JP2779810B2 - Resin resistance paste - Google Patents
Resin resistance pasteInfo
- Publication number
- JP2779810B2 JP2779810B2 JP63105164A JP10516488A JP2779810B2 JP 2779810 B2 JP2779810 B2 JP 2779810B2 JP 63105164 A JP63105164 A JP 63105164A JP 10516488 A JP10516488 A JP 10516488A JP 2779810 B2 JP2779810 B2 JP 2779810B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- resistance
- paste
- resistor
- binder resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Non-Adjustable Resistors (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、樹脂基板等の絶縁層上に形成される厚膜抵
抗体用の樹脂系抵抗ペーストに関するものである。Description: TECHNICAL FIELD The present invention relates to a resin-based resistor paste for a thick-film resistor formed on an insulating layer such as a resin substrate.
(従来の技術) 近年、電子機器の小型化、薄型化の要求に伴ない、電
子部品及びこの電子部品を搭載するプリント配線板に対
しても、パターンの高密度化による小型化、厚みの薄い
材料を用いることによる薄型化が要求されている。(Related Art) In recent years, with the demand for smaller and thinner electronic devices, electronic components and printed wiring boards on which the electronic components are mounted have been reduced in size and thickness by increasing the density of patterns. There is a demand for a thinner material.
現在、これらの要求を満たす非常に有効に方法の一つ
として、回路上必要な抵抗体をスクリーン印刷法によ
り、直接プリント配線板上に膜素子として形成する方法
がある。この方法によれば、定格電力による制限を除け
ば抵抗体を非常に小さな面積で形成でき、抵抗体の厚み
もチップ抵抗に比べて格段に薄いものとなる。At present, as one of the very effective methods for satisfying these requirements, there is a method in which a resistor required in a circuit is formed as a film element directly on a printed wiring board by a screen printing method. According to this method, the resistor can be formed with a very small area except for the limitation due to the rated power, and the thickness of the resistor is much thinner than the chip resistor.
ところが、こうして電子機器の薄型化を進めていく
と、プリント配線板自体も当然のことながら薄型化さ
れ、機械的な外部応力が加わると容易に屈曲するものと
なる。このような薄いプリント配線板上に厚膜抵抗体を
形成した場合、基板の屈曲により抵抗体に大きな曲げ応
力が負荷される。However, when the electronic equipment is made thinner, the printed wiring board itself is naturally made thinner, and easily bends when a mechanical external stress is applied. When a thick film resistor is formed on such a thin printed wiring board, a large bending stress is applied to the resistor due to the bending of the substrate.
ところで、従来の樹脂系抵抗ペーストに於いては、導
電体としてカーボン粒子などの粒状体が用いられてき
た。また、この樹脂系抵抗ペーストに於ける高抵抗ペー
ストと低抵抗ペーストとでは、粒状導電体とそのバイン
ダーとなる樹脂(以下バインダー樹脂とする)との配合
比が異る。つまり高抵抗ペースト(100KΩ/cm2以上)
は、抵抗体の導電性を小さくするために、粒状導電体に
対するバインダー樹脂の配合比が大きい。逆に低抵抗ペ
ースト(1KΩ/cm2以下)は、導電性を大きくするため
に、粒状導電体に対するバインダー樹脂の配合比が小さ
い。By the way, in a conventional resin-based resistive paste, a granular material such as carbon particles has been used as a conductor. In addition, the high-resistance paste and the low-resistance paste in the resin-based resistance paste differ in the mixing ratio of the granular conductor and a resin serving as a binder thereof (hereinafter, referred to as a binder resin). In other words, high resistance paste (100KΩ / cm 2 or more)
In order to reduce the conductivity of the resistor, the mixing ratio of the binder resin to the granular conductor is large. Conversely, in the low-resistance paste (1 KΩ / cm 2 or less), the mixing ratio of the binder resin to the granular conductor is small in order to increase the conductivity.
以上のような従来の樹脂系抵抗ペーストにより形成さ
れた抵抗体に対して曲げ応力が負荷された場合、低抵抗
ペーストにより形成された抵抗体は、抵抗体中に粒状導
電体の体積比率が大きいため、抵抗体自体非常に脆性で
あり、曲げ応力に対しクラックが入りやすい。これに対
して高抵抗ペーストにより形成された抵抗体は、粒状導
電体の体積比率が低抵抗体に比べ小さいのでクラックは
入り難い。しかしながら、バインダー樹脂の体積比率が
大きいと、加熱、加湿などによりバインダー樹脂の寸法
変化が大きくなり、抵抗体の抵抗値変化も大きくなる。
すなわち、従来の樹脂系抵抗ペーストでは、低抵抗、高
抵抗に於いて耐クラック性と耐熱性及び耐湿性との両者
を同時に満足させることは、非常に困難であった。When a bending stress is applied to the resistor formed by the conventional resin-based resistor paste as described above, the resistor formed by the low-resistance paste has a large volume ratio of the granular conductor in the resistor. Therefore, the resistor itself is very brittle, and cracks easily occur with respect to bending stress. On the other hand, a resistor formed of a high-resistance paste has a smaller volume ratio of a granular conductor than a low-resistance resistor, and therefore is less likely to crack. However, when the volume ratio of the binder resin is large, the dimensional change of the binder resin due to heating, humidification, or the like becomes large, and the resistance value of the resistor also becomes large.
That is, it is very difficult for the conventional resin-based resistive paste to simultaneously satisfy both the crack resistance and the heat resistance and the moisture resistance in low resistance and high resistance.
(発明が解決しようとする課題) 本発明は、以上のような従来の樹脂系抵抗ペーストの
課題を解決すべくなされたものであり、その目的とする
ところは、高温放置、高温高湿放置に対して抵抗値変化
が極めて小さく、耐クラック性に優れた厚膜抵抗体を構
成する樹脂系抵抗ペーストを提供することにある。(Problems to be Solved by the Invention) The present invention has been made to solve the problems of the conventional resin-based resistive paste as described above. On the other hand, it is an object of the present invention to provide a resin-based resist paste that forms a thick-film resistor having a very small change in resistance and excellent crack resistance.
(課題を解決するための手段) 上記の目的を達成するために、本発明者が鋭意研究を
重ねた結果、次に示す樹脂系抵抗ペーストが従来のもの
に比べ格段に優れていることを見出した。(Means for Solving the Problems) In order to achieve the above object, the present inventors have conducted intensive studies and as a result, have found that the following resin-based resist pastes are significantly superior to conventional pastes. Was.
すなわち、本発明に係る樹脂系抵抗ペーストは、バイ
ンダー樹脂に導電性短繊維、繊維状絶縁性フイラー及び
高沸点の有機溶剤を混合してなる樹脂系抵抗ペーストで
ある。That is, the resin-based resistance paste according to the present invention is a resin-based resistance paste obtained by mixing a conductive short fiber, a fibrous insulating filler, and a high-boiling organic solvent with a binder resin.
以下に本発明の詳細な説明を述べる。 Hereinafter, a detailed description of the present invention will be described.
本発明に用いられるバインダー樹脂としては、エポキ
シ樹脂、フェノール樹脂、メラミン樹脂、ポリイミド樹
脂、ビスマレイミド・トリアジン樹脂、キシレン樹脂等
の熱硬化性樹脂、及びその硬化剤、ポリスルホン樹脂、
ポリフェニレンオキシド、ポリフェニレンサルファイド
等の耐熱性に優れた熱可塑性樹脂等が挙げられる。As the binder resin used in the present invention, an epoxy resin, a phenol resin, a melamine resin, a polyimide resin, a bismaleimide / triazine resin, a thermosetting resin such as a xylene resin, and a curing agent thereof, a polysulfone resin,
Examples thereof include thermoplastic resins having excellent heat resistance such as polyphenylene oxide and polyphenylene sulfide.
導電性短繊維としては、カーボン繊維、或いは非導電
性耐熱物質からなる繊維例えば窒化ケイ素、窒化アルミ
ニウム、炭化ケイ素、酸化マグネシウム等のセラミック
ス、フッ素樹脂、ポリフェニレンオキサイド、オリスル
フォン等のエンジニアリングプラスチック等に導電物質
例えば金、銀、ニッケル、半田、鉛、銅、銀・パラジウ
ム合金等の金属をコーティング(メッキ)したもの、或
いは金、銀、ニッケル、半田、鉛、銅、アルミ、ステン
レス、銀・パラジウム等の金属繊維が挙げられる。As the conductive short fibers, carbon fibers or fibers made of a non-conductive heat-resistant material such as ceramics such as silicon nitride, aluminum nitride, silicon carbide, and magnesium oxide; Substances coated (plated) with metals such as gold, silver, nickel, solder, lead, copper, silver / palladium alloy, or gold, silver, nickel, solder, lead, copper, aluminum, stainless steel, silver / palladium, etc. Metal fibers.
また、本発明に係る樹脂系抵抗ペーストにあっては、
粒状導電性フィラー、繊維状絶縁性フィラー、及び有機
溶剤を配合することができ、この粒状導電性フィラーと
しては、カーボン、或いは金、銀、ニッケル、半田、
鉛、銅、銀・パラジウム合金等の金属が挙げられる。繊
維状絶縁性フィラーとしては、窒化ケイ素、窒化アルミ
ニウム、炭化ケイ素、酸化アルミニウム、酸化マグネシ
ウム、シリカ、水酸化アルミニウム、タルク等の無機質
絶縁性フィラー、フッ素樹脂、ポリフェニレンオキサイ
ド、ポリスルフォン等のエンジンニアリングプラスチッ
ク、ポリイミド樹脂粉末、ベンゾグアナミン樹脂粉末、
エポキシ樹脂粉末等の耐熱性の高い有機質絶縁性フィラ
ーが挙げられる。また、有機溶剤としては、α−テルピ
ネオール、ブチルカルビトール等の沸点の高い溶剤が用
いられる。これは沸点が低いと、ペーストの粘度変化が
著しく好まないからである。Further, in the resin-based resistance paste according to the present invention,
Granular conductive filler, fibrous insulating filler, and an organic solvent can be blended, and as the granular conductive filler, carbon, gold, silver, nickel, solder,
Examples include metals such as lead, copper, and silver / palladium alloys. Examples of the fibrous insulating filler include inorganic insulating fillers such as silicon nitride, aluminum nitride, silicon carbide, aluminum oxide, magnesium oxide, silica, aluminum hydroxide, and talc; and fluorine-containing resins, engine-nearing plastics such as polyphenylene oxide, and polysulfone. , Polyimide resin powder, benzoguanamine resin powder,
An organic insulating filler having high heat resistance such as an epoxy resin powder may be used. As the organic solvent, a solvent having a high boiling point, such as α-terpineol and butyl carbitol, is used. This is because when the boiling point is low, the change in the viscosity of the paste is remarkably unfavorable.
さらに、本発明に係る樹脂系抵抗ペーストには、バイ
ンダー樹脂、導電性短繊維、粒状導電性フィラー、繊維
状絶縁性フィラー、有機溶剤の他に、必要に応じて硬化
促進剤、難燃剤、カップリング剤、チクソトロピー付与
剤、レベリング剤、密着性付与剤、消泡剤等を配合する
ことができる。Furthermore, in addition to the binder resin, the conductive short fiber, the granular conductive filler, the fibrous insulating filler, and the organic solvent, the resin-based resistance paste according to the present invention includes a curing accelerator, a flame retardant, and a cup, if necessary. A ring agent, a thixotropy-imparting agent, a leveling agent, an adhesion-imparting agent, an antifoaming agent and the like can be added.
以上の組成物は、擂潰機、三本ロール、ボールミル、
超音波分散機等の一般に良く知られている混練機によっ
てペーストとして作成することができる。そして、この
ペーストはスクリーン印刷法或いはディスペンサー法等
によってプリント配線板上に膜素子として形成すること
ができる。The above composition, crusher, three rolls, ball mill,
It can be prepared as a paste by a generally well-known kneader such as an ultrasonic disperser. This paste can be formed as a film element on a printed wiring board by a screen printing method, a dispenser method, or the like.
(発明の作用) 本発明が以上のような手段を採ることによって以下の
ような作用がある。(Operation of the Invention) The present invention has the following operation by adopting the above means.
本発明にあっては、バインダー樹脂に導電性短繊維及
び繊維状絶縁性フイラーを加えることによって、従来の
樹脂系抵抗ペーストのように粒状導電体とバインダー樹
脂との配合比に関係なく、低抵抗・高抵抗のいずれに於
いても耐クラック性、耐熱性及び耐湿性に優れた厚膜抵
抗体をプリント配線板上に形成することが可能となる。
すなわち、導電性短繊維を加えることによって、形成さ
れた厚膜抵抗体中に短繊維が縦横無尽に配列し、これに
よって基板に屈曲などの外部応力が加わった際、この応
力を緩和する作用(繊維効果)が起こり、低抵抗ペース
トのようにバインダー樹脂の体積比率が小さくてもクラ
ック発生率の低い厚膜抵抗体が得られる。さらに、繊維
状絶縁性フイラーを加えることによってバインダー樹脂
の加熱・加湿による寸法変化を抑制する。よって、高抵
抗ペーストのようなバインダー樹脂の体積比率が大きく
ても、高温放置、高温高湿放置による抵抗体変化率の小
さい厚膜抵抗体が得られる。また、高沸点の有機溶剤例
えば、α−テルピネオール、ブチルカルビトール等を含
ませたので、ペーストの粘度変化が小さく、品質が安定
する。In the present invention, by adding a conductive short fiber and a fibrous insulating filler to the binder resin, regardless of the mixing ratio between the granular conductor and the binder resin, as in the conventional resin-based resistive paste, low resistance is obtained. -A thick film resistor excellent in crack resistance, heat resistance and moisture resistance can be formed on a printed wiring board regardless of the high resistance.
That is, by adding the conductive short fibers, the short fibers are arranged in the formed thick film resistor endlessly in all directions, and when an external stress such as bending is applied to the substrate, the action of relaxing the stress ( Thus, a thick film resistor having a low crack generation rate can be obtained even if the volume ratio of the binder resin is small, such as a low-resistance paste. Further, by adding a fibrous insulating filler, a dimensional change due to heating and humidification of the binder resin is suppressed. Therefore, even if the volume ratio of the binder resin such as the high-resistance paste is large, a thick-film resistor having a small resistance change rate when left at high temperature or at high temperature and high humidity can be obtained. In addition, since a high-boiling organic solvent such as α-terpineol, butyl carbitol and the like is contained, the change in viscosity of the paste is small and the quality is stable.
また、非導電性耐熱物質に導電物質をコーティング
(メッキ)したものを加えると、非導電性耐熱物質に於
ける導電物質のコーティング(メッキ)の程度によって
低抵抗・高抵抗いずれの樹脂系抵抗ペーストも得られ、
これによって形成された厚膜抵抗体も上記特性に優れた
ものとなる。特にこの手法を用いると、バインダー樹脂
の熱伸縮により従来技術では不安定であった高抵抗ペー
ストをさらに容易にかつ安定化させることができる。In addition, when a non-conductive heat-resistant material coated (plated) with a conductive material is added, depending on the degree of coating (plating) of the non-conductive heat-resistant material with a conductive material, either a low-resistance or a high-resistance resin-based paste can be used. Is also obtained,
The thick film resistor formed in this way also has excellent characteristics described above. In particular, when this method is used, a high-resistance paste, which has been unstable in the related art due to thermal expansion and contraction of the binder resin, can be more easily and stabilized.
(実施例) 次に、本発明を実施例により具体的に説明する。(Examples) Next, the present invention will be specifically described with reference to examples.
まず、本発明の樹脂系抵抗ペーストの混合例を説明す
るが、本発明は以下の配合例に限定されるものではな
い。以下の配合例に於いて『%』とあるのは全て固形分
のみについての重量%を意味する。First, a mixing example of the resin-based resistance paste of the present invention will be described, but the present invention is not limited to the following mixing examples. In the following formulation examples, “%” means all weight percent of solid content only.
(実施例) 実施例1 バインダー樹脂としてエポキシ樹脂75.0%、導電性短
繊維としてカーボン短繊維15.0%、繊維状絶縁性フィラ
ーとしてセラミック短繊維10.0%を用い、これらを擂潰
機にて混練し、有機溶剤としてα−テルピネオールにて
粘度調整して、第1図に示す厚膜抵抗ペーストとした。(Example) Example 1 Epoxy resin 75.0% as a binder resin, carbon short fiber 15.0% as a conductive short fiber, and ceramic short fiber 10.0% as a fibrous insulating filler were kneaded by a crusher, The viscosity was adjusted with α-terpineol as an organic solvent to obtain a thick film resistor paste shown in FIG.
実施例2 バインダー樹脂としてエポキシ樹脂75.0%、導電性短
繊維としてカーボン短繊維15.0%、繊維状絶縁性フィラ
ーとしてセラミック短繊維5.0%、粒状絶縁性フィラー
としてベンゾグアナミン微粉末5.0%を用いる以外は実
施例1と同様とし、第2図に示す厚膜抵抗ペーストとし
た。Example 2 Example except that 75.0% of an epoxy resin was used as a binder resin, 15.0% of a carbon short fiber was used as a conductive short fiber, 5.0% of a ceramic short fiber was used as a fibrous insulating filler, and 5.0% of benzoguanamine fine powder was used as a granular insulating filler. 1, and the thick film resistor paste shown in FIG. 2 was obtained.
比較例1 バインダー樹脂としてエポキシ樹脂60.0%、粒状導電
性フィラーとしてカーボンブラック40.0%を用いる以外
は実施例1と同様とした。Comparative Example 1 The procedure of Example 1 was repeated except that 60.0% of an epoxy resin was used as a binder resin and 40.0% of carbon black was used as a particulate conductive filler.
比較例2 バインダー樹脂としてエポキシ樹脂75.0%、粒状導電
性フィラーとしてカーボンブラック15.0%、粒状絶縁性
フィラーとしてベンゾグアナミン微粉末10.0%を用いる
以外は実施例1と同様とした。Comparative Example 2 The procedure of Example 1 was repeated except that 75.0% of an epoxy resin was used as a binder resin, 15.0% of carbon black was used as a granular conductive filler, and 10.0% of benzoguanamine fine powder was used as a granular insulating filler.
上記実施例及び比較例の厚膜抵抗ペーストを第5図に
示すように、スクリーン印刷機にてNi−Auメッキにより
電極(30)表面が処理された基板(20)表面上に塗付
し、180℃で90分間硬化させた。そして、形成された厚
膜印刷抵抗体(10)上に、オーバーコート(40)として
市販のソルダーレジストインク(アサヒ化学研究所株式
会社製 商品名:CCR−506G)をスクリーン印刷機にて塗
布し、140℃で15分間硬化させた。これらの厚膜抵抗体
(10)の耐熱性及び耐湿性評価、耐クラック性評価を以
下の方法で行ない、その結果を第6図、第7図、及び表
1に示した。As shown in FIG. 5, the thick film resistor pastes of the above Examples and Comparative Examples were applied to the surface of the substrate (20) having the surface of the electrode (30) treated by Ni-Au plating using a screen printer, Cured at 180 ° C. for 90 minutes. Then, a commercially available solder resist ink (trade name: CCR-506G, manufactured by Asahi Chemical Laboratory Co., Ltd.) is applied as an overcoat (40) on the formed thick film printed resistor (10) by a screen printing machine. And cured at 140 ° C. for 15 minutes. The heat resistance, humidity resistance and crack resistance of these thick film resistors (10) were evaluated by the following methods, and the results are shown in FIGS. 6 and 7 and Table 1.
(高温放置試験) 100℃の恒温槽に試験片を1000hr放置した時の抵抗値
変化率を測定した。但し、抵抗値の測定は室温にて24hr
放置後である。(High-Temperature Leaving Test) The resistance change rate when the test piece was left in a thermostat at 100 ° C. for 1000 hours was measured. However, measurement of resistance value is performed for 24 hours at room temperature.
After leaving.
(高温高湿放置試験) 85℃−85%Rhの恒温恒湿槽に試験片を1000hr放置した
時の抵抗値変化率を測定した。但し、抵抗値の測定は高
温放置試験同様室温にて24hr放置後である。(High-temperature and high-humidity storage test) The resistance change rate when the test piece was left for 1000 hours in a thermo-hygrostat at 85 ° C.-85% Rh was measured. However, the resistance value was measured after standing at room temperature for 24 hours as in the high temperature standing test.
(湾曲試験) 試験片を円筒形の筒にあて、筒の曲率半径を変化させ
ながら湾曲させ、クラック発生率を測定した。(Bending Test) The test piece was placed on a cylindrical tube, and the tube was bent while changing the radius of curvature of the tube, and the crack occurrence rate was measured.
第6図、第7図、及び第1より明らかなように、各実
施例の抵抗値変化率は、比較例の抵抗値変化率に比し、
ほぼ半分の値となった。また、クラック発生率も比較例
に比し、著しく低下した。これらのことにより、本発明
に係る樹脂系抵抗ペーストを使用した厚膜抵抗体は、従
来のものに比し、耐熱性及び耐湿性、耐クラック性が格
段に優れていることが明らかとなった。 As is clear from FIG. 6, FIG. 7, and FIG. 1, the rate of change of the resistance value of each example is larger than that of the comparative example.
It was almost half the value. Further, the crack generation rate was significantly lower than that of the comparative example. From these facts, it has been clarified that the thick film resistor using the resin-based resistor paste according to the present invention is much more excellent in heat resistance, moisture resistance, and crack resistance than the conventional one. .
(発明の効果) 上述のように、本発明に係る樹脂系抵抗ペーストによ
れば、従来の厚膜抵抗体に比し、高温放置、高温高湿放
置による抵抗値変化率、及び機械的な外部応力によるク
ラック発生率が格段に低い厚膜抵抗体を提供することが
でき、しかも、ペーストの粘度変化が小さく、品質が安
定するので、厚膜抵抗体用樹脂系抵抗ペーストとして極
めて有効なものである。(Effect of the Invention) As described above, according to the resin-based resistor paste of the present invention, the resistance value change rate due to high temperature storage, high temperature and high humidity storage, and mechanical external It is possible to provide a thick film resistor whose crack generation rate due to stress is extremely low, and since the viscosity change of the paste is small and the quality is stable, it is extremely effective as a resin-based resist paste for a thick film resistor. is there.
第1図〜第4図は本発明に係る樹脂系抵抗ペーストを模
式的に示す部分拡大図、第5図は印刷抵抗体が形成され
た基板を示す部分断面図、第6図及び第7図は放置時間
−抵抗値変化率特性を示すグラフである。 符号の説明 1……導電性短繊維、2……バインダー樹脂、3……繊
維状絶縁性フィラー、4……粒状絶縁性フィラー、5…
…粒状導電性フィラー、10……厚膜抵抗体、20……基
板、30……電極、40……オーバーコート。1 to 4 are partially enlarged views schematically showing the resin-based resistor paste according to the present invention, FIG. 5 is a partial cross-sectional view showing a substrate on which a printed resistor is formed, and FIGS. 6 and 7 are shown. Is a graph showing the time-to-resistance change rate characteristics. DESCRIPTION OF SYMBOLS 1 ... conductive short fibers, 2 ... binder resin, 3 ... fibrous insulating filler, 4 ... granular insulating filler, 5 ...
... Granular conductive filler, 10 ... Thick film resistor, 20 ... Substrate, 30 ... Electrode, 40 ... Overcoat.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−289077(JP,A) 特開 昭55−150583(JP,A) 特開 昭55−144180(JP,A) 特開 昭59−177885(JP,A) 特開 昭60−110755(JP,A) 特公 昭39−26368(JP,B1) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-289077 (JP, A) JP-A-55-150583 (JP, A) JP-A-55-144180 (JP, A) JP-A-59-180180 177885 (JP, A) JP-A-60-110755 (JP, A) JP-B-39-26368 (JP, B1)
Claims (1)
体用の樹脂系抵抗ペーストであって、 バインダー樹脂に、導電性短繊維、繊維状絶縁性フイラ
ー及び高沸点の有機溶剤を含ませたことを特徴とする樹
脂系抵抗ペースト。1. A resin-based resist paste for a thick-film resistor formed on an insulating layer such as a resin substrate, comprising a binder resin comprising conductive short fibers, a fibrous insulating filler, and a high-boiling organic solvent. A resin-based resistance paste, characterized by being included.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63105164A JP2779810B2 (en) | 1988-04-27 | 1988-04-27 | Resin resistance paste |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63105164A JP2779810B2 (en) | 1988-04-27 | 1988-04-27 | Resin resistance paste |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH01276601A JPH01276601A (en) | 1989-11-07 |
| JP2779810B2 true JP2779810B2 (en) | 1998-07-23 |
Family
ID=14400051
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63105164A Expired - Lifetime JP2779810B2 (en) | 1988-04-27 | 1988-04-27 | Resin resistance paste |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2779810B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4844113B2 (en) * | 2005-12-15 | 2011-12-28 | 日立化成工業株式会社 | Liquid composition, resistor film and method for forming the same, resistor element and wiring board |
| JP4844112B2 (en) * | 2005-12-15 | 2011-12-28 | 日立化成工業株式会社 | Printing resistor, printing ink and wiring board |
| JP6098602B2 (en) * | 2014-09-25 | 2017-03-22 | コニカミノルタ株式会社 | Resistance heating element, manufacturing method thereof, heating apparatus, and image forming apparatus |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS55144180A (en) * | 1979-04-27 | 1980-11-10 | Ricoh Co Ltd | Thermal head |
| JPS55150583A (en) * | 1979-05-11 | 1980-11-22 | Matsushita Electric Industrial Co Ltd | Electrode structure for panel heater |
| JPS59177885A (en) * | 1983-03-29 | 1984-10-08 | 東レ株式会社 | Graphite resistance heater |
| JPS60110755A (en) * | 1983-11-21 | 1985-06-17 | Matsushita Electric Works Ltd | Resin composition for casting |
| JPH0692547B2 (en) * | 1987-05-22 | 1994-11-16 | 松下電器産業株式会社 | Conductive paint |
-
1988
- 1988-04-27 JP JP63105164A patent/JP2779810B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH01276601A (en) | 1989-11-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100678533B1 (en) | Conductive powder and its manufacturing method | |
| US7794628B2 (en) | Chip-shaped electronic component | |
| WO2007047384A1 (en) | Compositions comprising polyimide and hydrophobic epoxy, and methods relating thereto | |
| WO2009092064A2 (en) | Electrically conductive adhesive | |
| JPWO2019131352A1 (en) | Chip electronic components | |
| JP2779810B2 (en) | Resin resistance paste | |
| CN100503718C (en) | Polymer-containing compositions for advanced materials | |
| JP2006080013A (en) | Conductive paste and flexible printed wiring board formed by using it | |
| US10153075B2 (en) | Polyimide-based polymer thick film resistor composition | |
| JP2000174400A (en) | Flexible printed board | |
| JP5522390B2 (en) | Conductive paste composition and conductive bonding method | |
| KR100750331B1 (en) | Heat Curable Carbon Resistance Paste Composition | |
| JP3598631B2 (en) | Conductive paste, method for producing the same, electric circuit device using conductive paste, and method for producing the same | |
| US7477131B2 (en) | Low temperature coefficient of resistivity polymeric resistors based on metal carbides and nitrides | |
| JP2007157434A (en) | Conductor forming method | |
| JPH07103331B2 (en) | Resin-based conductive paste | |
| JP2835451B2 (en) | Carbon resin resistance paste | |
| JPS6023460A (en) | Paint for electrical resistor | |
| JPH0577161B2 (en) | ||
| JP2001273816A (en) | Conductive paste | |
| JPH03293701A (en) | Paste composition for organic thick film resistor | |
| US10508217B2 (en) | Polyimide-based polymer thick film resistor composition | |
| JPH06139817A (en) | Conductive silver paste composition | |
| KR20230058317A (en) | Conductive adhesive, electronic circuit using the same and manufacturing method thereof | |
| JP5052857B2 (en) | Conductive composition, conductor using the same, and method for forming conductive circuit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| EXPY | Cancellation because of completion of term |