JP3052661B2 - Fuel injection control device for diesel engine - Google Patents
Fuel injection control device for diesel engineInfo
- Publication number
- JP3052661B2 JP3052661B2 JP9997793A JP9997793A JP3052661B2 JP 3052661 B2 JP3052661 B2 JP 3052661B2 JP 9997793 A JP9997793 A JP 9997793A JP 9997793 A JP9997793 A JP 9997793A JP 3052661 B2 JP3052661 B2 JP 3052661B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel injection
- fuel
- load
- pressure
- intake air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ディーゼル機関の燃料
噴射制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for a diesel engine.
【0002】[0002]
【従来の技術】内燃機関の燃料噴射制御装置として例え
ば特開昭63−266149号公報が開示されている。
この燃料噴射制御装置は、燃料供給通路を介して燃料噴
射弁と連結し燃料を供給する燃料供給ポンプと、前記燃
料供給通路に設けられる一定容積の蓄圧室と、前記燃料
供給通路に取り付けられた燃料圧センサと、該燃料圧セ
ンサからの出力信号に応じて前記燃料供給ポンプから上
記蓄圧室に供給する燃料の吐出圧を制御する吐出圧制御
手段と、吸気温度を検出する吸気温度検出手段とからな
り、前記吐出圧制御手段が前記吸気温度検出手段により
検出された温度が低い程、前記燃料供給ポンプの吐出圧
を高圧側に補正する補正手段を有するものである。即
ち、吸気温度が低い程、燃料供給ポンプの吐出圧を高圧
側に補正して燃料噴射圧を高め、燃料の霧化を促進し、
燃焼を改善して、黒煙発生を抑制している。2. Description of the Related Art For example, Japanese Patent Application Laid-Open No. 63-266149 discloses a fuel injection control device for an internal combustion engine.
This fuel injection control device is connected to a fuel injection valve via a fuel supply passage to supply fuel, a pressure accumulator having a fixed volume provided in the fuel supply passage, and attached to the fuel supply passage. A fuel pressure sensor, discharge pressure control means for controlling a discharge pressure of fuel supplied from the fuel supply pump to the accumulator in accordance with an output signal from the fuel pressure sensor, and intake temperature detection means for detecting intake temperature. And a correcting means for correcting the discharge pressure of the fuel supply pump to a higher pressure side as the temperature detected by the discharge pressure control means by the intake air temperature detecting means is lower. That is, as the intake air temperature is lower, the discharge pressure of the fuel supply pump is corrected to a higher pressure side to increase the fuel injection pressure, thereby promoting the atomization of fuel,
Improves combustion to reduce black smoke.
【0003】[0003]
【発明が解決しようとする課題】ところが、上記の燃料
噴射制御装置においては、所定負荷以上の高負荷時には
負荷が高いことで燃料噴射量が多くなっているにも関わ
らず、吸気温度上昇に伴い燃料噴射圧を低圧側に補正す
るので、燃料の霧化が悪くなる。しかも、吸気温度上昇
により吸入空気密度も低下するため、空気不足となり、
燃料の空気取り込み量が減少して燃焼が悪化し、黒煙や
粒子状物質の発生量が増加する恐れがあった。However, in the above-described fuel injection control device, when the load is higher than a predetermined load, the fuel injection amount is increased due to the high load, but the fuel injection amount increases with the intake air temperature. Since the fuel injection pressure is corrected to the low pressure side, atomization of the fuel becomes worse. In addition, the intake air density decreases due to the rise in intake air temperature, resulting in a shortage of air.
There is a risk that the amount of air taken in by the fuel decreases, combustion deteriorates, and the amount of black smoke and particulate matter generated increases.
【0004】そこで本発明は、所定負荷以上の高負荷時
には吸気温度上昇に伴って燃料噴射圧を高くすることに
より、黒煙や粒子状物質の発生量を抑制することを目的
とする。Accordingly, an object of the present invention is to suppress the generation of black smoke and particulate matter by increasing the fuel injection pressure in accordance with an increase in the intake air temperature when the load is higher than a predetermined load.
【0005】[0005]
【課題を解決するための手段】本発明におけるディーゼ
ル機関の燃料噴射制御装置は、図1に示すように機関の
負荷状態を検出する負荷検出手段M1と、該負荷検出手
段M1により検出される負荷上昇に伴い機関に供給する
燃料噴射量を増量する燃料噴射量制御手段M2と、吸気
温度を検出する吸気温度検出手段M3と、燃料噴射圧を
制御する燃料噴射圧制御手段M4と、該燃料噴射圧制御
手段M4と前記燃料噴射量制御手段M2の出力に基づい
て燃料を噴射する燃料噴射手段M5とを有し、前記燃料
噴射圧制御手段M4が前記吸気温度検出手段M3により
検出される吸気温度上昇に伴い燃料噴射圧を低圧側に補
正する第1補正手段M6を有するディーゼル機関の燃料
噴射制御装置において、前記負荷検出手段M1により検
出される負荷が所定負荷以上の高負荷である時、前記吸
気温度検出手段M3により検出される吸気温度上昇に伴
い燃料噴射圧を高圧側に補正する第2補正手段M7を前
記燃料噴射圧制御手段M4に設けたことを特徴とする。As shown in FIG. 1, a fuel injection control apparatus for a diesel engine according to the present invention comprises a load detecting means M1 for detecting a load state of the engine, and a load detected by the load detecting means M1. A fuel injection amount control means M2 for increasing the fuel injection amount supplied to the engine with the rise, an intake air temperature detection means M3 for detecting the intake air temperature, a fuel injection pressure control means M4 for controlling the fuel injection pressure, A fuel injection means M5 for injecting fuel based on the output of the fuel injection amount control means M2, wherein the fuel injection pressure control means M4 detects the intake air temperature detected by the intake air temperature detection means M3. In a fuel injection control device for a diesel engine having first correction means M6 for correcting the fuel injection pressure to a low pressure side as the load rises, the load detected by the load detection means M1 is limited. When the load is higher than the load, the fuel injection pressure control means M4 is provided with a second correction means M7 for correcting the fuel injection pressure to a high pressure side in accordance with an increase in the intake air temperature detected by the intake air temperature detection means M3. It is characterized by.
【0006】[0006]
【作用】上記手段によれば、負荷検出手段により機関の
負荷状態が検出され、検出される負荷の上昇に伴い、燃
料噴射量制御手段により燃料噴射量は増量される。そし
て、吸気温度検出手段により検出される吸気温度の上昇
に伴い、燃料噴射圧制御手段の有する第1補正手段が燃
料噴射圧を低圧側に補正する。このようにして決定され
る燃料噴射量と燃料噴射圧で燃料噴射手段により燃料が
噴射される。ただし、負荷検出手段により検出される機
関の負荷が所定負荷以上の場合は、吸気温度検出手段に
より検出される吸気温度の上昇に伴い、燃料噴射圧制御
手段に設けられた第2補正手段が燃料噴射圧を高圧側に
補正する。According to the above means, the load state of the engine is detected by the load detecting means, and the fuel injection amount is increased by the fuel injection amount control means with an increase in the detected load. Then, with the rise of the intake air temperature detected by the intake air temperature detecting means, the first correction means of the fuel injection pressure control means corrects the fuel injection pressure to a lower pressure side. Fuel is injected by the fuel injection means with the fuel injection amount and the fuel injection pressure determined in this way. However, when the load of the engine detected by the load detection means is equal to or more than a predetermined load, the second correction means provided in the fuel injection pressure control means is controlled by the second correction means provided with the rise of the intake air temperature detected by the intake temperature detection means. Correct the injection pressure to the high pressure side.
【0007】[0007]
【実施例】図2、図3は本発明の第1実施例に関わり、
それぞれ図2は本発明におけるディーゼル機関の構成
図、図3はディーゼル機関の側面断面図である。2はデ
ィーゼル機関本体、4はシリンダブロック、6はシリン
ダヘッド、8はピストン、10は燃焼室、12は吸気
弁、14は排気弁、16は燃焼室10内に配置された燃
料噴射弁、18は吸気管を示し、吸気管18の入口部は
過給器20に接続される。燃料噴射手段は燃料噴射弁1
6と、燃料供給ポンプ30と、この間の経路により構成
される。燃料噴射弁16は燃料供給管22を介して各気
筒に共通の燃料蓄圧管24に連結される。燃料蓄圧管2
4はその内部に容積一定の蓄圧室26を有し、この蓄圧
室26内の燃料が燃料供給管22を介して燃料噴射弁1
6に供給される。一方、蓄圧室26は燃料供給管28を
介して吐出圧制御可能な燃料供給ポンプ30の吐出口に
連結される。燃料供給ポンプ30の吸込口は燃料ポンプ
32の吐出口に連結され、この燃料ポンプ32の吸込口
は燃料リザーバタンク34に連結される。燃料ポンプ3
2は燃料リザーバタンク34内の燃料を燃料供給ポンプ
30に送り込むために設けられており、燃料ポンプ32
がなくても燃料供給ポンプ30内に燃料を吸い込むこと
が可能な場合には燃料ポンプ32を特に設ける必要はな
い。これに対して燃料供給ポンプ30は高圧の燃料を吐
出するために設けられており、燃料供給ポンプ30から
吐出された高圧の燃料は燃料供給管28を介して蓄圧室
26内に蓄積される。また、各燃料噴射弁16は燃料返
戻導管36を介して燃料リザーバタンク34に連結さ
れ、燃焼に使用されなかった燃料が燃料返戻導管36を
介して燃料リザーバタンク34に戻される。2 and 3 relate to a first embodiment of the present invention.
2 is a configuration diagram of a diesel engine according to the present invention, and FIG. 3 is a side sectional view of the diesel engine. 2 is a diesel engine body, 4 is a cylinder block, 6 is a cylinder head, 8 is a piston, 10 is a combustion chamber, 12 is an intake valve, 14 is an exhaust valve, 16 is a fuel injection valve arranged in the combustion chamber 10, 18 Denotes an intake pipe, and an inlet of the intake pipe 18 is connected to the supercharger 20. The fuel injection means is a fuel injection valve 1
6, a fuel supply pump 30, and a path therebetween. The fuel injection valve 16 is connected via a fuel supply pipe 22 to a fuel accumulator pipe 24 common to each cylinder. Fuel pressure storage tube 2
4 has a pressure accumulating chamber 26 having a constant volume therein, and the fuel in the pressure accumulating chamber 26 is supplied through the fuel supply pipe 22 to the fuel injection valve 1.
6. On the other hand, the pressure accumulation chamber 26 is connected via a fuel supply pipe 28 to a discharge port of a fuel supply pump 30 whose discharge pressure can be controlled. The suction port of the fuel supply pump 30 is connected to a discharge port of a fuel pump 32, and the suction port of the fuel pump 32 is connected to a fuel reservoir tank 34. Fuel pump 3
Numeral 2 is provided to feed the fuel in the fuel reservoir tank 34 to the fuel supply pump 30, and the fuel pump 32
If the fuel can be sucked into the fuel supply pump 30 without the above, the fuel pump 32 need not be provided. On the other hand, the fuel supply pump 30 is provided for discharging high-pressure fuel, and the high-pressure fuel discharged from the fuel supply pump 30 is accumulated in the accumulator 26 through the fuel supply pipe 28. Each fuel injection valve 16 is connected to a fuel reservoir tank 34 via a fuel return conduit 36, and the fuel not used for combustion is returned to the fuel reservoir tank 34 via the fuel return conduit 36.
【0008】燃料供給ポンプ30はポンプ吐出量駆動装
置37で設定される量の燃料を蓄圧室26内に供給する
ものであり、ポンプ吐出量駆動装置37は電子制御装置
38に接続され、電子制御装置38からの指令に従っ
て、燃料供給ポンプ30の1回転あたりの吐出量を制御
することにより燃料圧力の設定を行うものである。The fuel supply pump 30 supplies the amount of fuel set by the pump discharge amount driving device 37 into the accumulator 26. The pump discharge amount driving device 37 is connected to an electronic control device 38, The fuel pressure is set by controlling the discharge amount per rotation of the fuel supply pump 30 in accordance with a command from the device 38.
【0009】燃料の噴射を行う燃料噴射弁16はピエゾ
圧電素子を用いた電歪式のものであり、この燃料噴射弁
16は正の電圧が印加される期間だけ開弁し、その際燃
料が蓄圧室26内の圧力で噴射される。この噴射期間は
負荷に応じて変化する。A fuel injection valve 16 for injecting fuel is of an electrostrictive type using a piezoelectric element. The fuel injection valve 16 opens only during a period in which a positive voltage is applied. The fuel is injected at the pressure in the accumulator 26. This injection period changes according to the load.
【0010】燃料噴射量制御手段、燃料噴射圧制御手
段、第1補正手段、第2補正手段としての電子制御装置
38は、周知のCPU40、RAM42、ROM44、
入力ポート46、出力ポート48を備え、双方向性バス
47によって相互に接続されている。入力ポート46に
はAD変換器50、52、54、56が接続され、出力
ポート48には駆動回路58、60、62、64、66
が接続されている。AD変換器50はディーゼル機関本
体2に設けられた水温センサ68と連結され、AD変換
器52は蓄圧室26に設けられた燃料圧センサ70と連
結され、AD変換器54は吸気管18に設けられた吸気
温度検出手段としての吸気温センサ72と連結され、A
D変換器56はアクセルペダル76に設けられた負荷検
出手段としての負荷センサ74と連結されている。ま
た、クランク軸78に近接して設けられた機関回転数を
計算するための回転角センサ80、どの燃料噴射弁を作
動させるか判別するための気筒判別センサ82も入力ポ
ート46に接続されている。駆動回路58はポンプ吐出
量駆動装置37と連結し、駆動回路60、62、64、
66はそれぞれ燃料噴射弁16と連結されている。The electronic control unit 38 as the fuel injection amount control means, the fuel injection pressure control means, the first correction means, and the second correction means includes a well-known CPU 40, a RAM 42, a ROM 44,
It has an input port 46 and an output port 48 and is interconnected by a bidirectional bus 47. AD converters 50, 52, 54, 56 are connected to the input port 46, and drive circuits 58, 60, 62, 64, 66 are connected to the output port 48.
Is connected. The AD converter 50 is connected to a water temperature sensor 68 provided in the diesel engine main body 2, the AD converter 52 is connected to a fuel pressure sensor 70 provided in the accumulator 26, and the AD converter 54 is provided in the intake pipe 18. A is connected to an intake air temperature sensor 72 serving as an intake air temperature detecting means.
The D converter 56 is connected to a load sensor 74 as load detection means provided on the accelerator pedal 76. In addition, a rotation angle sensor 80 provided near the crankshaft 78 for calculating the engine speed and a cylinder determination sensor 82 for determining which fuel injection valve is to be operated are also connected to the input port 46. . The driving circuit 58 is connected to the pump discharge amount driving device 37, and the driving circuits 60, 62, 64,
Reference numerals 66 are respectively connected to the fuel injection valves 16.
【0011】以上のように構成されるディーゼル機関の
燃料噴射制御装置の動作についてROM44に記憶され
ている図4のメインルーチンを示すフローチャート及び
図5の燃料噴射圧を制御するためのフローチャートに基
づいて説明する。機関回転数Nを表す回転角センサ80
及び気筒判別センサ82の出力信号、アクセルペダル7
6の踏み込み量Lを表す負荷センサ74の出力信号、機
関の冷却水温Twを表す水温センサ68の出力信号、蓄
圧室26内の燃料圧Pを表す燃料圧センサ70の出力信
号、吸気管18内の吸気温Taを表す吸気温センサ72
の出力信号が入力ポート46を介してCPU40内に入
力され、回転角センサ80及び気筒判別センサ82の出
力信号から機関回転数Nが計算される。これらの機関回
転数N、アクセルペダル76の踏み込み量L、冷却水温
Tw、燃料圧P、吸気温TaはRAM42に記憶される
(ステップ100)。The operation of the fuel injection control device for a diesel engine constructed as described above will be described with reference to the flowchart of FIG. 4 showing the main routine stored in the ROM 44 and the flowchart of FIG. 5 for controlling the fuel injection pressure. explain. Rotation angle sensor 80 indicating engine speed N
And the output signal of the cylinder discriminating sensor 82, the accelerator pedal 7
6, the output signal of the load sensor 74 representing the depression amount L of the engine 6, the output signal of the water temperature sensor 68 representing the cooling water temperature Tw of the engine, the output signal of the fuel pressure sensor 70 representing the fuel pressure P in the accumulator 26, and the inside of the intake pipe 18. Temperature sensor 72 indicating the intake temperature Ta of the engine
Is input into the CPU 40 through the input port 46, and the engine speed N is calculated from the output signals of the rotation angle sensor 80 and the cylinder discrimination sensor 82. These engine speed N, depression amount L of accelerator pedal 76, cooling water temperature Tw, fuel pressure P, and intake air temperature Ta are stored in RAM 42 (step 100).
【0012】次に、アクセルペダル76の踏み込み量L
から予めROM44に記憶されているマップに従って噴
射量τが決定される(ステップ200)。噴射量τは負
荷が高いほど大きくなるように設定されている。Next, the depression amount L of the accelerator pedal 76 is
, The injection amount τ is determined according to a map stored in the ROM 44 in advance (step 200). The injection amount τ is set to increase as the load increases.
【0013】次に、機関回転数N、アクセルペダル76
の踏み込み量Lとから予めROM44に記憶されている
マップに従って噴射時期が決定される(ステップ30
0)。Next, the engine speed N and the accelerator pedal 76
The injection timing is determined according to the map stored in advance in the ROM 44 from the depression amount L of the engine (step 30).
0).
【0014】ステップ400で決定される燃料噴射圧に
ついては図5に基づいて説明する。機関回転数N、アク
セルペダル76の踏み込み量Lとから予めROM44に
記憶されているマップに従って基準噴射圧力Pdbが決
定される(ステップ401)。そして、予めROM44
に記憶されている図6の負荷(アクセルペダル76の踏
み込み量L)に対する補正係数のグラフに従って補正係
数Kが決定される(ステップ402)。この補正係数K
は、低・中負荷域で負の値、所定負荷以上の高負荷域で
正の値となるように設定される。尚、図中Ldは低・中
負荷域と高負荷域の境界である。この補正係数Kに吸気
温Taを乗ずることで補正噴射圧力Pdcが求められる
(ステップ403)。このように補正係数Kに吸気温T
aを乗じて補正噴射圧力Pdcを求めるので、同一回転
数、同一負荷であれば吸気温Taが高い程補正噴射圧力
Pdcの絶対値も大きくなる。ここで絶対値と述べたの
は、負荷状態により基準噴射圧力Pdbを低圧側に補正
する場合と高圧側に補正する場合があるからである。基
準噴射圧力Pdbと補正噴射圧力Pdcの和より実噴射
圧力Pdが決定される(ステップ404)。次に、蓄圧
室26内の燃料圧Pと実噴射圧力Pdとの差の絶対値が
ΔPより小さいか否かが判別される(ステップ40
5)。前記絶対値がΔPより大きい場合は、燃料圧Pと
実噴射圧力Pdが比較される(ステップ406)。燃料
圧Pが実噴射圧力Pdより高い場合は、ポンプ吐出量駆
動装置37により燃料供給ポンプ30の吐出量が減少方
向に制御されて、燃料供給ポンプ30の吐出圧が低めら
れ蓄圧室26内の燃料圧Pが減少する(ステップ40
7)。燃料圧Pが実噴射圧力Pdより低い場合は、ポン
プ吐出量駆動装置37により燃料供給ポンプ30の吐出
量が増加方向に制御されて、燃料供給ポンプ30の吐出
圧が高められ蓄圧室26内の燃料圧Pが増加する(ステ
ップ408)。前記絶対値がΔPより小さい場合は処理
が終了される。このようにして蓄圧室26内の燃料圧P
が実噴射圧力Pdに維持される。The fuel injection pressure determined in step 400 will be described with reference to FIG. A reference injection pressure Pdb is determined from the engine speed N and the depression amount L of the accelerator pedal 76 according to a map stored in the ROM 44 in advance (step 401). Then, the ROM 44
The correction coefficient K is determined according to the graph of the correction coefficient for the load (the amount of depression L of the accelerator pedal 76) in FIG. This correction coefficient K
Is set to a negative value in a low / medium load range and a positive value in a high load range above a predetermined load. In the drawing, Ld is a boundary between the low / medium load region and the high load region. By multiplying the correction coefficient K by the intake air temperature Ta, a corrected injection pressure Pdc is obtained (step 403). As described above, the correction coefficient K is changed to the intake air temperature T.
Since the corrected injection pressure Pdc is obtained by multiplying by a, the absolute value of the corrected injection pressure Pdc increases as the intake air temperature Ta increases with the same rotation speed and the same load. The reason why the absolute value is described here is that the reference injection pressure Pdb is corrected to the low pressure side or corrected to the high pressure side depending on the load condition. The actual injection pressure Pd is determined from the sum of the reference injection pressure Pdb and the corrected injection pressure Pdc (step 404). Next, it is determined whether or not the absolute value of the difference between the fuel pressure P in the accumulator 26 and the actual injection pressure Pd is smaller than ΔP (step 40).
5). If the absolute value is larger than ΔP, the fuel pressure P is compared with the actual injection pressure Pd (Step 406). When the fuel pressure P is higher than the actual injection pressure Pd, the discharge amount of the fuel supply pump 30 is controlled by the pump discharge amount driving device 37 in the decreasing direction, the discharge pressure of the fuel supply pump 30 is reduced, and the pressure in the accumulator chamber 26 is reduced. The fuel pressure P decreases (step 40)
7). When the fuel pressure P is lower than the actual injection pressure Pd, the discharge amount of the fuel supply pump 30 is controlled in the increasing direction by the pump discharge amount driving device 37, so that the discharge pressure of the fuel supply pump 30 is increased and the pressure in the pressure accumulation chamber 26 is increased. The fuel pressure P increases (Step 408). If the absolute value is smaller than ΔP, the process ends. Thus, the fuel pressure P in the accumulator 26 is
Is maintained at the actual injection pressure Pd.
【0015】図7は同一負荷、同一回転数とした場合に
おける本発明による低・中負荷域の吸気温と実噴射圧力
の関係を表す図、図8は同一負荷、同一回転数とした場
合における本発明による高負荷域の吸気温と実噴射圧力
の関係を表す図である。前述したように補正係数Kに吸
気温Taを乗じて補正噴射圧力Pdcを求めるので、低
・中負荷域では図6に従って補正係数Kは負の値とな
り、吸気温Ta上昇に伴い実噴射圧力Pdが低圧側に補
正されている。高負荷域では図6に従って補正係数Kは
正の値となり、吸気温Ta上昇に伴い実噴射圧力Pdが
高圧側に補正されている。FIG. 7 is a diagram showing the relationship between the intake air temperature and the actual injection pressure in the low / medium load region according to the present invention when the same load and the same rotational speed are used. FIG. 8 shows the relationship when the same load and the same rotational speed are used. FIG. 4 is a diagram illustrating a relationship between an intake air temperature and an actual injection pressure in a high load region according to the present invention. Since the correction injection pressure Pdc is obtained by multiplying the correction coefficient K by the intake air temperature Ta as described above, the correction coefficient K becomes a negative value according to FIG. 6 in the low / medium load range, and the actual injection pressure Pd increases with the intake air temperature Ta. Is corrected to the low pressure side. In the high load region, the correction coefficient K becomes a positive value according to FIG. 6, and the actual injection pressure Pd is corrected to the high pressure side with the increase in the intake air temperature Ta.
【0016】以上本発明の第1実施例におけるディーゼ
ル機関の燃料噴射制御装置によれば、負荷センサ74に
より検出される負荷が所定負荷以上の高負荷域では、吸
気温センサ72により検出される吸気温Taの上昇に伴
い補正噴射圧力Pdcを大きくして実噴射圧力Pdを高
め、燃料噴射を実行するので、燃料噴射量の多くなる高
負荷域においても噴射された燃料の霧化が促進されて燃
料の空気取り込み量が増加し、燃焼が良好になって黒煙
や粒子状物質の発生量が低減する。尚、燃焼が良好にな
ることでNOxの発生量は微増するが、黒煙や粒子状物
質の低減による効果の方が大である。As described above, according to the fuel injection control device for a diesel engine in the first embodiment of the present invention, in a high load region where the load detected by the load sensor 74 is equal to or more than a predetermined load, the intake temperature detected by the intake temperature sensor 72 is determined. Since the actual injection pressure Pd is increased by increasing the correction injection pressure Pdc with the rise of the temperature Ta and the fuel injection is performed, the atomization of the injected fuel is promoted even in a high load region where the fuel injection amount is large. The amount of air taken in by the fuel is increased, the combustion is improved, and the amount of generated black smoke and particulate matter is reduced. Although the amount of generated NOx is slightly increased by improving the combustion, the effect of reducing the amount of black smoke and particulate matter is greater.
【0017】また所定負荷未満の低・中負荷域では、吸
気温センサ72により検出される吸気温Taの上昇に伴
い補正噴射圧力Pdcを小さくして実噴射圧力Pdを低
め、燃料噴射を実行するので、燃料の霧化が抑制されて
燃料の空気取り込み量が減少し、燃焼が緩慢になってN
Oxの発生量が低減する。尚、ディーゼル機関において
所定負荷未満では吸入空気量が過剰なので、黒煙や粒子
状物質の発生量は吸気温度が変化しても殆ど変化せず、
量的にも左程問題にならない。In a low / medium load range below a predetermined load, the correction injection pressure Pdc is reduced by increasing the intake air temperature Ta detected by the intake air temperature sensor 72, the actual injection pressure Pd is reduced, and fuel injection is performed. Therefore, the atomization of the fuel is suppressed, the amount of air taken in by the fuel is reduced, and the combustion becomes slow, and
Ox generation is reduced. In addition, since the intake air amount is excessive when the load is less than the predetermined load in the diesel engine, the amount of generated black smoke and particulate matter hardly changes even if the intake air temperature changes.
It doesn't matter much in terms of quantity.
【0018】図9は本発明の第2実施例を示す負荷(ア
クセルペダル76の踏み込み量L)に対する補正係数の
グラフである。補正係数Kは、低負荷域で負の値、中負
荷域で零、所定負荷以上の高負荷域で正の値となるよう
に設定される。尚、図中Lcは低負荷域と中負荷域の境
界であり、Ldは中負荷域と高負荷域の境界である。他
の構成は第1実施例と同じであり、作用は中負荷域の
時、基準噴射圧力Pdbを補正しないという点を除いて
第1実施例と同じである。FIG. 9 is a graph showing a correction coefficient with respect to the load (the amount of depression L of the accelerator pedal 76) according to the second embodiment of the present invention. The correction coefficient K is set to a negative value in a low load range, zero in a middle load range, and a positive value in a high load range above a predetermined load. In the drawing, Lc is a boundary between the low load region and the medium load region, and Ld is a boundary between the middle load region and the high load region. The other configuration is the same as that of the first embodiment, and the operation is the same as that of the first embodiment except that the reference injection pressure Pdb is not corrected in the middle load range.
【0019】図10は本発明の第3実施例を示す負荷
(アクセルペダル76の踏み込み量L)に対する補正係
数のグラフである。補正係数Kは、低・中負荷域で負の
値、所定負荷以上の高負荷域で正の値となるように設定
され、負荷に対する傾きをもっている。尚、図中Ldは
低・中負荷域と高負荷域の境界である。他の構成及び作
用は第1実施例と同じである。FIG. 10 is a graph showing a correction coefficient with respect to the load (the amount of depression L of the accelerator pedal 76) according to the third embodiment of the present invention. The correction coefficient K is set to a negative value in a low / medium load range and a positive value in a high load range above a predetermined load, and has a slope with respect to the load. In the drawing, Ld is a boundary between the low / medium load region and the high load region. Other configurations and operations are the same as those of the first embodiment.
【0020】以上の実施例では吸気温度として吸気温T
aを用いたが、吸気温Taの変化と同様の温度変化をす
るもので基準噴射圧力Pdbを補正すればよい。例えば
吸気管温度、大気温、機関冷却水温等を検出して吸気温
度を推定したり、更には大気圧、吸気圧を検出して相互
に補間し、精度を向上させることも考えられる。In the above embodiment, the intake air temperature T
Although a is used, the reference injection pressure Pdb may be corrected with a temperature change similar to the change in the intake air temperature Ta. For example, the intake pipe temperature, the atmospheric temperature, the engine cooling water temperature, etc. may be detected to estimate the intake air temperature, or the atmospheric pressure and the intake pressure may be detected and interpolated with each other to improve the accuracy.
【0021】[0021]
【発明の効果】本発明では、ディーゼル機関の負荷が所
定負荷以上の高負荷である時、吸気温度上昇に伴い燃料
噴射圧を高圧側に補正する第2補正手段を燃料噴射圧制
御手段に設けたので、所定負荷以上の高負荷時即ち吸入
空気量に対して燃料噴射量の多い領域では吸気温度上昇
に伴い、燃料噴射圧が高くなり、燃料の霧化が促進され
て燃料の空気取り込み量が増加する。従って、燃焼が良
好になるので黒煙や粒子状物質の発生量を低減すること
ができる。According to the present invention, when the load of the diesel engine is higher than a predetermined load, the fuel injection pressure control means is provided with a second correction means for correcting the fuel injection pressure to a high pressure side with an increase in the intake air temperature. Therefore, when the load is higher than a predetermined load, that is, in a region where the fuel injection amount is large with respect to the intake air amount, the fuel injection pressure increases with an increase in the intake air temperature, and the atomization of the fuel is promoted and the air intake amount of the fuel is increased. Increase. Therefore, since the combustion becomes good, the amount of black smoke and particulate matter generated can be reduced.
【0022】また、ディーゼル機関の負荷が所定負荷未
満の低・中負荷である時、吸気温度上昇に伴い燃料噴射
圧を低圧側に補正する第1補正手段を燃料噴射圧制御手
段が有していることで、所定負荷未満の低・中負荷時即
ち吸入空気量に対して燃料噴射量の少ない領域では吸気
温度上昇に伴い、燃料噴射圧が低くなり、燃料の霧化が
抑制されて燃料の空気取り込み量が減少する。従って、
燃焼が緩慢になってNOxの発生量を低減することがで
きる。Further, when the load of the diesel engine is a low / medium load less than a predetermined load, the fuel injection pressure control means has a first correction means for correcting the fuel injection pressure to a low pressure side with an increase in the intake air temperature. Therefore, at low / medium loads below a predetermined load, that is, in a region where the fuel injection amount is small with respect to the intake air amount, the fuel injection pressure decreases with the intake air temperature rise, fuel atomization is suppressed, and fuel Air intake is reduced. Therefore,
Combustion becomes slow and the amount of generated NOx can be reduced.
【図1】本発明の構成を例示するブロック図FIG. 1 is a block diagram illustrating the configuration of the present invention.
【図2】本発明におけるディーゼル機関の構成図FIG. 2 is a configuration diagram of a diesel engine according to the present invention.
【図3】ディーゼル機関の側面断面図FIG. 3 is a side sectional view of a diesel engine.
【図4】メインルーチンを示すフローチャートFIG. 4 is a flowchart showing a main routine.
【図5】燃料噴射圧を制御するためのフローチャートFIG. 5 is a flowchart for controlling a fuel injection pressure.
【図6】本発明の第1実施例における負荷に対する補正
係数のグラフFIG. 6 is a graph of a correction coefficient with respect to a load in the first embodiment of the present invention.
【図7】本発明の第1実施例による低・中負荷域におけ
る吸気温と実噴射圧力の関係を表す図FIG. 7 is a diagram showing a relationship between intake air temperature and actual injection pressure in a low / medium load region according to the first embodiment of the present invention.
【図8】本発明の第1実施例による高負荷域における吸
気温と実噴射圧力の関係を表す図FIG. 8 is a diagram showing a relationship between intake air temperature and actual injection pressure in a high load region according to the first embodiment of the present invention.
【図9】本発明の第2実施例における負荷に対する補正
係数のグラフFIG. 9 is a graph of a correction coefficient with respect to a load in the second embodiment of the present invention.
【図10】本発明の第3実施例における負荷に対する補
正係数のグラフFIG. 10 is a graph of a correction coefficient with respect to a load in the third embodiment of the present invention.
2 ・・・ディーゼル機関本体 16 ・・・燃料噴射弁 22、28・・・燃料供給管 26 ・・・蓄圧室 30 ・・・燃料供給ポンプ 37 ・・・ポンプ吐出量駆動装置 38 ・・・電子制御装置 70 ・・・燃料圧センサ 72 ・・・吸気温センサ 74 ・・・負荷センサ 2 ... diesel engine body 16 ... fuel injection valve 22, 28 ... fuel supply pipe 26 ... pressure accumulating chamber 30 ... fuel supply pump 37 ... pump discharge amount driving device 38 ... electronic Control device 70: fuel pressure sensor 72: intake air temperature sensor 74: load sensor
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−5474(JP,A) 特開 昭63−266149(JP,A) 特開 昭59−138737(JP,A) 特開 平4−350343(JP,A) 特開 昭62−168941(JP,A) 特開 平4−246261(JP,A) 特開 昭63−124845(JP,A) 特開 昭60−162053(JP,A) 特開 平3−275977(JP,A) 特開 平3−9050(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/38 F02D 41/04 395 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-5474 (JP, A) JP-A-63-266149 (JP, A) JP-A-59-138737 (JP, A) JP-A-4- 350343 (JP, A) JP-A-62-168941 (JP, A) JP-A-4-246261 (JP, A) JP-A-63-124845 (JP, A) JP-A-60-162053 (JP, A) JP-A-3-275977 (JP, A) JP-A-3-9050 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F02D 41/38 F02D 41/04 395
Claims (1)
と、該負荷検出手段により検出される負荷上昇に伴い機
関に供給する燃料噴射量を増量する燃料噴射量制御手段
と、吸気温度を検出する吸気温度検出手段と、燃料噴射
圧を制御する燃料噴射圧制御手段と、該燃料噴射圧制御
手段と前記燃料噴射量制御手段の出力に基づいて燃料を
噴射する燃料噴射手段とを有し、前記燃料噴射圧制御手
段が前記吸気温度検出手段により検出される吸気温度上
昇に伴い燃料噴射圧を低圧側に補正する第1補正手段を
有するディーゼル機関の燃料噴射制御装置において、 前記負荷検出手段により検出される負荷が所定負荷以上
の高負荷である時、前記吸気温度検出手段により検出さ
れる吸気温度上昇に伴い燃料噴射圧を高圧側に補正する
第2補正手段を前記燃料噴射圧制御手段に設けたことを
特徴とするディーゼル機関の燃料噴射制御装置。A load detecting means for detecting a load state of the engine; a fuel injection amount controlling means for increasing a fuel injection amount supplied to the engine in accordance with a load increase detected by the load detecting means; and detecting an intake air temperature. Intake temperature detection means, a fuel injection pressure control means for controlling the fuel injection pressure, and a fuel injection means for injecting fuel based on the output of the fuel injection pressure control means and the fuel injection amount control means, In a fuel injection control device for a diesel engine, the fuel injection pressure control unit includes a first correction unit that corrects a fuel injection pressure to a low pressure side in accordance with an increase in intake air temperature detected by the intake air temperature detection unit. When the detected load is a high load equal to or higher than a predetermined load, the second correction means for correcting the fuel injection pressure to a high pressure side in accordance with an increase in the intake air temperature detected by the intake air temperature detection means is provided. The fuel injection control apparatus for a diesel engine, characterized in that provided in the fuel injection pressure control means.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9997793A JP3052661B2 (en) | 1993-04-27 | 1993-04-27 | Fuel injection control device for diesel engine |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9997793A JP3052661B2 (en) | 1993-04-27 | 1993-04-27 | Fuel injection control device for diesel engine |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH06307276A JPH06307276A (en) | 1994-11-01 |
| JP3052661B2 true JP3052661B2 (en) | 2000-06-19 |
Family
ID=14261733
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP9997793A Expired - Fee Related JP3052661B2 (en) | 1993-04-27 | 1993-04-27 | Fuel injection control device for diesel engine |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3052661B2 (en) |
-
1993
- 1993-04-27 JP JP9997793A patent/JP3052661B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPH06307276A (en) | 1994-11-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3960283B2 (en) | Fuel injection device for internal combustion engine | |
| JP3713918B2 (en) | Engine fuel injection method and apparatus | |
| JP3804814B2 (en) | Fuel supply device for internal combustion engine | |
| US20050172931A1 (en) | Control system for internal combustion engine | |
| US9181861B2 (en) | Internal combustion engine control apparatus | |
| US20050247285A1 (en) | Fuel injection system | |
| US5724950A (en) | Exhaust gas recirculating controller | |
| JP3511492B2 (en) | Fuel injection control device for in-cylinder injection engine | |
| US7363916B2 (en) | Fuel injection system and method for determining the feed pressure of a fuel pump | |
| JPH06299896A (en) | Fuel injection control device for diesel engine | |
| JPH0765523B2 (en) | Fuel injection control device for diesel engine | |
| JP3307770B2 (en) | Exhaust gas recirculation rate estimation device for internal combustion engine | |
| JPH0359259B2 (en) | ||
| US6961651B2 (en) | Common rail fuel injection device | |
| US6736112B2 (en) | Fuel injection control of diesel engine | |
| JP3052661B2 (en) | Fuel injection control device for diesel engine | |
| JP3838526B2 (en) | Fuel injection control device and fuel injection control method for internal combustion engine | |
| JP3603979B2 (en) | Fuel injection control device for internal combustion engine | |
| JPH06299894A (en) | Fuel injection control device for diesel engine | |
| JP3767063B2 (en) | Air-fuel ratio control device for internal combustion engine | |
| JP3307306B2 (en) | Combustion system control device for internal combustion engine | |
| JPH06299895A (en) | Fuel injection control device for diesel engine | |
| US7401604B2 (en) | Engine control device and control method thereof | |
| JP2858285B2 (en) | Fuel supply control device for internal combustion engine | |
| JPH08291732A (en) | Fuel injection control device for internal combustion engine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20090407 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20110407 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120407 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20120407 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20130407 |
|
| LAPS | Cancellation because of no payment of annual fees |