[go: up one dir, main page]

JP2938940B2 - Surgical microscope - Google Patents

Surgical microscope

Info

Publication number
JP2938940B2
JP2938940B2 JP2207911A JP20791190A JP2938940B2 JP 2938940 B2 JP2938940 B2 JP 2938940B2 JP 2207911 A JP2207911 A JP 2207911A JP 20791190 A JP20791190 A JP 20791190A JP 2938940 B2 JP2938940 B2 JP 2938940B2
Authority
JP
Japan
Prior art keywords
beam splitter
image
observation
polarizing
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2207911A
Other languages
Japanese (ja)
Other versions
JPH0493912A (en
Inventor
孝 深谷
勝 村上
賢司 唐木
俊一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2207911A priority Critical patent/JP2938940B2/en
Publication of JPH0493912A publication Critical patent/JPH0493912A/en
Application granted granted Critical
Publication of JP2938940B2 publication Critical patent/JP2938940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、立体視するための二つの光軸を有する手術
用顕微鏡に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surgical microscope having two optical axes for stereoscopic viewing.

〔従来の技術〕 近年、手術手法,手術用具の発達に伴い微細な手術所
謂マイクロサージェリーが頻繁に行なわれるようになっ
てきた。マイクロサージェリーには、例えば眼科や脳神
経外科に例を見るように、術部を拡大観察するために手
術用顕微鏡が用いられる。一般に手術用顕微鏡は、第9
図に示すように、実体顕微鏡である鏡体1と鏡体1を所
望の位置,角度に移動し保持するための架台2とで構成
されている。
[Related Art] In recent years, with the development of surgical techniques and surgical tools, microscopic surgery, so-called microsurgery, has been frequently performed. As in microsurgery, for example, an operating microscope is used for magnifying and observing an operation site, as seen in, for example, ophthalmology and neurosurgery. Generally, an operating microscope is a ninth type.
As shown in the figure, the apparatus comprises a mirror 1 which is a stereo microscope and a gantry 2 for moving and holding the mirror 1 to a desired position and angle.

又、鏡体1の実体光学系は、第10図に示した如き構成
を有しており、図中、3は対物レンズ、4は変倍光学
系、5はビームスプリッタ、6は接眼レンズである。そ
して、術部7から発せられた光は、対物レンズ3,変倍光
学系4,4を介してビームスプリッタ5,5により分割されつ
つ結像せしめられ、その像が接眼レンズ6,6を介して術
者の目により立体観察される。又、一方のビームスプリ
ッタ5により反射されて一旦結像した光は、リレーレン
ズ8,偏向プリズム9,接眼レンズ10から構成される側視鏡
11に入射・結像し、技術教育の目的などで第三者により
観察され、他方のビームスプリッタ5で反射されて一旦
結像せしめられた光は、結像レンズ12,撮像素子13から
構成されるビデオカメラ14に入射・結像し、同じく術技
教育用にビデオ録画される。
Further, the real optical system of the mirror body 1 has a configuration as shown in FIG. 10, wherein 3 is an objective lens, 4 is a variable power optical system, 5 is a beam splitter, and 6 is an eyepiece. is there. Then, the light emitted from the operation section 7 is imaged while being split by the beam splitters 5, 5 through the objective lens 3, the variable power optical systems 4, 4, and the image is passed through the eyepieces 6, 6. 3D observation by the surgeon's eyes. The light reflected by one of the beam splitters 5 and once formed into an image is supplied to a side endoscope composed of a relay lens 8, a deflecting prism 9, and an eyepiece 10.
Light incident on and imaged at 11, observed by a third party for the purpose of technical education, etc., and reflected once by the other beam splitter 5 to form an image is formed by an imaging lens 12 and an imaging device 13. Incident on the video camera 14, which forms an image, and is also video-recorded for technical training.

しかし、このような構成では、側視鏡11,ビデオカメ
ラ14は実体光学系の二つの光路のうち一つの光路のみを
用いて観察或いはビデオ撮影しているため、第三者は術
者のように立体観察はできない。
However, in such a configuration, the side endoscope 11 and the video camera 14 perform observation or video shooting using only one of the two optical paths of the stereoscopic optical system. 3D observation is not possible.

又、第三者が立体視観察するためには、従来から実体
光学系の一つの光路を瞳分割する手段がとられている
が、手術用顕微鏡は手術をするための作業スペースを広
くとっている。即ち焦点距離を長くしているために、そ
のような手段で得られる立体感は二つの光路を使って立
体観察する術者の立体感と比較すると極度に劣る。
In addition, in order to allow a third party to perform stereoscopic observation, conventionally, means for dividing one optical path of the stereoscopic optical system into pupils has been used, but a surgical microscope requires a large working space for performing surgery. I have. That is, since the focal length is lengthened, the stereoscopic effect obtained by such means is extremely inferior to the stereoscopic effect of an operator who performs stereoscopic observation using two optical paths.

又、術部を立体観察するために術者の観察光学系とは
別の第2の観察光学系を有する手術用顕微鏡として、例
えば特開昭61−16736号公報に記載のものがある。これ
は第11図に示した如き構成を有しており、16は対物レン
ズ、17は変倍光学系、18は接眼レンズ、19は第2の変倍
光学系、20は偏向ミラー、21は第2の接眼レンズであ
る。そして、術部15から発せられた光は、対物レンズ1
6,変倍光学系17,17により結像せしめられ、接眼レンズ1
8,18を介して術者の目により立体観察される。又、第2
の観察光学系では、対物レンズ16,変倍光学系19,19によ
り結像せしめられ、偏向ミラー20,20,第2の接眼レンズ
21,21を介して第三者の目により立体観察される。第12
図は、変倍光学系17,17及び第2の変倍光学系19,19を対
物レンズ16の方向から見た図である。この構成によれ
ば、第三者による良好な立体観察が可能となる。
Further, as an operation microscope having a second observation optical system different from the operator's observation optical system for stereoscopic observation of an operation part, there is one disclosed in, for example, JP-A-61-16736. This has a configuration as shown in FIG. 11, where 16 is an objective lens, 17 is a variable power optical system, 18 is an eyepiece, 19 is a second variable power optical system, 20 is a deflecting mirror, and 21 is a deflecting mirror. This is the second eyepiece. The light emitted from the operation section 15 is
6, Focused by the variable power optical system 17, 17 and the eyepiece 1
It is stereoscopically observed through the eyes of the operator via 8,18. Also, the second
In the observation optical system, an image is formed by the objective lens 16 and the variable power optical systems 19, 19, and the deflecting mirrors 20, 20, the second eyepiece
It is stereoscopically viewed by the eyes of a third party via 21,21. Twelfth
The figure is a view of the variable power optical systems 17 and 17 and the second variable power optical systems 19 and 19 viewed from the direction of the objective lens 16. According to this configuration, good stereoscopic observation by a third party is possible.

ところで、ここまでは第三者による立体観察について
述べたが、次にビデオカメラによる立体撮影について簡
単に説明する。従来から手術用顕微鏡の観察像を立体撮
影するためには、第10図に示した二つのビームスプリッ
タ5,5の反射光を二つのビデオカメラに夫々入射・結像
させ、何らかの記録媒体に記録する方法がとられてい
る。そして、記録された観察像は、TVモニターに写し出
され、例えば偏光板等を利用して、手術用顕微鏡の左の
観察像はモニター観察者の左眼へ且つ右の観察像は右眼
へ夫々入射させることにより立体観察されるようになっ
ている。
By the way, the three-dimensional observation by a third party has been described so far, but the three-dimensional imaging by a video camera will be briefly described. Conventionally, in order to stereoscopically image the observation image of an operating microscope, the reflected light of the two beam splitters 5, 5 shown in FIG. 10 are respectively incident on two video cameras, imaged, and recorded on some recording medium. The way to do it is taken. Then, the recorded observation image is displayed on a TV monitor. For example, using a polarizing plate or the like, the left observation image of the surgical microscope is directed to the left eye of the monitor observer and the right observation image is directed to the right eye. The light is made to be stereoscopically observed by being incident.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、上記側視鏡は、立体観察ができないから、微
細且つ複雑なマイクロサージェリーの術技を修得する目
的においては充分満足して使用することはできないとい
う欠点があった。又、上記瞳分割により得た立体像も術
者の立体感に較べて極度に劣るため、実用的ではないと
いう問題があった。更に、特開昭61−16736号公報に記
載の手術用顕微鏡においては、良好な立体観察が可能と
なるものの、鏡体内に二つの立体観察光学系を有するた
めに、機構が複雑になるばかりか、大型化するため手術
をするための作業スペースが著しく狭められるという重
大な欠点がある。又、高価になることは云うまでもな
い。
However, since the above-mentioned sideoscope cannot perform stereoscopic observation, it has a drawback that it cannot be used satisfactorily for the purpose of acquiring fine and complicated microsurgery techniques. In addition, there is a problem that the stereoscopic image obtained by the above-mentioned pupil division is not practical because it is extremely inferior to the stereoscopic effect of the operator. Further, in the surgical microscope described in Japanese Patent Application Laid-Open No. 61-16736, although good stereoscopic observation is possible, not only the mechanism becomes complicated due to having two stereoscopic optical systems in the mirror body, but also the mechanism becomes complicated. However, there is a serious drawback that the working space for performing the operation is significantly narrowed due to the size increase. Needless to say, it becomes expensive.

又、立体撮影においては、上記従来例の場合2台のビ
デオカメラを鏡体の周囲に配置しなければならず、一層
作業スペースが狭められるばかりか鏡体部の重量を著し
く増加させるので、通常このような高重量に対応できる
架台を有さない手術用顕微鏡においては、もはや鏡体部
を所望の位置,角度に移動することすら困難となるとい
う問題がある。又、立体撮影をするために必ず2台のビ
デオカメラを使用するので、立体撮影でない撮影に比較
して飛躍的に高価なものになるという問題もある。
In the case of stereoscopic photography, two video cameras must be arranged around the mirror in the case of the above-described conventional example, which not only further reduces the working space but also significantly increases the weight of the mirror. In a surgical microscope having no mount that can handle such a high weight, there is a problem that it is difficult to even move the mirror body to a desired position and angle. In addition, since two video cameras are always used to perform three-dimensional imaging, there is a problem that the cost is dramatically increased as compared with non-stereoscopic imaging.

本発明は、以上の問題点に鑑み、手術をするための作
業スペースを狭めることなく、術技を修得する目的に対
応すべき充分な立体感が得られる観察像を第三者或いは
ビデオカメラに供給でき、小型軽量にして構造が簡単で
安価である手術用顕微鏡を提供することを目的とする。
In view of the above problems, the present invention provides a third party or a video camera with an observation image that can provide a sufficient three-dimensional effect corresponding to the purpose of acquiring a surgical technique without narrowing a working space for performing an operation. It is an object of the present invention to provide a surgical microscope which can be supplied, is small, lightweight, has a simple structure and is inexpensive.

〔課題を解決するための手段〕[Means for solving the problem]

本発明による手術用顕微鏡は、 立体視するための二つの光軸を有する手術用顕微鏡に
おいて、 前記二つの光軸上に光路分割手段を配置して前記二つ
の光軸上の各光束の少なくとも一部ずつを前記二つの光
軸と交わる軸線方向に重なるように指向させると共に、
前記二つの光軸と交わる軸線方向に重なるように指向さ
せられる二つの光束が互いに異なる振動方向の偏光成分
となるようにする偏光手段を備えていることを特徴とし
ている。
An operating microscope according to the present invention is an operating microscope having two optical axes for stereoscopic viewing, wherein an optical path splitting means is disposed on the two optical axes and at least one of the light beams on the two optical axes is provided. While directing each part so as to overlap in the axial direction intersecting the two optical axes,
It is characterized in that a polarizing means is provided so that two light beams directed so as to overlap in an axial direction intersecting the two optical axes have polarization components having different vibration directions.

〔作 用〕(Operation)

上記構成によれば、再び偏光成分を二つに分離,結像
させる光学系を備えた側視鏡と組み合わせるだけで、十
分な立体感のある立体観察像を術者以外の観察者に供給
できる。又、ネマティック液晶により偏光成分を選択し
て透過させて結像させるビデオカメラと組み合わせるだ
けで十分な立体感のある立体観察像をビデオカメラに供
給できる。従って、従来と同じ作業スペースを確保でき
ると共に、十分な立体感のある立体観察或いは立体撮影
が可能になり、更に手術用顕微鏡自体も小型軽量にして
構造が簡単で安価で済む。
According to the above configuration, a stereoscopic observation image having a sufficient stereoscopic effect can be supplied to an observer other than the operator simply by combining the optical system with a side endoscope having an optical system that separates and forms a polarized light component into two again. . Also, a stereoscopic observation image with a sufficient three-dimensional effect can be supplied to the video camera simply by combining it with a video camera that forms an image by selecting and transmitting a polarization component using a nematic liquid crystal. Therefore, the same working space as in the related art can be secured, stereoscopic observation or stereoscopic photography with a sufficient stereoscopic effect can be performed, and the surgical microscope itself can be reduced in size and weight, and the structure can be simplified and inexpensive.

〔実施例〕〔Example〕

以下、図示した実施例に基づき本発明を詳細に説明す
る。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.

第1図は本発明による手術用顕微鏡の第1実施例の通
常使用状態での光学系を示す図、第2図は上記第1実施
例の側視鏡使用状態での光学系を示す図である。
FIG. 1 is a diagram showing an optical system of a first embodiment of an operating microscope according to the present invention in a normal use state, and FIG. 2 is a diagram showing an optical system of the first embodiment in a sideoscope use state. is there.

第1図において、23は対物レンズ、24は変倍光学系、
25は入射面に平行な振動方向の偏光成分の大半を透過し
且つ入射面に垂直な振動方向の偏光成分の大半を反射す
る偏光ビームスプリッタ、26は接眼レンズである。第2
図において、27は偏光面を前記偏光ビームスプリッタ25
の入射面と45゜をなすように配置した1/4波長板、28は
反射鏡であって、これらが偏光面を90゜回転させる偏光
部材29を構成している。偏光部材29は、第2図において
紙面に向かって右側に取り付けてあり、一方の偏光ビー
ムスプリッタ25の反射光軸に対して反射鏡28が垂直にな
るように鏡体に着脱自在となっている。
In FIG. 1, 23 is an objective lens, 24 is a variable power optical system,
Reference numeral 25 denotes a polarization beam splitter that transmits most of the polarized light components in the vibration direction parallel to the incident surface and reflects most of the polarized light components in the vibration direction perpendicular to the incident surface, and reference numeral 26 denotes an eyepiece. Second
In the figure, reference numeral 27 denotes a polarization plane of the polarization beam splitter 25.
A quarter-wave plate 28 arranged at an angle of 45.degree. With respect to the incident surface is a reflecting mirror, and these constitute a polarizing member 29 for rotating the polarizing plane by 90.degree .. The polarizing member 29 is attached to the right side as viewed in FIG. 2 and is detachable from the mirror body so that the reflecting mirror 28 is perpendicular to the reflecting optical axis of one polarizing beam splitter 25. .

30はリレーレンズ、31は前記偏光ビームスプリッタ25
の入射面に平行な振動方向の偏光成分の大半を透過し且
つ入射面に垂直な振動方向の偏光成分の大半を反射する
偏光ビームスプリッタ、32は偏光プリズム34、34は接眼
レンズであって、これらが側視鏡33を構成している。
30 is a relay lens, 31 is the polarizing beam splitter 25
A polarizing beam splitter that transmits most of the polarization component in the vibration direction parallel to the incident surface and reflects most of the polarization component in the vibration direction perpendicular to the incidence surface, 32 is a polarizing prism 34, 34 is an eyepiece, These constitute the sideoscope 33.

本実施例は上述の如く構成されているから、第1図に
示した状態においては、術部22より発せられた光は、対
物レン23,変倍光学系24,24を介して偏光ビームスプリッ
タ25,25により入射面に平行な振動方向の偏光成分と入
射面に垂直な振動方向の偏光成分に分割されつつ結像せ
しめられる。偏光ビームスプリッタ25,25を透過した入
射面に平行な振動方向の偏光成分による像は、接眼レン
ズ26,26を介して術者の目により立体観察される。
Since the present embodiment is configured as described above, in the state shown in FIG. 1, the light emitted from the operation section 22 is transmitted through the objective lens 23 and the variable power optical systems 24 and 24 to the polarization beam splitter. By means of 25 and 25, an image is formed while being split into a polarized light component in a vibration direction parallel to the incident surface and a polarized light component in a vibration direction perpendicular to the incident surface. An image formed by polarized light components in a vibration direction parallel to the incident surface that has passed through the polarization beam splitters 25 and 25 is stereoscopically viewed by the surgeon's eyes via the eyepieces 26 and 26.

一方、偏光ビームスプリッタ25,25により反射されて
一旦結像した入射面に垂直な振動方向の偏光成分は、図
示しない側視鏡やビデオカメラに入射して再結像する。
On the other hand, the polarized light component in the vibration direction perpendicular to the incident surface, which is reflected by the polarization beam splitters 25 and once forms an image, enters a not shown side endoscope or a video camera to form an image again.

従って、通常は従来の手術用顕微鏡と同様に観察され
たり、非立体的に第三者により観察されたりビデオ録画
されたりする。
Therefore, they are usually observed in the same manner as a conventional surgical microscope, or are non-stereoscopically observed or video-recorded by a third party.

又、第2図に示した状態においては、術部22より発せ
られた光は、対物レンズ23,変倍光学系24,24を介して偏
光ビームスプリッタ25,25により入射面に平行な振動方
向の偏光成分と入射面に垂直な振動方向の偏光成分に分
割されつつ結像せしめられる。偏光ビームスプリッタ2
5,25を透過した入射面に平行な振動方向の偏光成分によ
る像は、接眼レンズ26,26を介して術者の左右眼により
立体観察される。紙面に向って右側の偏光ビームスプリ
ッタ25で反射された右眼の観察像を形成すべき入射面に
垂直な振動方向の偏光成分は、1/4波長板27を介し反射
鏡28で反射され再び1/4波長板27を介する即ち1/4波長板
を2回透過することにより偏光面が90゜回転して入射面
に平行な振動方向の偏光成分になり、初めに反射した紙
面に向って右側の偏光ビームスプリッタ25更には紙面に
向って左側の偏光ビームスプリッタ25をも透過して、前
記紙面に向って左側の偏光ビームスプリッタ25で反射さ
れた左眼観察像を形成すべき入射面に垂直な振動方向の
偏光成分と重なり、鏡体から出射される。鏡体から出射
された両偏光成分は、側視鏡33に入射しリレーレンズ30
を介して偏光ビームスプリッタ31により入射面に平行な
振動方向の偏光成分と入射面に垂直な振動方向の偏光成
分に再び分割される。そして、右眼観察像を形成すべき
入射面に平行な振動方向の偏光成分は、偏光ビームスプ
リッタ31を透過して結像し、接眼レンズ34を介して第三
者の右眼により観察される。一方、左眼観察像を形成す
べき入射面に垂直な振動方向の偏光成分は、偏光ビーム
スプリッタ31で反射され、更に表像を得るために配置さ
れている2回反射型の偏光プリズム32で反射されて結像
し、接眼レンズ34を介して第三者の左眼により観察され
る。従って、側視鏡と組み合わせるだけで術者と同じ立
体感のある観察像を第三者に提供することができる。そ
の上、従来と同じ作業スペースを確保できる。又、側視
鏡33にイメージローテーターを内蔵させれば、第三者の
観察姿勢を楽にできることは云うまでもない。又、本実
施例は、従来手術用顕微鏡においてビームスプリッタを
偏光ビームスプリッタに変え且つ偏光部材を取付けるだ
けで簡単に構成できる。従って、手術用顕微鏡自体も小
型軽量で安価になる。又、通常は従来の手術用顕微鏡と
同じ機能を持つことから、用途に合わせた使い分けがで
き、便利である。
Further, in the state shown in FIG. 2, the light emitted from the operative portion 22 is transmitted through the objective lens 23 and the variable power optical systems 24 and 24 by the polarizing beam splitters 25 and 25, and vibrates in a direction parallel to the incident surface. An image is formed while being divided into a polarized light component and a polarized light component in a vibration direction perpendicular to the incident surface. Polarizing beam splitter 2
The image formed by the polarized light components in the vibration direction parallel to the incident surface that has passed through the lenses 5 and 25 is stereoscopically viewed by the left and right eyes of the operator via the eyepieces 26 and 26. The polarized light component in the vibration direction perpendicular to the incident surface on which the observation image of the right eye is to be formed and reflected by the polarization beam splitter 25 on the right side toward the paper is reflected by the reflecting mirror 28 via the quarter-wave plate 27 and is again reflected. By passing through the quarter-wave plate 27 twice, that is, through the quarter-wave plate twice, the polarization plane is rotated by 90 ° to become a polarization component in a vibration direction parallel to the incident plane, and is directed toward the paper surface initially reflected. The right polarizing beam splitter 25 is further transmitted through the left polarizing beam splitter 25 further toward the paper surface, and is reflected on the left polarizing beam splitter 25 toward the paper surface. The light is superimposed on the polarized light component in the vertical vibration direction and emitted from the mirror. Both polarized light components emitted from the mirror enter the side endoscope 33 and enter the relay lens 30.
Is again split by the polarization beam splitter 31 into a polarization component in a vibration direction parallel to the incident surface and a polarization component in a vibration direction perpendicular to the incident surface. Then, the polarized light component in the vibration direction parallel to the incident surface on which the right-eye observation image is to be formed is transmitted through the polarization beam splitter 31 to form an image, and is observed by the third person's right eye via the eyepiece lens 34. . On the other hand, the polarized light component in the vibration direction perpendicular to the incident surface on which the left-eye observation image is to be formed is reflected by the polarizing beam splitter 31, and further reflected by the double-reflection polarizing prism 32 arranged to obtain a surface image. The light is reflected and forms an image, and is observed by the third person's left eye via the eyepiece lens 34. Therefore, it is possible to provide a third party with an observation image having the same three-dimensional effect as the surgeon simply by combining with the side endoscope. In addition, the same working space as before can be secured. In addition, if the image rotator is incorporated in the side endoscope 33, it goes without saying that the observation posture of a third party can be made easier. Further, the present embodiment can be simply configured in a conventional surgical microscope by simply changing the beam splitter to a polarizing beam splitter and attaching a polarizing member. Accordingly, the surgical microscope itself is small, lightweight and inexpensive. Also, since it usually has the same function as a conventional surgical microscope, it can be used properly according to the purpose and is convenient.

第3図は第2実施例の通常使用状態での光学系を示す
図、第4図は上記第2実施例のビデオ撮影状態での光学
系を示す図である。
FIG. 3 is a diagram showing the optical system of the second embodiment in a normal use state, and FIG. 4 is a diagram showing the optical system of the second embodiment in a video shooting state.

第3図において、36は対物レンズ、37は変倍光学系、
38は紙面に向って右側のもののみ術部35からの観察光軸
に対し180゜回動自在なビームスプリッタ、39は第1の
偏光板、40は偏光面が偏光板39の偏光面と平行な第2の
偏光板、41は接眼レンズ、42は偏光面が偏光板39と垂直
な第3の偏光板である。
In FIG. 3, 36 is an objective lens, 37 is a variable power optical system,
38 is a beam splitter that can be rotated by 180 ° with respect to the observation optical axis from the operation section 35, 39 is a first polarizing plate, and 40 is a polarizing surface parallel to the polarizing surface of the polarizing plate 39. A second polarizing plate, 41 is an eyepiece, and 42 is a third polarizing plate whose polarizing plane is perpendicular to the polarizing plate 39.

第4図において、43はリレーレンズ、44は像反転プリ
ズム、45はネマティック液晶板、46は偏光面が偏光板39
と平行な第4の偏光板、47は結像レンズ、48は撮像素子
であって、これらがビデオカメラ49を構成している。こ
の場合、ビームスプリッタ38は、第3図の場合と比べ
て、術部35からの観察光軸に対し180゜回動させた状態
にある。
In FIG. 4, 43 is a relay lens, 44 is an image inverting prism, 45 is a nematic liquid crystal plate, and 46 is a polarizing plate 39.
A fourth polarizing plate parallel to the above, 47 is an image forming lens, and 48 is an image sensor, and these constitute a video camera 49. In this case, the beam splitter 38 is in a state of being rotated by 180 ° with respect to the observation optical axis from the operation section 35 as compared with the case of FIG.

本実施例は上述の如く構成されているから、第3図に
示した状態においては、術部35より発せられた光は、対
物レンズ36,変倍光学系37,37を介してビームスプリッタ
38,38により分割されつつ結像せしめられる。そして、
この像が接眼レンズ41,41により立体観察される。ここ
で、紙面に向って左側の光は、ビームスプリッタ38の直
前に配置された第1の偏光板39を介して一つの偏光成分
となる。そして、ビームスプリッタ38を透過した偏光成
分は一旦結像し、それが接眼レンズ41を介して術者の目
により観察される。又、この偏光成分は、接眼レンズ41
の直前に配置された第2の偏光板40を介することにな
る。一方、ビームスプリッタ38により反射された光は図
示しない側視鏡やビデオカメラに入射して再結像する。
Since the present embodiment is configured as described above, in the state shown in FIG. 3, light emitted from the operative section 35 is transmitted through the objective lens 36, the variable power optical systems 37, 37, and the beam splitter.
The image is formed while being divided by 38,38. And
This image is stereoscopically observed by the eyepieces 41, 41. Here, the light on the left side of the drawing becomes one polarization component via the first polarizing plate 39 disposed immediately before the beam splitter 38. Then, the polarized light component transmitted through the beam splitter 38 forms an image once, which is observed by an operator's eyes via the eyepiece 41. Also, this polarized light component is
, Through the second polarizing plate 40 disposed immediately before. On the other hand, the light reflected by the beam splitter 38 is incident on a side endoscope or a video camera (not shown) and re-images.

従って、通常は従来の手術用顕微鏡と同様に観察され
たり、非立体的に第三者により観察されたりビデオ録画
されたりする。
Therefore, they are usually observed in the same manner as a conventional surgical microscope, or are non-stereoscopically observed or video-recorded by a third party.

又、第4図に示した状態においては、術部35より発せ
られた光は、対物レンズ36,変倍光学系37,37を介してビ
ームスプリッタ38,38により分割されつつ結像せしめら
れる。ビームスプリッタ38,38を透過した光は一旦結像
し、それが接眼レンズ41,41を介して術者の目により立
体観察される。紙面に向って右側のビームスプリッタ38
で反射された光は、第3の偏光板42を介すことにより偏
光面が偏光板39と垂直な偏光成分に限定され、紙面に向
って左側のビームスプリッタ38により分割される。この
左側のビームスプリッタ38で分割された偏光面が偏光板
39と垂直な偏光成分のうち透過した成分は、術部35から
発せられた偏光板39を介することにより偏光面が偏光板
39と平行になった偏光成分のうち左側のビームスプリッ
タ38により反射された成分と重なり、鏡体から出射され
る。尚、前記左側のビームスプリッタ38で分割された偏
光面が偏光板39と垂直な偏光成分のうち反射された成分
は、第2の偏光板40と偏光面が直交するための、該第2
の偏光板40により遮られる。
In the state shown in FIG. 4, the light emitted from the operative section 35 is imaged while being split by the beam splitters 38 via the objective lens 36 and the variable power optical systems 37 37. The light transmitted through the beam splitters 38, once forms an image, which is stereoscopically viewed by the operator's eyes via the eyepieces 41, 41. Beam splitter 38 on the right side of the page
Is reflected by the third polarizing plate 42, the polarization plane is limited to a polarization component perpendicular to the polarizing plate 39, and is split by the beam splitter 38 on the left side of the drawing. The polarization plane split by the left beam splitter 38 is a polarizing plate
Of the polarized light component perpendicular to 39, the transmitted component passes through the polarizing plate 39 emitted from the operation section 35, so that the polarization plane is polarized.
Of the polarization components parallel to 39, the components are reflected by the left beam splitter 38 and are emitted from the mirror. The polarized component split by the left beam splitter 38 and having a polarization plane perpendicular to the polarization plate 39 is reflected by the second polarization plate 40 because the polarization plane is orthogonal to the second polarization plate 40.
Of the polarizing plate 40.

次に、鏡体から出射された光はビデオカメラ49に入射
し、そのリレーレンズ43を介し、表像を得るために像反
転プリズム44を介し、更にネマティック液晶板45,第4
の偏光板46,結像レンズ47を介して撮像素子48の撮像面
に結像する。ネマティック液晶板45に電圧を印加しない
状態においては、立体観察光のうち紙面に向って右側の
観察光である偏光面が偏光板39と垂直な偏光成分のみが
ネマティック液晶板45を透過することにより偏光面が90
゜回転し、従って、偏光面が第4の偏光板46と平行とな
るため第4の偏光板46を透過し、結像レンズ47を介して
撮像素子48上に結像する。又、ネマティック液晶板45に
電圧を印加した状態においては、立体観察光のうち紙面
に向って左側の観察光である偏光面が偏光板39と平行な
偏光成分がそのままネマティック液晶板45,第4の偏光
板46を透過し、結像レンズ47を介して撮像素子48上に結
像する。尚、偏光面が偏光板39と垂直な偏光成分は第4
の偏光板46で遮られる。
Next, the light emitted from the mirror enters the video camera 49, passes through the relay lens 43, passes through the image inverting prism 44 to obtain an image, and further passes through the nematic liquid crystal plate 45, the fourth
An image is formed on the imaging surface of the imaging device 48 via the polarizing plate 46 and the imaging lens 47. In the state where no voltage is applied to the nematic liquid crystal plate 45, only the polarized light component of the stereoscopic observation light, which is the observation light on the right side toward the paper surface and the polarization plane perpendicular to the polarization plate 39, is transmitted through the nematic liquid crystal plate 45. 90 polarization plane
゜ rotate, and thus the polarization plane is parallel to the fourth polarizing plate 46, so that the light passes through the fourth polarizing plate 46 and forms an image on the image sensor 48 via the imaging lens 47. In addition, when a voltage is applied to the nematic liquid crystal plate 45, the polarization component of the stereoscopic observation light whose observation surface on the left side toward the paper surface and whose polarization plane is parallel to the polarization plate 39 is directly used as the nematic liquid crystal plate 45, the fourth component. Through the polarizing plate 46, and forms an image on the image sensor 48 via the imaging lens 47. The polarization component whose polarization plane is perpendicular to the polarizing plate 39 is the fourth component.
Is shielded by the polarizing plate 46.

従って、ネマティック液晶板45への電圧の無印加と印
加を交互に切り換えることにより、一つの撮像素子48で
術者と同じ観察像を立体観察できる。尚、観察像を画面
に表示するときには、ビデオカメラ49内のネマティック
液晶板45の切換え信号と通常画面とその観察眼との間に
配置されるネマティック液晶板の切換え信号とを同期さ
せることは云うまでもない。又、本実施例は、一つの撮
像素子から構成される立体撮影用のビデオカメラを直接
鏡体に取付けるだけで、従来と同等の作業スペースを確
保しつつ立体撮影を行なうことができるという利点があ
る。又、第1実施例で示した偏光ビームスプリッタは二
つの偏光成分の分離が悪い上高価なものであるが、本実
施例は通常のビームスプリッタを用いているので、消光
比が高く且つ安価に構成できるという利点もある。更
に、第1実施例の如く鏡体と別体の偏光部材を取付ける
手間を省くことができ、鏡体内部で立体撮影用の光学系
に変換できることも利点としてあげられる。
Therefore, by alternately switching the non-application and application of the voltage to the nematic liquid crystal plate 45, the same observation image as that of the operator can be stereoscopically observed with one imaging device. When an observation image is displayed on the screen, the switching signal of the nematic liquid crystal panel 45 in the video camera 49 is synchronized with the switching signal of the nematic liquid crystal panel disposed between the normal screen and the observation eye. Not even. Further, the present embodiment has an advantage that the stereoscopic imaging can be performed while securing the same working space as the conventional one by simply attaching the video camera for stereoscopic imaging composed of one image sensor directly to the mirror body. is there. Further, the polarization beam splitter shown in the first embodiment has a poor separation of two polarization components and is expensive. However, this embodiment uses a normal beam splitter, so that the extinction ratio is high and the cost is low. There is also an advantage that it can be configured. Further, as in the first embodiment, it is possible to save the trouble of attaching a polarizing member separate from the mirror body, and it is possible to convert the optical system for stereoscopic photographing inside the mirror body as an advantage.

第5図は第3実施例の通常使用状態での光学系を示す
図、第6図はその要部平面図、第7図は上記第3実施例
の側視鏡使用状態・ビデオ使用状態での光学系を示す図
である。
FIG. 5 is a diagram showing an optical system in a normal use state of the third embodiment, FIG. 6 is a plan view of a main portion thereof, and FIG. 7 is a side view video / video use state of the third embodiment. FIG. 3 is a diagram showing an optical system of FIG.

第5図において、51は対物レンズ、52は変倍光学系、
53は第1のビームスプリッタ、54は接眼レンズ、55は互
いの偏光面が垂直な一対の第1の偏光板、56は第2のビ
ームスプリッタ、57は同一光路上の偏光板55と偏光面が
平行になるように配置した第2の偏光板、58は第1ビー
ムスプリッタ53,第2のビームスプリッタ56,偏光板55,
第2の偏光板57(図面上は保持状態にないが)を保持す
るための保持部材である。
In FIG. 5, 51 is an objective lens, 52 is a variable power optical system,
53 is a first beam splitter, 54 is an eyepiece, 55 is a pair of first polarizing plates whose polarization planes are perpendicular to each other, 56 is a second beam splitter, 57 is a polarizing plate 55 and a polarization plane on the same optical path. Are arranged in parallel with each other, and 58 is a first beam splitter 53, a second beam splitter 56, a polarizing plate 55,
A holding member for holding the second polarizing plate 57 (not shown in the holding state).

ここで、保持部材58を接眼レンズ54の方向から見た第
6図を用いて、保持部材58に保持されている第1のビー
ムスプリッタ53,第2のビームスプリッタ56,偏光板55,
第2の偏光板57の位置関係について説明する。保持部材
58に第1のビームスプリッタ53が保持される位置に対し
90゜回転させた位置に第2のビームスプリッタ56が配置
され、各第2のビームスプリッタ56の直前に第1の偏光
板55が配置され、更に紙面上上側に位置する第2のビー
ムスプリッタ56の直後には図示しないが第2の偏光板57
が配置されている。尚、両第2のビームスプリッタ56の
反射方向は紙面上上側である。又、保持部材58は、第5
図における左右の光軸の中心を回転中心として回動自在
であり、90゜回動させた場合にビームスプリッタ53と第
2のビームスプリッタ56の位置が入れ替わるように構成
されている。
Here, the first beam splitter 53, the second beam splitter 56, the polarizing plate 55, and the first beam splitter 53 held by the holding member 58 will be described with reference to FIG.
The positional relationship of the second polarizing plate 57 will be described. Holding member
At position 58 where the first beam splitter 53 is held
A second beam splitter 56 is disposed at a position rotated by 90 °, a first polarizing plate 55 is disposed immediately before each second beam splitter 56, and a second beam splitter 56 located further above the paper surface. (Not shown) immediately after the second polarizing plate 57
Is arranged. The reflection direction of the second beam splitters 56 is on the upper side in the drawing. The holding member 58 is the fifth
It is rotatable about the center of the left and right optical axes in the figure as a center of rotation, and is configured so that the positions of the beam splitter 53 and the second beam splitter 56 are switched when rotated by 90 °.

第7図は、第5図の構成から保持部材58を第6図にお
いて反時計まわりに90゜回動させて得られる構成を示し
ている。
FIG. 7 shows a configuration obtained by rotating the holding member 58 by 90 ° counterclockwise in FIG. 6 from the configuration of FIG.

本実施例は上述の如く構成されているから、第5図に
示した状態においては、術部50より発せられた光は、対
物レンズ51,変倍光学系52,52を介して第1のビームスプ
リッタ53,53により分割されつつ結像せしめられる。ビ
ームスプリッタ53を透過した光は一旦結像し、それが接
眼レンズ54,54介して術者の目により立体観察される。
一方、第1のビームスプリッタ53,53により反射された
光は図示しない側視鏡やビデオカメラに入射し再結像す
る。
Since the present embodiment is configured as described above, in the state shown in FIG. 5, the light emitted from the operation section 50 is transmitted through the objective lens 51 and the variable power optical systems 52 and 52 to the first lens. An image is formed while being divided by the beam splitters 53 and 53. The light transmitted through the beam splitter 53 forms an image once, and the light is stereoscopically observed by the eyes of the operator via the eyepieces 54, 54.
On the other hand, the light reflected by the first beam splitters 53, 53 is incident on a side endoscope or a video camera (not shown) and re-images.

従って、通常は従来の手術用顕微鏡と同様に観察され
たり、非立体的に第三者により観察されたりビデオ録画
されたりする。
Therefore, they are usually observed in the same manner as a conventional surgical microscope, or are non-stereoscopically observed or video-recorded by a third party.

又、第7図に示した状態においては、術部50より発せ
られた光は、対物レンズ51,変倍光学系52,52,偏光板55,
55を介して第2のビームスプリッタ56,56により分割さ
れつつ結像せしめられる。尚、夫々の偏光板55を透過し
た光は、夫々の偏光面と同じ偏光面の偏光成分のみに限
定される。第2のビームスプリッタ56を透過した光は一
旦結像し、それが接眼レンズ54,54を介して術者の目に
より立体観察される。紙面に向って右側の第2のビーム
スプリッタ56で反射された例えば偏光面が紙面と平行な
偏光成分は紙面に向って左側の第2のビームスプリッタ
56により再び分割される。この左側の第2のビームスプ
リッタ56で分割された紙面に向って右側の第2のビーム
スプリッタ56から入射した偏光成分のうち透過した成分
は、術部50から発せられ紙面に向って左側の第2のビー
ムスプリッタ56により反射された例えば偏光面が紙面と
垂直な偏光成分と重なり、鏡体から出射される。
Further, in the state shown in FIG. 7, the light emitted from the operative part 50 includes the objective lens 51, the variable power optical systems 52, 52, the polarizing plate 55,
An image is formed while being divided by the second beam splitters 56 and 56 via 55. It should be noted that the light transmitted through each polarizing plate 55 is limited to only the polarization component of the same polarization plane as each polarization plane. The light transmitted through the second beam splitter 56 once forms an image, which is stereoscopically viewed by the operator's eyes via the eyepieces 54, 54. For example, a polarized light component whose polarization plane is parallel to the paper surface reflected by the second beam splitter 56 on the right side of the paper surface is the second beam splitter on the left side of the paper surface.
Divided again by 56. Of the polarized light components incident from the right second beam splitter 56 toward the paper surface split by the left second beam splitter 56, the transmitted components are emitted from the surgical unit 50 and leftward toward the paper surface. For example, the polarization plane reflected by the second beam splitter 56 overlaps with a polarization component perpendicular to the paper surface, and is emitted from the mirror.

尚、前記左側の第2のビームスプリッタ56で分割され
た、紙面に向って右側の第2のビームスプリッタ56から
入射した偏光成分のうち反射された成分は、第2の偏光
板57と偏光面が直交するため該第2の偏光板57により遮
られる。
Note that, of the polarized light components split by the second beam splitter 56 on the left side and incident from the second beam splitter 56 on the right side toward the paper surface, the reflected components are the second polarizing plate 57 and the polarizing surface. Are orthogonal to each other and are blocked by the second polarizing plate 57.

そして、鏡体から出射された光は、図示しないが第1
実施例に示した如き側視鏡や第2実施例に示した如きビ
デオカメラに入射し再結像する。
The light emitted from the mirror body is not shown,
The light is incident on a side endoscope as shown in the embodiment or a video camera as shown in the second embodiment and re-images.

従って、本実施例は、第1実施例や第2実施例と同様
の効果が得られる。又、本実施例は、第2実施例の第1
の偏光板39,第2の偏光板40を省略できるので、通常使
用状態においては特に像の明るさについて従来と全く同
じ性能が得られるという利点がある。
Therefore, this embodiment can provide the same effects as those of the first and second embodiments. This embodiment is the first embodiment of the second embodiment.
Since the polarizing plate 39 and the second polarizing plate 40 can be omitted, there is an advantage that the same performance as that of the related art can be obtained particularly in the image brightness in a normal use state.

第8図は第4実施例の光学系を示しており、これは第
1実施例中の偏光部材29の構成部材である反射鏡28をハ
ーフミラー59に置き換えたものである。
FIG. 8 shows an optical system according to a fourth embodiment, in which the reflecting mirror 28 which is a component of the polarizing member 29 in the first embodiment is replaced with a half mirror 59.

ハーフミラー59は、反射鏡28としての作用をもたらす
ほかに、その透過光を側視鏡11に入射せしめる。
The half mirror 59 not only provides the function as the reflecting mirror 28 but also allows the transmitted light to enter the side endoscope 11.

従って、立体撮影と第三者による単眼観察即ち非立体
的観察が同時に行なえる。又、同様の構成にして通常の
撮影即ち非立体的な撮影と第三者による立体観察が同時
に行えることは云うまでもない。
Therefore, stereoscopic photography and monocular observation by a third party, that is, non-stereoscopic observation, can be performed simultaneously. In addition, it goes without saying that normal imaging, that is, non-stereoscopic imaging, and stereoscopic observation by a third party can be performed simultaneously with the same configuration.

本実施例は、第1実施例と同じく簡単に構成できると
いう利点がある。
This embodiment has an advantage that it can be configured simply as in the first embodiment.

〔発明の効果〕 上述の如く、本発明による手術用顕微鏡は、手術をす
るための作業スペースを狭めることなく、術技を修得す
る目的に対応すべき十分な立体感が得られる観察像を第
三者或いはビデオカメラに供給でき、小型軽量にして構
造が簡単で安価であるという実用上重要な利点を有して
いる。
[Effects of the Invention] As described above, the surgical microscope according to the present invention is capable of forming an observation image capable of obtaining a sufficient three-dimensional effect corresponding to the purpose of acquiring a surgical technique without reducing the working space for performing the operation. It has a practically important advantage that it can be supplied to three parties or a video camera, is small and lightweight, has a simple structure and is inexpensive.

又、本発明手術用顕微鏡は、立体観察を必要としない
場合に左右の観察光を夫々別方向に鏡体から出射できる
ので、従来の手術用顕微鏡としての機能を損なうことは
ないという利点も有している。
Further, the surgical microscope of the present invention has an advantage that the function of a conventional surgical microscope is not impaired because left and right observation lights can be emitted from the mirror body in different directions when stereoscopic observation is not required. doing.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による手術用顕微鏡の第1実施例の通常
使用状態での光学系を示す図、第2図は上記第1実施例
の側視鏡使用状態での光学系を示す図、第3図は第2実
施例の通常使用状態での光学系を示す図、第4図は上記
第2実施例のビデオ撮影状態での光学系を示す図、第5
図は第3実施例の通常使用状態での光学系を示す図、第
6図はその要部平面図、第7図は上記第3実施例の側視
鏡使用状態・ビデオ使用状態での光学系を示す図、第8
図は第4実施例の光学系を示す図、第9図は手術用顕微
鏡全体の概略図、第10図は一従来例の光学系を示す図、
第11図は他の従来例の光学系を示す図、第12図はその要
部平面図である。 23,36,51……対物レンズ、24,37,52……変倍光学系、2
5,31……偏光ビームスプリッタ、26,34,41,54……接眼
レンズ、27……1/4波長板、28……反射鏡、29……偏光
部材、32……偏向プリズム、33……側視鏡、38……ビー
ムスプリッタ、39,55……第1の偏光板、40,57……第2
の偏光板、42……第3の偏光板、43……リレーレンズ、
44……像反転プリズム、45……ネマティック液晶板、46
……第4の偏光板、47……結像レンズ、48……撮像素
子、49……ビデオカメラ、53……第1のビームスプリッ
タ、56……第2のビームスプリッタ、58……保持部材、
59……ハーフミラー。
FIG. 1 is a diagram showing an optical system of a first embodiment of the operating microscope according to the present invention in a normal use state, FIG. 2 is a diagram showing an optical system of the first embodiment in a sideoscope use state, FIG. 3 is a diagram showing an optical system in a normal use state of the second embodiment, FIG. 4 is a diagram showing an optical system in a video shooting state of the second embodiment, and FIG.
FIG. 6 is a view showing an optical system in a normal use state of the third embodiment, FIG. 6 is a plan view of a main part thereof, and FIG. 7 is an optical view of the third embodiment in a sideoscope use state / video use state. Diagram showing the system, eighth
FIG. 9 is a diagram showing an optical system of a fourth embodiment, FIG. 9 is a schematic diagram of an entire operation microscope, FIG. 10 is a diagram showing an optical system of a conventional example,
FIG. 11 is a diagram showing another conventional optical system, and FIG. 12 is a plan view of an essential part thereof. 23,36,51 …… Objective lens, 24,37,52 …… Magnifying optical system, 2
5, 31 polarizing beam splitter, 26, 34, 41, 54 eyepiece, 27 quarter-wave plate, 28 reflecting mirror, 29 polarizing member, 32 polarizing prism, 33 … Side endoscope, 38… beam splitter, 39,55… first polarizing plate, 40,57… second
, A third polarizing plate, 43, a relay lens,
44 …… Image inverting prism, 45 …… Nematic liquid crystal panel, 46
... A fourth polarizing plate, 47 an imaging lens, 48 an imaging device, 49 a video camera, 53 a first beam splitter, 56 a second beam splitter, 58 a holding member ,
59 ... half mirror.

フロントページの続き (72)発明者 高橋 俊一郎 東京都渋谷区幡ケ谷2―43―2 オリン パス光学工業株式会社内 (56)参考文献 特開 昭63−113414(JP,A) 特公 昭47−41473(JP,B2) (58)調査した分野(Int.Cl.6,DB名) G02B 19/00 - 21/00 G02B 21/06 - 21/36 Continuation of front page (72) Inventor Shun-ichiro Takahashi 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd. (56) References JP-A-63-113414 (JP, A) JP-B-47-41473 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) G02B 19/00-21/00 G02B 21/06-21/36

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】立体視するための二つの光軸を有する手術
用顕微鏡において、 前記二つの光軸上に光路分割手段を配置して前記二つの
光軸上の各光束の少なくとも一部ずつを前記二つの光軸
と交わる軸線方向に重なるように指向させると共に、前
記二つの光軸と交わる軸線方向に重なるように指向させ
られる二つの光束が互いに異なる振動方向の偏光成分と
なるようにする偏光手段を備えていることを特徴とする
手術用顕微鏡。
1. An operating microscope having two optical axes for stereoscopic viewing, wherein an optical path splitting means is arranged on the two optical axes and at least a part of each light beam on the two optical axes is provided. Polarized light that is directed so as to overlap in an axial direction that intersects the two optical axes, and that two light fluxes that are directed so as to overlap in an axial direction that intersects the two optical axes have polarization components in different vibration directions. An operating microscope comprising means.
JP2207911A 1990-08-06 1990-08-06 Surgical microscope Expired - Fee Related JP2938940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2207911A JP2938940B2 (en) 1990-08-06 1990-08-06 Surgical microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2207911A JP2938940B2 (en) 1990-08-06 1990-08-06 Surgical microscope

Publications (2)

Publication Number Publication Date
JPH0493912A JPH0493912A (en) 1992-03-26
JP2938940B2 true JP2938940B2 (en) 1999-08-25

Family

ID=16547611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2207911A Expired - Fee Related JP2938940B2 (en) 1990-08-06 1990-08-06 Surgical microscope

Country Status (1)

Country Link
JP (1) JP2938940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11006093B1 (en) 2020-01-22 2021-05-11 Photonic Medical Inc. Open view, multi-modal, calibrated digital loupe with depth sensing

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841586B1 (en) * 1995-05-24 2003-04-16 Olympus Optical Co., Ltd. Stereoscopic endoscope system and tv image pickup system for the endoscope
JP2002006227A (en) * 2000-06-19 2002-01-09 Olympus Optical Co Ltd Microscope for surgery
GB0301923D0 (en) * 2003-01-28 2003-02-26 Qinetiq Ltd Imaging system
JP5571390B2 (en) * 2007-02-13 2014-08-13 ナショナル ユニヴァーシティー オブ シンガポール Imaging apparatus and imaging method
DE102008001352B4 (en) * 2008-04-23 2009-12-24 Leica Microsystems (Schweiz) Ag Stereomicroscope with beam splitter device
JP6061958B2 (en) * 2012-02-29 2017-01-18 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. Software-defined microscope
WO2015093414A1 (en) * 2013-12-20 2015-06-25 オリンパス株式会社 Observation system for surgical operation
WO2020031291A1 (en) 2018-08-08 2020-02-13 株式会社タレックス Optical lens for use in surgery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4741473B2 (en) 2003-03-04 2011-08-03 フイナ・テクノロジー・インコーポレーテツド Use of accelerators in free radical polymerization of styrene.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4741473B2 (en) 2003-03-04 2011-08-03 フイナ・テクノロジー・インコーポレーテツド Use of accelerators in free radical polymerization of styrene.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11006093B1 (en) 2020-01-22 2021-05-11 Photonic Medical Inc. Open view, multi-modal, calibrated digital loupe with depth sensing
US11166006B2 (en) 2020-01-22 2021-11-02 Photonic Medical Inc. Open view, multi-modal, calibrated digital loupe with depth sensing
US11412202B2 (en) 2020-01-22 2022-08-09 Photonic Medical Inc. Open view, multi-modal, calibrated digital loupe with depth sensing
US11611735B2 (en) 2020-01-22 2023-03-21 Photonic Medical Inc. Open view, multi-modal, calibrated digital loupe with depth sensing
US12075019B2 (en) 2020-01-22 2024-08-27 Photonic Medical Inc. Open view, multi-modal, calibrated digital loupe with depth sensing

Also Published As

Publication number Publication date
JPH0493912A (en) 1992-03-26

Similar Documents

Publication Publication Date Title
JP3984907B2 (en) Image observation system
JP2992350B2 (en) Stereo microscope
US7050225B2 (en) Superimposing microscope having image pickup
JPH07261094A (en) Microscope for surgical operation
KR100843429B1 (en) A Head-mount Type Display Device for Three Dimensional View, Endoscope and Microscope Using Thereof
JPH06222283A (en) Adaptor for three-dimensional display of three-dimensional image on electronic image replay apparatus
JP2596926B2 (en) Surgical microscope adapter
JP2938940B2 (en) Surgical microscope
EP0577268B1 (en) Optical system
JPH05107482A (en) Operation microscope
JP2945118B2 (en) Stereo microscope
JP4674094B2 (en) Stereoscopic observation device
JP2000249975A (en) Video display device
JPS63167318A (en) stereo microscope
JPH05215970A (en) Microscope for operation
JP4733817B2 (en) Stereo microscope
JP2001117014A (en) Stereomicroscope
JP2001133690A (en) Microscope for surgery
JPH0756113A (en) Stereoscopic optical device
JP2000214388A (en) Stereomicroscope
JP3035129B2 (en) Stereo optical device
JP2001235682A (en) Diagnostic microscope
JP3339896B2 (en) Surgical microscope
JP3479123B2 (en) Multiple image stereoscopic device
JP2000352671A (en) Stereomicroscope

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees