Phe2.2
(2),(Trpは分析せず) 実施例14. 参考例1で得た化合物(a)11.3mgをDMF12.3mlに溶
解し、−10℃で冷却しながらDEPC5.2mgとTEA6.4mgを加
え30分間撹拌した。得られた反応液に、実施例27と同様
にしてジフェニルジアゾメタンとアスパラギン酸のベン
ジルエステルを反応させて得た、アルパラギン酸α−ベ
ンジルβ−ジフェニルメチルエステル4.0mgを加え、4
℃でさらに7日間撹拌した。得られた化合物を、YMC社
製ODS−AQカラム(250×30mmI.D.)を装着した逆相HPLC
を用い、0.1%TFAと0〜90%アセトニトリルの直線濃度
勾配により精製し、凍結乾燥することにより縮合物5mg
を得た。Mass spectrometry [FABMS]: 940 (M + H) Amino acid analysis: Asx0.8 (1), Tyr2.0 (2), Phe2.2
(2), (Trp is not analyzed) 11.3 mg of the compound (a) obtained in Reference Example 1 was dissolved in 12.3 ml of DMF, 5.2 mg of DEPC and 6.4 mg of TEA were added while cooling at -10 ° C, and the mixture was stirred for 30 minutes. 4.0 mg of aspartic acid α-benzyl β-diphenylmethyl ester obtained by reacting diphenyldiazomethane with benzyl ester of aspartic acid in the same manner as in Example 27 was added to the obtained reaction solution, and
Stirred at C for an additional 7 days. The obtained compound was subjected to reverse-phase HPLC equipped with a YMC ODS-AQ column (250 × 30 mm ID).
And purified by a linear concentration gradient of 0.1% TFA and 0 to 90% acetonitrile, and lyophilized to give 5 mg of a condensate.
I got
この縮合物に氷冷下、塩化メチレン500μl、アニソ
ール10μl、エタンジチオール1μl、TFA500μlを順
次加え、撹拌後30分間放置した。減圧下溶媒を留去し、
上記と同様に逆相HPLCで精製し、凍結乾燥することによ
り縮合物の脱ジフェニルメチルエステル体2mgを得た。To the condensate were added methylene chloride (500 µl), anisole (10 µl), ethanedithiol (1 µl) and TFA (500 µl) sequentially under ice cooling, and the mixture was stirred and left for 30 minutes. The solvent is distilled off under reduced pressure,
Purification by reverse-phase HPLC and freeze-drying in the same manner as described above gave 2 mg of the dediphenylmethyl ester of the condensate.
得られたエステル体をDMF800μlに溶解し、ピペリジ
ン200μlを加えて撹拌し、室温で10分間放置した。酢
酸300μlとメタノール450μlを加えて中和し、上記と
同様に逆相HPLCで精製し、凍結乾燥することにより脱Fm
oc化されたエステル体1.5mgを得た。The obtained ester compound was dissolved in DMF (800 μl), piperidine (200 μl) was added, the mixture was stirred, and left at room temperature for 10 minutes. 300 μl of acetic acid and 450 μl of methanol were added to neutralize, purified by reverse phase HPLC as above, and lyophilized to remove Fm.
1.5 mg of the ocylated ester was obtained.
得られた脱Fmoc化エステル体をDMF1.9mlに溶解し、−
10℃で冷却しながらDEPC 0.47mgとTFA0.59mgを加えて30
分間静置し、4℃に戻して3日間撹拌した。上記と同様
に逆相HPLCで精製し、凍結乾燥することにより化合物
(I−14)のベンジルエステル体1mgを得た。The obtained de-Fmoc ester was dissolved in 1.9 ml of DMF,
While cooling at 10 ° C, add 0.47mg of DEPC and 0.59mg of TFA to add 30
The mixture was allowed to stand for 4 minutes, returned to 4 ° C., and stirred for 3 days. Purification by reverse-phase HPLC and freeze-drying in the same manner as described above gave 1 mg of the benzyl ester of compound (I-14).
得られたベンジルエステル体をメタノール150μlと
酢酸50μlに溶解し、10%Pd/C約1mgの存在下、水素ガ
スを添加し、室温で2時間撹拌しながら接触還元を行っ
た。上記と同様に逆相HPLCで精製し、凍結乾燥すること
により化合物(I−14)1mgを得た。The obtained benzyl ester compound was dissolved in 150 μl of methanol and 50 μl of acetic acid, hydrogen gas was added in the presence of about 1 mg of 10% Pd / C, and catalytic reduction was performed with stirring at room temperature for 2 hours. Purification by reverse phase HPLC and freeze-drying as described above gave 1 mg of compound (I-14).
質量分析〔FABMS〕:936(M+H) アミノ酸分析:Asx1.9(2),Gly2.3(2),His1.0
(1),Thr0.7(1),Ala0.9(1),Pro1.0(1),Trp
0.4(1). 実施例15. 工程1:H−Asp(Ot−Bu)−Trp−OBzl (a)Fmoc−Asp(Ot−Bu)−OH41mgを塩化メチレン1ml
に溶解し、0℃に冷却し、HONSu12mg,DCC21mgを加えて
0℃で30分間撹拌した。ここに、H−Trp−OBzl・HC133
mgを含む1ml塩化メチレン溶液とTEA14μlを加え、0℃
で3時間撹拌した。不溶物を濾別し、冷塩化メチレンで
洗浄し、濾液を回収した。減圧下溶媒を留去し、残渣を
シリカゲルカラムクロマトグラフィー(和光純薬工業社
製、ワコーゲルC−200、50g、クロロホルム/メタノー
ル=25/1で溶出)で精製し、Fmoc−Asp(Ot−Bu)−Trp
−OBz167mgを白色粉末として得た。質量分析〔FABMS〕;
688(M+H) (b)(a)で得られたジペプチド10mgをDMF3mlに溶か
し、ピペリジン0.75mlを加えて、室温で10分間放置し
た。反応液にエーテル、ヘキサンを加え析出する白色結
晶を濾取し、減圧下乾燥して、H−Asp(Ot−Bu)−Trp
−OBzl 2mgを得た。Mass spectrometry [FABMS]: 936 (M + H) Amino acid analysis: Asx1.9 (2), Gly2.3 (2), His1.0
(1), Thr0.7 (1), Ala0.9 (1), Pro1.0 (1), Trp
0.4 (1). Example 15. Step 1: H-Asp (Ot-Bu) -Trp-OBzl (a) 41 mg of Fmoc-Asp (Ot-Bu) -OH was mixed with 1 ml of methylene chloride.
, Cooled to 0 ° C, added with 12 mg of HONSu and 21 mg of DCC, and stirred at 0 ° C for 30 minutes. Here, H-Trp-OBzlHC133
Add 1 ml of methylene chloride solution containing 14 mg of TEA and 14 μl of TEA, and add
For 3 hours. The insoluble material was separated by filtration, washed with cold methylene chloride, and the filtrate was collected. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (Wako Pure Chemical Industries, Ltd., Wakogel C-200, 50 g, eluted with chloroform / methanol = 25/1) to obtain Fmoc-Asp (Ot-Bu ) -Trp
-167 mg of OBz were obtained as a white powder. Mass spectrometry (FABMS);
688 (M + H) (b) 10 mg of the dipeptide obtained in (a) was dissolved in 3 ml of DMF, 0.75 ml of piperidine was added, and the mixture was allowed to stand at room temperature for 10 minutes. Ether and hexane were added to the reaction mixture, and the precipitated white crystals were collected by filtration, dried under reduced pressure, and dried under H-Asp (Ot-Bu) -Trp.
2 mg of -OBzl were obtained.
質量分析〔FABMS〕;466(M+H) 工程2:H−Gly−Asn−Trp−His−Gly−Thr−Ala−Pro−A
sp−Trp−OBzl (a)参考例1で得られた化合物(a)4.4mgに、工程
1で得られたジペプチド1.7mgを含む5.5mlDMF溶液を加
え0℃に冷却した。ここに、DEPC0.5μlとTEA1.0μl
を順次加え、0℃で5日間撹拌した。溶媒を減圧下留去
し、残渣を再びDMF 1mlに溶解し、逆相カラム(YMC社
製、YMC−PackODS−AM312 150×6mm I.D.)を用いたHPL
Cで精製し、Fmoc−Gly−Asn−Trp−His−Gly−Thr−Ala
−Pro−Asp(Ot−Bu)−Trp−OBzl 320μgを白色粉末
として得た。Mass spectrometry [FABMS]; 466 (M + H) Step 2: H-Gly-Asn-Trp-His-Gly-Thr-Ala-Pro-A
sp-Trp-OBzl (a) To 4.4 mg of the compound (a) obtained in Reference Example 1, a 5.5 ml DMF solution containing 1.7 mg of the dipeptide obtained in Step 1 was added, and the mixture was cooled to 0 ° C. Here, 0.5μl of DEPC and 1.0μl of TEA
Were added successively, and the mixture was stirred at 0 ° C. for 5 days. The solvent was distilled off under reduced pressure, the residue was dissolved again in 1 ml of DMF, and HPL using a reversed-phase column (YMC-PackODS-AM312 150 × 6 mm ID) was used.
Purified with C, Fmoc-Gly-Asn-Trp-His-Gly-Thr-Ala
-Pro-Asp (Ot-Bu) -Trp-OBzl 320 µg was obtained as a white powder.
(b)(a)で得られた保護ペプチド250μgに、TFA90
0μl、1,2−エタンジチオール50μl、アニソール50μ
l、2−メチルインドール5mgからなる混合液のうち50
μlを加え、室温で1.5時間放置した。エーテルを加え
て生成した白色沈澱を濾取し、乾燥させ、20%ピペリジ
ンを含むDMF100μlを加え、室温で15分間放置した。再
びエーテルを加えて生成する白色沈澱を濾取し乾燥さ
せ、H−Gly−Asn−Trp−His−Gly−Thr−Ala−Pro−As
p−Trp−OBzl200μgを得た。(B) TFA90 was added to 250 μg of the protected peptide obtained in (a).
0 μl, 1,2-ethanedithiol 50 μl, anisole 50 μl
l, 50% of the mixture consisting of 5 mg of 2-methylindole
μl was added and left at room temperature for 1.5 hours. The white precipitate formed by adding ether was collected by filtration, dried, added with 100 μl of DMF containing 20% piperidine, and allowed to stand at room temperature for 15 minutes. The white precipitate formed by adding ether again was collected by filtration and dried, and H-Gly-Asn-Trp-His-Gly-Thr-Ala-Pro-As
200 μg of p-Trp-OBzl was obtained.
工程3:化合物(I−15) (a)工程2で得られたペプチド66μgをDMF60μlに
溶解し、室温においてPyBOPの0.1Mを含んだDMF溶液1.6
μl、HOBtの0.1Mを含んだDMF溶液1.6μl、NMMの1%
含有DMF溶液3μlを加え、室温で3時間撹拌した。減
圧下溶媒を留去し、生成物を逆相カラム(YMC社製、YMC
−Pack ODS−AM312 150×6mm I.D.)を用いたHPLCによ
り、化合物(I−15)のベンジルエステル体20μgを得
た。Step 3: Compound (I-15) (a) 66 μg of the peptide obtained in Step 2 was dissolved in 60 μl of DMF, and a DMF solution containing 0.1 M of PyBOP was added at room temperature to 1.6 μm.
μl, 1.6 μl of DMF solution containing 0.1 M of HOBt, 1% of NMM
3 μl of the DMF solution was added, and the mixture was stirred at room temperature for 3 hours. The solvent was distilled off under reduced pressure, and the product was subjected to a reverse phase column (YMC, YMC
HPLC using —Pack ODS-AM312 150 × 6 mm ID) gave 20 μg of the benzyl ester of compound (I-15).
(b)(a)で得られたベンジルエステル体250μgを
メタノール/酢酸=3/1の混合液80μlに溶解し、窒素
雰囲気下、10%Pd/C約0.5mgを加え、系を水素雰囲気下
にし、室温で1時間撹拌した。Pd/Cを濾別し、濾液にエ
ーテルを加えて生成する白色沈澱を濾取し、乾燥し、化
合物(I−15)100μgを得た。(B) Dissolve 250 μg of the benzyl ester obtained in (a) in 80 μl of a mixed solution of methanol / acetic acid = 3/1, add about 0.5 mg of 10% Pd / C under a nitrogen atmosphere, and place the system under a hydrogen atmosphere. And stirred at room temperature for 1 hour. Pd / C was separated by filtration, ether was added to the filtrate, and a white precipitate formed was collected by filtration and dried to obtain 100 μg of compound (I-15).
質量分析[FABMS]:1123(M+H) アミノ酸分析;Gly2.3(2),Asx1.6(2),His0.9
(1),Thr1.0(1),Ala1.0(1),Pro1.1(1)(Trp
は分析せず) 実施例16. 実施例14で得られた化合物(I−14)10μgをDMF10
μlに溶解し、氷冷下HOBt4.3μg、PyBOP16.7μg、NM
M4.9μgを順次加え30分間放置した。反応液にH−Gly
−OMe・HC14.0μgを加えて4℃で1晩放置し、実施例1
5と同様の方法によりYMC社製YMC Pack ODS−AM 312カラ
ム(150×6mmI.D.)を装着した逆相HPLCで精製し、凍結
乾燥することにより化合物(I−16)6μgを得た。Mass spectrometry [FABMS]: 1123 (M + H) amino acid analysis; Gly2.3 (2), Asx1.6 (2), His0.9
(1), Thr1.0 (1), Ala1.0 (1), Pro1.1 (1) (Trp
Is not analyzed) Example 16. 10 μg of the compound (I-14) obtained in Example 14 was added to DMF10
dissolved in ice, HOBt 4.3 μg, PyBOP 16.7 μg, NM
M4.9 μg was sequentially added and left for 30 minutes. Add H-Gly to the reaction solution
-Add 14.0 µg of -OMe · HC and leave it at 4 ° C overnight to prepare Example 1.
Purification was performed by reverse phase HPLC equipped with a YMC Pack ODS-AM 312 column (150 × 6 mm I.D.) manufactured by YMC in the same manner as in 5, and lyophilized to obtain 6 μg of the compound (I-16).
質量分析〔FABMS〕:1008(M+H) アミノ酸分析:Asx1.8(2),Gly3.2(3),His1.0
(1),Thr1.0(1),Ala0.9(1),Pro1.0(1)(Trp
は分析せず) 実施例17. 7.1mgの化合物(I−1)をメタノール2.84mlに溶解
し、0.1M トリス塩酸緩衝液(pH8.0)25.56mlを添加
し、さらに約0.3mgのカルボキシペプチダーゼA(シグ
マ社製C−9762)を加え37℃で1晩撹拌した。反応液に
適量の塩酸を加えて酸性にし、NUCLEOSIL 5C18(Chemco
社製、250×20mmI.D.)を装着した逆相HPLCを用いて、
毎分10mlの流速で0.1%TFA溶液中アセトニトリル濃度を
0%から50%に30分で上昇させる直線濃度勾配により、
3.5mgの化合物(I−17)を得た。質量分析〔FABMS〕:1
858(M+H) アミノ酸分析;Asx2.6(3),Gly2.2(2),His0.9
(1),Thr1.0(1),Ala1.0(1),Pro1.1(1),Tyr
1.8(2),Phe1.9(2),(Trpは分析せず) 実施例18. 化合物(I−1)0.49mgを含む270μlDMF溶液にPyBOP
375μg、HOBt97μg、NMM121μgを加え、室温で1時
間攪拌した。H−Trp−OBzl0.16mgを含む80μlのDMF溶
液を加え4℃で4日間攪拌した。溶媒を減圧下留去し、
残渣を再び80μlのDMF溶液に溶解し逆相カラム(YMC社
製、YMC−Pack ODS−AM312 150×6mmI.D.)を装着したH
PLCで、毎分1mlの流速で0.1% TFA溶液中アセトニトリ
ル濃度を0%から90%に60分で上昇させる直線濃度勾配
により、化合物(I−18)のベンジルエステル体を70μ
g得た。質量分析〔FABMS〕:2320(M+H) ついで、上記ベンジルエステル体70μgをDMF35μl
に溶解し、蟻酸アンモニウムの飽和メタノール溶液を35
μl、10%Pd/C約0.1mgを加えて、室温で1時間攪拌し
た。反応液を遠心分離にかけ上澄みを採取し、逆相カラ
ム(YMC社製、YMC−Pack ODS−AM312 150×6mmI.D.)を
用いて、上記と同様に分取精製し、化合物(I−18)25
μgを得た。Mass spectrometry [FABMS]: 1008 (M + H) Amino acid analysis: Asx1.8 (2), Gly3.2 (3), His1.0
(1), Thr1.0 (1), Ala0.9 (1), Pro1.0 (1) (Trp
Is not analyzed) Example 17. 7.1 mg of compound (I-1) is dissolved in 2.84 ml of methanol, 25.56 ml of 0.1 M Tris-HCl buffer (pH 8.0) is added, and about 0.3 mg of carboxypeptidase A (Sigma C-9762). Was added and stirred at 37 ° C. overnight. The reaction solution was acidified by adding an appropriate amount of hydrochloric acid, and NUCLEOSIL 5C18 (Chemco
Using 250 × 20 mm I.D.)
With a linear concentration gradient that increases the acetonitrile concentration in a 0.1% TFA solution from 0% to 50% in 30 minutes at a flow rate of 10 ml per minute,
3.5 mg of compound (I-17) was obtained. Mass spectrometry (FABMS): 1
858 (M + H) amino acid analysis; Asx2.6 (3), Gly2.2 (2), His0.9
(1), Thr1.0 (1), Ala1.0 (1), Pro1.1 (1), Tyr
1.8 (2), Phe1.9 (2), (Trp was not analyzed) PyBOP was added to a 270 μl DMF solution containing 0.49 mg of compound (I-1).
375 μg, HOBt 97 μg, and NMM121 μg were added, and the mixture was stirred at room temperature for 1 hour. 80 μl of a DMF solution containing 0.16 mg of H-Trp-OBzl was added, and the mixture was stirred at 4 ° C. for 4 days. The solvent is distilled off under reduced pressure,
The residue was again dissolved in 80 μl of DMF solution, and H was equipped with a reverse phase column (YMC, YMC-Pack ODS-AM312 150 × 6 mm ID).
The concentration of acetonitrile in a 0.1% TFA solution was increased from 0% to 90% in 60 minutes by a PLC at a flow rate of 1 ml / min.
g was obtained. Mass spectrometry [FABMS]: 2320 (M + H) Then, 70 μg of the above benzyl ester compound was added to 35 μl of DMF.
And a saturated methanol solution of ammonium formate in 35
μl and about 0.1 mg of 10% Pd / C were added, and the mixture was stirred at room temperature for 1 hour. The reaction solution was centrifuged to collect the supernatant, and the mixture was subjected to preparative purification using a reversed-phase column (YMC, YMC-Pack ODS-AM312 150 × 6 mm ID) in the same manner as described above to obtain the compound (I-18) )twenty five
μg was obtained.
質量分析〔FABMS〕:2230(M+H) アミノ酸分析;Gly2.2(2),Asx2.8(3),His0.9
(1),Thr0.9(1),Ala1.0(1),Pro1.3(1),Phe
1.9(2),Tyr1.7(2)(Trpは分析せず) 実施例19. 工程1:H−Asn−Tyr−Tyr−Trp−OBzl Fmoc−Tyr(t−Bu)66μmolが結合した担体樹脂110m
gを用い、N−保護アミノ酸として順次、Fmoc−Tyr(t
−Bu)−OH,Fmoc−Asn(Trt)−OHを用いて参考例3と
同様にしてペプチド合成を行い、樹脂からペプチドを切
り出して、粗ペプチドFmoc−Asn−Tyr−Tyr−OH 89mgを
得た。Mass spectrometry [FABMS]: 2230 (M + H) amino acid analysis; Gly2.2 (2), Asx2.8 (3), His0.9
(1), Thr0.9 (1), Ala1.0 (1), Pro1.3 (1), Phe
1.9 (2), Tyr1.7 (2) (Trp was not analyzed) Step 1: H-Asn-Tyr-Tyr-Trp-OBzl Fmoc-Tyr (t-Bu) 66 μmol bound carrier resin 110m
g and Fmoc-Tyr (t
-Bu) -OH, Fmoc-Asn (Trt) -OH was used to synthesize a peptide in the same manner as in Reference Example 3, and the peptide was cut out from the resin to obtain 89 mg of a crude peptide Fmoc-Asn-Tyr-Tyr-OH. Was.
実施例15と同様の方法により、上記ペプチドのうち8.
2mgとH−Trp−OBzl 7.6mgを縮合させ、実施例15と同様
な方法により脱Fmoc化し、H−Asn−Tyr−Tyr−Trp−OB
zl 1mgを得た。According to a method similar to that in Example 15, 8.
2 mg and 7.6 mg of H-Trp-OBzl were condensed and de-Fmocized in the same manner as in Example 15 to give H-Asn-Tyr-Tyr-Tyr-Trp-OB.
1 mg of zl were obtained.
工程2:化合物(I−19) 実施例18と同様の方法により、化合物(I−1)0.29
mgと上記ペプチドH−Asn−Tyr−Tyr−Trp−OBzl 0.10m
gとを縮合させてベンジルエステル体を得た。実施例18
と同様な方法により、脱ベンジル化を行い、化合物(I
−19)19μgを得た。Step 2: Compound (I-19) By a method similar to that in Example 18, compound (I-1) 0.29
mg and the above peptide H-Asn-Tyr-Tyr-Trp-OBzl 0.10m
g was condensed to obtain a benzyl ester. Example 18
Debenzylation was carried out in the same manner as described above, and the compound (I)
-19) 19 μg was obtained.
質量分析〔FABMS〕:2671(M+H) アミノ酸分析;Gly2.3(2),Asx3.6(4),His0.9
(1),Thr1.0(1),Ala1.0(1),Pro1.1(1),Phe
2.1(2),Tyr3.7(4),(Trpは分析せず) 実施例20. 工程1:H−Val−Tyr−Phe−Ala−His−Leu−Asp(OBzl)
−Ile−Ile−Trp−OBzl Fmoc−Val−Tyr−Phe−Ala−His−Leu−Asp(OBzl)
−Ile−Ile−OHは、参考例3と同様にして、Fmoc−Ile
が結合した担体樹脂を用い、N−保護アミノ酸Fmoc−Il
e−OH,Fmoc−Asp(OBzl)−OH,Fmoc−Leu−OH,Fmoc−Hi
s(Trt)−OH,Fmoc−Ala−OH,Fmoc−Phe−OH,Fmoc−Tyr
(t−Bu)−OH,Fmoc−Val−OHを順次縮合して合成を行
った。樹脂からの切り出しも同様に行い、上記粗ペプチ
ドを得た。Mass spectrometry [FABMS]: 2671 (M + H) amino acid analysis; Gly2.3 (2), Asx3.6 (4), His0.9
(1), Thr1.0 (1), Ala1.0 (1), Pro1.1 (1), Phe
2.1 (2), Tyr3.7 (4), (Trp was not analyzed) Step 1: H-Val-Tyr-Phe-Ala-His-Leu-Asp (OBzl)
-Ile-Ile-Trp-OBzl Fmoc-Val-Tyr-Phe-Ala-His-Leu-Asp (OBzl)
-Ile-Ile-OH was prepared in the same manner as in Reference Example 3 by using Fmoc-Ile-OH.
Using a carrier resin to which N-protected amino acid Fmoc-Il
e-OH, Fmoc-Asp (OBzl) -OH, Fmoc-Leu-OH, Fmoc-Hi
s (Trt) -OH, Fmoc-Ala-OH, Fmoc-Phe-OH, Fmoc-Tyr
The synthesis was performed by sequentially condensing (t-Bu) -OH and Fmoc-Val-OH. Excision from the resin was performed in the same manner to obtain the above crude peptide.
得られたペプチド2.0mgを200μlの乾燥DMFに溶解
し、氷冷下にて乾燥DMFで調製した42mg/mlのHOBtを含む
乾燥DMF 10μl、162mg/mlのPyBOPを含む乾燥DMF10μ
l、34.3μl/mlのNMMを含む乾燥DMF 10μl、62mg/mlの
H−Trp−OBzl塩酸塩を含む乾燥DMF 10μlを順に加え
た。4℃で一昼夜放置し、不溶物を濾過し逆相HPLCで精
製した。カラムは、Chemco Pack NUCLEOSIL5C18 250×2
0mmI.D.(Chemco社製)を用い、0.1%TFAと0〜90%ア
セトニトリルを用いた直線濃度勾配で溶出した。目的物
を含む画分を凍結乾燥し、Fmoc−Val−Tyr−Phe−Ala−
His−Leu−Asp(OBzl)−Ile−Ile−Trp−OBzlを2.7mg
得た。Dissolve 2.0 mg of the obtained peptide in 200 μl of dry DMF, dry DMF containing 42 mg / ml HOBt prepared in dry DMF under ice-cooling 10 μl of dry DMF containing 162 mg / ml PyBOP, and
1, 10 μl of dry DMF containing 34.3 μl / ml NMM and 10 μl of dry DMF containing 62 mg / ml H-Trp-OBzl hydrochloride were added in order. The mixture was allowed to stand at 4 ° C. overnight, and the insolubles were filtered and purified by reverse phase HPLC. Column is Chemco Pack NUCLEOSIL5C18 250 × 2
Using 0 mm ID (Chemco), elution was performed with a linear concentration gradient using 0.1% TFA and 0 to 90% acetonitrile. The fraction containing the target substance was freeze-dried, and Fmoc-Val-Tyr-Phe-Ala-
2.7 mg of His-Leu-Asp (OBzl) -Ile-Ile-Trp-OBzl
Obtained.
ついで、20%ピペリジンを含む乾燥DMF100μlを加
え、室温で5分間放置し、ジエチルエーテルを加え、晶
出させ、エーテル洗浄、減圧乾燥を行い、H−Val−Tyr
−Phe−Ala−His−Leu−Asp(OBzl)−Ile−Ile−Trp−
OBzlを467μg得た。Then, 100 μl of dry DMF containing 20% piperidine was added, and the mixture was allowed to stand at room temperature for 5 minutes. Diethyl ether was added to allow crystallization, ether washing, drying under reduced pressure, and H-Val-Tyr.
-Phe-Ala-His-Leu-Asp (OBzl) -Ile-Ile-Trp-
467 μg of OBzl was obtained.
(2)化合物(I−20) 実施例18と同様にして、化合物(I−1)0.14mgと上
記工程1で得られたペプチド10mgとを縮合させてベンジ
ルエステル体を得、脱ベンジル化を行い、化合物(I−
20)10.5μgを得た。(2) Compound (I-20) In the same manner as in Example 18, 0.14 mg of the compound (I-1) and 10 mg of the peptide obtained in the above step 1 were condensed to obtain a benzyl ester, and debenzylation was carried out. The compound (I-
20) 10.5 μg was obtained.
質量分析〔FABMS〕:3303(M+H) アミノ酸分析;Gly2.3(2),Asx4.0(4),His1.8
(2),Thr1.0(1),Ala2.0(2),Pro1.2(1),Phe
2.7(3),Tyr2.6(3),Val 0.9(1),Leu1.0(1),
Ile1.7(2),(Trpは分析せず) 実施例21. 実施例17で得られた化合物(I−17)0.22mgを含む0.
2mlDMF溶液に、PyBOP 187μg、HOBt49μg、NMM61μg
を加え、室温で1時間攪拌した。ついで、H−Ala−OBz
l・TosOH 0.12mgとNMM 35μgを含む35μlDMF溶液を加
え4℃で2日間攪拌した。溶媒を減圧下留去し、得られ
た残渣をDMF 1mlに溶解して実施例15と同様な方法によ
りHPLCで分取精製して、化合物(I−21)のベンジルエ
ステル体を36μgを得た。Mass spectrometry [FABMS]: 3303 (M + H) Amino acid analysis; Gly2.3 (2), Asx4.0 (4), His1.8
(2), Thr1.0 (1), Ala2.0 (2), Pro1.2 (1), Phe
2.7 (3), Tyr2.6 (3), Val 0.9 (1), Leu1.0 (1),
Ile1.7 (2), (Trp not analyzed) 0.2 containing 0.22 mg of the compound (I-17) obtained in Example 17.
In 2 ml DMF solution, PyBOP 187 μg, HOBt 49 μg, NMM 61 μg
Was added and stirred at room temperature for 1 hour. Then, H-Ala-OBz
A 35 μl DMF solution containing 0.12 mg l · TosOH and 35 μg NMM was added, and the mixture was stirred at 4 ° C. for 2 days. The solvent was distilled off under reduced pressure, and the obtained residue was dissolved in 1 ml of DMF and fractionated and purified by HPLC in the same manner as in Example 15 to obtain 36 μg of the benzyl ester of compound (I-21). .
質量分析〔FABMS〕:2019(M+H) 得られたベンジルエステル体36μgをDMF20μlに溶
解し、蟻酸アンモニウムの飽和メタノール溶液を20μ
l、10%Pd/C約0.1mgを加えて、室温で1時間攪拌し
た。反応液を遠心分離にかけ上澄み液を採取した。実施
例18と同様な方法により逆相HPLCにかけ粗生成物を分取
精製し、化合物(I−21)27μgを得た。Mass spectrometry [FABMS]: 2019 (M + H) 36 μg of the obtained benzyl ester compound was dissolved in 20 μl of DMF, and a saturated methanol solution of ammonium formate was added to a solution of 20 μl.
1 and about 0.1 mg of 10% Pd / C were added, followed by stirring at room temperature for 1 hour. The reaction solution was centrifuged to collect a supernatant. The crude product was fractionated and purified by reverse phase HPLC in the same manner as in Example 18 to obtain 27 μg of compound (I-21).
質量分析〔FABMS〕:1929(M+H) アミノ酸分析:Gly2.2(2),Asx2.6(3),His1.0
(1),Thr1.1(1),Ala2.0(2),Pro1.1(1),Phe
2.0(2),Tyr1.9(2),(Trpは分析せず) 実施例22. 実施例15と同様の方法により、化合物(I−17)0.22
mgとH−Phe−OBzl・TosOH 0.15mgとを縮合させてベン
ジルエステル体を得、脱ベンジル化を行い化合物(I−
22)27μgを得た。Mass spectrometry [FABMS]: 1929 (M + H) Amino acid analysis: Gly2.2 (2), Asx2.6 (3), His1.0
(1), Thr1.1 (1), Ala2.0 (2), Pro1.1 (1), Phe
2.0 (2), Tyr1.9 (2), (Trp was not analyzed) Compound (I-17) 0.22 was prepared in the same manner as in Example 15.
mg and H-Phe-OBzl.TosOH 0.15 mg were condensed to obtain a benzyl ester, which was debenzylated to give the compound (I-
22) 27 μg were obtained.
質量分析〔FABMS〕:2005(M+H) アミノ酸分析:Gly2.1(2),Asx2.6(3),His1.0
(1),Thr1.0(1),Ala1.0(1),Pro1.0(1),Phe
3.0(3),Tyr2.0(2),(Trpは分析せず) 実施例23. 実施例15と同様の方法により、化合物(I−17)0.22
mgとH−Tyr−OBzl・TosOH 0.16mgとを縮合させてベン
ジルエステル体を得、脱ベンジル化を行い、化合物(I
−23)30μgを得た。Mass spectrometry [FABMS]: 2005 (M + H) Amino acid analysis: Gly2.1 (2), Asx2.6 (3), His1.0
(1), Thr1.0 (1), Ala1.0 (1), Pro1.0 (1), Phe
3.0 (3), Tyr 2.0 (2), (Trp was not analyzed) Compound (I-17) 0.22 was prepared in the same manner as in Example 15.
mg and H-Tyr-OBzl.TosOH 0.16 mg were condensed to give a benzyl ester, debenzylated, and the compound (I
-23) 30 μg was obtained.
質量分析〔FABMS〕:2021(M+H) アミノ酸分析:Gly2.2(2),Asx2.6(3),His1.0
(1),Thr1.0(1),Ala1.0(1),Pro1.1(1),Phe
2.0(2),Tyr2.9(3),(Trpは分析せず) 実施例24. 実施例15と同様の方法により、化合物(I−17)0.22
mgと、H−Asn−Tyr−Tyr−Trp−OBzl0.17mgとを縮合さ
せてベンジルエステル体を得、脱ベンジル化を行い化合
物(I−24)36μgを得た。Mass spectrometry [FABMS]: 2021 (M + H) Amino acid analysis: Gly2.2 (2), Asx2.6 (3), His1.0
(1), Thr1.0 (1), Ala1.0 (1), Pro1.1 (1), Phe
2.0 (2), Tyr2.9 (3), (Trp was not analyzed) Compound (I-17) 0.22 was prepared in the same manner as in Example 15.
mg and H-Asn-Tyr-Tyr-Trp-OBzl 0.17 mg were condensed to obtain a benzyl ester form, which was debenzylated to obtain 36 μg of the compound (I-24).
質量分析〔FABMS〕:2485(M+H) アミノ酸分析:Gly2.1(2),Asx4.0(4),His1.0
(1),Thr1.0(1),Ala1.0(1),Pro1.1(1),Phe
1.9(2),Tyr3.9(4),(Trpは分析せず) 実施例25. 化合物(I−15)150μgに乾燥DMFを113μl加え、
氷冷下乾燥DMFで調製した0.53mg/mlのHOBt、2.0mg/mlの
PyBOP、0.71μl/mlのNMMを順に100μlずつ加えた。得
られた混合物に、実施例20で得られたH−Val−Tyr−Ph
e−Ala−His−Leu−Asp(OBzl)−Ile−Ile−Trp−OBzl
2.4mg/mlを含む乾燥DMF溶液87μlを加えた。得られた
混合物を氷冷下で5時間放置し、実施例15と同様の方法
により逆相HPLCで精製した。縮合物を含む画分を凍結乾
燥して化合物(I−25)のベンジルエステル体140μg
を得た。ついで、窒素雰囲気下で25%酢酸を含むメタノ
ール溶液を200μl、乾燥DMFを50μl加え、さらに10%
Pd/Cを0.5mg加え、水素ガスを導入し室温で1時間激し
く撹拌した。触媒を濾去し、実施例15と同様な方法によ
り逆相HPLCで精製した。目的物を含む画分の溶媒を減圧
下留去し化合物(I−25)を6.5μg得た。Mass spectrometry [FABMS]: 2485 (M + H) Amino acid analysis: Gly2.1 (2), Asx4.0 (4), His1.0
(1), Thr1.0 (1), Ala1.0 (1), Pro1.1 (1), Phe
1.9 (2), Tyr3.9 (4), (Trp was not analyzed) 113 μl of dry DMF was added to 150 μg of the compound (I-15),
0.53 mg / ml HOBt prepared in dry DMF under ice cooling, 2.0 mg / ml
PyBOP and 0.71 μl / ml NMM were added in order of 100 μl. The resulting mixture was mixed with the H-Val-Tyr-Ph obtained in Example 20.
e-Ala-His-Leu-Asp (OBzl) -Ile-Ile-Trp-OBzl
87 μl of a dry DMF solution containing 2.4 mg / ml was added. The obtained mixture was left under ice cooling for 5 hours, and purified by reverse phase HPLC in the same manner as in Example 15. The fraction containing the condensate is lyophilized to give 140 μg of the benzyl ester of compound (I-25)
I got Then, under a nitrogen atmosphere, 200 μl of a methanol solution containing 25% acetic acid and 50 μl of dry DMF were added, and a 10%
0.5 mg of Pd / C was added, hydrogen gas was introduced, and the mixture was vigorously stirred at room temperature for 1 hour. The catalyst was removed by filtration and purified by reverse phase HPLC in the same manner as in Example 15. The solvent of the fraction containing the target compound was distilled off under reduced pressure to obtain 6.5 μg of the compound (I-25).
質量分析〔FABMS〕:2472(M+H) アミノ酸分析:Asx2.6(3),Gly2.0(2),His1.6
(2),Thr0.9(1),Ala1.6(2),Pro0.8(1),Val
0.7(1),Tyr0.9(1),Phe 0.8(1),(Trpは分析
せず) 実施例26. 化合物(I−26):H−Gly−Asn−Trp−His−Gly−Thr−
Ala−Pro−Asp−Trp−Val−Tyr−Phe−Ala−His−Leu−
Asp−Ile−Ile−Trp−OHの合成 参考例3と同様にして、Fmoc−Trp10.4μmolが結合し
た担体樹脂20mgを用い、N−保護アミノ酸として順次、
Fmoc−Ile−OH、Fmoc−Ile−OH、Fmoc−Asp(Ot−Bu)
−OH、Fmoc−Leu−OH、Fmoc−His(Trt)−OH、Fmoc−A
la−OH、Fmoc−Phe−OH、Fmoc−Tyr(t−Bu)−OH、Fm
oc−Val−OH、Fmoc−Trp−OH、Fmoc−Asp(Ot−Bu)−O
H、Fmoc−Pro−OH、Fmoc−Ala−OH、Fmoc−Thr(t−B
u)−OH、Fmoc−Gly−OH、Fmoc−His(Trt)−OH、Fmoc
−Trp−OH、Fmoc−Asn(Trt)−OHおよびFmoc−Gly−OH
を用いて合成を行う。最終工程のみ参考例3とは異な
り、(b)のピペリジン処理も行った。樹脂からのペプ
チドの切り出しは参考例3と同様に行い、粗生成物25mg
を得た。このうち4.0mgを実施例4と同様な方法によりH
PLCで精製し、1.8mgの化合物(I−26)を得た。Mass spectrometry [FABMS]: 2472 (M + H) Amino acid analysis: Asx2.6 (3), Gly2.0 (2), His1.6
(2), Thr0.9 (1), Ala1.6 (2), Pro0.8 (1), Val
0.7 (1), Tyr0.9 (1), Phe0.8 (1), (Trp was not analyzed) Example 26. Compound (I-26): H-Gly-Asn-Trp-His-Gly-Thr-
Ala-Pro-Asp-Trp-Val-Tyr-Phe-Ala-His-Leu-
Synthesis of Asp-Ile-Ile-Trp-OH In the same manner as in Reference Example 3, using 20 mg of a carrier resin to which 10.4 μmol of Fmoc-Trp was bound, and sequentially as an N-protected amino acid,
Fmoc-Ile-OH, Fmoc-Ile-OH, Fmoc-Asp (Ot-Bu)
-OH, Fmoc-Leu-OH, Fmoc-His (Trt) -OH, Fmoc-A
la-OH, Fmoc-Phe-OH, Fmoc-Tyr (t-Bu) -OH, Fm
oc-Val-OH, Fmoc-Trp-OH, Fmoc-Asp (Ot-Bu) -O
H, Fmoc-Pro-OH, Fmoc-Ala-OH, Fmoc-Thr (t-B
u) -OH, Fmoc-Gly-OH, Fmoc-His (Trt) -OH, Fmoc
-Trp-OH, Fmoc-Asn (Trt) -OH and Fmoc-Gly-OH
The synthesis is performed using. Only the final step was different from that of Reference Example 3, and the piperidine treatment (b) was also performed. The peptide was cut out from the resin in the same manner as in Reference Example 3 to obtain 25 mg of a crude product.
I got 4.0 mg of H was prepared in the same manner as in Example 4.
Purification by PLC yielded 1.8 mg of compound (I-26).
質量分析〔FABMS〕:2400(M+H) アミノ酸分析:Gly2.4(2),Ala2.0(2),Asx2.9
(3),His1.9(2),Ile1.0(2),Leu0.9(1),Phe
0.9(1),Pro1.1(1),Thr1.1(1),Tyr0.9(1),V
al0.7(1),(Trpは分析せず) 実施例27. 工程1:H−Ile−Ile−Trp−OCHPh2 Fmoc−Ile−Ile−Trp−OHは、参考例3と同様にし
て、Fmoc−Trpが結合した担体樹脂を用い、N−保護ア
ミノ酸として順次、Fmoc−Ile−OHおよびFmoc−Ile−OH
を用いて合成を行い、樹脂から切り出して、上記粗ペプ
チドを得た。本ペプチド126μgに200μlメタノール及
び200μlの塩化メチレンを加えて溶解し、7.8mg/mlの
ジフェニルジアゾメタンを含む塩化メチレン30μlおよ
び28.6μl/mlの塩酸を含むメタノール30μlを氷冷下に
加えた。氷冷下2時間静置し、室温に戻し一昼夜放置し
た。不溶物を濾過し、実施例20と同様に逆相HPLC(カラ
ムはYMC社製 YMS−Pack ODS−AM−312を使用)にて精
製した。これを凍結乾燥しFmoc−Ile−Ile−Trp−OCHPh
2を75μg得た。ついで、20%ピペリジン溶液を含む乾
燥DMFを100μl加え、室温で5分間放置した後、不溶物
を濾去し、上記と同様に逆相HPLCで精製した。目的物を
含む画分の溶媒を減圧下にて留去し、H−Ile−Ile−Tr
p−OCHPh2を32μg得た。Mass spectrometry [FABMS]: 2400 (M + H) Amino acid analysis: Gly2.4 (2), Ala2.0 (2), Asx2.9
(3), His1.9 (2), Ile1.0 (2), Leu0.9 (1), Phe
0.9 (1), Pro1.1 (1), Thr1.1 (1), Tyr0.9 (1), V
al0.7 (1), (Trp is not analyzed) Step 1: H-Ile-Ile-Trp-OCHPh 2 Fmoc-Ile-Ile-Trp-OH, in the same manner as in Reference Example 3, using a carrier resin to which Fmoc-Trp is bound, and sequentially as an N-protected amino acid, Fmoc-Ile-OH and Fmoc-Ile-OH
Was synthesized and cleaved from the resin to obtain the above crude peptide. To 126 μg of this peptide, 200 μl methanol and 200 μl methylene chloride were added and dissolved, and 30 μl of methylene chloride containing 7.8 mg / ml diphenyldiazomethane and 30 μl of methanol containing 28.6 μl / ml hydrochloric acid were added under ice cooling. The mixture was allowed to stand under ice cooling for 2 hours, returned to room temperature, and left overnight. The insolubles were filtered and purified by reversed-phase HPLC (column: YMS-Pack ODS-AM-312 manufactured by YMC) as in Example 20. This is freeze-dried and Fmoc-Ile-Ile-Trp-OCHPh
75 g of 2 was obtained. Then, 100 μl of dry DMF containing a 20% piperidine solution was added, and the mixture was allowed to stand at room temperature for 5 minutes. Then, insoluble materials were removed by filtration and purified by reverse-phase HPLC in the same manner as described above. The solvent of the fraction containing the target substance was distilled off under reduced pressure, and H-Ile-Ile-Tr
the p-OCHPh 2 was obtained 32μg.
工程2:化合物(I−27) 実施例15で得られた化合物(I−15)64μgを40μl
の乾燥DMFに溶解し、氷冷下乾燥DMFで調製した1.1mg/ml
のHOBt、4.1mg/mlのPyBOP、1.5μl/mlのNMM、H−Ile−
Ile−Trp−OCHPh2 31.7mg/mlを順に20μlずつ加え
た。氷冷下2時間放置し、反応溶液を実施例15と同様に
して逆相HPLCで精製した。得られた画分の溶媒を減圧下
留去し、化合物(I−27)のベンズヒドリルエステル体
を37μg得た。ついで、TFA900μl、アニソール50μ
l、1,2−エタンジチオール50μl、2−メチルインド
ール5mgの混合溶液を25μl加え、室温にて1時間撹拌
した。反応液にジエチルエーテル0.5mlを加え、化合物
(I−27)を晶出させ、エーテル洗浄、減圧乾燥を行い
化合物(I−27)を10.1μg得た。Step 2: Compound (I-27) 40 μl of compound (I-15) 64 μg obtained in Example 15
1.1mg / ml prepared in dry DMF under ice-cooling
HOBt, 4.1 mg / ml PyBOP, 1.5 μl / ml NMM, H-Ile-
Ile-Trp-OCHPh the 2 31.7 mg / ml were sequentially added in 20 [mu] l. The mixture was allowed to stand under ice cooling for 2 hours, and the reaction solution was purified by reversed-phase HPLC in the same manner as in Example 15. The solvent of the obtained fraction was distilled off under reduced pressure to obtain 37 μg of a benzhydryl ester of the compound (I-27). Then TFA 900μl, anisole 50μ
l, 50 µl of 1,2-ethanedithiol and 25 µl of a mixed solution of 5 mg of 2-methylindole were added, and the mixture was stirred at room temperature for 1 hour. 0.5 ml of diethyl ether was added to the reaction solution to crystallize the compound (I-27), washed with ether and dried under reduced pressure to obtain 10.1 μg of the compound (I-27).
質量分析〔FABMS〕:1535(M+H) アミノ酸分析:Asx1.7(2),Gly2.1(2),His0.9
(1),Thr1.0(1),Ala1.0(1),Pro1.3(1),Ile
2.0(2),(Trpは分析せず) 実施例28. 工程1:H−Leu−Tyr−Phe−Ala−His−Gln−Asp(OBzl)
−Val−Ile−Trp−OBzl 参考例4で得られた化合物(d)555μgを200μlの
乾燥DMFに溶解し、乾燥DMFで調製した15.9mg/mlのHOBt,
61.2mg/mlのPyBOP、21.5μl/mlのNMMを氷冷下順次10μ
lずつ加え、更に7.8mg/mlのH−Trp−OBzl塩酸塩を20
μl加えた。反応溶液を4℃にて一昼夜放置し、不溶物
を濾過し濾液を参考例3と同様な方法により逆相HPLCで
精製した。この際、カラムはケムコ(株)製のChemco−
Pack NUCLEOSIL 5C18(250×20mmI.D.)を用い、凍結乾
燥した。ついで、本凍結乾燥品に乾燥DMFで調製した20
%ピペリジン溶液を100μl加え、室温で5分間放置し
た後、減圧下溶媒を50μlまで濃縮し、ジエチルエーテ
ルを加えて析出させ、更にエーテル洗浄減圧乾燥を行
い、H−Leu−Tyr−Phe−Ala−His−Gln−Asp(OBzl)
−Val−Ile−Trp−OBzlを250μg得た。Mass spectrometry [FABMS]: 1535 (M + H) Amino acid analysis: Asx1.7 (2), Gly2.1 (2), His0.9
(1), Thr1.0 (1), Ala1.0 (1), Pro1.3 (1), Ile
2.0 (2), (Trp is not analyzed) Step 1: H-Leu-Tyr-Phe-Ala-His-Gln-Asp (OBzl)
-Val-Ile-Trp-OBzl 555 μg of the compound (d) obtained in Reference Example 4 was dissolved in 200 μl of dry DMF, and 15.9 mg / ml of HOBt,
61.2 mg / mL of PyBOP and 21.5 μL / mL of NMM were successively added under ice cooling to 10 μM.
7.8 mg / ml of H-Trp-OBzl hydrochloride was further added to the solution.
μl was added. The reaction solution was left overnight at 4 ° C., the insolubles were filtered, and the filtrate was purified by reverse phase HPLC in the same manner as in Reference Example 3. At this time, the column was Chemco-
Lyophilized using Pack NUCLEOSIL 5C18 (250 × 20 mm ID). Then, this freeze-dried product was prepared with dry DMF 20
After adding 100 μl of a 100% piperidine solution and leaving the mixture at room temperature for 5 minutes, the solvent was concentrated under reduced pressure to 50 μl, and precipitated by adding diethyl ether, and further washed with ether and dried under reduced pressure to obtain H-Leu-Tyr-Phe-Ala- His-Gln-Asp (OBzl)
250 μg of -Val-Ile-Trp-OBzl was obtained.
工程2:化合物(I−28) 実施例15で得られた化合物(I−15)を100μlの乾
燥DMFに溶解し、乾燥DMFで調製した0.72mg/mlのHOBt、
2.8mg/mlのPyBOP、1.0μl/mlのNMM、2.5mg/mlの上記ペ
プチドを氷冷下順次50μlずつ加えた。混合液を4℃に
て一昼夜放置し、不溶物を濾去し、実施例15と同様にし
て逆相HPLCで精製した。得られた画分を凍結乾燥し化合
物(I−28)のベンジルエステル体を66μg得た。つい
で、乾燥DMF30μl、蟻酸アンモニウムで飽和したメタ
ノール溶液30μlを加え、更に小量の10%Pd/Cを加え室
温で1時間激しく撹拌した。その後触媒を濾去し、実施
例15と同様な方法により逆相HPLCで精製した。カラムは
YMC社製 YMC Pack ODS−AM312(150×6mmI.D.)を用い
た。目的物を含む画分の溶媒を減圧下留去し、化合物
(I−28)を1.2μg得た。Step 2: Compound (I-28) Compound (I-15) obtained in Example 15 was dissolved in 100 μl of dry DMF, and 0.72 mg / ml of HOBt prepared in dry DMF was prepared.
2.8 mg / ml of PyBOP, 1.0 μl / ml of NMM, and 2.5 mg / ml of the above peptide were added in an order of 50 μl under ice-cooling. The mixture was left overnight at 4 ° C., the insolubles were removed by filtration, and purified by reversed-phase HPLC in the same manner as in Example 15. The obtained fraction was freeze-dried to obtain 66 μg of the benzyl ester of the compound (I-28). Then, 30 μl of dry DMF and 30 μl of a methanol solution saturated with ammonium formate were added, and a small amount of 10% Pd / C was further added, followed by vigorous stirring at room temperature for 1 hour. Thereafter, the catalyst was removed by filtration and purified by reverse phase HPLC in the same manner as in Example 15. The column is
YMC Pack ODS-AM312 (150 × 6 mm I.D.) manufactured by YMC was used. The solvent of the fraction containing the target compound was distilled off under reduced pressure to obtain 1.2 μg of compound (I-28).
質量分析〔FABMS〕:2397(M+H) アミノ酸分析:Asx2.6(3),Glx1.0(1),Gly2.2
(2),His2.0(2),Thr1.0(1),Ala2.0(2),Pro
1.2(1),Tyr1.1(1),Val 0.9(1),Ile0.7(1),
Leu1.1(1),Phe1.3(1),(Trpは分析せず) 実施例29. 実施例14で得られた化合物(I−14)10.0μgをDMF1
0μlに溶解し、氷冷下HOBt4.3μg、PyBOP16.7μg、N
MM4.9μgを加え30分間放置した。反応液にH−Ala−OB
zl・TosOH 11.3μgを加えて15℃で1晩放置し、実施例
14と同様な方法によりYMC社製 YMC Pack ODS−AM312カ
ラム(150×6mmI.D.)を装着した逆相HPLCで精製し、凍
結乾燥することにより化合物(I−29)5.0μgを得
た。Mass spectrometry [FABMS]: 2397 (M + H) Amino acid analysis: Asx2.6 (3), Glx1.0 (1), Gly2.2
(2), His2.0 (2), Thr1.0 (1), Ala2.0 (2), Pro
1.2 (1), Tyr1.1 (1), Val 0.9 (1), Ile0.7 (1),
Leu1.1 (1), Phe1.3 (1), (Trp not analyzed) 10.0 μg of the compound (I-14) obtained in Example 14 was added to DMF1
HOBt 4.3 μg, PyBOP 16.7 μg, N
4.9 μg of MM was added and left for 30 minutes. H-Ala-OB
Add 11.3 μg of zl · TosOH and leave at 15 ° C overnight,
Purification by reverse phase HPLC equipped with a YMC Pack ODS-AM312 column (150 × 6 mm I.D.) manufactured by YMC in the same manner as in 14, and lyophilization gave 5.0 μg of compound (I-29).
質量分析〔FABMS〕:1098(M+H) アミノ酸分析:Asx1.6(2),Gly2.2(2),His1.0
(1),Thr0.9(1),Ala1.8(2),Pro.1.2(1),
(Trpは分析せず) 実施例30. 実施例14で得られた化合物(I−14)10.0μgをDMF1
0μlに溶解し、氷冷下HOBt4.3μg、PyBOP16.7μg、N
MM4.9μgを加え30分間放置した。反応液にH−Val−OB
zl・TosOH4.0μgを加えて15℃で1晩放置し、実施例14
と同様な方法によりYMC社製 YMC Pack ODS−AM312カラ
ム(150×6mmI.D.)を装着した逆相HPLCで精製し、凍結
乾燥することにより化合物(I−30)7.0μgを得た。Mass spectrometry [FABMS]: 1098 (M + H) Amino acid analysis: Asx1.6 (2), Gly2.2 (2), His1.0
(1), Thr0.9 (1), Ala1.8 (2), Pro.1.2 (1),
(Trp was not analyzed). 10.0 μg of the compound (I-14) obtained in Example 14 was added to DMF1
HOBt 4.3 μg, PyBOP 16.7 μg, N
4.9 μg of MM was added and left for 30 minutes. H-Val-OB
After adding 4.0 μg of zl · TosOH and leaving the mixture at 15 ° C. overnight,
Purified by reverse phase HPLC equipped with a YMC Pack ODS-AM312 column (150 × 6 mm ID) manufactured by YMC in the same manner as described above, and lyophilized to obtain 7.0 μg of compound (I-30).
質量分析〔FABMS〕:1126(M+H) アミノ酸分析:Asx1.8(2),Gly2.2(3),His1.0
(1),Thr1.0(1),Ala1.1(1),Pro1.0(1),Val
1.2(1),(Trpは分析せず) 実施例31. 実施例15で得られた化合物(I−15)30μgに乾燥DM
Fを30μl加え、乾燥DMFで調製した0.53mg/mlのHOBt、
2.0mg/mlのPyBOP、0.71μl/mlのNMMを氷冷下順次10μl
ずつ加えた。さらに0.064mg/mlのH−Gly−OMeを含む乾
燥DMFを40μl加えた。反応液を氷冷下1時間放置し、
室温に戻しさらに2時間反応させた。次に,不溶物を濾
過し実施例15と同様な方法により、逆相HPLCで精製し
た。縮合物を含む画分の溶媒を減圧下留去し化合物(I
−31)を8.0μg得た。Mass spectrometry [FABMS]: 1126 (M + H) Amino acid analysis: Asx1.8 (2), Gly2.2 (3), His1.0
(1), Thr1.0 (1), Ala1.1 (1), Pro1.0 (1), Val
1.2 (1), (Trp is not analyzed) Dry DM was added to 30 μg of the compound (I-15) obtained in Example 15.
30 μl of F, 0.53 mg / ml HOBt prepared in dry DMF,
2.0 mg / ml of PyBOP and 0.71 μl / ml of NMM were successively added in an amount of 10 μl under ice cooling.
Was added. Further, 40 μl of dry DMF containing 0.064 mg / ml of H-Gly-OMe was added. The reaction solution was left under ice cooling for 1 hour,
After returning to room temperature, the reaction was further performed for 2 hours. Next, the insolubles were filtered and purified by reverse phase HPLC in the same manner as in Example 15. The solvent of the fraction containing the condensate is distilled off under reduced pressure, and the compound (I)
-31) was obtained in an amount of 8.0 μg.
質量分析〔FABMS〕:1194(M+H) アミノ酸分析:Asx1.8(2),Gly2.4(2),His0.9
(1),Thr1.1(1),Ala1.0(1),Pro1.2(1),(T
rpは分析せず) 実施例32. 参考例3と同様の方法によりFmoc−Tyrが結合した担
体樹脂を出発物質として用い、N−保護アミノ酸Fmoc−
Tyr(t−Bu)−OHおよびFmoc−Asn(Trt)−OHを順次
結合して保護ペプチドを合成し、担体樹脂から切り出し
て粗ペプチドFmoc−Asn−Tyr−Tyr−OHを得た。つい
で、得られたペプチド8.2mgを5mlの乾燥DMFに溶解し、
乾燥DMFで調製した15.4mg/mlのHOBt、59.6mg/mlのPyBO
P、21μl/mlのNMM、15.2mg/mlのH−Trp−OBzl塩酸塩を
氷冷下にて順に250μlずつ加えた。4℃で5時間反応
させ、不溶物を濾過し逆相HPLCで精製した。カラムは、
ケムコ(株)製のChemco Pack NUCLEOSIL 5C18(250×2
0mmI.D.)を用いた。目的物を含む画分を凍結乾燥しFmo
c−Asn−Tyr−Tyr−Trp−OBzlを6.75mg得た。Mass spectrometry [FABMS]: 1194 (M + H) Amino acid analysis: Asx1.8 (2), Gly2.4 (2), His0.9
(1), Thr1.1 (1), Ala1.0 (1), Pro1.2 (1), (T
rp is not analyzed) Using a carrier resin to which Fmoc-Tyr is bound in the same manner as in Reference Example 3 as a starting material, an N-protected amino acid Fmoc-Tyr is used.
Tyr (t-Bu) -OH and Fmoc-Asn (Trt) -OH were sequentially bonded to synthesize a protected peptide, which was cut out from the carrier resin to obtain a crude peptide Fmoc-Asn-Tyr-Tyr-OH. Then, 8.2 mg of the obtained peptide was dissolved in 5 ml of dry DMF,
15.4 mg / ml HOBt, 59.6 mg / ml PyBO prepared in dry DMF
P, 21 μl / ml of NMM, and 15.2 mg / ml of H-Trp-OBzl hydrochloride were added in order of 250 μl under ice cooling. The reaction was carried out at 4 ° C. for 5 hours, and the insolubles were filtered and purified by reverse phase HPLC. The column is
Chemco Pack NUCLEOSIL 5C18 (250 × 2
0 mm ID) was used. Lyophilize the fraction containing the target substance and
6.75 mg of c-Asn-Tyr-Tyr-Trp-OBzl was obtained.
次に、この化合物2.7mgに20%ピペリジンを含む乾燥D
MF 100μlを加え、室温で5分間放置し、ジエチルエー
テルを加え晶出させ、エーテル洗浄、減圧乾燥を行いH
−Asn−Tyr−Tyr−Trp−OBzlを2.25mg得た。Next, 2.7 mg of this compound contained 20% piperidine in dry D
After adding 100 μl of MF and leaving the mixture at room temperature for 5 minutes, diethyl ether was added for crystallization, washed with ether and dried under reduced pressure.
2.25 mg of -Asn-Tyr-Tyr-Trp-OBzl was obtained.
次に、実施例15で得られた化合物(I−15)100μg
に乾燥DMFを100μl加え、乾燥DMFで調製した0.72mg/ml
のHOBt、2.8mg/mlのPyBOP、1μl/mlのNMM、0.45μg/μ
lのH−Asn−Tyr−Tyr−Trp−OBzlを氷冷下順に50μl
ずつ加えた。反応溶液を氷冷下で3時間放置した後、不
溶物を濾去し実施例25と同様の方法により逆相HPLCで精
製した。得られた画分の溶媒を減圧下留去して化合物
(I−32)のベンジルエステル体を80μg得た。Next, 100 μg of the compound (I-15) obtained in Example 15
100 μl of dry DMF was added to 0.72 mg / ml prepared with dry DMF
HOBt, 2.8 mg / ml PyBOP, 1 μl / ml NMM, 0.45 μg / μ
of H-Asn-Tyr-Tyr-Trp-OBzl in an order of 50 μl under ice-cooling.
Was added. After the reaction solution was left under ice cooling for 3 hours, insolubles were removed by filtration and purified by reverse phase HPLC in the same manner as in Example 25. The solvent of the obtained fraction was distilled off under reduced pressure to obtain 80 μg of a benzyl ester of the compound (I-32).
次に、このベンジルエステル体80μgに乾燥DMF30μ
l、蟻酸アンモニウムで飽和したメタノール溶液30μl
を加え、更に10%Pd/Cを少量加え室温で1時間激しく攪
拌した。その後、触媒を濾去し、上記と同様にして、逆
相HPLCで精製した。カラムはYMC社製 ODS−AM312を用
いた。目的物を含む画分の溶媒を減圧下留去し、化合物
(I−32)を42μg得た。Next, 30 μl of dry DMF was added to 80 μg of the benzyl ester.
l, 30 μl of methanol solution saturated with ammonium formate
Was added, and a small amount of 10% Pd / C was further added, followed by vigorous stirring at room temperature for 1 hour. Thereafter, the catalyst was removed by filtration and purified by reverse-phase HPLC as described above. The column used was ODS-AM312 manufactured by YMC. The solvent of the fraction containing the target compound was distilled off under reduced pressure to obtain 42 μg of the compound (I-32).
質量分析〔FABMS〕:1750(M+H) アミノ酸分析:Asx2.0(2),Gly2.4(2),His1.1
(1),Thr0.9(1),Ala1.0(1),Pro1.4(1),Tyr
2.0(2),(Trpは分析せず) 実施例33. 工程1:(1)H−Val−Tyr−Phe−Ala−Phe−Phe−Asn
−Tyr−Tyr−Trp−OBzl 参考例3と同様の方法により、Fmoc−Tyrが結合した
担体樹脂を出発物質として用い、N−保護アミノ酸Fmoc
−Tyr(t−Bu)−OH,Fmoc−Asn(Trt)−OH,Fmoc−Phe
−OH,Fmoc−Phe−OH,Fmoc−Ala−OH,Fmoc−Phe−OH,Fmo
c−Tyr(t−Bu)−OHおよびFmoc−Val−OHを順次結合
し、担体樹脂から切り出して粗ペプチドFmoc−Val−Tyr
−Phe−Ala−Phe−Phe−Asn−Tyr−Tyr−OHを得た。Mass spectrometry [FABMS]: 1750 (M + H) Amino acid analysis: Asx2.0 (2), Gly2.4 (2), His1.1
(1), Thr0.9 (1), Ala1.0 (1), Pro1.4 (1), Tyr
2.0 (2), (Trp is not analyzed) Step 1: (1) H-Val-Tyr-Phe-Ala-Phe-Phe-Asn
-Tyr-Tyr-Trp-OBzl In the same manner as in Reference Example 3, an N-protected amino acid Fmoc was obtained using a carrier resin to which Fmoc-Tyr was bound as a starting material.
-Tyr (t-Bu) -OH, Fmoc-Asn (Trt) -OH, Fmoc-Phe
-OH, Fmoc-Phe-OH, Fmoc-Ala-OH, Fmoc-Phe-OH, Fmo
c-Tyr (t-Bu) -OH and Fmoc-Val-OH are sequentially bonded, cut out from the carrier resin, and the crude peptide Fmoc-Val-Tyr
-Phe-Ala-Phe-Phe-Asn-Tyr-Tyr-OH was obtained.
ついで、得られたペプチド4.9mgを2mlの乾燥DMFに溶
解し、乾燥DMFで調製した2.8mg/mlのHOBt、10.6mg/mlの
PyBOP、4μl/mlのNMM、2.7mg/mlのH−Trp−OBzl塩酸
塩を氷冷下順に0.5mlずつ加えた。4℃で一昼夜放置
し、不溶物を濾過し逆相HPLCで精製した。カラムは、ケ
ムコ(株)製のChemco Pack NUCLEOSIL 5C18(250×20m
mI.D.)を用い、0.1%TFAと0〜90%アセトニトリルを
用いた直線濃度勾配で溶出した。縮合物を含む画分を凍
結乾燥し、Fmoc−Val−Tyr−Phe−Ala−Phe−Phe−Asn
−Tyr−Tyr−Trp−OBzlを5.4mg得た。Then, 4.9 mg of the obtained peptide was dissolved in 2 ml of dry DMF, and 2.8 mg / ml of HOBt and 10.6 mg / ml of prepared in dry DMF.
PyBOP, 4 μl / ml of NMM, and 2.7 mg / ml of H-Trp-OBzl hydrochloride were added in an amount of 0.5 ml in this order under ice cooling. The mixture was allowed to stand at 4 ° C. overnight, and the insolubles were filtered and purified by reverse phase HPLC. The column is Chemco Pack NUCLEOSIL 5C18 (250 x 20m) manufactured by Chemco.
elution with 0.1% TFA and 0-90% acetonitrile. The fraction containing the condensate was lyophilized and Fmoc-Val-Tyr-Phe-Ala-Phe-Phe-Asn
-5.4 mg of -Tyr-Tyr-Trp-OBzl was obtained.
この化合物5.4mgに20%ピペリジンを含む乾燥DMF100
μlを加え、室温で5分間放置し、ジエチルエーテルを
加え晶出させ、エーテルで洗浄し、減圧乾燥を行い、H
−Val−Tyr−Phe−Ala−Phe−Phe−Asn−Tyr−Tyr−Trp
−OBzlを3.0mg得た。Dry DMF100 containing 20% piperidine in 5.4 mg of this compound
Then, the mixture was left at room temperature for 5 minutes, crystallized by adding diethyl ether, washed with ether, dried under reduced pressure,
-Val-Tyr-Phe-Ala-Phe-Phe-Asn-Tyr-Tyr-Trp
3.0 mg of -OBzl was obtained.
工程2:化合物(I−33) 実施例15で得られた化合物(I−15)100μgに乾燥D
MFを100μl加え、乾燥DMFで調製した0.72mg/mlのHOB
t、2.8mg/mlのPyBOP、1μl/mlのNMMを氷冷下順に50μ
lずつ加え、さらに上記工程1で得られた部分ペプチド
の3.0mg/mlの乾燥DMF溶液を50μl加えた。反応溶液を
氷冷下で3時間放置し、不溶物を濾過し逆相HPLC(カラ
ムはYMC社製 ODS−AM−312を使用)で精製した。縮合
物を含む画分の溶媒を減圧下留去し、化合物(I−33)
のベンジルエステル体を110μg得た。ついで、このベ
ンジルエステル体110μgに乾燥DMFを50μl、蟻酸アン
モニウムで飽和したメタノール溶液を50μl加え、さら
に少量の10%Pd/Cを加え、室温で2時間激しく撹拌し
た。その後、触媒を濾去し、上記と同様にして逆相HPLC
で精製した。目的物を含む画分の溶媒を減圧下留去し、
化合物(I−33)を2.0μg得た。Step 2: Compound (I-33) Dry D was added to 100 μg of the compound (I-15) obtained in Example 15.
100 μl of MF was added, and 0.72 mg / ml HOB prepared in dry DMF was added.
t, 2.8 mg / ml PyBOP, 1 μl / ml NMM in 50 μl
Then, 50 μl of a 3.0 mg / ml dry DMF solution of the partial peptide obtained in the above step 1 was added. The reaction solution was allowed to stand under ice cooling for 3 hours, and insolubles were filtered and purified by reversed-phase HPLC (column used is ODS-AM-312 manufactured by YMC). The solvent of the fraction containing the condensate was distilled off under reduced pressure to give Compound (I-33)
110 μg of the benzyl ester of was obtained. Next, 50 μl of dry DMF and 50 μl of a methanol solution saturated with ammonium formate were added to 110 μg of the benzyl ester, and a small amount of 10% Pd / C was further added, followed by vigorous stirring at room temperature for 2 hours. Thereafter, the catalyst was removed by filtration, and reverse phase HPLC was performed in the same manner as above.
Was purified. The solvent of the fraction containing the target substance is distilled off under reduced pressure,
2.0 μg of compound (I-33) was obtained.
質量分析〔FABMS〕:2525(M+H) アミノ酸分析:Asx3.0(3),Gly2.5(2),His1.1
(1),Thr1.3(1),Ala2.0(2),Pro1.1(1),Phe
3.0(3),Tyr2.9(3),Val 1.0(1),(Trpは分析
せず) 実施例34. 工程1:H−Val−Tyr−Tyr−Ala−His−Leu−Asp(OBzl)
−Ile−Ile−Trp−OBzl 参考例3と同様の方法により、Fmoc−Ileが結合した
担体樹脂を用い、N−保護アミノ酸Fmoc−Ile−OH,Fmoc
−Asp(OBzl)−OH,Fmoc−Leu−OH,Fmoc−His(Trt)−
OH,Fmoc−Ala−OH,Fmoc−Tyr(t−Bu)−OH,Fmoc−Tyr
(t−Bu)−OHおよびFmoc−Val−OHを順次結合して保
護ペプチドを合成し、担体樹脂から切り出して、粗ペプ
チドFmoc−Val−Tyr−Tyr−Ala−His−Leu−Asp(OBz
l)−Ile−Ile−OHを得た。得られたペプチド4.1mgを1m
lの乾燥DMFに溶解し、乾燥DMFで調製した3mg/mlのHOB
t、12mg/mlのPyBOP、4μl/mlのNMM、3mg/mlのH−Trp
−OBzl塩酸塩を氷冷下順に0.5mlずつ加えた。4℃で一
昼夜放置し、不溶物を濾過し逆相HPLCで精製した。カラ
ムはケムコ(株)製のChemco Pack NUCLEOSIL 5C18(25
0×20mmI.D.)を用い、0.1%TFAと0〜90%のアセトニ
トリルを用いた直線濃度勾配で溶出した。目的物を含む
画分を凍結乾燥し、Fmoc−Val−Tyr−Tyr−Ala−His−L
eu−Asp(OBzl)−Ile−Ile−Trp−OBzlを2.95mg得た。Mass spectrometry [FABMS]: 2525 (M + H) Amino acid analysis: Asx3.0 (3), Gly2.5 (2), His1.1
(1), Thr1.3 (1), Ala2.0 (2), Pro1.1 (1), Phe
3.0 (3), Tyr2.9 (3), Val 1.0 (1), (Trp was not analyzed). Step 1: H-Val-Tyr-Tyr-Ala-His-Leu-Asp (OBzl)
-Ile-Ile-Trp-OBzl In the same manner as in Reference Example 3, an N-protected amino acid Fmoc-Ile-OH, Fmoc
-Asp (OBzl) -OH, Fmoc-Leu-OH, Fmoc-His (Trt)-
OH, Fmoc-Ala-OH, Fmoc-Tyr (t-Bu) -OH, Fmoc-Tyr
(T-Bu) -OH and Fmoc-Val-OH are sequentially bonded to synthesize a protected peptide, which is excised from the carrier resin and the crude peptide Fmoc-Val-Tyr-Tyr-Ala-His-Leu-Asp (OBz
l) -Ile-Ile-OH was obtained. 4.1 mg of the obtained peptide 1 m
lmg / ml HOB dissolved in l DMF and prepared in dry DMF
t, 12 mg / ml PyBOP, 4 μl / ml NMM, 3 mg / ml H-Trp
-0.5 ml of OBzl hydrochloride was added in order under ice cooling. The mixture was allowed to stand at 4 ° C. overnight, and the insolubles were filtered and purified by reverse phase HPLC. The column is Chemco Pack NUCLEOSIL 5C18 (25
0 × 20 mm ID) and eluted with a linear concentration gradient using 0.1% TFA and 0 to 90% acetonitrile. The fraction containing the target substance was freeze-dried, and Fmoc-Val-Tyr-Tyr-Ala-His-L
2.95 mg of eu-Asp (OBzl) -Ile-Ile-Trp-OBzl was obtained.
得られたペプチド2.95mgに20%ピペリジンを含む乾燥
DMF100μlを加え、室温で5分間放置し、ジエチルエー
テルを加え目的物を晶出させ、エーテルで洗浄し、減圧
下乾燥し、H−Val−Tyr−Tyr−Ala−His−Leu−Asp(O
Bzl)−Ile−Ile−Trp−OBzlを1.87mg得た。2.95 mg of the obtained peptide containing 20% piperidine
100 μl of DMF was added, the mixture was allowed to stand at room temperature for 5 minutes, diethyl ether was added to crystallize the desired product, washed with ether, dried under reduced pressure, and H-Val-Tyr-Tyr-Ala-His-Leu-Asp (O
1.87 mg of Bzl) -Ile-Ile-Trp-OBzl were obtained.
工程2:化合物(I−34) 実施例15で得られた化合物(I−15)100μgに乾燥D
MFを100μl加え、乾燥DMFで調製した0.72mg/mlのHOB
t、2.8mg/mlのPyBOP、1μl/mlのNMMを氷冷下順に50μ
lずつ加え、さらに上記工程1で得られた化合物2.2mg/
mlの乾燥DMF溶液を50μl加えた。反応液を氷冷下で4
時間放置し、不溶物を濾過し逆相HPLCで精製した。カラ
ムはYMC社製 ODS−AM−312を使用した。縮合物を含む
画分の溶媒を減圧下留去し化合物(I−34)のベンジル
エステル体を74.5μg得た。ついで、この化合物74.5μ
gに乾燥DMFを30μl、および蟻酸アンモニウムで飽和
したメタノール溶液を30μl加え、さらに少量の10%Pd
/Cを加え、室温で2時間激しく撹拌した。その後、触媒
を濾去し、上記と同様にして逆相HPLCで精製した。目的
物を含む画分の溶媒を減圧下留去し、化合物(I−34)
を0.74μg得た。Step 2: Compound (I-34) Dry D was added to 100 μg of the compound (I-15) obtained in Example 15.
100 μl of MF was added, and 0.72 mg / ml HOB prepared in dry DMF was added.
t, 2.8 mg / ml PyBOP, 1 μl / ml NMM in 50 μl
of the compound obtained in the above step 1 2.2 mg /
50 μl of dry DMF solution was added. The reaction solution was cooled under ice
After standing for an hour, insolubles were filtered and purified by reverse phase HPLC. The column used was ODS-AM-312 manufactured by YMC. The solvent of the fraction containing the condensate was distilled off under reduced pressure to obtain 74.5 μg of the benzyl ester of the compound (I-34). Then, this compound 74.5μ
30 μl of dry DMF and 30 μl of a methanol solution saturated with ammonium formate, and further a small amount of 10% Pd
/ C was added and stirred vigorously at room temperature for 2 hours. Thereafter, the catalyst was removed by filtration and purified by reverse-phase HPLC as described above. The solvent of the fraction containing the desired compound was distilled off under reduced pressure to give Compound (I-34)
Was obtained in an amount of 0.74 μg.
質量分析〔FABMS〕:2398(M+H) アミノ酸分析:Asx 2.8(3),Gly 2.8(2),His 1.9
(2),Thr 1.1(1),Ala 2.0(2),Pro1.3(1),Va
l 1.0(1),Tyr 1.6(2),Leu 1.0(1),Ile 2.4
(2),(Trpは分析せず) 実施例35. 工程1:H−Ala−His−Leu−Asp(OBzl)−Ile−Ile−Trp
−OBzl 参考例3と同様の方法により、Fmoc−Ileが結合した
担体樹脂を出発物質として用い、N−保護アミノ酸Fmoc
−Ile−OH,Fmoc−Asp(OBzl)−OH,Fmoc−Leu−OH,Fmoc
−His(Trt)−OHおよびFmoc−Ala−OHを順次結合し、
担体樹脂から切り出して粗ペプチドFmoc−Ala−His−Le
u−Asp(OBzl)−Ile−Ile−OHを得た。得られたペプチ
ド9.9mgを1mlの乾燥DMFに溶解し、室温にてHOBt2.7mg,P
yBOP40.4mg,NMM4.4μlを加え、5分間攪拌し、乾燥DMF
で調製した3.3mg/mlのH−Trp−OBzl塩酸塩を1ml加え
た。室温で3時間反応させ、不溶物を濾過し、実施例17
と同様の方法により逆相HPLCで精製した。ペプチドを含
む画分を凍結乾燥し、Fmoc−Ala−His−Leu−Asp(OBz
l)−Ile−Ile−Trp−OBzlを5.7mg得た。Mass spectrometry [FABMS]: 2398 (M + H) Amino acid analysis: Asx 2.8 (3), Gly 2.8 (2), His 1.9
(2), Thr 1.1 (1), Ala 2.0 (2), Pro 1.3 (1), Va
l 1.0 (1), Tyr 1.6 (2), Leu 1.0 (1), Ile 2.4
(2), (Trp is not analyzed). Step 1: H-Ala-His-Leu-Asp (OBzl) -Ile-Ile-Trp
-OBzl In the same manner as in Reference Example 3, a carrier resin to which Fmoc-Ile was bound was used as a starting material, and the N-protected amino acid Fmoc
-Ile-OH, Fmoc-Asp (OBzl) -OH, Fmoc-Leu-OH, Fmoc
-His (Trt) -OH and Fmoc-Ala-OH are sequentially bonded,
Crude peptide Fmoc-Ala-His-Le cut from carrier resin
u-Asp (OBzl) -Ile-Ile-OH was obtained. 9.9 mg of the obtained peptide was dissolved in 1 ml of dry DMF, and HOBt 2.7 mg, P
Add 40.4 mg of yBOP and 4.4 μl of NMM, stir for 5 minutes, dry DMF
1 ml of the 3.3 mg / ml H-Trp-OBzl hydrochloride prepared in 1) was added. The mixture was reacted at room temperature for 3 hours, and the insoluble material was filtered.
Purified by reverse phase HPLC in the same manner as described above. The fraction containing the peptide was lyophilized and Fmoc-Ala-His-Leu-Asp (OBz
l) -Ile-Ile-Trp-OBzl was obtained in an amount of 5.7 mg.
この化合物5.7mgに20%ピペリジンを含む乾燥DMF150
μlを加え、室温で5分間放置し、ジエチルエーテルを
加え晶出させ、エーテル洗浄および減圧乾燥を行い、H
−Ala−His−Leu−Asp(OBzl)−Ile−Ile−Trp−OBzl
を964μg得た。DMF150 containing 20% piperidine in 5.7 mg of this compound
μl, left at room temperature for 5 minutes, and crystallized by adding diethyl ether, washed with ether and dried under reduced pressure.
-Ala-His-Leu-Asp (OBzl) -Ile-Ile-Trp-OBzl
964 μg was obtained.
工程2:化合物(I−35) 実施例15で得られた化合物(I−15)100μgに乾燥D
MFを130μl加え、乾燥DMFで調製した0.72mg/mlのHOB
t、2.8mg/mlのPyBOP、1μl/mlのNMMを氷冷下順次50μ
lずつ加え、さらに上記工程1で得られる化合物の6mg/
mlの乾燥DMF溶液を19μl加えた。反応溶液を氷冷下で
5時間放置し、不溶物を濾過し実施例15と同様の方法に
より逆相HPLCで精製した。縮合物を含む画分の溶媒を減
圧下留去し、化合物(I−35)のベンジルエステル体を
172μg得た。ついで、この化合物172μgに乾燥DMFを5
0μl、蟻酸アンモニウムで飽和したメタノール溶液を5
0μl加え、さらに少量の10%Pd/Cを加え、室温で激し
く撹拌した。その後、触媒を濾去し、上記と同様にして
逆相HPLCで精製した。目的物を含む画分の溶媒を減圧下
留去し、化合物(I−35)を56μg得た。Step 2: Compound (I-35) Dry D was added to 100 μg of the compound (I-15) obtained in Example 15.
130 μl of MF was added, and 0.72 mg / ml HOB prepared in dry DMF was added.
t, 2.8 mg / ml PyBOP, 1 μl / ml NMM 50 μl
1 mg each, and 6 mg /
19 μl of dry DMF solution was added. The reaction solution was left under ice-cooling for 5 hours, insolubles were filtered, and purified by reverse phase HPLC in the same manner as in Example 15. The solvent of the fraction containing the condensate was distilled off under reduced pressure, and the benzyl ester of compound (I-35) was removed.
172 μg was obtained. Then, 5 ml of dry DMF was added to 172 μg of the compound.
0 μl of a methanol solution saturated with ammonium formate
0 μl was added, a small amount of 10% Pd / C was further added, and the mixture was vigorously stirred at room temperature. Thereafter, the catalyst was removed by filtration and purified by reverse-phase HPLC as described above. The solvent of the fraction containing the desired product was distilled off under reduced pressure to obtain 56 μg of the compound (I-35).
質量分析〔FABMS〕:1973(M+H) アミノ酸分析:Asx2.7(3),Gly2.1(2),His2.1
(2),Thr1.1(1),Ala2.0(2),Pro1.0(1),Phe
1.0(1),Ile1.9(2),Leu 1.1(1),(Trpは分析
せず) 実施例36. 工程1:H−Asp(Ot−Bu)−Trp−Phe−Phe−Asn−Tyr−T
yr−Trp−OBzl (a)参考例3と同様の方法により、Fmoc−Tyr(t−B
u)が結合した担体樹脂を出発物質として用い、N−保
護アミノ酸を順次結合し担体樹脂から切り出して粗ペプ
チドFmoc−Trp−Phe−Phe−Asn−Tyr−Tyr−OHを得た。
得られたペプチド12.75mg及びPyBOP10.4mgをDMF0.5mlに
溶解し,NMM4.4μlを含む0.5mlDMF溶液0.5mlと、HOBt3.
1mgを含む0.5mlDMF溶液をそれぞれ加え、室温で5分間
撹拌した。この混合物に、予めNMM1.1μlを加えたH−
Trp−OBzl・HC13.3mgを含む0.5ml DMF溶液を加え室温で
2時間撹拌した。反応液を0.5mlまで濃縮し、エーテル
を加えて生成する白色沈澱を濾取し、乾燥し、Fmoc−Tr
p−Phe−Phe−Asn−Tyr−Tyr−Trp−OBzl9mgを得た。Mass spectrometry [FABMS]: 1973 (M + H) Amino acid analysis: Asx2.7 (3), Gly2.1 (2), His2.1
(2), Thr1.1 (1), Ala2.0 (2), Pro1.0 (1), Phe
1.0 (1), Ile1.9 (2), Leu 1.1 (1), (Trp is not analyzed). Step 1: H-Asp (Ot-Bu) -Trp-Phe-Phe-Asn-Tyr-T
yr-Trp-OBzl (a) In the same manner as in Reference Example 3, Fmoc-Tyr (t-B
Using the carrier resin bound with u) as a starting material, N-protected amino acids were sequentially bound and cut out from the carrier resin to obtain a crude peptide Fmoc-Trp-Phe-Phe-Asn-Tyr-Tyr-OH.
12.75 mg of the obtained peptide and 10.4 mg of PyBOP were dissolved in 0.5 ml of DMF, 0.5 ml of a 0.5 ml DMF solution containing 4.4 μl of NMM, and HOBt3.
A 0.5 ml DMF solution containing 1 mg was added, and the mixture was stirred at room temperature for 5 minutes. To this mixture was added H-1.1 μl of NMM in advance.
A 0.5 ml DMF solution containing 13.3 mg of Trp-OBzl.HC was added, and the mixture was stirred at room temperature for 2 hours. The reaction solution was concentrated to 0.5 ml, and a white precipitate formed by adding ether was collected by filtration, dried, and dried with Fmoc-Tr.
9 mg of p-Phe-Phe-Asn-Tyr-Tyr-Trp-OBzl were obtained.
(b)(a)で得られた保護ペプチド9mgを20%ピペリ
ジンを含むDMF300μlに溶解し、室温で15分間放置し
た。エーテルを加えて生成する白色沈澱を濾取し、乾燥
し、H−Trp−Phe−Phe−Asn−Tyr−Tyr−Trp−OBzl6.6
mgを得た。(B) 9 mg of the protected peptide obtained in (a) was dissolved in 300 μl of DMF containing 20% piperidine and allowed to stand at room temperature for 15 minutes. A white precipitate formed by adding ether was collected by filtration, dried, and H-Trp-Phe-Phe-Asn-Tyr-Tyr-Tyr-Trp-OBzl6.6.
mg was obtained.
質量分析〔FABMS〕:1216(M+H) (c)Fmoc−Asp(Ot−Bu)−OH3.4mg及びPyBOP8.4mgを
DMF0.5mlに溶解し、NMM2.7μl、HOBt3.1mgの0.5ml DMF
溶液をそれぞれ加えて室温で5分間撹拌した。ここに、
(b)で得られたペプチド6.6mgを含む1mlDMF溶液を加
え、室温で2時間撹拌した。生成物を実施例17と同様の
方法により逆相HPLCで分取精製し、Fmoc−Asp(Ot−B
u)−Trp−Phe−Phe−Asn−Tyr−Tyr−Trp−OBzlを3.6m
g得た。Mass spectrometry [FABMS]: 1216 (M + H) (c) 3.4 mg of Fmoc-Asp (Ot-Bu) -OH and 8.4 mg of PyBOP
Dissolved in 0.5 ml of DMF, 2.7 μl of NMM, 3.1 mg of HOBt in 0.5 ml of DMF
Each solution was added and stirred at room temperature for 5 minutes. here,
A 1 ml DMF solution containing 6.6 mg of the peptide obtained in (b) was added, and the mixture was stirred at room temperature for 2 hours. The product was fractionated and purified by reversed-phase HPLC in the same manner as in Example 17, and Fmoc-Asp (Ot-B
u) -Trp-Phe-Phe-Asn-Tyr-Tyr-Trp-OBzl 3.6 m
g obtained.
質量分析〔FABMS〕:1610(M+H) (d)(c)で得られた保護ペプチド3.6mgを,(b)
と同様の処理をして、工程1で標記された化合物2mgを
得た。Mass spectrometry [FABMS]: 1610 (M + H) (d) 3.6 mg of the protected peptide obtained in (c) was added to (b)
In the same manner as in the above, 2 mg of the compound described in Step 1 was obtained.
質量分析〔FABMS〕:1386(M+H) 工程2:H−Gly−Asn−Trp−His−Gly−Thr−Ala−Ala−A
sp−Trp−Phe−Phe−Asn−Tyr−Tyr−Trp−OBzl 参考例3で得られた化合物(c)4.2mgをDMF56μlに
溶解し、PyBOPの0.2MDMF溶液 8.1μl、HOBtの0.2MDMF
溶液8.1μl、NMMの2%DMF溶液15μlを加え、0℃で3
0分間撹拌した。得られた混合物に、上記工程1で得ら
れたH−Asp(Ot−Bu)−Trp−Phe−Phe−Asn−Tyr−Ty
r−Trp−OBzl 0.27μmolの0.1ml DMF溶液を加え、4℃
で24時間、室温で6時間撹拌した。溶媒を減圧下留去
し、残渣を再びDMFに溶解して、生成物を実施例15と同
様の方法により逆相HPLCで分取精製し,工程2で標記さ
れた化合物Fmoc−Gly−Asn−Trp−His−Gly−Thr−Ala
−Ala−Asp(Ot−Bu)−Trp−Phe−Phe−Asn−Tyr−Tyr
−Trp−OBzl 0.18mgを得た。Mass spectrometry [FABMS]: 1386 (M + H) Step 2: H-Gly-Asn-Trp-His-Gly-Thr-Ala-Ala-A
sp-Trp-Phe-Phe-Phe-Asn-Tyr-Tyr-Trp-OBzl 4.2 mg of the compound (c) obtained in Reference Example 3 was dissolved in 56 μl of DMF, 8.1 μl of a 0.2 MDMF solution of PyBOP, and 0.2 MDMF of HOBt.
Add 8.1 µl of solution and 15 µl of 2% solution of NMM in DMF.
Stirred for 0 minutes. The resulting mixture is added to the H-Asp (Ot-Bu) -Trp-Phe-Phe-Asn-Tyr-Ty obtained in the above step 1.
Add r-Trp-OBzl 0.27 μmol of 0.1 ml DMF solution and add 4 ° C
For 24 hours and at room temperature for 6 hours. The solvent was distilled off under reduced pressure, the residue was dissolved again in DMF, and the product was fractionated and purified by reversed-phase HPLC in the same manner as in Example 15, and the compound Fmoc-Gly-Asn- Trp-His-Gly-Thr-Ala
-Ala-Asp (Ot-Bu) -Trp-Phe-Phe-Asn-Tyr-Tyr
0.18 mg of -Trp-OBzl was obtained.
(b)(a)で得られた保護ペプチド180μgに98%蟻
酸20μlを加え、室温で2時間放置し、エーテルを加え
て析出する沈澱を濾取し、乾燥し、20%ピペリジンを含
むDMF 20μlを加え、室温で15分間放置した。再びエ
ーテルを加えて析出する沈澱を濾取し、乾燥し、標記化
合物140μgを得た。(B) To 180 μg of the protected peptide obtained in (a) was added 20 μl of 98% formic acid, and the mixture was left at room temperature for 2 hours. Ether was added, and the precipitated precipitate was collected by filtration, dried and dried with 20 μl of DMF containing 20% piperidine. Was added and left at room temperature for 15 minutes. Ether was added again, and the resulting precipitate was collected by filtration and dried to give 140 μg of the title compound.
質量分析〔FABMS〕:2126(M+H) 工程3:化合物(I−36) (a)工程2で得られた化合物600μgを含む500μl DM
F溶液を0℃に冷却し、DEPC 0.2μlおよびTEA0.4μl
を加え、4℃で3日間撹拌した。溶媒を減圧下留去し、
工程2(a)と同様の方法により逆相HPLCで精製し、化
合物(I−36)のベンジルエステル体420μgを得た。Mass spectrometry [FABMS]: 2126 (M + H) Step 3: Compound (I-36) (a) 500 μl DM containing 600 μg of the compound obtained in Step 2
The F solution is cooled to 0 ° C., and 0.2 μl of DEPC and 0.4 μl of TEA
Was added and stirred at 4 ° C. for 3 days. The solvent is distilled off under reduced pressure,
Purification by reverse phase HPLC was performed in the same manner as in Step 2 (a) to obtain 420 μg of the benzyl ester of Compound (I-36).
質量分析〔FABMS〕:2108(M+H) (b)(a)で得られた化合物150μgをDMF50μlに溶
解し、蟻酸アンモニウムの飽和メタノール溶液50μl、
10%Pd/C約0.1mgをそれぞれ加え、室温で1.5時間撹拌し
た。反応物を遠心分離し、上澄み液を採取し、(a)と
同様の方法により逆相HPLCで精製し、化合物(I−36)
52μgを得た。Mass spectrometry [FABMS]: 2108 (M + H) (b) Dissolve 150 μg of the compound obtained in (a) in 50 μl of DMF, and add 50 μl of a saturated methanol solution of ammonium formate.
About 0.1 mg of 10% Pd / C was added, respectively, and the mixture was stirred at room temperature for 1.5 hours. The reaction product was centrifuged, and the supernatant was collected and purified by reverse-phase HPLC in the same manner as in (a) to obtain Compound (I-36)
52 μg were obtained.
質量分析〔FABMS〕:2016(M+H) アミノ酸分析:Gly2.1(2),Asx2.7(3),His1.0
(1),Thr1.1(1),Ala2.0(2),Phe2.3(2),Tyr
2.4(2),(Trpは分析せず) 実施例37. 化合物(I−37):H−Gly−Asn−Trp−His−Gly−Thr−
Ala−Pro−Asp−Trp−Val−Tyr−Tyr−Ala−His−Leu−
Asp−Ile−Ile−Trp−OHの合成 参考例3と同様の方法により、Fmoc−Trp15.6μmolが
結合した担体樹脂30mgを出発物質として用い、N−保護
アミノ酸として順次、Fmoc−Ile−OH、Fmoc−Ile−OH、
Fmoc−Asp(Ot−Bu)−OH、Fmoc−Leu−OH、Fmoc−His
(Trt)−OH、Fmoc−Ala−OH、Fmoc−Tyr(t−Bu)−O
H、Fmoc−Tyr(t−Bu)−OH、Fmoc−Val−OH、Fmoc−T
rp−OH、Fmoc−Asp(Ot−Bu)−OH、Fmoc−Pro−OH、Fm
oc−Ala−OH、Fmoc−Thr(t−Bu)−OH、Fmoc−Gly−O
H、Fmoc−His(Trt)−OH、Fmoc−Trp−OH、Fmoc−Asn
(Trt)−OH、Fmoc−Gly−OHを用いて合成を行った。最
終工程のみ参考例3とは異なり、(b)のピペリジン処
理も行った。樹脂からのペプチドの切り出しは参考例3
と同様に行い、粗ペプチド63.5mgを得た。このうち、1.
7mgを参考例3と同様の方法により逆相HPLCで精製後凍
結乾燥し、0.44mgの精製品を得た。Mass spectrometry [FABMS]: 2016 (M + H) Amino acid analysis: Gly2.1 (2), Asx2.7 (3), His1.0
(1), Thr1.1 (1), Ala2.0 (2), Phe2.3 (2), Tyr
2.4 (2), (Trp is not analyzed) Example 37. Compound (I-37): H-Gly-Asn-Trp-His-Gly-Thr-
Ala-Pro-Asp-Trp-Val-Tyr-Tyr-Ala-His-Leu-
Synthesis of Asp-Ile-Ile-Trp-OH In the same manner as in Reference Example 3, using 30 mg of a carrier resin to which 15.6 μmol of Fmoc-Trp was bound as a starting material, Fmoc-Ile-OH, Fmoc-Ile-OH,
Fmoc-Asp (Ot-Bu) -OH, Fmoc-Leu-OH, Fmoc-His
(Trt) -OH, Fmoc-Ala-OH, Fmoc-Tyr (t-Bu) -O
H, Fmoc-Tyr (t-Bu) -OH, Fmoc-Val-OH, Fmoc-T
rp-OH, Fmoc-Asp (Ot-Bu) -OH, Fmoc-Pro-OH, Fm
oc-Ala-OH, Fmoc-Thr (t-Bu) -OH, Fmoc-Gly-O
H, Fmoc-His (Trt) -OH, Fmoc-Trp-OH, Fmoc-Asn
Synthesis was performed using (Trt) -OH and Fmoc-Gly-OH. Only the final step was different from that of Reference Example 3, and the piperidine treatment (b) was also performed. Excision of peptide from resin
As above, 63.5 mg of crude peptide was obtained. Of these, 1.
7 mg was purified by reverse phase HPLC in the same manner as in Reference Example 3 and freeze-dried to obtain 0.44 mg of a purified product.
質量分析〔FABMS〕:2415(M+H) アミノ酸分析:Gly2.3(2),Ala2.0(2),Asx2.6
(3),His2.0(2),Ile1.6(2),Leu0.9(1),Pro
1.1(1),Thr1.1(1),Tyr 1.6(2),Val 0.7
(1),(Trpは分析せず) 実施例38. 化合物(I−38):H−Gly−Asn−Trp−His−Gly−Thr−
Ala−Pro−Asp−Trp−Leu−Tyr−Phe−Ala−His−Gln−
Asp−Val−Ile−Trp−OHの合成 参考例3と同様の方法により、Fmoc−Trp15.6μmolが
結合した担体樹脂30mgを出発物質として用い、N−保護
アミノ酸として順次、Fmoc−Ile−OH、Fmoc−Val−OH、
Fmoc−Asp(Ot−Bu)−OH、Fmoc−Gln(Trt)−OH、Fmo
c−His(Trt)−OH、Fmoc−Ala−OH、Fmoc−Phe−OH、F
moc−Tyr(t−Bu)−OH、Fmoc−Leu−OH、Fmoc−Trp−
OH、Fmoc−Asp(Ot−Bu)−OH、Fmoc−Pro−OH、Fmoc−
Ala−OH、Fmoc−Thr(t−Bu)−OH、Fmoc−Gly−OH、F
moc−His(Trt)−OH、Fmoc−Trp−OH、Fmoc−Asn(Tr
t)−OHおよびFmoc−Gly−OHを用いて合成を行った。最
終工程のみ参考例3とは異なり、(b)のピペリジン処
理も行った。樹脂からのペプチドの切り出しは参考例3
と同様に行い、粗ペプチド56.0mgを得た。このうち、2.
5mgを参考例3と同様の方法により逆相HPLCで精製後凍
結乾燥し、精製品0.42mgを得た。Mass spectrometry [FABMS]: 2415 (M + H) Amino acid analysis: Gly2.3 (2), Ala2.0 (2), Asx2.6
(3), His2.0 (2), Ile1.6 (2), Leu0.9 (1), Pro
1.1 (1), Thr1.1 (1), Tyr 1.6 (2), Val 0.7
(1), (Trp was not analyzed) Example 38. Compound (I-38): H-Gly-Asn-Trp-His-Gly-Thr-
Ala-Pro-Asp-Trp-Leu-Tyr-Phe-Ala-His-Gln-
Synthesis of Asp-Val-Ile-Trp-OH In the same manner as in Reference Example 3, using 30 mg of a carrier resin to which 15.6 μmol of Fmoc-Trp was bound as a starting material, Fmoc-Ile-OH, Fmoc-Val-OH,
Fmoc-Asp (Ot-Bu) -OH, Fmoc-Gln (Trt) -OH, Fmo
c-His (Trt) -OH, Fmoc-Ala-OH, Fmoc-Phe-OH, F
moc-Tyr (t-Bu) -OH, Fmoc-Leu-OH, Fmoc-Trp-
OH, Fmoc-Asp (Ot-Bu) -OH, Fmoc-Pro-OH, Fmoc-
Ala-OH, Fmoc-Thr (t-Bu) -OH, Fmoc-Gly-OH, F
moc-His (Trt) -OH, Fmoc-Trp-OH, Fmoc-Asn (Tr
t) Synthesis was performed using -OH and Fmoc-Gly-OH. Only the final step was different from that of Reference Example 3, and the piperidine treatment (b) was also performed. Excision of peptide from resin
As above, 56.0 mg of crude peptide was obtained. Of these, 2.
5 mg was purified by reverse-phase HPLC in the same manner as in Reference Example 3 and freeze-dried to obtain 0.42 mg of a purified product.
質量分析〔FABMS〕:2414(M+H) アミノ酸分析:Gly2.2(2),Ala2.0(2),Asx2.7
(3),His2.0(2),Ile0.6(1),Leu1.1(1),Pro
1.1(1),Thr1.0(1),Tyr 1.0(1),Val0.6(1),
Glx1.2(1),Phe1.1(1),(Trpは分析せず) 実施例39. 工程1:H−Asn−Ile−Ile−Trp−OBzl 参考例3と同様の方法により、Fmoc−Ileが結合した
担体樹脂を用い、N−保護アミノ酸Fmoc−IleおよびFmo
c−Asn(Trt)−OHを順次結合して保護ペプチドを合成
し、樹脂から切り出して粗ペプチドFmoc−Asn−Ile−Il
e−OHを得た。得られた本ペプチド5.8mgを1mlDMFに溶解
し、PyBOP10.4mg、HOBt2.7mg、NMM4.4μlを加え、室温
で5分間放置した。反応液にH−Trp−OBzl・HC13.3mg
の1ml DMF溶液を加えて室温で3時間撹拌した。溶媒を
減圧下留去し、残渣を実施例36工程1と同様の方法によ
り逆相HPLCで精製し工程1で標記された化合物のFmoc体
5.4mgを得た。この化合物を、20%ピペリジンを含むDMF
1mlに溶解し室温で10分間放置した。エーテルを加えて
生成する沈澱を濾取し、逆相HPLCで精製し、工程1で標
記された化合物5mgを得た。Mass spectrometry [FABMS]: 2414 (M + H) Amino acid analysis: Gly2.2 (2), Ala2.0 (2), Asx2.7
(3), His2.0 (2), Ile0.6 (1), Leu1.1 (1), Pro
1.1 (1), Thr1.0 (1), Tyr 1.0 (1), Val0.6 (1),
Glx1.2 (1), Phe1.1 (1), (Trp not analyzed) Step 1: H-Asn-Ile-Ile-Trp-OBzl In the same manner as in Reference Example 3, using a carrier resin to which Fmoc-Ile is bound, N-protected amino acids Fmoc-Ile and Fmo
c-Asn (Trt) -OH is sequentially bonded to synthesize a protected peptide, which is cleaved from the resin and the crude peptide Fmoc-Asn-Ile-Il
e-OH was obtained. The obtained 5.8 mg of the present peptide was dissolved in 1 ml of DMF, 10.4 mg of PyBOP, 2.7 mg of HOBt, and 4.4 μl of NMM were added, and the mixture was allowed to stand at room temperature for 5 minutes. 13.3 mg of H-Trp-OBzlHC in the reaction solution
Was added and stirred at room temperature for 3 hours. The solvent was distilled off under reduced pressure, and the residue was purified by reverse phase HPLC in the same manner as in Step 1 of Example 36 to obtain the Fmoc compound of the compound described in Step 1
5.4 mg were obtained. This compound was converted to DMF containing 20% piperidine
It was dissolved in 1 ml and left at room temperature for 10 minutes. The precipitate formed upon addition of ether was collected by filtration and purified by reverse phase HPLC to give 5 mg of the compound titled in Step 1.
工程2:化合物(I−39) 実施例21と同様に、化合物(I−17)0.19mgと、H−
Asn−Ile−Ile−Trp−OBzl0.1mgとを縮合させてベンジ
ルエステル体を得て、脱ベンジル化を行い標記化合物10
μgを得た。Step 2: Compound (I-39) 0.19 mg of compound (I-17) and H-
Condensation with 0.1 mg of Asn-Ile-Ile-Trp-OBzl to give a benzyl ester, debenzylation and title compound 10
μg was obtained.
質量分析〔FABMS〕:2385(M+H) アミノ酸分析;Gly2.2(2),Asx3.3(4),His0.9
(1),Thr0.9(1),Ala1.0(1),Pro1.0(1),Phe
1.8(2),Tyr1.7(2),Ile1.4(2),(Trpは分析せ
ず) 実施例40. 実施例21と同様の方法により、実施例17で得られた化
合物(I−17)0.19mgと、実施例35工程1で得られたH
−Ala−His−Leu−Asp(OBzl)−Ile−Ile−Trp−OBz1
0.1mgとを縮合させてベンジルエステル体を得た。得ら
れた生成物を実施例18と同様の方法により脱ベンジル化
して標記化合物9.5μgを得た。Mass spectrometry [FABMS]: 2385 (M + H) Amino acid analysis; Gly2.2 (2), Asx3.3 (4), His0.9
(1), Thr0.9 (1), Ala1.0 (1), Pro1.0 (1), Phe
1.8 (2), Tyr1.7 (2), Ile1.4 (2), (Trp was not analyzed) By a method similar to that in Example 21, 0.19 mg of compound (I-17) obtained in Example 17 and H obtained in Step 1 of Example 35 were used.
-Ala-His-Leu-Asp (OBzl) -Ile-Ile-Trp-OBz1
By condensing with 0.1 mg, a benzyl ester was obtained. The obtained product was debenzylated in the same manner as in Example 18 to obtain 9.5 μg of the title compound.
質量分析〔FABMS〕:2708(M+H) アミノ酸分析;Gly2.3(2),Asx3.4(4),His1.9
(2),Thr1.1(1),Ala2.0(2),Pro1.2(1),Phe
1.8(2),Tyr1.8(2),Ile2.5(2),Leu1.0(1),
(Trpは分析せず) 実施例41. 工程1:Fmoc−Gly−Asp(OBzl)−Trp−His−Gly−Thr−
Ala−OH 参考例3と同様な方法により、Fmoc−Ala60μmolが結
合した担体樹脂100mgを出発物質として用い、N−保護
アミノ酸として順次、Fmoc−Thr(t−Bu)−OH、Fmoc
−Gly−OH、Fmoc−His(Trt)−OH、Fmoc−Trp−OH、Fm
oc−Asp(OBzl)−OH、Fmoc−Gly−OHを用いて保護ペプ
チドを合成し、樹脂から切り出して、実施例15と同様の
方法によりHPLCで精製し、標記化合物40.5mgを得た。Mass spectrometry [FABMS]: 2708 (M + H) Amino acid analysis; Gly2.3 (2), Asx3.4 (4), His1.9
(2), Thr1.1 (1), Ala2.0 (2), Pro1.2 (1), Phe
1.8 (2), Tyr1.8 (2), Ile2.5 (2), Leu1.0 (1),
(Trp was not analyzed) Example 41. Step 1: Fmoc-Gly-Asp (OBzl) -Trp-His-Gly-Thr-
Ala-OH In the same manner as in Reference Example 3, 100 mg of a carrier resin bound with 60 μmol of Fmoc-Ala was used as a starting material, and Fmoc-Thr (t-Bu) -OH and Fmoc were sequentially used as N-protected amino acids.
-Gly-OH, Fmoc-His (Trt) -OH, Fmoc-Trp-OH, Fm
A protected peptide was synthesized using oc-Asp (OBzl) -OH and Fmoc-Gly-OH, cleaved from the resin, and purified by HPLC in the same manner as in Example 15 to obtain 40.5 mg of the title compound.
質量分析〔FABMS〕:1056(M+H) アミノ酸分析:Asx0.6(1),Gly1.6(2),His1.0
(1),Thr0.9(1),Ala1.0(1),(Trpは分析せ
ず) 工程2:H−Gly−Asp(OBzl)−Trp−His−Gly−Thr−AlA
−Pro−Asp−Trp−OBzl(NO2) (a)H−Pro−Asp(Ot−Bu)−Trp−OBzl(NO2)t−
Boc−Trp(CHO)−OH 0.33gを、DMF5mlに溶解し、炭酸
水素ナトリウム0.17gを加え撹拌した。ここに、臭化p
−ニトロベンジル1.08g(5mmol)を加えて、室温で24時
間撹拌した。反応液に、水と酢酸エチルを加えて振盪
し、有機相を回収し、溶媒を留去した。残渣をシリカゲ
ルカラム(メルク社製 キーゼルゲル60、50g、ヘキサ
ン/酢酸エチル=6/4で溶出)で精製し、t−Boc−Trp
(CHO)−OBzl(NO2)0.2gを得た。これを5mlのDMFに溶
解し、ピペリジン0.5mlを加えて0℃で1.5時間撹拌し
た。溶媒を減圧下留去し、98%蟻酸0.5mlを加えて、室
温で4時間撹拌した。この反応液に、エーテル約30mlを
加えて生じる沈澱を濾取し、乾燥させて、H−Trp−OBz
l(NO2)0.16gを得た。Mass spectrometry [FABMS]: 1056 (M + H) Amino acid analysis: Asx0.6 (1), Gly1.6 (2), His1.0
(1), Thr0.9 (1), Ala1.0 (1), (Trp is not analyzed) Step 2: H-Gly-Asp (OBzl) -Trp-His-Gly-Thr-AlA
-Pro-Asp-Trp-OBzl ( NO 2) (a) H-Pro-Asp (Ot-Bu) -Trp-OBzl (NO 2) t-
0.33 g of Boc-Trp (CHO) -OH was dissolved in 5 ml of DMF, and 0.17 g of sodium hydrogencarbonate was added and stirred. Where bromide p
1.08 g (5 mmol) of -nitrobenzyl was added, and the mixture was stirred at room temperature for 24 hours. Water and ethyl acetate were added to the reaction solution, and the mixture was shaken. The organic phase was recovered, and the solvent was distilled off. The residue was purified by a silica gel column (Kelselgel 60, 50 g, manufactured by Merck, eluting with hexane / ethyl acetate = 6/4), and t-Boc-Trp
(CHO) -OBzl (NO 2) was obtained 0.2 g. This was dissolved in 5 ml of DMF, 0.5 ml of piperidine was added, and the mixture was stirred at 0 ° C. for 1.5 hours. The solvent was distilled off under reduced pressure, and 0.5 ml of 98% formic acid was added, followed by stirring at room temperature for 4 hours. About 30 ml of ether was added to the reaction solution, and the resulting precipitate was collected by filtration, dried, and treated with H-Trp-OBz.
0.16 g of l (NO 2 ) was obtained.
Fmoc−Asp(Ot−Bu)−OH41mgを2mlの塩化メチレンに
溶解し0℃に冷却した。PyBOP78mg、HOBt20mg、NMM22μ
lを順次加えて0℃のまま5分間撹拌した。上記で得ら
れたH−Trp−OBzl(NO2)34mgの2ml塩化メチレン溶液
を0℃に冷却し、得られた反応液に加えた。4℃で4時
間室温で1時間撹拌し、減圧下溶媒を留去し、残渣をシ
リカゲルカラム(メルク社製 キーゼルゲル60、50g、
クロロホルム/メタノール=25/1で溶出)で精製し、Fm
oc−Asp(Ot−Bu)−Trp−OBzl(NO2)53mgを得た。得
られた生成物を、DMF100μlに溶解し、ピペリジン25μ
lを加えて室温で10分間放置し、シリカゲルカラム(メ
ルク社製 キーゼルゲル60、50g、ヘキサン/酢酸エチ
ル=2/1で溶出)で精製し、H−Asp(Ot−Bu)−Trp−O
Bzl(NO2)1mgを得た。41 mg of Fmoc-Asp (Ot-Bu) -OH was dissolved in 2 ml of methylene chloride and cooled to 0 ° C. PyBOP78mg, HOBt20mg, NMM22μ
1 was added in sequence and stirred at 0 ° C. for 5 minutes. A solution of 34 mg of H-Trp-OBzl (NO 2 ) obtained above in 2 ml of methylene chloride was cooled to 0 ° C. and added to the obtained reaction solution. The mixture was stirred at 4 ° C. for 4 hours at room temperature for 1 hour, the solvent was distilled off under reduced pressure, and the residue was subjected to a silica gel column (Merck Kieselgel 60, 50 g,
Eluted with chloroform / methanol = 25/1)
oc-Asp was obtained (Ot-Bu) -Trp-OBzl (NO 2) 53mg. The obtained product was dissolved in 100 μl of DMF, and 25 μl of piperidine was used.
l, and the mixture was left at room temperature for 10 minutes, purified by a silica gel column (Kieselgel 60, 50 g, eluted with hexane / ethyl acetate = 2/1) and purified by H-Asp (Ot-Bu) -Trp-O.
1 mg of Bzl (NO 2 ) was obtained.
Fmoc−Pro−OH3.4mgを0.5mlDMFに溶解し、PyBOP5.2m
g、HOBt1.4mg、NMM1.7μlを順次加えて、室温で10分間
撹拌した。得られた反応液に工程2で得られたH−Asp
(Ot−Bu)−Trp−OBzl(NO2)1mgの0.5mlDMF溶液を加
えて、室温で1.5時間攪拌した。得られた反応液を0.2ml
程度まで濃縮した。残渣を実施例17と同様の方法により
逆相HPLCで精製し、Fmoc−Pro−Asp(Ot−Bu)−Trp−O
Bzl(NO2)1.5mgを得た。Dissolve 3.4mg Fmoc-Pro-OH in 0.5ml DMF, PyBOP5.2m
g, HOBt 1.4 mg, and NMM 1.7 μl were sequentially added, followed by stirring at room temperature for 10 minutes. The H-Asp obtained in Step 2 was added to the obtained reaction solution.
(Ot-Bu) -Trp-OBzl (NO 2) by adding 0.5mlDMF solution of 1 mg, and stirred at room temperature for 1.5 hours. 0.2 ml of the obtained reaction solution
Concentrated to a degree. The residue was purified by reverse phase HPLC in the same manner as in Example 17, and Fmoc-Pro-Asp (Ot-Bu) -Trp-O
1.5 mg of Bzl (NO 2 ) were obtained.
これを、160μlのDMFに溶解し40μlのピペリジンを
加えて、室温で12分間放置し、減圧下溶媒を留去した。
残渣を、上記と同様に、HPLCで精製し、H−Pro−Asp
(Ot−Bu)−Trp−OBzl(NO2)1.4mgを得た。This was dissolved in 160 μl of DMF, 40 μl of piperidine was added, the mixture was allowed to stand at room temperature for 12 minutes, and the solvent was distilled off under reduced pressure.
The residue was purified by HPLC as described above and H-Pro-Asp
It was obtained (Ot-Bu) -Trp-OBzl (NO 2) 1.4mg.
質量分析〔FABMS〕:608(M+H) 工程1で得られたペプチド2.4mgを0.5mlのDMFに溶解
し,PyBOP4.8mg、HOBt1.2mg、NMM1.2μlを加えて、室温
で15分間撹拌し、0℃に冷却した。ここに、上記で得ら
れたH−Pro−Asp(Ot−Bu)−Trp−OBzl(NO2)0.7mg
の0.5mlDMF溶液を加えて、混合物を4℃で18時間、室温
で3時間撹拌した。溶媒を減圧下留去し、残渣を上記と
同様に逆相HPLCで精製し、得られた化合物を、98%蟻酸
で室温2時間、続いて20%ピペリジン/DMFを加えて室温
15分間攪拌し、H−Gly−Asp(OBzl)−Trp−His−Gly
−Thr−Ala−Pro−Asp−Trp−OBzl(NO2)400μgを得
た。Mass spectrometry [FABMS]: 608 (M + H) Dissolve 2.4 mg of the peptide obtained in Step 1 in 0.5 ml of DMF, add 4.8 mg of PyBOP, 1.2 mg of HOBt, and 1.2 μl of NMM, and stir at room temperature for 15 minutes. Cooled to 0 ° C. Here, obtained above H-Pro-Asp (Ot- Bu) -Trp-OBzl (NO 2) 0.7mg
Was added and the mixture was stirred at 4 ° C. for 18 hours and at room temperature for 3 hours. The solvent was distilled off under reduced pressure, and the residue was purified by reverse-phase HPLC in the same manner as described above. The obtained compound was added with 98% formic acid at room temperature for 2 hours, followed by adding 20% piperidine / DMF to room temperature.
After stirring for 15 minutes, H-Gly-Asp (OBzl) -Trp-His-Gly
-Thr-Ala-Pro-Asp- Trp-OBzl (NO 2) to obtain a 400 [mu] g.
工程2で得られたペプチド200μgの100μlDMF溶液に
PyBOP468μg、HOBt122μg、NMM152μgを0℃で加
え、0℃で1時間、室温で3.5時間撹拌した。溶媒を減
圧下留去し、残渣を上記と同様に逆相HPLCで精製して、
標記化合物の4−ニトロベンジルエステル40μgを得
た。得られた生成物を90%酢酸50μlに溶解し、0℃で
冷却し、亜鉛末約0.1mgを加えて0℃で30分間撹拌し
た。遠心分離により亜鉛末を除去し、上澄み液を実施例
15と同様の方法により逆相HPLCで精製して、標記化合物
27μgを得た。 In 100 μl of DMF solution of 200 μg of peptide obtained in step 2
468 μg of PyBOP, 122 μg of HOBt, and 152 μg of NMM were added at 0 ° C., and the mixture was stirred at 0 ° C. for 1 hour and at room temperature for 3.5 hours. The solvent was distilled off under reduced pressure, and the residue was purified by reverse-phase HPLC as described above.
40 μg of 4-nitrobenzyl ester of the title compound were obtained. The obtained product was dissolved in 50 μl of 90% acetic acid, cooled at 0 ° C., added with about 0.1 mg of zinc dust, and stirred at 0 ° C. for 30 minutes. Example of removing the zinc dust by centrifugation and using the supernatant
Purify by reverse phase HPLC in the same manner as 15 to give the title compound
27 μg were obtained.
工程4:化合物(I−41) 工程3で得られた化合物25μgを23μlのDMFに溶解
し0℃に冷却し、PyBOP 68μg、HOBt18μg、NMM21μ
gを、それぞれ0.2MDMF溶液として加え、0℃で10分間
放置した。反応液に、実施例20工程1で得られたH−Va
l−Tyr−Phe−Ala−His−Leu−Asp(OBzl)−Ile−Ile
−Trp−OBzl44μgの27μlDMF溶液を加え、4℃で24時
間撹拌した。溶媒を減圧下留去し、残渣を工程3と同様
に逆相HPLCで精製して、化合物(I−41)の側鎖、C末
保護体15μgを得た。このうち13μgをDMF10μlに溶
解し、蟻酸アンモニウムの飽和メタノール溶液10μl及
び10%Pd/C約0.1mgを加えて室温で1.5時間撹拌した。遠
心分離によりPd/Cを除去し、上澄みを上記と同様に逆相
HPLCで精製し、化合物(I−41)2μgを得た。Step 4: Compound (I-41) 25 μg of the compound obtained in Step 3 was dissolved in 23 μl of DMF, cooled to 0 ° C., and PyBOP 68 μg, HOBt 18 μg, NMM 21 μm
g was added as a 0.2 MDMF solution, and the mixture was allowed to stand at 0 ° C. for 10 minutes. The H-Va obtained in Step 1 of Example 20 was added to the reaction solution.
l-Tyr-Phe-Ala-His-Leu-Asp (OBzl) -Ile-Ile
A solution of 44 μg of -Trp-OBzl in 27 μl of DMF was added, followed by stirring at 4 ° C. for 24 hours. The solvent was distilled off under reduced pressure, and the residue was purified by reversed-phase HPLC in the same manner as in Step 3 to obtain 15 μg of the side chain of compound (I-41), a protected C-terminal compound. 13 μg of this was dissolved in 10 μl of DMF, 10 μl of a saturated methanol solution of ammonium formate and about 0.1 mg of 10% Pd / C were added, and the mixture was stirred at room temperature for 1.5 hours. Pd / C is removed by centrifugation, and the supernatant is reversed phase as above.
Purification by HPLC yielded 2 μg of compound (I-41).
質量分析〔FABMS〕:2383(M+H) アミノ酸分析:Asx2.1(3),Gly2.3(2),His1.4
(2),Thr1.1(1),Ala2.0(2),Pro1.0(1),Tyr
0.9(1),Val1.3(1),Ile2.5(2),Leu1.3(1),P
he0.9(1),(Trpは分析せず) 実施例42. 工程1:Fmoc−Gly−Asn−Trp−Lys(Z)−Gly−Thr−Al
a−OHの合成 参考例3と同様の方法により、Fmoc−Ala60μmolが結
合した担体樹脂100mgを用い、N−保護アミノ酸として
順次、Fmoc−Thr(t−Bu)−OH、Fmoc−Gly−OH、Fmoc
−Lys(Z)−OH、Fmoc−Trp−OH、Fmoc−Asn(Trt)−
OH、Fmoc−Gly−OHを用いて保護ペプチドを合成し、樹
脂からペプチドを切り出して、実施例17と同様の方法に
よりHPLCより精製し、標記化合物9.9mgを得た。Mass spectrometry [FABMS]: 2383 (M + H) Amino acid analysis: Asx2.1 (3), Gly2.3 (2), His1.4
(2), Thr1.1 (1), Ala2.0 (2), Pro1.0 (1), Tyr
0.9 (1), Val1.3 (1), Ile2.5 (2), Leu1.3 (1), P
he0.9 (1), (Trp is not analyzed) Step 1: Fmoc-Gly-Asn-Trp-Lys (Z) -Gly-Thr-Al
Synthesis of a-OH In the same manner as in Reference Example 3, using 100 mg of a carrier resin bound with 60 μmol of Fmoc-Ala, Fmoc-Thr (t-Bu) -OH, Fmoc-Gly-OH, Fmoc
-Lys (Z) -OH, Fmoc-Trp-OH, Fmoc-Asn (Trt)-
A protected peptide was synthesized using OH and Fmoc-Gly-OH, and the peptide was cut out from the resin and purified by HPLC in the same manner as in Example 17 to obtain 9.9 mg of the title compound.
質量分析〔FABMS〕:1090(M+H) アミノ酸分析:Asx0.6(1),Gly1.5(2),Thr0.8
(1),Ala1.0(1),Lys0.9(1),(Trpは分析せ
ず) 工程2:H−Gly−Asn−Trp−Lys(Z)−Gly−Thr−Ala−
Pro−Asp−Trp−OBzl(NO2) 工程1で得られたペプチド2.5mgを0.5mlDMFに溶解
し、PyBOP2.4mg、HOBt0.6mg、NMM0.8μlを加えて、室
温で15分間撹拌し、0℃に冷却した。得られた反応液に
実施例41で得られたH−Pro−Asp(Ot−Bu)−Trp−OBz
l(NO2)0.7mgの0.5mlDMF溶液を加えて、4℃で6時間
撹拌した。溶媒を減圧下留去し、残渣を上記と同様に逆
相HPLCで精製した。得られた化合物に、98%蟻酸70μl
を加えて室温で2時間、続いて20%ピペリジン10μl/DM
F40μlを加えて室温で15分間静置し、エーテル3mlで晶
出させて、エーテルで洗浄し、減圧乾燥を行い工程2に
標記の化合物420μgを得た。Mass spectrometry [FABMS]: 1090 (M + H) Amino acid analysis: Asx0.6 (1), Gly1.5 (2), Thr0.8
(1), Ala1.0 (1), Lys0.9 (1), (Trp is not analyzed) Step 2: H-Gly-Asn-Trp-Lys (Z) -Gly-Thr-Ala-
Pro-Asp-Trp-OBzl (NO 2 ) Dissolve 2.5 mg of the peptide obtained in step 1 in 0.5 ml DMF, add 2.4 mg of PyBOP, 0.6 mg of HOBt, and 0.8 μl of NMM, and stir at room temperature for 15 minutes. Cooled to ° C. H-Pro-Asp (Ot-Bu) -Trp-OBz obtained in Example 41 was added to the obtained reaction solution.
A solution of 0.7 mg of l (NO 2 ) in 0.5 ml of DMF was added, and the mixture was stirred at 4 ° C. for 6 hours. The solvent was distilled off under reduced pressure, and the residue was purified by reverse-phase HPLC as described above. Add 70% of 98% formic acid to the obtained compound.
For 2 hours at room temperature, followed by 10 μl / DM of 20% piperidine.
After adding 40 μl of F, the mixture was allowed to stand at room temperature for 15 minutes, crystallized with 3 ml of ether, washed with ether, and dried under reduced pressure to obtain 420 μg of the title compound in Step 2.
工程2で得られたペプチド200μgの100μlDMF溶液に
PyBOP468μg、HOBt122μg、NMM152μgを0℃におい
て加え、0℃で1時間、室温で3.5時間撹拌した。溶媒
を減圧下留去し、残渣を上記と同様に逆相HPLCで精製し
て、標記化合物の4−ニトロベンジルエステル43μgを
得た。得られた生成物を、90%酢酸50μlに溶解し、0
℃に冷却し、亜鉛末約0.1mgを加えて0℃で30分間撹拌
した。遠心分離により亜鉛末を除去し、上澄み液を実施
例15と同様の方法により逆相HPLCで精製して、工程3に
標記の化合物59μgを得た。 In 100 μl of DMF solution of 200 μg of peptide obtained in step 2
468 μg of PyBOP, 122 μg of HOBt, and 152 μg of NMM were added at 0 ° C., and the mixture was stirred at 0 ° C. for 1 hour and at room temperature for 3.5 hours. The solvent was distilled off under reduced pressure, and the residue was purified by reverse-phase HPLC in the same manner as described above to obtain 43 μg of 4-nitrobenzyl ester of the title compound. The product obtained is dissolved in 50 μl of 90% acetic acid,
After cooling to 0 ° C, about 0.1 mg of zinc dust was added, and the mixture was stirred at 0 ° C for 30 minutes. The zinc dust was removed by centrifugation, and the supernatant was purified by reverse-phase HPLC in the same manner as in Example 15 to obtain 59 μg of the title compound in Step 3.
工程4:化合物(I−42) 工程3で得られた化合物59μgを32μlのDMFに溶解
し0℃に冷却した。混合物に0.2mlのDMF溶液で調製した
PyBOP156μg、HOBt41μg、NMM51μgを、それぞれ加
え、0℃で10分間放置した。得られた反応液に、実施例
20工程1で得られたH−Val−Tyr−Phe−Ala−His−Leu
−Asp(OBzl)−Ile−Ile−Trp−OBzl 109μgを含む68
μlDMF溶液を加え、4℃で13時間撹拌した。溶媒を減圧
下留去し、残渣を工程3と同様の方法により逆相HPLCで
精製して、化合物(I−42)の側鎖、C末保護体31μg
を得た。得られた生成物の28μgをDMF15μlに溶解
し、蟻酸アンモニウムの飽和メタノール溶液15μl及び
10%Pd/C約0.1mgを加えて室温で2時間撹拌した。遠心
分離によりPd/Cを除去し、上澄み液を上記と同様に逆相
HPLCで精製し化合物(I−42)を10.6μgを得た。Step 4: Compound (I-42) 59 μg of the compound obtained in Step 3 was dissolved in 32 μl of DMF and cooled to 0 ° C. The mixture was prepared with 0.2 ml DMF solution
156 μg of PyBOP, 41 μg of HOBt, and 51 μg of NMM were added, respectively, and left at 0 ° C. for 10 minutes. In the obtained reaction solution,
20 H-Val-Tyr-Phe-Ala-His-Leu obtained in Step 1
Asp (OBzl) -Ile-Ile-Trp-OBzl containing 109 μg 68
μl DMF solution was added, and the mixture was stirred at 4 ° C. for 13 hours. The solvent was distilled off under reduced pressure, and the residue was purified by reverse-phase HPLC in the same manner as in Step 3 to obtain a side chain of compound (I-42), 31 μg of the protected C-terminal.
I got 28 μg of the obtained product was dissolved in 15 μl of DMF, and 15 μl of a saturated methanol solution of ammonium formate and
About 0.1 mg of 10% Pd / C was added, and the mixture was stirred at room temperature for 2 hours. Pd / C is removed by centrifugation, and the supernatant is reversed phase as above.
Purification by HPLC yielded 10.6 μg of compound (I-42).
質量分析〔FABMS〕:2373(M+H) アミノ酸分析:Asx2.8(3),Gly2.6(2),His1.0
(1),Thr0.9(1),Ala2.0(2),Pro1.2(1),Tyr
1.0(1),Val1.1(1),Ile2.4(2),Phe1.0(1),L
ys0.9(1),(Trpは分析せず) 実施例43. 化合物(I−43):H−Gly−Asp−Trp−His−Gly−Thr−
Ala−Pro−Asp−Trp−Val−Tyr−Phe−Ala−His−Leu−
Asp−Ile−Ile−Trp−OHの合成 参考例3と同様の方法により、Fmoc−Trp10.4μmolが
結合した担体樹脂20mgを用い、N−保護アミノ酸として
順次、Fmoc−Ile−OH、Fmoc−Ile−OH、Fmoc−Asp(Ot
−Bu)−OH、Fmoc−Leu−OH、Fmoc−His(Trt)−OH、F
moc−Ala−OH、Fmoc−Phe−OH、Fmoc−Tyr(t−Bu)−
OH、Fmoc−Val−OH、Fmoc−Trp−OH、Fmoc−Asp(Ot−B
u)−OH、Fmoc−Pro−OH、Fmoc−Ala−OH、Fmoc−Thr
(t−Bu)−OH、Fmoc−Gly−OH、Fmoc−His(Trt)−O
H、Fmoc−Trp−OH、Fmoc−Asp(Ot−Bu)−OH、Fmoc−G
ly−OHを用いて保護ペプチドを合成し、最終工程のみ参
考例3とは異なり、(b)のピペリジン処理を行った。
樹脂からペプチドを参考例3と同様に切り出し、粗ペプ
チド19.2mgを得た。この生成物のうち、6.2mgを実施例1
7と同様な方法により逆相HPLCで精製し凍結乾燥し、1.2
4mgの精製品を得た。Mass spectrometry [FABMS]: 2373 (M + H) Amino acid analysis: Asx2.8 (3), Gly2.6 (2), His1.0
(1), Thr0.9 (1), Ala2.0 (2), Pro1.2 (1), Tyr
1.0 (1), Val1.1 (1), Ile2.4 (2), Phe1.0 (1), L
ys0.9 (1), (Trp was not analyzed) Example 43. Compound (I-43): H-Gly-Asp-Trp-His-Gly-Thr-
Ala-Pro-Asp-Trp-Val-Tyr-Phe-Ala-His-Leu-
Synthesis of Asp-Ile-Ile-Trp-OH In the same manner as in Reference Example 3, using 20 mg of a carrier resin to which 10.4 μmol of Fmoc-Trp was bound, Fmoc-Ile-OH and Fmoc-Ile were sequentially used as N-protected amino acids. -OH, Fmoc-Asp (Ot
-Bu) -OH, Fmoc-Leu-OH, Fmoc-His (Trt) -OH, F
moc-Ala-OH, Fmoc-Phe-OH, Fmoc-Tyr (t-Bu)-
OH, Fmoc-Val-OH, Fmoc-Trp-OH, Fmoc-Asp (Ot-B
u) -OH, Fmoc-Pro-OH, Fmoc-Ala-OH, Fmoc-Thr
(T-Bu) -OH, Fmoc-Gly-OH, Fmoc-His (Trt) -O
H, Fmoc-Trp-OH, Fmoc-Asp (Ot-Bu) -OH, Fmoc-G
A protected peptide was synthesized using ly-OH, and was subjected to piperidine treatment (b), unlike in Reference Example 3, only in the final step.
The peptide was cut out from the resin in the same manner as in Reference Example 3 to obtain 19.2 mg of the crude peptide. 6.2 mg of this product was obtained in Example 1.
Purified by reverse-phase HPLC and lyophilized in the same manner as in 7, and 1.2
4 mg of purified product was obtained.
質量分析〔FABMS〕:2400(M+H) アミノ酸分析:Gly2.1(2),Ala2.0(2),Asx2.1
(3),His1.4(2),Ile2.5(2),Leu1.3(1),Pro
1.0(1),Thr1.1(1),Phe0.9(1),Tyr0.9(1),V
al1.3(1),(Trpは分析せず) 実施例44. 化合物(I−44):H−Gly−Asn−Trp−Lys−Gly−Thr−
Ala−Pro−Asp−Trp−Val−Try−Phe−Ala−His−Leu−
Asp−Ile−Ile−Trp−OHの合成 参考例3と同様の方法により、Fmoc−Trp10.4μmolが
結合した担体樹脂20mgを用い、N−保護アミノ酸として
順次、Fmoc−Ile−OH、Fmoc−Ile−OH、Fmoc−Asp(Ot
−Bu)−OH、Fmoc−Leu−OH、Fmoc−His(Trt)−OH、F
moc−Ala−OH、Fmoc−Phe−OH、Fmoc−Tyr(t−Bu)−
OH、Fmoc−Val−OH、Fmoc−Trp−OH、Fmoc−Asp(Ot−B
u)−OH、Fmoc−Pro−OH、Fmoc−Ala−OH、Fmoc−Thr
(t−Bu)−OH、Fmoc−Gly−OH、Fmoc−Lys(t−Bo
c)−OH、Fmoc−Trp−OH、Fmoc−Asn(Trt)−OH、Fmoc
−Gly−OHを用いて保護ペプチドを合成し、最終工程の
み参考例3とは異なり、(b)のピペリジン処理も行っ
た。樹脂からペプチドを参考例3と同様に切り出し、粗
ペプチド30.0mgを得た。得られた生成物のうち、6.9mg
を実施例17と同様な方法により逆相HPLCで精製後凍結乾
燥し、精製品1.30mgを得た。Mass spectrometry [FABMS]: 2400 (M + H) Amino acid analysis: Gly2.1 (2), Ala2.0 (2), Asx2.1
(3), His1.4 (2), Ile2.5 (2), Leu1.3 (1), Pro
1.0 (1), Thr1.1 (1), Phe0.9 (1), Tyr0.9 (1), V
al1.3 (1), (Trp was not analyzed) Example 44. Compound (I-44): H-Gly-Asn-Trp-Lys-Gly-Thr-
Ala-Pro-Asp-Trp-Val-Try-Phe-Ala-His-Leu-
Synthesis of Asp-Ile-Ile-Trp-OH In the same manner as in Reference Example 3, using 20 mg of a carrier resin to which 10.4 μmol of Fmoc-Trp was bound, Fmoc-Ile-OH and Fmoc-Ile were sequentially used as N-protected amino acids. -OH, Fmoc-Asp (Ot
-Bu) -OH, Fmoc-Leu-OH, Fmoc-His (Trt) -OH, F
moc-Ala-OH, Fmoc-Phe-OH, Fmoc-Tyr (t-Bu)-
OH, Fmoc-Val-OH, Fmoc-Trp-OH, Fmoc-Asp (Ot-B
u) -OH, Fmoc-Pro-OH, Fmoc-Ala-OH, Fmoc-Thr
(T-Bu) -OH, Fmoc-Gly-OH, Fmoc-Lys (t-Bo
c) -OH, Fmoc-Trp-OH, Fmoc-Asn (Trt) -OH, Fmoc
A protected peptide was synthesized using -Gly-OH, and unlike the reference example 3 only in the final step, piperidine treatment (b) was also performed. The peptide was cut out from the resin in the same manner as in Reference Example 3 to obtain 30.0 mg of a crude peptide. 6.9 mg of the product obtained
Was purified by reverse phase HPLC in the same manner as in Example 17 and lyophilized to obtain 1.30 mg of a purified product.
質量分析〔FABMS〕:2390(M+H) アミノ酸分析:Gly2.6(2),Ala2.0(2),Asx2.8
(3),His1.0(1),Ile2.4(2),Leu1.1(1),Pro
1.2(1),Thr0.9(1),Tyr1.0(1),Val1.1(1),P
he1.0(1),Lys0.9(1),(Trpは分析せず) 参考例1. 化合物(a):Fmoc−Gly−Asn−Trp−His−Gly−Thr−A
la−Pro−OHの合成 実施例4と同様の方法によりt−Boc−Proが結合した
担体樹脂および保護アミノ酸として順次t−Boc−Ala−
OH,t−Boc−Thr(Bzl)−OH,t−Boc−Gly−OH,t−Boc−
His(Bom)−OH,t−Boc−Trp(CHO)−OH,t−Boc−Asn
−OHおよびFmoc−Gly−OHを用い、保護ペプチドの結合
した担体樹脂1.2gを得た。この担体樹脂1.2gを実施例4
と同様の方法により合成ペプチドをフッ化水素により樹
脂から切り出し、2M酢酸に溶解し、凍結乾燥することに
より、464.0mgの粗生成物を得た。実施例4と同様の方
法によりHPLCで精製し131.9mgの化合物(a)を得た。Mass spectrometry [FABMS]: 2390 (M + H) Amino acid analysis: Gly2.6 (2), Ala2.0 (2), Asx2.8
(3), His1.0 (1), Ile2.4 (2), Leu1.1 (1), Pro
1.2 (1), Thr0.9 (1), Tyr1.0 (1), Val1.1 (1), P
he1.0 (1), Lys0.9 (1), (Trp is not analyzed) Reference Example 1. Compound (a): Fmoc-Gly-Asn-Trp-His-Gly-Thr-A
Synthesis of la-Pro-OH In the same manner as in Example 4, t-Boc-Ala- was sequentially used as the carrier resin to which t-Boc-Pro was bound and the protected amino acid.
OH, t-Boc-Thr (Bzl) -OH, t-Boc-Gly-OH, t-Boc-
His (Bom) -OH, t-Boc-Trp (CHO) -OH, t-Boc-Asn
Using -OH and Fmoc-Gly-OH, 1.2 g of a carrier resin having a protected peptide bonded thereto was obtained. 1.2 g of this carrier resin was used in Example 4.
The synthetic peptide was cleaved from the resin with hydrogen fluoride in the same manner as described above, dissolved in 2M acetic acid, and lyophilized to obtain 464.0 mg of a crude product. Purification by HPLC in the same manner as in Example 4 gave 131.9 mg of compound (a).
質量分析〔FABMS〕:1061(M+H) アミノ酸分析:Asx0.7(1),Gly2.1(2),His1.0
(1),Thr1.0(1),Pro1.1(1),Ala1.1(1),(T
rpは分析せず) 参考例2. 化合物(b):H−Val−Tyr−Phe−Ser−His−Leu−Asp
−Ile−Ile−Trp−OHの合成 実施例4と同様の方法によりt−Boc−Trp(CHO)が
結合した担体樹脂およびN−保護アミノ酸として順次t
−Boc−Ile−OH,t−Boc−Ile−OH,t−Boc−Asp(OBzl)
−OH,t−Boc−Leu−OH,t−Boc−His(Bom)−OH,t−Boc
−Ser−OH,t−Boc−Phe−OH,t−Boc−Tyr(Br−Z)−O
Hおよびt−Boc−Val−OHを用い、保護ペプチドの結合
した担体樹脂1.5gを得た。このうち0.8gをフッ化水素に
より樹脂から切り出し、2M酢酸で溶解し、凍結乾燥する
ことにより243.3mgの粗生成物を得た。このうち101mgを
実施例4と同様の方法によりHPLCで精製し、7.0mgの化
合物(b)を得た。Mass spectrometry [FABMS]: 1061 (M + H) Amino acid analysis: Asx0.7 (1), Gly2.1 (2), His1.0
(1), Thr1.0 (1), Pro1.1 (1), Ala1.1 (1), (T
(rp is not analyzed) Reference Example 2. Compound (b): H-Val-Tyr-Phe-Ser-His-Leu-Asp
Synthesis of -Ile-Ile-Trp-OH In the same manner as in Example 4, t-Boc-Trp (CHO) was bonded to a carrier resin and an N-protected amino acid in the order of t.
-Boc-Ile-OH, t-Boc-Ile-OH, t-Boc-Asp (OBzl)
-OH, t-Boc-Leu-OH, t-Boc-His (Bom) -OH, t-Boc
-Ser-OH, t-Boc-Phe-OH, t-Boc-Tyr (Br-Z) -O
Using H and t-Boc-Val-OH, 1.5 g of a carrier resin to which the protected peptide was bound was obtained. Of these, 0.8 g was cut out of the resin with hydrogen fluoride, dissolved in 2M acetic acid, and lyophilized to obtain 243.3 mg of a crude product. Of these, 101 mg was purified by HPLC in the same manner as in Example 4 to obtain 7.0 mg of compound (b).
質量分析〔FABMS〕:1293(M+H) アミノ酸分析:Asx1.1(1),Ser1.1(1),His1.2
(1),Tyr1.0(1),Val1.0(1),Ile1.5(2),Leu
1.2(1),Phe1.1(1) 参考例3. 化合物c:Fmoc−Gly−Asn−Trp−His−Gly−Thr−Ala−A
la−OHの合成 Fmoc−Ala30μmolが結合した担体樹脂50mgを自動合成機
の反応器に入れ島津製作所の合成プログラムに従い次の
操作を行った。Mass spectrometry [FABMS]: 1293 (M + H) Amino acid analysis: Asx1.1 (1), Ser1.1 (1), His1.2
(1), Tyr1.0 (1), Val1.0 (1), Ile1.5 (2), Leu
1.2 (1), Phe1.1 (1) Reference Example 3. Compound c: Fmoc-Gly-Asn-Trp-His-Gly-Thr-Ala-A
Synthesis of la-OH 50 mg of a carrier resin to which 30 μmol of Fmoc-Ala was bound was placed in a reactor of an automatic synthesizer, and the following operation was performed according to a synthesis program of Shimadzu Corporation.
(a)担体樹脂をDMFにより3分間洗浄し、該溶液を排
出した。(A) The carrier resin was washed with DMF for 3 minutes, and the solution was discharged.
(b)30%ピペリジンを含むDMF溶液を加えて混合物を
4分間撹拌し、該溶液を排出し、この操作をもう1回繰
り返した。(B) DMF solution containing 30% piperidine was added and the mixture was stirred for 4 minutes, the solution was drained and this operation was repeated once more.
(c)担体樹脂をDMFにて1分間洗浄し、該溶液を排出
し、この操作を5回繰り返した。(C) The carrier resin was washed with DMF for 1 minute, the solution was discharged, and this operation was repeated five times.
こうして、Fmocを除去したAlaの結合した担体樹脂を
得た。Thus, a carrier resin to which Amo had been removed from which Fmoc had been removed was obtained.
(d)Fmoc−Ala−OH300μmol、PyBOP300μmol、HOBt30
0μmol、NMM450μmolを含む1.05mlのDMFを加え3分間撹
拌して得た溶液を樹脂に加え、混合物を30分間攪拌し溶
液を排出した。(D) Fmoc-Ala-OH 300 μmol, PyBOP 300 μmol, HOBt30
A solution obtained by adding 1.05 ml of DMF containing 0 μmol and 450 μmol of NMM and stirring for 3 minutes was added to the resin, and the mixture was stirred for 30 minutes and the solution was discharged.
(e)担体樹脂をDMFで1分間洗浄し、これを5回繰り
返した。こうして、Fmoc−Ala−Alaが担体上に合成され
た。次に、上記(a)〜(c)の洗浄、脱保護工程を行
つた後、(d)の工程でFmoc−Thr(t−Bu)−OHを用
いて縮合反応を行い、次いで(e)の洗浄工程を得てFm
oc−Thr(t−Bu)−Ala−Alaを担体樹脂上に合成し
た。以下、工程(a)〜(e)を順次繰り返して保護ペ
プチドの結合した担体樹脂を得た。尚、工程(d)には
順次、Fmoc−Gly−OHおよびFmoc−His(Trt)−OH、Fmo
c−Trp−OH、Fmoc−Asn(Trt)−OHおよびFmoc−Gly−O
Hを用いた。Glyを縮合する最終工程に限り、工程(b)
のピペリジン処理は行わなかった。得られた担体樹脂を
メタノール、ブチルエーテルで洗浄した後、減圧下3時
間乾燥した。これに、2−メチルインドールを5mg/mlの
割合で含む90%TFA、5%チオアニソール、5%1,2−エ
タンジチオールの混合溶液200μlを加え室温で2時間
放置し、樹脂よりペプチドを切り出した。次いで樹脂を
濾別し、得られた溶液におよそ10mlのエーテルを加え
て、生じる沈澱を粗ペプチドとして23mg濾取した。この
粗生成物を逆相カラム(カラム;Chemco社製、ChemcoPac
k NUCLEOSIL 5C18 250×20mmI.D.)を用いたHPLCにて精
製した。0.1%TFAと0〜90%アセトニトリルを用いた直
線濃度勾配で溶出し220nmにて検出し標記化合物を含む
画分を得た。この画分を凍結乾燥して化合物(c)を16
mg得た。(E) The carrier resin was washed with DMF for 1 minute, and this was repeated 5 times. Thus, Fmoc-Ala-Ala was synthesized on the carrier. Next, after performing the washing and deprotection steps of the above (a) to (c), a condensation reaction is carried out using Fmoc-Thr (t-Bu) -OH in the step (d), and then (e) Get the cleaning process of Fm
oc-Thr (t-Bu) -Ala-Ala was synthesized on a carrier resin. Hereinafter, steps (a) to (e) were sequentially repeated to obtain a carrier resin to which the protected peptide was bound. In step (d), Fmoc-Gly-OH and Fmoc-His (Trt) -OH, Fmoc-Gly-OH
c-Trp-OH, Fmoc-Asn (Trt) -OH and Fmoc-Gly-O
H was used. Step (b) only in the final step of condensing Gly
Was not treated with piperidine. The obtained carrier resin was washed with methanol and butyl ether, and then dried under reduced pressure for 3 hours. To this was added 200 μl of a mixed solution of 90% TFA, 5% thioanisole, and 5% 1,2-ethanedithiol containing 2-methylindole at a rate of 5 mg / ml, and the mixture was left at room temperature for 2 hours to cut out the peptide from the resin. Was. The resin was then filtered off, approximately 10 ml of ether was added to the resulting solution, and the resulting precipitate was filtered off as 23 mg of crude peptide. This crude product is subjected to a reverse phase column (column; ChemcoPac, Chemco
kNUCLEOSIL 5C18 250 × 20 mm I.D.). Elution was performed with a linear concentration gradient using 0.1% TFA and 0 to 90% acetonitrile, and detection was performed at 220 nm to obtain a fraction containing the title compound. This fraction was lyophilized to give compound (c) 16
mg was obtained.
質量分析〔FABMS〕:1036(M+H) アミノ酸分析:Gly1.9(2),Asx0.7(1),His1.0
(1),Thr0.9(1),Ala2.0(2),(Trpは分析せ
ず) 参考例4. 化合物(d):Fmoc−Leu−Tyr−Phe−Ala−His−Gln−A
sp(OBzl)−Val−Ile−OHの合成 参考例3と同様の方法により、Fmoc−Ile31μmolが結
合した担体樹脂70mgを用いN−保護アミノ酸として順
次、Fmoc−Val−OH、Fmoc−Asp(OBzl)−OH、Fmoc−Gl
n(Trt)−OH、Fmoc−His(Trt)−OH、Fmoc−Ala−O
H、Fmoc−Phe−OH、Fmoc−Tyr(t−Bu)−OHおよびFmo
c−Leu−OHを用いて合成を行った。樹脂からのペプチド
の切り出しは、90%TFA、5%チオアニソール、5%1,2
−エタンジチオールの混合溶液300μlを用い、室温で
2時間放置することにより行った。得られた粗ペプチド
25mgを参考例3と同様の方法によりHPLCで精製して、化
合物(d)3.6mgを得た。Mass spectrometry [FABMS]: 1036 (M + H) Amino acid analysis: Gly1.9 (2), Asx0.7 (1), His1.0
(1), Thr0.9 (1), Ala2.0 (2), (Trp was not analyzed) Reference Example 4. Compound (d): Fmoc-Leu-Tyr-Phe-Ala-His-Gln-A
Synthesis of sp (OBzl) -Val-Ile-OH In the same manner as in Reference Example 3, Fmoc-Val-OH and Fmoc-Asp (OBzl) were sequentially used as N-protected amino acids using 70 mg of a carrier resin to which 31 μmol of Fmoc-Ile was bound. ) -OH, Fmoc-Gl
n (Trt) -OH, Fmoc-His (Trt) -OH, Fmoc-Ala-O
H, Fmoc-Phe-OH, Fmoc-Tyr (t-Bu) -OH and Fmo
Synthesis was performed using c-Leu-OH. Cleavage of the peptide from the resin was achieved by 90% TFA, 5% thioanisole, 5% 1,2
The reaction was carried out by leaving 300 μl of a mixed solution of ethanedithiol at room temperature for 2 hours. The obtained crude peptide
25 mg was purified by HPLC in the same manner as in Reference Example 3 to obtain 3.6 mg of compound (d).
質量分析〔FABMS〕:1419(M+H) アミノ酸分析:Ala1.0(1),Asx1.0(1),His0.9
(1),Glx1.0(1),Ile0.8(1),Leu0.8(1),Phe
0.9(1),Tyr1.0(1),Val0.7(1) 産業上の利用可能性 本発明によれば、エンドセリン拮抗作用に有するペプ
チドが提供される。Mass spectrometry [FABMS]: 1419 (M + H) Amino acid analysis: Ala1.0 (1), Asx1.0 (1), His0.9
(1), Glx1.0 (1), Ile0.8 (1), Leu0.8 (1), Phe
0.9 (1), Tyr1.0 (1), Val0.7 (1) Industrial Applicability According to the present invention, a peptide having endothelin antagonism is provided.
配列表 配列番号:1 配列の長さ:16 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列 H−Gly−Asn−Trp−His−Gly−Thr− Ala−Pro−Asp−Trp−Phe−Phe−Asn −Tyr−Tyr−Trp−OH 配列番号:2 配列の長さ:16 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:環状 配列の種類:ペプチド 配列 cyclo(Gly−Asn−Trp−His−Gly− Thr−Ala−Pro−Asp−Trp−Phe−Phe −Asn−Tyr−Tyr−Trp) 配列番号:3 配列の長さ:16 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列 H−Cys−Asn−Trp−His−Gly−Thr− Ala−Pro−Cys−Trp−Phe−Phe−Asn −Tyr−Tyr−Trp−OH 配列番号:4 配列の長さ:7 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列 H−Trp−Phe−Phe−Asn−Tyr−Tyr −Trp−OH 配列番号:5 配列の長さ:6 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列 H−Trp−Phe−Asn−Tyr−Tyr−Trp−OH 配列番号:6 配列の長さ:6 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列 H−Trp−Phe−Phe−Asn−Tyr−Trp−OH 配列番号:7 配列の長さ:6 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列 H−Trp−Phe−Phe−Tyr−Tyr−Trp−OH 配列番号:8 配列の長さ:6 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列 H−Phe−Phe−Asn−Tyr−Tyr−Trp−OH 配列番号:9 配列の長さ:20 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列 H−Gly−Asn−Trp−His−Gly−Thr− Ala−Pro−Asp−Trp−Val−Tyr−Phe −Ala−His−Leu−Asp−Ile−Ile− Trp−OH 配列番号:10 配列の長さ:20 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列 H−Gly−Asn−Trp−His−Gly−Thr− Ala−Pro−Asp−Trp−Val−Tyr−Tyr −Ala−His−Leu−Asp−Ile−Ile− Trp−OH 配列番号:11 配列の長さ:20 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列 H−Gly−Asn−Trp−His−Gly−Thr− Ala−Pro−Asp−Trp−Leu−Tyr−Phe −Ala−His−Gln−Asp−Val−Ile− Trp−OH 配列番号:12 配列の長さ:20 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列 H−Gly−Asp−Trp−His−Gly−Thr −Ala−Pro−Asp−Trp−Val−Tyr− Phe−Ala−His−Leu−Asp−Ile− Ile−Trp−OH 配列番号:13 配列の長さ:20 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列 H−Gly−Asn−Trp−Lys−Gly−Thr −Ala−Pro−Asp−Trp−Val−Tyr− Phe−Ala−His−Leu−Asp−Ile− Ile−Trp−OHSequence Listing SEQ ID NO: 1 Sequence Length: 16 Sequence Type: Amino Acid Number of Chains: Single Chain Topology: Linear Sequence Type: Peptide Sequence H-Gly-Asn-Trp-His-Gly-Thr-Ala -Pro-Asp-Trp-Phe-Phe-Asn-Tyr-Tyr-Trp-OH SEQ ID NO: 2 Sequence length: 16 Sequence type: Amino acid number of chains: Single chain Topology: Cyclic Sequence type: Peptide Sequence cyclo (Gly-Asn-Trp-His-Gly-Thr-Ala-Pro-Asp-Trp-Phe-Phe-Asn-Tyr-Tyr-Trp) SEQ ID NO: 3 Sequence length: 16 Sequence type: amino acid Number of chains: single chain Topology: linear Sequence type: peptide sequence H-Cys-Asn-Trp-His-Gly-Thr-Ala-Pro-Cys-Trp-Phe-Phe-Asn-Tyr-Tyr- Trp-OH SEQ ID NO: 4 Sequence length: 7 Sequence type: number of amino acid chains: single chain Topology: linear Sequence type: peptide sequence H-Trp-Phe-Phe-Asn-Tyr-Tyr- Trp-OH SEQ ID NO: 5 Sequence Length: 6 Sequence type: Amino acid Number of chains: Single chain Topology: Linear Sequence type: Peptide sequence H-Trp-Phe-Asn-Tyr-Tyr-Trp-OH SEQ ID NO: 6 Sequence length Length: 6 Sequence type: Amino acid Number of chains: Single chain Topology: Linear Sequence type: Peptide sequence H-Trp-Phe-Phe-Asn-Tyr-Trp-OH SEQ ID NO: 7 Sequence length: 6 Sequence type: Amino acid Number of chains: Single chain Topology: Linear Sequence type: Peptide sequence H-Trp-Phe-Phe-Tyr-Tyr-Trp-OH SEQ ID NO: 8 Sequence length: 6 Sequence Type: Amino acid Number of chains: Single chain Topology: Linear Sequence type: Peptide sequence H-Phe-Phe-Asn-Tyr-Tyr-Trp-OH SEQ ID NO: 9 Sequence length: 20 Sequence type : Number of amino acid chains: single chain Topology: linear Sequence type: peptide sequence H-Gly-Asn-Trp-His-Gly-Thr-Ala-Pro-Asp-Trp-Val-Tyr-Phe-Ala- His -Leu-Asp-Ile-Ile- Trp-OH SEQ ID NO: 10 Sequence length: 20 Sequence type: Number of amino acid chains: Single chain Topology: Linear Sequence type: Peptide sequence H-Gly-Asn -Trp-His-Gly-Thr-Ala-Pro-Asp-Trp-Val-Tyr-Tyr-Ala-His-Leu-Asp-Ile-Ile-Trp-OH SEQ ID NO: 11 Sequence length: 20 Type: amino acid Number of chains: single chain Topology: linear Sequence type: peptide sequence H-Gly-Asn-Trp-His-Gly-Thr-Ala-Pro-Asp-Trp-Leu-Tyr-Phe-Ala -His-Gln-Asp-Val-Ile- Trp-OH SEQ ID NO: 12 Sequence length: 20 Sequence type: Number of amino acid chains: Single chain Topology: Linear Sequence type: Peptide sequence H-Gly -Asp-Trp-His-Gly-Thr-Ala-Pro-Asp-Trp-Val-Tyr-Phe-Ala-His-Leu-Asp-Ile-Ile-Trp-OH SEQ ID NO: 13 Sequence length: 20 Sequence type: amino acid Number of chains: single chain Topology: linear Column Type: peptide sequence H-Gly-Asn-Trp-Lys-Gly-Thr -Ala-Pro-Asp-Trp-Val-Tyr- Phe-Ala-His-Leu-Asp-Ile- Ile-Trp-OH
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C12N 1/20 C12N 1/20 A // A61K 38/00 ACD A61K 37/02 ACD ADD ADD AED AED (C12P 21/04 C12R 1:465) (C12N 1/20 C12R 1:465) (72)発明者 嶋崎 千恵子 神奈川県川崎市麻生区岡上71−1 (72)発明者 山口 和夫 神奈川県相模原市磯部2121−8 (72)発明者 松田 譲 東京都小金井市貫井南町1−22−7 (72)発明者 北村 重人 東京都町田市成瀬1−3−7 (72)発明者 池村 俊秀 静岡県三島市若松町4352−1 (72)発明者 小川 達洋 東京都町田市旭町3−6−6 (72)発明者 矢野 敬一 神奈川県横須賀市ハイランド1−38−6 (72)発明者 須澤 敏行 東京都世田谷区尾山台3−29−11 (72)発明者 柴田 健志 東京都町田市旭町3−6−6 (72)発明者 山▲崎▼ 基生 東京都町田市中町3−9−13 審査官 吉住 和之 (58)調査した分野(Int.Cl.6,DB名) C12P 21/04 C12N 1/20 C07K 7/06,7/08,7/64 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C12N 1/20 C12N 1/20 A // A61K 38/00 ACD A61K 37/02 ACD ADD ADD AED AED (C12P 21/04 C12R 1 (465) (C12N 1/20 C12R 1: 465) (72) Inventor Chieko Shimazaki 71-1 Okagami, Aso-ku, Kawasaki City, Kanagawa Prefecture (72) Inventor Kazuo Yamaguchi 2121-8 Isobe, Sabehara-shi, Kanagawa Prefecture (72) Inventor Joe Matsuda 1-22-7 Nukii Minamicho, Koganei City, Tokyo (72) Inventor Shigeto Kitamura 1-3-7, Naruse, Machida City, Tokyo (72) Inventor Toshihide Ikemura 4352-1 Wakamatsucho, Mishima City, Shizuoka Prefecture (72) Inventor Tatsuhiro Ogawa 3-6-6 Asahimachi, Machida, Tokyo (72) Inventor Keiichi Yano 1-38-6, Highland, Yokosuka, Kanagawa (72) Inventor Toshiyuki Suzawa Setagaya-ku, Tokyo Yamada 3-29-11 (72) Inventor Takeshi Shibata 3-6-6 Asahimachi, Machida-shi, Tokyo (72) Inventor Yamazaki Sakimoto 3-9-13 Nakamachi, Machida-shi, Tokyo Examiner Kazuyoshi Yoshizumi (58) Field surveyed (Int.Cl. 6 , DB name) C12P 21/04 C12N 1/20 C07K 7 / 06,7 / 08,7 / 64 CA (STN) REGISTRY (STN)
Claims (6)
その薬理上許容される塩: X−A−Trp−B−Gly−Thr−E−G−Y (I) {式中、 AはAsnまたはAspを表わし、 BはHisまたはLysを表わし、 EはAlaまたはSerを表わし、 GはAlaまたはProを表わし、 XはX1−Glyまたは を表わし、 Yはヒドロキシ、低級アルコキシ、アミノ、 を表わし、 [ここで、X1およびX3は水素、ベンジルオキシカルボニ
ル、t−ブチルオキシカルボニル、9−フルオレニルメ
チルオキシカルボニルまたはカルボニル置換もしくは非
置換の低級アルカノイルを表わし、 X2およびY2は水素を表わし、 Y1はヒドロキシ、低級アルコキシまたはアミノを表わす
か、 またはX1、Y1およびX2、Y2はそれぞれ一緒になってX1−
Y1およびX2−Y2が単結合を表わし、 Zはヒドロキシ、低級アルコキシ、ベンジルオキシ、ベ
ンズヒドリルオキシ、 Gly−Z1(式中、Z1はヒドロキシ、低級アルコキシ、ベ
ンジルオキシまたはベンズヒドリルオキシを表わすか、
X1と一緒になってX1−Z1が単結合を表わす)、 Ala−Z1(式中、Z1は前記と同義である)、 Val−Z1(式中、Z1は前記と同義である)、 Trp−Z1(式中、Z1は前記と同義である)、 Trp−Gly−Z1(式中、Z1は前記と同義である)、 Trp−Asn−Tyr−Tyr−Trp−Z1(式中、Z1は前記と同義
である)、 Trp−Phe−Phe−Asn−Tyr−Tyr−7Hyt−Z1(式中、Z1は
前記と同義であり、7Hytは7−ヒドロキシトリプトファ
ンを表わす)、 Trp−Ile−Ile−Trp−Z1(式中、Z1は前記と同義であ
る)、 Trp−Val−Tyr−Phe−W−His−Leu−Asp−Ile−Ile−T
rp−Z1(式中、Z1は前記と同義であり、WはAla、Serま
たはCysを表わす)、 Trp−W−His−Leu−Asp−Ile−Ile−Trp−Z1(式中、Z
1およびWは前記と同義である)、 Trp−Val−Tyr−Tyr−W−His−Leu−Asp−Ile−Ile−T
rp−Z1(式中、Z1およびWは前記と同義である)、 Trp−Leu−Tyr−Phe−W−His−Gln−Asp−Val−Ile−T
rp−Z1(式中、Z1およびWは前記と同義である)、 Trp−Val−Tyr−Phe−W−Phe−Phe−Asn−Tyr−Tyr−T
rp−Z1(式中、Z1およびWは前記と同義である)、 Trp−Phe−Phe−Asn−Tyr−Tyr−W−His−Leu−Asp−I
le−Ile−Trp−Z1(式中、Z1およびWは前記と同義であ
る)、 Trp−Phe−Phe−Asn−Tyr−Tyr−Asn−Ile−Ile−Trp−
Z1(式中、Z1は前記と同義である)、 またはJ−Phe−M−Q−Tyr−R−T−Z1 (式中、 JはTrpまたは単結合、 MはPheまたは単結合、 QはAsnまたは単結合、 RはTyrまたは単結合、 TはTrp、 Ala、 Phe、 Tyr、 Trp−Trp、 Asn−Tyr−Tyr−Trp、 Trp−Asn−Tyr−Tyr−Trp、 Trp−Val−Tyr−Phe−W−His−Leu−Asp−Ile−Ile−T
rp(式中、Wは前記と同義である)、 または単結合を表わし、 J、M、Q、RおよびTの少なくとも2つ以上が同時に
単結合を表わすことはなく、Z1は前記と同義であ
る)]}。1. A peptide represented by the following formula (I) or a pharmacologically acceptable salt thereof: XA-Trp-B-Gly-Thr-EGY (I) wherein A is Asn Or Asp, B represents His or Lys, E represents Ala or Ser, G represents Ala or Pro, X represents X 1 -Gly or Y represents hydroxy, lower alkoxy, amino, Wherein X 1 and X 3 represent hydrogen, benzyloxycarbonyl, t-butyloxycarbonyl, 9-fluorenylmethyloxycarbonyl or carbonyl-substituted or unsubstituted lower alkanoyl; X 2 and Y 2 Represents hydrogen, Y 1 represents hydroxy, lower alkoxy or amino, or X 1 , Y 1 and X 2 , Y 2 together represent X 1-
Y 1 and X 2 —Y 2 represent a single bond, Z is hydroxy, lower alkoxy, benzyloxy, benzhydryloxy, Gly-Z 1 (wherein Z 1 is hydroxy, lower alkoxy, benzyloxy or benzhi Stands for drilloxy,
X 1 and together represent X 1 -Z 1 is a single bond), in Ala-Z 1 (wherein, Z 1 is as defined above), in Val-Z 1 (wherein, Z 1 is and wherein Trp-Z 1 (wherein, Z 1 is as defined above), Trp-Gly-Z 1 (where Z 1 is as defined above), Trp-Asn-Tyr-Tyr -Trp-Z 1 (wherein, Z 1 is as defined above), Trp-Phe-Phe-Asn-Tyr-Tyr-7Hyt-Z 1 (wherein, Z 1 is as defined above, and 7Hyt is 7-hydroxytryptophan), Trp-Ile-Ile-Trp-Z 1 (wherein Z 1 is as defined above), Trp-Val-Tyr-Phe-W-His-Leu-Asp-Ile- Ile-T
rp-Z 1 (wherein, Z 1 has the same meaning as described above, and W represents Ala, Ser or Cys), Trp-W-His-Leu-Asp-Ile-Ile-Trp-Z 1 (wherein Z
1 and W are as defined above), Trp-Val-Tyr-Tyr-W-His-Leu-Asp-Ile-Ile-T
rp-Z 1 (wherein Z 1 and W are as defined above), Trp-Leu-Tyr-Phe-W-His-Gln-Asp-Val-Ile-T
rp-Z 1 (wherein Z 1 and W are as defined above), Trp-Val-Tyr-Phe-W-Phe-Phe-Asn-Tyr-Tyr-T
rp-Z 1 (wherein Z 1 and W are as defined above), Trp-Phe-Phe-Asn-Tyr-Tyr-W-His-Leu-Asp-I
le-Ile-Trp-Z 1 (wherein Z 1 and W are as defined above), Trp-Phe-Phe-Asn-Tyr-Tyr-Asn-Ile-Ile-Trp-
Z 1 (wherein, Z 1 is as defined above), or J-Phe-MQ-Tyr-R-T-Z 1 (where J is Trp or a single bond, M is Phe or a single bond , Q is Asn or a single bond, R is Tyr or a single bond, T is Trp, Ala, Phe, Tyr, Trp-Trp, Asn-Tyr-Tyr-Trp, Trp-Asn-Tyr-Tyr-Trp, Trp-Val -Tyr-Phe-W-His-Leu-Asp-Ile-Ile-T
rp (wherein W is as defined above), or a single bond, at least two of J, M, Q, R and T do not simultaneously represent a single bond, and Z 1 is as defined above. )]}.
(1)のペプチド: 2. The peptide according to claim 1, which is represented by the following formula (I-1):
チルオキシカルボニルまたは9−フルオレニルメチルオ
キシカルボニルを表わし、Z2はヒドロキシ、低級アルコ
キシ、ベンジルオキシまたはベンズヒドリルオキシを表
わし、J、M、Q、RおよびTはそれぞれ請求項(1)
記載のJ、M、Q、RおよびTと同義である)。3. A peptide represented by the following formula (II): X 4 -J-Phe-MQ-Tyr-RTZ 2 (II) wherein X 4 is hydrogen, benzyloxycarbonyl, represents t- butyloxycarbonyl or 9-fluorenylmethyloxycarbonyl, Z 2 is hydroxy, lower alkoxy, represents a benzyloxy or benzhydryloxy, J, M, Q, R and T are each claim (1 )
Synonymous with J, M, Q, R and T described above).
1) で表わされるRES−701−1、式(I−2) で表わされるRES−701−2または式(I−3) で表わされるRES−701−3を生産する能力を有する微生
物を培地中に培養し、RES−701−1、RES−701−2また
はRES−701−3を培養液に蓄積せしめ、該培養液よりRE
S−701−1、RES−701−2またはRES−701−3を採取す
ることを特徴とする、RES−701−1、RES−701−2また
はRES−701−3の製造方法。4. A compound belonging to the genus Streptomyces and having the formula (I-
1) RES-701-1, represented by the formula (I-2) RES-701-2 represented by the formula or formula (I-3) A microorganism having the ability to produce RES-701-3 represented by the formula is cultured in a medium, and RES-701-1, RES-701-2 or RES-701-3 is accumulated in the culture solution. RE
A method for producing RES-701-1, RES-701-2 or RES-701-3, comprising collecting S-701-1, RES-701-2 or RES-701-3.
01−2またはRES−701−3を生産する能力を有するスト
レプトマイセス・エスピーRE−701(FERM BP−3624)。5. The RES-701-1, RES-7 according to claim (4).
Streptomyces sp. RE-701 (FERM BP-3624) having the ability to produce 01-2 or RES-701-3.
01−2またはRES−701−3を生産する能力を有するスト
レプトマイセス・エスピーRE−629(FERM BP−4126)。6. The RES-701-1, RES-7 according to claim (4).
Streptomyces sp. RE-629 (FERM BP-4126) capable of producing 01-2 or RES-701-3.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5511561A JP2778831B2 (en) | 1991-12-27 | 1992-12-28 | Endothelin antagonist peptide |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP34729391 | 1991-12-27 | ||
| JP3-347293 | 1991-12-27 | ||
| JP5511561A JP2778831B2 (en) | 1991-12-27 | 1992-12-28 | Endothelin antagonist peptide |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2778831B2 true JP2778831B2 (en) | 1998-07-23 |
Family
ID=26578474
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5511561A Expired - Lifetime JP2778831B2 (en) | 1991-12-27 | 1992-12-28 | Endothelin antagonist peptide |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2778831B2 (en) |
-
1992
- 1992-12-28 JP JP5511561A patent/JP2778831B2/en not_active Expired - Lifetime
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7595298B2 (en) | Polypeptides having anti-HIV activity and compositions comprising same | |
| Morita et al. | Structures and conformation of antitumour cyclic pentapeptides, astins A, B and C, from Aster tataricus | |
| US5571892A (en) | Polypeptide and anti-HIV drug prepared therefrom | |
| Oh et al. | Synthesis of novel unnatural amino acid as a building block and its incorporation into an antimicrobial peptide | |
| JPH10182613A (en) | Tetrahydroisoquinoline derivative | |
| JPH03130299A (en) | Peptide compound and its preparation, and use thereof | |
| EP2271665B1 (en) | Highly bridged peptides from actinomadura namibiensis | |
| EP0603399B1 (en) | Endothelin-antagonizing peptide | |
| US5639860A (en) | Endothelin-antagonizing peptide | |
| US5071835A (en) | Ribonucleotide reductase inhibitors | |
| US6194195B1 (en) | Strains of streptomyces producing endothelin antagonistic peptides | |
| Shenbagamurthi et al. | Structure-activity relationships in the dodecapeptide. alpha. factor of Saccharomyces cerevisiae | |
| US5631222A (en) | Endothelin-antagonizing peptide | |
| US7964702B2 (en) | Phalloidin derivatives and methods for their synthesis | |
| JP2778831B2 (en) | Endothelin antagonist peptide | |
| Akaji et al. | Efficient synthesis of peptaibol using a chloroimidazolidium coupling reagent, CIP | |
| Yano et al. | Simultaneous activation of two different receptor systems by enkephalin/neurotensin conjugates having spacer chains of various lengths | |
| CZ303552B6 (en) | Memno peptide, pharmaceutical composition in which the memno peptide is comprised, process for preparing such memno peptide and use thereof in the preparation of a medicament | |
| US20120231996A1 (en) | Phalloidin derivatives and methods for their synthesis | |
| WO1993018062A1 (en) | Peptide which inhibits phospholipase c | |
| JP3009718B2 (en) | New peptides, their production methods and applications | |
| JP2625129B2 (en) | Enzyme activity inhibitor and method for producing the same | |
| US6015878A (en) | Antitumor agents isolated from intestinal mucosa, a method for their isolation and their application | |
| JP3012291B2 (en) | Novel peptide, its production method and use | |
| CA2189674A1 (en) | Peptides inhibiting phospholipase c |