JP2967221B2 - Positive thermistor element - Google Patents
Positive thermistor elementInfo
- Publication number
- JP2967221B2 JP2967221B2 JP3228892A JP3228892A JP2967221B2 JP 2967221 B2 JP2967221 B2 JP 2967221B2 JP 3228892 A JP3228892 A JP 3228892A JP 3228892 A JP3228892 A JP 3228892A JP 2967221 B2 JP2967221 B2 JP 2967221B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode layer
- temperature coefficient
- positive temperature
- thermistor element
- coefficient thermistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 12
- 239000010410 layer Substances 0.000 description 58
- 230000005012 migration Effects 0.000 description 22
- 238000013508 migration Methods 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 16
- 229910000679 solder Inorganic materials 0.000 description 9
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 8
- 239000011247 coating layer Substances 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 229910052573 porcelain Inorganic materials 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000005476 soldering Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910000807 Ga alloy Inorganic materials 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- UVTGXFAWNQTDBG-UHFFFAOYSA-N [Fe].[Pb] Chemical compound [Fe].[Pb] UVTGXFAWNQTDBG-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Thermistors And Varistors (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、はんだ付け対応型の正
特性サーミスタ素子に対し、特に、電極構造が改良され
た正特性サーミスタ素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a PTC thermistor element compatible with soldering, and more particularly to a PTC thermistor element having an improved electrode structure.
【0002】[0002]
【従来の技術】正特性サーミスタ素子は、例えばチタン
酸バリウム系半導体磁器により構成された板状の正特性
サーミスタ素体の両主面に電極を形成することにより構
成されている。正特性サーミスタ素体は半導体磁器より
なるため、上記電極としては、正特性サーミスタ素体の
表面との間に障壁を構成しない、すなわち半導体磁器表
面にオーミック接触する材料、例えばNiにより構成す
る必要があった。しかしながら、Niは比抵抗が高いた
め導電性を高めるために、並びに電極にはんだ付けが予
定されている素子でははんだ付け性を高めるためにAg
よりなる第2の電極層を形成した構造が用いられてい
る。2. Description of the Related Art A positive temperature coefficient thermistor element is formed by forming electrodes on both main surfaces of a plate-shaped positive temperature coefficient thermistor element made of, for example, a barium titanate-based semiconductor ceramic. Since the PTC thermistor body is made of semiconductor porcelain, it is necessary that the electrode does not form a barrier between the PTC thermistor body and the surface of the PTC thermistor body. there were. However, Ni has a high specific resistance so as to increase conductivity, and in an element to be soldered to an electrode, to increase solderability.
A structure in which a second electrode layer is formed is used.
【0003】しかしながら、正特性サーミスタ素子にお
いて、電極材料としてAgを使用すると、両主面の電極
間においてサーマルマイグレーションが起こり、短絡事
故が発生する。そこで、従来より、マイグレーションを
防止する構造として、以下のような正特性サーミスタ素
子が提案されている。図1に示す従来の正特性サーミス
タ素子1は、円板状の正特性サーミスタ素体2の両主面
に電極3,4を形成した構造を有する。この構造では、
電極3,4は、Niよりなる内側電極層3a,4aと、
内側電極層3a,4aの周囲にギャップ領域を残すよう
により小さな径になるようにAgにより構成された外側
電極層3b,4bとを有する。すなわち、Agよりなる
外側電極層3b,4bの周囲にギャップ領域gを設ける
ことにより、外側電極層3b,4b間のマイグレーショ
ンの防止が図られている。However, when Ag is used as an electrode material in a positive temperature coefficient thermistor element, thermal migration occurs between the electrodes on both main surfaces, and a short circuit accident occurs. Therefore, conventionally, the following positive temperature coefficient thermistor elements have been proposed as a structure for preventing migration. The conventional positive temperature coefficient thermistor element 1 shown in FIG. 1 has a structure in which electrodes 3 and 4 are formed on both main surfaces of a disk-shaped positive temperature coefficient thermistor body 2. In this structure,
The electrodes 3 and 4 include inner electrode layers 3a and 4a made of Ni,
And outer electrode layers 3b and 4b made of Ag so as to have a smaller diameter so as to leave a gap region around the inner electrode layers 3a and 4a. That is, by providing the gap region g around the outer electrode layers 3b and 4b made of Ag, migration between the outer electrode layers 3b and 4b is prevented.
【0004】他方、図2に示す正特性サーミスタ素子5
は、上記正特性サーミスタ素子1における外側電極層3
b,4bの外側に露出している全面をはんだコーティン
グ層3c,4cで被覆した構造を有する。すなわち、は
んだ付け性に優れたはんだコーティング層3c,4cに
よりAgよりなる外側電極層3b,4bの外側に露出し
ている全面を被覆することにより、はんだ付け性をより
一層高めると共に、電極間マイグレーションをより確実
に防止することが図られている。On the other hand, the positive temperature coefficient thermistor element 5 shown in FIG.
Is the outer electrode layer 3 in the thermistor element 1
It has a structure in which the entire surface exposed outside b, 4b is covered with solder coating layers 3c, 4c. That is, by covering the entire surface exposed to the outside of the outer electrode layers 3b and 4b made of Ag with the solder coating layers 3c and 4c having excellent solderability, the solderability is further improved and migration between the electrodes is achieved. Is more reliably prevented.
【0005】[0005]
【発明が解決しようとする課題】図1に示した正特性サ
ーミスタ素子1では、内側電極層3a,4aがNi薄膜
よりなるため、該Ni薄膜の平面方向に図1(b)に示
すように膜抵抗Rが存在している。そのため、該膜抵抗
分によりわずかな電位差が生じるため、ギャップ領域g
を設けたとしても、なお電極間マイグレーションが発生
することがあった。よって、正特性サーミスタ素子1で
は、下地となる内側電極層3a,4aの膜厚を厚くし、
上記膜抵抗を低下させることが試みられている。しかし
ながら、Ni薄膜は内部応力が大きいため、その厚みを
厚くすればするほど半導体磁器よりなる正特性サーミス
タ素体2の表面に対する密着強度が低下する。よって、
電極3,4にはんだ付けが行うことが予定されている正
特性サーミスタ素子1では、電極3,4の密着強度が低
下するため、致命的な問題となっていた。In the positive temperature coefficient thermistor element 1 shown in FIG. 1, since the inner electrode layers 3a and 4a are made of a Ni thin film, as shown in FIG. There is a film resistance R. Therefore, a slight potential difference occurs due to the film resistance, and the gap region g
Is provided, migration between the electrodes may still occur. Therefore, in the positive temperature coefficient thermistor element 1, the thicknesses of the inner electrode layers 3a and 4a serving as bases are increased,
Attempts have been made to lower the film resistance. However, since the internal stress of the Ni thin film is large, the adhesion strength to the surface of the positive temperature coefficient thermistor element body 2 made of semiconductor porcelain decreases as the thickness increases. Therefore,
In the positive temperature coefficient thermistor element 1 scheduled to be soldered to the electrodes 3 and 4, the adhesion strength of the electrodes 3 and 4 is reduced, which is a fatal problem.
【0006】他方、図2に示した正特性サーミスタ素子
5では、Agよりなる外側電極層3b,4bがはんだコ
ーティング層3c,4cで被覆されているため電極間マ
イグレーションが確実に防止されるものの、はんだコー
ティング層3c,4cを構成するSn、PbまたはSn
−Pb合金は熱伝導性が低い。そのため、正特性サーミ
スタ素子5の熱応答性や熱復帰速度が悪化し、正特性サ
ーミスタ素子としての特性の劣化を引き起こすという問
題があった。On the other hand, in the positive temperature coefficient thermistor element 5 shown in FIG. 2, although the outer electrode layers 3b, 4b made of Ag are covered with the solder coating layers 3c, 4c, migration between the electrodes is surely prevented. Sn, Pb or Sn constituting the solder coating layers 3c and 4c
-Pb alloy has low thermal conductivity. For this reason, there has been a problem that the thermal response and the heat recovery speed of the positive temperature coefficient thermistor element 5 are deteriorated, and the characteristics of the positive temperature coefficient thermistor element are deteriorated.
【0007】本発明の目的は、はんだ付け対応型の正特
性サーミスタ素子であって、電極間のマイグレーション
の発生を防止し得るだけでなく、電極密着強度及び特性
の劣化が生じ難い構造を備えたものを提供することにあ
る。An object of the present invention is to provide a positive temperature coefficient thermistor element compatible with soldering, which has a structure which can not only prevent the occurrence of migration between electrodes but also hardly cause deterioration of electrode adhesion strength and characteristics. Is to provide things.
【0008】[0008]
【課題を解決するための手段】本発明は、正特性サーミ
スタ素体の両主面に電極を形成してなる正特性サーミス
タ素子において、下記の構成を備えることを特徴とす
る。すなわち、上記電極が、正特性サーミスタ素体の主
面にオーミック接触している第1の電極層と、第1の電
極層上において第1の電極層の周辺近傍に所定幅の領域
を残して又は第1の電極層と同じ大きさに形成されてお
り、かつ第1の電極層よりも比抵抗の低いAlを主成分
とする材料よりなる第2の電極層と、第2の電極層上に
おいて第2の電極層の周辺近傍に所定幅の領域を残して
形成されており、かつ第1,第2の電極層よりもはんだ
付け性に優れた材料よりなる第3の電極層とを備えるこ
とを特徴とする。The present invention is characterized in that a positive temperature coefficient thermistor element having electrodes formed on both main surfaces of a positive temperature coefficient thermistor body has the following configuration. That is, the first electrode layer is in ohmic contact with the main surface of the positive temperature coefficient thermistor body, and a region of a predetermined width is left on the first electrode layer near the periphery of the first electrode layer. Alternatively, a second electrode layer which is formed to have the same size as the first electrode layer and has a lower specific resistance than the first electrode layer and made of a material containing Al as a main component; And a third electrode layer formed of a material having better solderability than the first and second electrode layers, the third electrode layer being formed leaving a region of a predetermined width near the periphery of the second electrode layer. It is characterized by the following.
【0009】上記第1の電極層を構成する材料として
は、半導体磁器にオーミック接触する適宜の材料、例え
ばNi、Cr、Ti、W等を用い得る。また、第3の電
極層を構成する材料としては、Niよりも半田付け性に
優れた材料、例えばAg、Cu、Au等を用い得る。上
記第2の電極層は、好ましくは、特願平2−34086
0号に開示されているようにAl及びSiを重量比で4
8〜96:4〜52の割合で含有するAl−Si合金に
より構成され、それによって電極の正特性サーミスタ素
体への密着強度の低下をきたすことなく、電極間マイグ
レーションをより一層確実に防止し得る。As a material for forming the first electrode layer, an appropriate material which makes ohmic contact with the semiconductor porcelain, for example, Ni, Cr, Ti, W or the like can be used. Further, as a material forming the third electrode layer, a material having better solderability than Ni, for example, Ag, Cu, Au, or the like can be used. The above-mentioned second electrode layer is preferably made of Japanese Patent Application No. 2-34086.
As disclosed in No. 0, Al and Si are mixed at a weight ratio of 4%.
It is composed of an Al-Si alloy containing at a ratio of 8 to 96: 4 to 52, thereby preventing migration between the electrodes more reliably without lowering the adhesion strength of the electrodes to the PTC thermistor body. obtain.
【0010】[0010]
【作用】本発明の正特性サーミスタ素子では、第2の電
極層が、第1の電極層を構成している材料よりも比抵抗
の低いAlを主成分とする材料で構成されている。従っ
て、第2の電極層の膜抵抗が小さいため、はんだ付け性
に優れた第3の電極層をAgで構成した場合であって
も、第3の電極層周辺近傍における電位差を小さくする
ことができ、従ってマイグレーションの発生を防止する
ことができる。In the positive temperature coefficient thermistor element of the present invention, the second electrode layer is made of a material mainly composed of Al having a lower specific resistance than the material of the first electrode layer. Therefore, since the film resistance of the second electrode layer is small, it is possible to reduce the potential difference near the periphery of the third electrode layer even when the third electrode layer having excellent solderability is made of Ag. Therefore, the occurrence of migration can be prevented.
【0011】また、Alを主成分とする電極材料はその
膜厚を厚くした場合であっても、電極の密着強度が低下
し難い。よって、第2の電極層の膜厚を高めて膜抵抗を
より一層低めることによりマイグレーションの発生をよ
り確実に防止した場合であっても、電極の密着強度は充
分な大きさに保たれる。すなわち、本発明は、比抵抗の
小さなAlを主成分とする材料で第2の電極層を構成
し、該第2の電極層をオーミック接触性の第1の電極層
とAgのようなはんだ付け性に優れた第3の電極層との
間に介在させることにより、電極密着強度の低下をもた
らすことなくマイグレーションの発生を防止したことに
特徴を有する。In addition, even if the thickness of the electrode material containing Al as a main component is increased, the adhesion strength of the electrode does not easily decrease. Therefore, even when the thickness of the second electrode layer is increased and the film resistance is further reduced to thereby more reliably prevent the occurrence of migration, the adhesion strength of the electrode is maintained at a sufficient level. That is, according to the present invention, the second electrode layer is made of a material mainly composed of Al having a small specific resistance, and the second electrode layer is connected to the first electrode layer having ohmic contact with a solder such as Ag. By being interposed between the third electrode layer and the third electrode layer having an excellent property, the occurrence of migration is prevented without lowering the electrode adhesion strength.
【0012】[0012]
【実施例】以下、本発明の非限定的な実施例を挙げるこ
とにより、本発明を明らかにする。直径14mm×厚み
2mmの円盤状の形状を有し、かつ両主面間の抵抗値が
7Ωのチタン酸バリウム系半導体磁器よりなる正特性サ
ーミスタ素体を用意し、下記の要領で電極を形成し、実
施例及び比較例1〜3の各正特性サーミスタ素子を作製
した。The present invention will be clarified by the following non-limiting examples. A positive-characteristic thermistor body made of a barium titanate-based semiconductor porcelain having a disk-like shape with a diameter of 14 mm x a thickness of 2 mm and a resistance value between both main surfaces of 7 Ω is prepared, and electrodes are formed in the following manner. The positive temperature coefficient thermistor elements of Examples and Comparative Examples 1 to 3 were produced.
【0013】実施例 図3(a)及び(b)に示すように、上記のようにして
用意した正特性サーミスタ素体11の両主面の全面にN
iを1.5μmの厚みに形成し、第1の電極層12a,
13aを形成した。次に、第1の電極層12a,13a
上に、第1の電極層12a,13aと同心の直径13m
mの円形となるようにAl−Siペースト(Al及びS
iを重量比で84対16の割合で含有してなるペース
ト)を10μmの厚みに塗布し、第2の電極層12b,
13bとした。さらに、第2の電極層12b,13b上
に、第2の電極層12b,13bと同心の直径6mmの
円形領域に、Agペーストを3.0μmの厚みに塗布
し、第3の電極層12c,13cとした。なお、第2の
電極層12b,13b及び第3の電極層12c,13c
については、上記各ペーストを塗布した後600℃で焼
き付けることにより電極として完成させた。[0013] As shown in the example Figure 3 (a) and (b), N on the entire surface of both main surfaces of the PTC thermistor element 11 prepared as described above
i is formed to a thickness of 1.5 μm, and the first electrode layer 12a,
13a was formed. Next, the first electrode layers 12a and 13a
Above, a diameter of 13 m concentric with the first electrode layers 12a and 13a
m-Al-Si paste (Al and S
i) in a weight ratio of 84:16) to a thickness of 10 μm, and a second electrode layer 12b,
13b. Further, on the second electrode layers 12b and 13b, an Ag paste is applied to a circular region having a diameter of 6 mm concentric with the second electrode layers 12b and 13b to a thickness of 3.0 μm, and the third electrode layers 12c and 13b are coated with Ag paste. 13c. Note that the second electrode layers 12b and 13b and the third electrode layers 12c and 13c
Was applied to each of the above pastes and baked at 600 ° C. to complete electrodes.
【0014】比較例1 図4に示すように、上記正特性サーミスタ素体11の両
主面にNiを1.5μmの厚みにめっきし、内側電極層
22a,23aを形成し、内側電極層22a,23a上
に第1の電極層22a,23aと同心の直径11mmの
円形領域にAgペーストを塗布し、600℃の温度で焼
き付けることにより外側電極層22b,23bを形成し
た。 Comparative Example 1 As shown in FIG. 4, Ni was plated on both main surfaces of the positive temperature coefficient thermistor body 11 to a thickness of 1.5 μm to form inner electrode layers 22a and 23a. , 23a, an Ag paste was applied to a circular region having a diameter of 11 mm concentric with the first electrode layers 22a, 23a, and baked at a temperature of 600 ° C. to form outer electrode layers 22b, 23b.
【0015】比較例2 比較例1で用意した正特性サーミスタ素子を溶融はんだ
に浸漬し、図5に示すように外側電極層22b,23b
の外部に露出している部分の全面をはんだコーティング
層22c,23cでコーティングした。COMPARATIVE EXAMPLE 2 The PTC thermistor element prepared in Comparative Example 1 was immersed in molten solder to form outer electrode layers 22b and 23b as shown in FIG.
Was coated with the solder coating layers 22c and 23c.
【0016】比較例3 比較例1の正特性サーミスタ素子においてNiよりなる
内側電極層の膜厚を5μmに変更したことを除いては、
比較例1と同様にして正特性サーミスタ素子の電極を作
製した。上記のようにして用意した実施例及び比較例1
〜3の各正特性サーミスタ素子の電極に、はんだめっき
が施された直径0.65mmのリード線を、はんだごて
を用いてはんだ付けし、各正特性サーミスタ素子の特性
及びリード線引張強度を以下の要領で測定した。結果
を、下記の表1に示す。COMPARATIVE EXAMPLE 3 In the positive temperature coefficient thermistor element of Comparative Example 1, except that the thickness of the inner electrode layer made of Ni was changed to 5 μm.
In the same manner as in Comparative Example 1, an electrode of a positive temperature coefficient thermistor element was manufactured. Example and Comparative Example 1 prepared as described above
A soldered iron lead wire having a diameter of 0.65 mm is soldered to the electrodes of each of the positive temperature coefficient thermistor elements (1) to (3) using a soldering iron, and the characteristics and lead wire tensile strength of each positive temperature coefficient thermistor element are measured. It was measured in the following manner. The results are shown in Table 1 below.
【0017】電極間抵抗値…25±1℃において各正特
性サーミスタ素子を1時間以上放置した後、電極間抵抗
値を測定した。 耐電圧…正特性サーミスタ素子に100Vの電圧を印加
し、さらにゆっくりと昇圧し、正特性サーミスタ素子が
破壊した時の電圧値を耐電圧として記録した。 マイグレーション試験…220℃の雰囲気中で200V
の電圧を印加し、マイグレーションによるスパークが発
生するまでの時間を記録した。なお、記録時間の最大値
は1万時間とし、1万時間経過した段階でもスパークが
発生しない場合にはマイグレーション無しとした。Interelectrode resistance value: Each positive temperature coefficient thermistor element was left at 25 ± 1 ° C. for 1 hour or more, and then the interelectrode resistance value was measured. Withstand voltage: A voltage of 100 V was applied to the positive-characteristic thermistor element, the voltage was further increased slowly, and the voltage value when the positive-characteristic thermistor element was broken was recorded as the withstand voltage. Migration test: 200V in 220 ° C atmosphere
Was applied, and the time until spark due to migration occurred was recorded. The maximum value of the recording time was set to 10,000 hours, and if no spark occurred even after 10,000 hours, no migration was performed.
【0018】PTC復帰時間…各正特性サーミスタ素子
に250Vの電圧を10分間印加した後、25℃の温度
雰囲気中に放置し、通常の25℃における電極間抵抗値
±10%の範囲内まで抵抗値が復帰するのに要した時間
を測定した。 リード線引張強度…図6に示すように、一方のリード線
31をL字状に曲げ、曲げられた先端側を正特性サーミ
スタ素体11上の電極30(電極の積層構造は略す)か
ら遠ざかる方向に引っ張った場合に、リード線31がは
ずれるまでの最大荷重をリード線引張強度として測定し
た。 また、下記の表1においては、比較のために、上記正特
性サーミスタ素体11の両主面にIn−Ga合金を塗布
し、抵抗値、耐電圧及びPTC復帰時間を測定した値
を、正特性サーミスタ素体自体の特性を示すために併記
した。PTC recovery time: After applying a voltage of 250 V to each of the positive temperature coefficient thermistor elements for 10 minutes, the PTC is allowed to stand in an atmosphere of a temperature of 25 ° C. and has a resistance within a range of a normal electrode resistance value of ± 10% at 25 ° C. The time required for the values to return was measured. Lead wire tensile strength: As shown in FIG. 6, one lead wire 31 is bent into an L-shape, and the bent tip side is moved away from the electrode 30 (the electrode laminated structure is omitted) on the positive temperature coefficient thermistor body 11. When the wire was pulled in the direction, the maximum load until the lead wire 31 came off was measured as the lead wire tensile strength. In Table 1 below, for comparison, an In-Ga alloy was applied to both principal surfaces of the positive-characteristic thermistor body 11, and the measured values of resistance, withstand voltage, and PTC recovery time were positive. The characteristics of the thermistor element itself are shown together to show the characteristics.
【0019】[0019]
【表1】 [Table 1]
【0020】表1から明らかなように、比較例1,3の
正特性サーミスタ素子では、それぞれ、1230時間経
過後及び8560時間経過後に電極間マイグレーション
が生じた。これは、比較例1では、Niよりなる内側の
電極層が比較的薄いため、膜抵抗によりマイグレーショ
ンが発生しているものと思われる。また、比較例3で
は、Niよりなる内側電極層の膜厚が比較例1に比べて
厚くされている分だけマイグレーションの発生時間が遅
くなっているが、やはり電極間マイグレーションが発生
することが避けられなかった。As apparent from Table 1, in the positive temperature coefficient thermistor elements of Comparative Examples 1 and 3, migration between electrodes occurred after 1230 hours and after 8560 hours, respectively. This is presumably because in Comparative Example 1, migration occurred due to film resistance because the inner electrode layer made of Ni was relatively thin. Further, in Comparative Example 3, although the migration generation time is delayed by the thickness of the inner electrode layer made of Ni as compared with Comparative Example 1, migration between the electrodes is also avoided. I couldn't.
【0021】さらに、比較例2では、はんだコーティン
グ層22c,23cが形成されているため電極間マイグ
レーションの発生は見られなかったものの、PTC復帰
時間が430秒と非常に長く、かつはんだコーティング
層22c,23cにより熱放散性が低下しているためか
耐電圧特性も劣化していることがわかる。さらに、比較
例3の正特性サーミスタ素子では、リード線引張強度が
0.8kgと非常に小さくなっている。これに対して、
実施例の正特性サーミスタ素子では、正特性サーミスタ
素体自体の特性と、抵抗値、耐電圧及びPTC復帰時間
のいずれにおいても差がなく、しかもマイグレーション
が生じず、かつリード線引張強度も充分な値であった。Furthermore, in Comparative Example 2, although the occurrence of migration between the electrodes was not observed because the solder coating layers 22c and 23c were formed, the PTC recovery time was extremely long at 430 seconds, and the solder coating layer 22c , 23c indicate that the withstand voltage characteristic was also deteriorated probably because the heat dissipation was reduced. Furthermore, in the positive temperature coefficient thermistor element of Comparative Example 3, the lead wire tensile strength was as low as 0.8 kg. On the contrary,
In the positive temperature coefficient thermistor element of the embodiment, there is no difference between the characteristics of the positive temperature coefficient thermistor element itself and any of the resistance value, the withstand voltage and the PTC return time, and furthermore, no migration occurs and the lead wire tensile strength is sufficient Value.
【0022】[0022]
【発明の効果】本発明によれば、正特性サーミスタ素体
の主面にオーミック接触している第1の電極層と、はん
だ付け性に優れた材料よりなる第3の電極層との間に比
抵抗の小さなAlを主成分とする第2の電極層が介在さ
れており、かつ第1〜第3の電極層の大きさが上記特定
の関係とされているため、電極間マイグレーションの発
生を確実に防止することができると共に、電極の正特性
サーミスタ素体の主面に対する密着強度が効果的に高め
られる。According to the present invention, between the first electrode layer in ohmic contact with the main surface of the positive temperature coefficient thermistor body and the third electrode layer made of a material having excellent solderability. Since the second electrode layer mainly composed of Al having a small specific resistance is interposed and the size of the first to third electrode layers has the above-described specific relationship, the occurrence of migration between the electrodes is reduced. This can be reliably prevented, and the adhesion strength of the electrode to the main surface of the positive temperature coefficient thermistor body is effectively increased.
【0023】よって、本発明によれば、電気的特性の劣
化を生じさせることなく、電極間マイグレーションが生
じ難くかつ電極密着強度に優れた正特性サーミスタ素子
を提供することが可能となる。Thus, according to the present invention, it is possible to provide a positive temperature coefficient thermistor element which is unlikely to cause migration between electrodes and has excellent electrode adhesion strength without causing deterioration of electric characteristics.
【図1】(a)は従来の正特性サーミスタ素子を示す模
式図、(b)は従来の正特性サーミスタ素子の問題点を
説明するための部分拡大側面図。FIG. 1A is a schematic diagram showing a conventional PTC thermistor element, and FIG. 1B is a partially enlarged side view for explaining a problem of the conventional PTC thermistor element.
【図2】従来の正特性サーミスタ素子の他の例を示す側
面図。FIG. 2 is a side view showing another example of the conventional positive temperature coefficient thermistor element.
【図3】(a)は実施例の正特性サーミスタ素子の平面
図、(b)は側面図。FIG. 3A is a plan view of a PTC thermistor element according to an embodiment, and FIG. 3B is a side view.
【図4】比較例1の正特性サーミスタ素子を示す側面
図。FIG. 4 is a side view showing a positive temperature coefficient thermistor element of Comparative Example 1.
【図5】比較例2の正特性サーミスタ素子を示す側面
図。FIG. 5 is a side view showing a positive temperature coefficient thermistor element of Comparative Example 2.
【図6】リード線引張強度の測定方法を説明するための
側面図。FIG. 6 is a side view for explaining a method for measuring a lead wire tensile strength.
11…正特性サーミスタ素体 12,13…電極 12a,13a…第1の電極層 12b,13b…第2の電極層 12c,13c…第3の電極層 11 Positive characteristic thermistor element 12, 13 ... Electrode 12a, 13a ... First electrode layer 12b, 13b ... Second electrode layer 12c, 13c ... Third electrode layer
Claims (1)
形成してなる正特性サーミスタ素子であって、 前記電極が、正特性サーミスタ素体の主面にオーミック
接触している第1の電極層と、 前記第1の電極層上において第1の電極層の周辺近傍に
所定幅の領域を残して又は第1の電極層と同じ大きさに
形成されており、かつ第1の電極層よりも比抵抗の低い
Alを主成分とする材料よりなる第2の電極層と、 前記第2の電極層上において、第2の電極層の周囲に所
定幅の領域を残して形成されておりかつ第1,第2の電
極層よりもはんだ付け性に優れた材料よりなる第3の電
極層とを備えることを特徴とする、正特性サーミスタ素
子。1. A positive temperature coefficient thermistor element comprising electrodes formed on both main surfaces of a positive temperature coefficient thermistor body, wherein said electrode is in ohmic contact with a main surface of the positive temperature coefficient thermistor body. An electrode layer, formed on the first electrode layer and leaving a region of a predetermined width near the periphery of the first electrode layer or the same size as the first electrode layer; A second electrode layer made of a material containing Al as a main component and having a lower specific resistance than the second electrode layer, and a region having a predetermined width is formed around the second electrode layer on the second electrode layer. And a third electrode layer made of a material having better solderability than the first and second electrode layers.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3228892A JP2967221B2 (en) | 1992-02-19 | 1992-02-19 | Positive thermistor element |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3228892A JP2967221B2 (en) | 1992-02-19 | 1992-02-19 | Positive thermistor element |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH05234705A JPH05234705A (en) | 1993-09-10 |
| JP2967221B2 true JP2967221B2 (en) | 1999-10-25 |
Family
ID=12354780
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3228892A Expired - Lifetime JP2967221B2 (en) | 1992-02-19 | 1992-02-19 | Positive thermistor element |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2967221B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6498561B2 (en) * | 2001-01-26 | 2002-12-24 | Cornerstone Sensors, Inc. | Thermistor and method of manufacture |
| CN1332405C (en) * | 2004-09-02 | 2007-08-15 | 中国科学院新疆理化技术研究所 | Negative temperature coefficient thermosensitive resistance material and its producing method |
-
1992
- 1992-02-19 JP JP3228892A patent/JP2967221B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH05234705A (en) | 1993-09-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4053864A (en) | Thermistor with leads and method of making | |
| JP3494431B2 (en) | Manufacturing method of ceramic electronic component and ceramic electronic component | |
| JP3446713B2 (en) | Ceramic electronic components with lead terminals | |
| JP2000294403A (en) | Chip thermistor | |
| JP2967221B2 (en) | Positive thermistor element | |
| JP2559524Y2 (en) | Positive characteristic thermistor device | |
| JP2897486B2 (en) | Positive thermistor element | |
| JP2699716B2 (en) | Positive thermistor element | |
| JP3310010B2 (en) | Positive characteristic thermistor device | |
| JPS60701A (en) | Ormic electrode | |
| JPH07105719A (en) | Conductive paste and resistor element | |
| JPH06151110A (en) | Ntc thermistor for surface installation | |
| JPH07297008A (en) | Positive temperature coefficient thermistor and thermistor device using the thermistor | |
| JPH0316255Y2 (en) | ||
| JPS6010701A (en) | Positive temperature coefficient thermistor | |
| JP3019568B2 (en) | Ceramic electronic component and method of manufacturing the same | |
| JP3169089B2 (en) | Positive thermistor | |
| JP3166784B2 (en) | Positive thermistor element | |
| JP3413929B2 (en) | Manufacturing method of positive temperature coefficient thermistor | |
| JP2504309B2 (en) | Method for forming electrode of porcelain semiconductor element | |
| JPH0729702A (en) | Ptc thermistor | |
| JPH04188801A (en) | Chip type positive temperature coefficient thermistor | |
| JP3169096B2 (en) | Positive thermistor | |
| JPS59220901A (en) | Method of forming electrode of ceramic electronic part | |
| JPH0370361B2 (en) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080820 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080820 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090820 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090820 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100820 Year of fee payment: 11 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20100820 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20110820 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20120820 |
|
| EXPY | Cancellation because of completion of term | ||
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20120820 |