[go: up one dir, main page]

JP3141874B2 - Method for manufacturing compound semiconductor light emitting device - Google Patents

Method for manufacturing compound semiconductor light emitting device

Info

Publication number
JP3141874B2
JP3141874B2 JP10758699A JP10758699A JP3141874B2 JP 3141874 B2 JP3141874 B2 JP 3141874B2 JP 10758699 A JP10758699 A JP 10758699A JP 10758699 A JP10758699 A JP 10758699A JP 3141874 B2 JP3141874 B2 JP 3141874B2
Authority
JP
Japan
Prior art keywords
film
emitting device
semiconductor light
compound semiconductor
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10758699A
Other languages
Japanese (ja)
Other versions
JP2000299028A (en
Inventor
孝夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10758699A priority Critical patent/JP3141874B2/en
Priority to US09/519,408 priority patent/US6876003B1/en
Priority to TW089103966A priority patent/TW467874B/en
Priority to EP00105558A priority patent/EP1045456B1/en
Priority to AT00105558T priority patent/ATE517437T1/en
Priority to EP08010616A priority patent/EP1976033A2/en
Priority to KR1020000019459A priority patent/KR100721643B1/en
Priority to CNB001067583A priority patent/CN1148811C/en
Publication of JP2000299028A publication Critical patent/JP2000299028A/en
Application granted granted Critical
Publication of JP3141874B2 publication Critical patent/JP3141874B2/en
Priority to US10/224,930 priority patent/US6872649B2/en
Priority to KR1020060054408A priority patent/KR100688006B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、一般に透明導電
膜の製造方法に関するものであり、より特定的には、よ
り低温で平滑で、低抵抗・高透過率を持ち、かつコスト
を低下させることができるように改良された透明導電膜
の製造方法に関する。この発明は、また、そのような方
法を用いた、化合物半導体発光素子の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a method for producing a transparent conductive film, and more particularly to a method for producing a transparent conductive film at a lower temperature, which is smooth, has low resistance and high transmittance, and reduces costs. The present invention relates to a method for producing a transparent conductive film, which is improved so as to be able to perform. The present invention also relates to a method for manufacturing a compound semiconductor light emitting device using such a method.

【0002】[0002]

【従来の技術】現在、透明導電膜は、液晶ディスプレ
イ、太陽電池をはじめ多くの分野で用いられている。透
明導電膜としては、一般にITO(In23 −5wt
%SnO 2 )が用いられている。ITOの成膜方法とし
ては、スパッタ法が主流となっており、基板温度300
℃で、透過率80%以上、抵抗率2×10-4Ωcm程度
のものが、再現性よく得られている。有機エレクトロル
ミネセンス(EL)や発光ダイオード(LED)への応
用を考えた場合、より低温で、成膜可能な透明導電膜が
求められている。
2. Description of the Related Art At present, transparent conductive films are used for liquid crystal displays.
B) It is used in many fields including solar cells. Transparent
As the bright conductive film, ITO (InTwo OThree -5wt
% SnO Two ) Is used. ITO film formation method
In most cases, the sputtering method is the mainstream, and the substrate temperature is 300
At 80 ° C., transmittance is 80% or more, resistivity is 2 × 10-FourAbout Ωcm
Are obtained with good reproducibility. Organic electrol
Response to luminescence (EL) and light emitting diode (LED)
When considering the use, a transparent conductive film that can be formed at lower temperature
It has been demanded.

【0003】特開平6−318406号公報には、室温
成膜でも高透過率、低抵抗率が実現できるIn23
10wt%ZnOの製造技術が提案されている。この技
術によれば、スパッタ法で室温で成膜した、膜厚140
nmの膜で、抵抗率3×10 -4Ωcm、透過率86%
(at550nm)を実現している。
[0003] Japanese Patent Application Laid-Open No. 6-318406 discloses that
In which high transmittance and low resistivity can be realized even in film formationTwo OThree −
A production technique of 10 wt% ZnO has been proposed. This technique
According to the technique, the film was formed at room temperature by sputtering, and the film thickness was 140
nm film with a resistivity of 3 × 10 -FourΩcm, transmittance 86%
(At 550 nm).

【0004】その他、透明導電膜の成膜は、蒸着、イオ
ンプレーティング法などでも検討されている。
[0004] In addition, formation of a transparent conductive film has been studied by vapor deposition, ion plating and the like.

【0005】[0005]

【発明が解決しようとする課題】透明導電膜では、透過
率や伝導率が、酸素量に大きく依存する。しかしなが
ら、従来の蒸着法では、蒸着源の運転のため、成膜圧力
に制限があるという問題点があった。また、スパッタ法
では、プラズマを利用するための圧力範囲の制限とアル
ゴンの使用(プラズマを立てるために必要なもの)な
ど、成膜するための成膜圧やガスに制限があり、精密に
酸素量を制御できないという問題点があった。
SUMMARY OF THE INVENTION In a transparent conductive film, the transmittance and conductivity greatly depend on the amount of oxygen. However, the conventional vapor deposition method has a problem that the deposition pressure is limited due to the operation of the vapor deposition source. In addition, in the sputtering method, there are limitations on the film formation pressure and gas for film formation, such as the limitation of the pressure range for using plasma and the use of argon (necessary for generating plasma), and the precise oxygen There was a problem that the amount could not be controlled.

【0006】この発明は、上記のような問題点を解決す
るためになされたもので、成膜圧力、成膜ガスに制限が
なく、かつ精密に酸素量を制御することができるように
改良された透明導電膜の製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has been improved so that the film formation pressure and gas are not limited and the amount of oxygen can be precisely controlled. To provide a method for producing a transparent conductive film.

【0007】この発明の他の目的は、透過率が向上し、
かつコストが低減することができるように改良された、
透明導電膜の製造方法を提供することにある。
Another object of the present invention is to improve the transmittance,
And improved so that costs can be reduced,
An object of the present invention is to provide a method for manufacturing a transparent conductive film.

【0008】この発明は、また、そのような透過率の向
上およびコストが低減されるように改良された透明導電
膜の形成工程を含む、化合物半導体発光素子の製造方法
を提供することを目的とする。
Another object of the present invention is to provide a method of manufacturing a compound semiconductor light emitting device including a step of forming a transparent conductive film improved so as to improve the transmittance and reduce the cost. I do.

【0009】[0009]

【課題を解決するための手段】この発明に従った化合物
半導体発光素子の製造方法においては、まず、透明電極
を形成する直前の化合物半導体発光素子基板を準備す
る。この化合物半導体発光素子基板を真空槽内に置く。
上記真空槽の中心に、透明導電膜電極の材料となるター
ゲットを置き、真空槽内に酸素を導入する。そして、成
膜温度を室温〜300℃にして、上記ターゲットにレー
ザ光を照射し、アブレーションによって放出された原
子、分子イオンを前記化合物半導体発光素子基板の上に
堆積させ、酸化させながら、透明導電膜電極を結晶成長
させる。
SUMMARY OF THE INVENTION Compounds according to the invention
In a method for manufacturing a semiconductor light emitting device, first, a transparent electrode
Prepare the compound semiconductor light emitting device substrate immediately before forming
You. This compound semiconductor light emitting device substrate is placed in a vacuum chamber.
At the center of the above-mentioned vacuum chamber, place a tar
Place the get and introduce oxygen into the vacuum chamber. And
Set the film temperature from room temperature to 300 ° C,
Irradiates the light, the source released by ablation
Molecules and molecular ions on the compound semiconductor light emitting device substrate.
Crystal growth of transparent conductive film electrode while depositing and oxidizing
Let it.

【0010】この方法は、レーザアブレーション法と称
されるものであり、本発明では、化合物半導体発光素子
基板上に透明導電膜電極を成膜する方法として利用して
いる。レーザアブレーションでは、励起源となるエキシ
マレーザを成膜装置外から導くため、成膜圧やガスに制
約がない。また、スパッタ法で問題となる負イオンによ
る逆スパッタの影響もない。このような特徴から、酸素
量制御が容易となり、かつターゲット組成に近い膜を得
る等の特徴がある。さらに、スパッタ法に比べ表面平滑
性が優れた膜が得られる。こうして、この発明によれ
ば、レーザアブレーション法で透明導電膜電極を形成す
るので、低抵抗であり、かつ透過率が向上した化合物半
導体発光素子が得られる。
This method is called a laser ablation method. In the present invention, a compound semiconductor light emitting device is used.
It is used as a method for forming a transparent conductive film electrode on a substrate . In laser ablation, since an excimer laser serving as an excitation source is guided from outside the film forming apparatus, there is no restriction on the film forming pressure or gas. Further, there is no influence of reverse sputtering due to negative ions, which is a problem in the sputtering method. From such features, there are features such as easy control of the oxygen amount and obtaining a film close to the target composition. Further, a film having excellent surface smoothness as compared with the sputtering method can be obtained. Thus, according to the invention
For example, a transparent conductive film electrode is formed by a laser ablation method.
Therefore, a compound half having low resistance and improved transmittance
A conductor light emitting device is obtained.

【0011】請求項2に係る化合物半導体発光素子の製
造方法においては、上記ターゲットは、In2 3 −1
0Wt%ZnOが用いられる。
In the method for manufacturing a compound semiconductor light emitting device according to claim 2, the target is In 2 O 3 -1.
0 Wt% ZnO is used.

【0012】[0012]

【0013】請求項3に係る化合物半導体発光素子の製
造方法においては、成膜圧力を、0.3〜3×10-3
orrで行なう。
According to a third aspect of the present invention, in the method of manufacturing a compound semiconductor light emitting device , the film forming pressure is set to 0.3 to 3 × 10 −3 T.
Perform at orr.

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【0018】[0018]

【0019】[0019]

【発明の実施の形態】以下、この発明の実施の形態を図
について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0020】実施の形態1 図1は、本発明に係る透明導電膜の製造方法に用いるレ
ーザアブレーション成膜装置の概念図である。高密度の
レーザパルスを固体表面に照射し、そこから放出される
イオンや原子を対向した位置にある基板上に堆積し、薄
膜を形成する手法がレーザアブレーション法と言われる
ものである。この手法は、金属酸化物誘導体薄膜の成膜
プロセスとして大変適した方法である。強いレーザパル
スを利用して、同一実験チャンバの中で成膜だけでなく
微細加工、エッチング、多層化等が行なえる利点を持
つ。強誘電体薄膜作製におけるレーザアブレーション法
の利点は、以下のようになる。
Embodiment 1 FIG. 1 is a conceptual diagram of a laser ablation film forming apparatus used in a method for manufacturing a transparent conductive film according to the present invention. Laser ablation is a method of irradiating a solid surface with a high-density laser pulse, depositing ions and atoms emitted therefrom on a substrate at an opposite position to form a thin film. This method is very suitable as a process for forming a metal oxide derivative thin film. By using a strong laser pulse, there is an advantage that not only film formation but also fine processing, etching, multi-layering, etc. can be performed in the same experimental chamber. The advantages of the laser ablation method for producing a ferroelectric thin film are as follows.

【0021】まず、この方法では、成膜室の外部からレ
ーザ光が導入されるため、結晶成長に適した任意の雰囲
気圧力中で薄膜形成ができることが挙げられる。また、
ターゲットのみから原子・分子・イオンが放出されるた
めに不純物のない薄膜が形成される。
First, in this method, since a laser beam is introduced from outside the film forming chamber, a thin film can be formed at an arbitrary atmospheric pressure suitable for crystal growth. Also,
Since atoms, molecules, and ions are emitted only from the target, a thin film without impurities is formed.

【0022】圧力・基板温度・成膜速度等の多くのパラ
メータを独立に選ぶことができる。薄膜の制御性という
意味では、レーザパルス数とエネルギーの調節で瞬時に
成膜コントロールができる。
Many parameters such as pressure, substrate temperature, film forming rate, etc. can be independently selected. In terms of the controllability of the thin film, the film formation can be instantaneously controlled by adjusting the number of laser pulses and the energy.

【0023】さらに、最近明らかになってきたように、
非常に高速の成膜が可能である。このように、多くの優
れた点を有している。
Further, as recently revealed,
Very high-speed film formation is possible. Thus, it has many excellent points.

【0024】レーザアブレーション装置は、図1に示す
ように、真空槽の中心に成膜する強誘電体からなるバル
クターゲットを置き、真空系内には酸素またはオゾン、
NO 2 等の酸化力の強いガスを導入し、パルスレーザ光
をターゲットに照射してアブレーションを起こす。アブ
レーションによって放出された原子分子イオンは基板に
堆積して酸化されながら結晶成長をする。実施の形態1
では、このようなレーザアブレーション装置を用いて、
透明導電膜の成膜を試みた。
The laser ablation apparatus is shown in FIG.
As shown in the figure, a valve consisting of a ferroelectric
Place the target, oxygen or ozone in the vacuum system,
NO Two Introduce a highly oxidizing gas such as
Irradiates the target to cause ablation. Abu
The atomic and molecular ions released by the
The crystal grows while being deposited and oxidized. Embodiment 1
Then, using such a laser ablation device,
An attempt was made to form a transparent conductive film.

【0025】成膜条件を以下に記す。 レーザ:KrF248nm2J/cm2 ターゲット:In23 −10wt%ZnO(出光興産
製、高密度品、以下、IDIXOと略する。) 基板:MGO(透過率測定)、ガラス(抵抗測定用) 成膜温度:(室温(RT)〜300℃)標準としてRT
を用いた。
The film forming conditions are described below. Laser: KrF 248 nm 2 J / cm 2 Target: In 2 O 3 -10 wt% ZnO (manufactured by Idemitsu Kosan, high density product, hereinafter abbreviated as IDIXO) Substrate: MGO (transmittance measurement), glass (for resistance measurement) Film formation Temperature: (room temperature (RT) -300 ° C.) RT as standard
Was used.

【0026】成膜圧力:0.3〜3×10-3TorrO
2 (標準として、3×10-3TorrO2 を用いた) 成膜条件について、さらに詳細に説明する。
Film forming pressure: 0.3 to 3 × 10 -3 Torr O
2 (using 3 × 10 −3 TorrO 2 as a standard) The film forming conditions will be described in more detail.

【0027】酸素圧依存性 まず、透明導電膜の透過率の酸素圧依存性について調べ
た。
Oxygen Pressure Dependence First, the oxygen pressure dependence of the transmittance of the transparent conductive film was examined.

【0028】レーザアブレーションでは、成膜圧により
プルーム形状が変化する。また、ある成膜圧下で、試料
をプルームのどの部分に位置させるかにより、組成が変
化する。発明者は超伝導デバイス開発でのターゲット・
基板間距離は60〜70mm程度が最適である結果を得
ており、今回はプルーム観察からターゲット・基板間距
離を70mmに固定し、酸素圧依存性を評価した。な
お、IDIXOの膜厚は120nm程度とした。
In laser ablation, the plume shape changes depending on the film forming pressure. Further, the composition changes depending on where in the plume the sample is positioned under a certain film formation pressure. The inventor has set a target for superconducting device development.
The optimum distance between the substrates was about 60 to 70 mm. In this case, the distance between the target and the substrate was fixed at 70 mm from plume observation, and the oxygen pressure dependency was evaluated. Note that the film thickness of IDIXO was about 120 nm.

【0029】図2に抵抗率と酸素圧の関係を示す。抵抗
率は酸素圧とともに大きく変化し、3×10-3Torr
でdipをもつ特性が得られた。これは酸素量により、
透明導電膜の抵抗に最適値があるという、これまでの報
告と一致している。なお、最も低い6.5×10-5Ωc
mという値は、従来のスパッタ法で得ることは非常に困
難な値である。このため、スパッタ法に比べ、1桁程度
の抵抗率が低いことから、必要となる膜厚が1/10と
なり、このことにより透過率を上昇でき、低コストで高
品質の透明導電膜が作製可能となる。またこの条件で作
製した膜の表面の凹凸は0.5nm程度と非常に平滑で
あった。この値は、スパッタ法で作製した膜に比べ1/
10程度である。
FIG. 2 shows the relationship between the resistivity and the oxygen pressure. The resistivity changes greatly with the oxygen pressure and is 3 × 10 −3 Torr
, A characteristic having a dip was obtained. This depends on the amount of oxygen,
This is consistent with previous reports that there is an optimum value for the resistance of the transparent conductive film. The lowest 6.5 × 10 −5 Ωc
The value of m is a value that is very difficult to obtain by a conventional sputtering method. For this reason, since the resistivity is lower by about one order of magnitude as compared with the sputtering method, the required film thickness is reduced to 1/10, whereby the transmittance can be increased, and a high quality transparent conductive film can be manufactured at low cost. It becomes possible. In addition, the unevenness of the surface of the film produced under these conditions was very smooth, about 0.5 nm. This value is 1/1 of that of the film formed by the sputtering method.
It is about 10.

【0030】図3に、IDIXOの透過率の酸素圧依存
性を評価した結果を示す。約300nmの吸収端が認め
られる。透過率測定用の試料は、基板として吸収端が2
00nm程度のMgOを使用しており、300nmの吸
収がIDIXO膜に起因していることがわかる。また、
使用したMgO基板の波長500nmでの透過率は84
%と測定されており、成膜酸素圧とIDIXO膜(12
0nm)の透過率の関係としては、表1のように計算で
きる。
FIG. 3 shows the results of evaluating the oxygen pressure dependence of the transmittance of IDIXO. An absorption edge of about 300 nm is observed. The sample for transmittance measurement has a substrate with an absorption edge of 2
It can be seen that MgO of about 00 nm is used, and the absorption of 300 nm is caused by the IDIXO film. Also,
The transmittance of the used MgO substrate at a wavelength of 500 nm is 84.
% And the film forming oxygen pressure and the IDIXO film (12
0 nm) can be calculated as shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】成膜圧0.3Torrでは、透過率は高い
が、抵抗率が非常に高い。最も低い抵抗率が得られた3
×10-3Torrでは、透過率92%が得られた。発光
素子では一般に膜厚の薄いAuを透明電極として使用し
ている。膜厚20nmのAuの透過率が37%であるこ
とから、IDIXOを用いたことで、2倍以上の光出力
が得られる。
At a film forming pressure of 0.3 Torr, the transmittance is high, but the resistivity is very high. The lowest resistivity was obtained 3
At × 10 −3 Torr, a transmittance of 92% was obtained. In a light emitting element, Au having a small thickness is generally used as a transparent electrode. Since the transmittance of Au having a film thickness of 20 nm is 37%, the use of IDIXO can provide a light output twice or more.

【0033】再現性 IDIXOを製品に応用する場合、1)面内分布、2)
再現性などを評価する必要がある。ZnSe基板は、現
状10mm角程度であり、プルーム形状、超電導関係の
発明者の経験・実績から問題ないと考えられ、今回はI
DIXO膜を同条件で3回成膜した場合の抵抗率変化を
評価した。その結果を、表2に示す。
When the reproducibility IDIXO is applied to products, 1) in-plane distribution, 2)
It is necessary to evaluate reproducibility. The ZnSe substrate is currently about 10 mm square, and it is considered that there is no problem from the experience and results of the inventor related to plume shape and superconductivity.
The change in resistivity when the DIXO film was formed three times under the same conditions was evaluated. Table 2 shows the results.

【0034】[0034]

【表2】 [Table 2]

【0035】RUNとともに抵抗率の増加が認められる
が、すべての試料で10-5Ωcm以下の値を得ている。
このような低い値で安定していることは、製品への適用
には問題ないと考えられる。
Although an increase in resistivity is observed with RUN, a value of 10 −5 Ωcm or less is obtained for all samples.
Stability at such a low value is considered to be no problem for application to products.

【0036】なお、このように抵抗率が変化する原因と
しては、1)ターゲット組成の変化、2)膜厚変化が原
因として考えられる。1)についてはターゲット表面の
研磨、2)については膜厚モニタの設置により対応が可
能である。
The cause of the change in the resistivity can be considered to be 1) a change in the target composition and 2) a change in the film thickness. Regarding 1), it is possible to cope by polishing the target surface and 2) by installing a film thickness monitor.

【0037】降温時の酸素圧依存性 従来のスパッタ法に比べ、レーザアブレーション法でI
DIXO膜を成膜することにより、ベストデータで、抵
抗率が1桁程度低減できた。このことは、従来使用され
てきた透明導電膜の膜厚を1/10程度に低減できる可
能性を示している。蒸着法、スパッタ法では励起源(蒸
着;熱、スパッタ;プラズマ)が装置内にあり、成膜条
件が制限される。これに比べ、レーザアブレーション法
では、装置の外部から励起源となるエキシマレーザを導
入するため、成膜時の圧力は大気圧近くから高真空まで
容易に変化でき、最適な酸素圧での成膜が可能である。
また膜組成に関しても、レーザアブレーションでは、タ
ーゲット組成に近い膜が容易に得られる。このような原
因から、本発明では、非常に高い抵抗率を持つIDIX
O膜の成膜を実現することができたものと考えられる。
Dependence on Oxygen Pressure at Temperature Decrease In comparison with the conventional sputtering method, the laser ablation method has
By forming the DIXO film, the resistivity was reduced by about one digit with the best data. This indicates the possibility that the thickness of the conventionally used transparent conductive film can be reduced to about 1/10. In the evaporation method and the sputtering method, an excitation source (evaporation; heat, sputtering; plasma) is provided in the apparatus, and the film forming conditions are limited. In contrast, in the laser ablation method, an excimer laser, which is an excitation source, is introduced from the outside of the apparatus, so the pressure during film formation can easily be changed from near atmospheric pressure to high vacuum, and film formation at the optimal oxygen pressure is performed. Is possible.
Regarding the film composition, a film close to the target composition can be easily obtained by laser ablation. For this reason, according to the present invention, IDIX having a very high resistivity is used.
It is considered that the O film could be formed.

【0038】さらに、酸素量と抵抗率の関係を検討する
ため、約300℃で成膜後の降温雰囲気を変化させる実
験を行なった。なお、成膜圧は室温成膜で最も低い抵抗
率を示した3×10-3Torrとした。結果を表3に示
す。
Further, in order to examine the relationship between the amount of oxygen and the resistivity, an experiment was performed in which the temperature-reducing atmosphere after film formation was changed at about 300 ° C. The film formation pressure was set to 3 × 10 −3 Torr which exhibited the lowest resistivity at room temperature. Table 3 shows the results.

【0039】[0039]

【表3】 [Table 3]

【0040】100Torr降温では試料に酸素が供給
され、抵抗率が上昇している。成膜圧、真空中降温では
あまり抵抗率に変化は認められず、この圧力範囲では、
取込まれた酸素が極端に変化しないことを示している。
酸素圧依存性との実験とも併せ、IDIXO膜は、酸素
導入しやすく、欠損しにくい特性があると思われる。
At a temperature decrease of 100 Torr, oxygen is supplied to the sample, and the resistivity increases. At the film forming pressure and the temperature drop in vacuum, there is not much change in the resistivity. In this pressure range,
This indicates that the oxygen taken up does not change drastically.
It is considered that the IDIXO film has a characteristic that oxygen is easily introduced and hardly deficient in combination with the experiment on the oxygen pressure dependency.

【0041】Au付IDIXO膜の評価 透明導電膜は、一般に、n型半導体であり、ZnSe系
LEDのp電極として成膜した場合、接合を形成する可
能性がある。これを防ぐため、IDIXO膜を成膜する
前にAu膜を成膜するIDIXO/Au構造について検
討を行なった。抵抗率に関する結果を、表4に示す。
Evaluation of Au-Added IDIXO Film The transparent conductive film is generally an n-type semiconductor, and may form a junction when formed as a p-electrode of a ZnSe-based LED. In order to prevent this, an IDIXO / Au structure in which an Au film is formed before forming an IDIXO film was studied. Table 4 shows the results regarding the resistivity.

【0042】[0042]

【表4】 [Table 4]

【0043】平滑なガラス基板に比べて、3nmでは、
多少高い抵抗率、10nmでは同程度の抵抗率が得られ
ている。3nmで抵抗が増加する原因としては、島状に
成長したAu(電気伝導には寄与しない)の存在によ
り、IDIXOが成膜初期において連続膜が成長せず、
抵抗率が上昇したと考えられる。さらに、10nmとな
ると、Auは連続膜となり、IDIXOの電気伝導の低
下を補っていることを示している。
At 3 nm, compared to a smooth glass substrate,
At a somewhat higher resistivity, 10 nm, a similar resistivity is obtained. The reason that the resistance increases at 3 nm is that the presence of Au (which does not contribute to electric conduction) grown in an island shape prevents the IDIXO from growing as a continuous film at the initial stage of film formation.
It is considered that the resistivity increased. Further, when the thickness becomes 10 nm, Au becomes a continuous film, which indicates that the decrease in electric conductivity of IDIXO is compensated.

【0044】図4に、IDIXO/Au電極構造におけ
る透過率特性を示す。Auの存在により、透過率の低下
が認められる。波長500nmで、IDIXO(120
nm)/Au(3nm)の透過率は80%程度である。
Auの膜厚の薄さに比べ、透過率が低下している原因と
しては、Auの存在により、IDIXO自体の透過率が
低下しているためと考えられる。
FIG. 4 shows the transmittance characteristics of the IDIXO / Au electrode structure. A decrease in transmittance is observed due to the presence of Au. At a wavelength of 500 nm, IDIXO (120
nm) / Au (3 nm) has a transmittance of about 80%.
The reason why the transmittance is lower than that of the thin Au film is considered to be that the transmittance of the IDIXO itself is reduced due to the presence of Au.

【0045】実施の形態2 図5は、実施の形態1に係る透明導電膜の製法を応用し
て、製造した化合物半導体発光素子の断面図である。図
5を参照して、n型半導体層1の裏面にn電極2が設け
られている。n型半導体層1の上に活性層3が設けられ
ている。活性層3の上にp型半導体層4が設けられてい
る。p型半導体層4の上にコンタクト層5が設けられて
いる。コンタクト層5の上に透明電極であるp電極6が
設けられている。p電極6の上にパッド7が設けられて
いる。パッド7には、外部電源(図示せず)から、配線
8より、電流が送り込まれる。
Embodiment 2 FIG. 5 is a sectional view of a compound semiconductor light emitting device manufactured by applying the method for manufacturing a transparent conductive film according to Embodiment 1. Referring to FIG. 5, an n-type electrode 2 is provided on the back surface of n-type semiconductor layer 1. An active layer 3 is provided on the n-type semiconductor layer 1. A p-type semiconductor layer 4 is provided on the active layer 3. The contact layer 5 is provided on the p-type semiconductor layer 4. On the contact layer 5, a p-electrode 6 which is a transparent electrode is provided. Pad 7 is provided on p electrode 6. A current is sent to the pad 7 from an external power supply (not shown) through a wiring 8.

【0046】図5に示すような化合物半導体発光素子の
透明電極6の成膜方法として、実施の形態1で説明した
レーザアブレーション法を用いることにより、透過率が
高く、かつ電気伝導率が低く、さらに従来用いられてい
るAu電極よりも、2倍以上の光出力を有するものが得
られた。ZnSe系LEDの電極構造としては、光出力
を最大とするため、IDIXO(200nm)/Au
(3nm)が望ましい。
As a method for forming the transparent electrode 6 of the compound semiconductor light emitting device as shown in FIG. 5, by using the laser ablation method described in the first embodiment, the transmittance is high and the electric conductivity is low. Further, an electrode having a light output twice or more that of a conventionally used Au electrode was obtained. The electrode structure of the ZnSe-based LED is IDIXO (200 nm) / Au in order to maximize the light output.
(3 nm) is desirable.

【0047】なお、今回開示された実施の形態は全ての
点で例示であって、制限的なものではないと考えられる
べきである。本発明の範囲は上記した説明ではなくて特
許請求の範囲によって示され、特許請求の範囲と均等の
意味および範囲内でのすべての変更が含まれることが意
図される。
It should be noted that the embodiment disclosed this time is an example in all respects and is not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】レーザアブレーション成膜装置の概念図であ
る。
FIG. 1 is a conceptual diagram of a laser ablation film forming apparatus.

【図2】膜厚120nmのIDIXO膜の抵抗率と酸素
圧との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the resistivity and the oxygen pressure of an IDIXO film having a thickness of 120 nm.

【図3】膜厚120nmのIDIXO膜の透過率の酸素
圧依存性を示す図である。
FIG. 3 is a diagram showing the oxygen pressure dependence of the transmittance of an IDIXO film having a thickness of 120 nm.

【図4】IDIXO(120nm)/Auの透過率の波
長依存性を示す図である。
FIG. 4 is a diagram showing the wavelength dependence of the transmittance of IDIXO (120 nm) / Au.

【図5】本発明によって得られた化合物半導体発光素子
の断面図である。
FIG. 5 is a cross-sectional view of a compound semiconductor light emitting device obtained according to the present invention.

【符号の説明】[Explanation of symbols]

6 p電極 6 p electrode

フロントページの続き (51)Int.Cl.7 識別記号 FI H01B 13/00 503 H01B 13/00 503B // H01B 5/14 5/14 A (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 C23C 14/00 - 14/58 H01B 13/00 JICSTファイル(JOIS)Continuation of the front page (51) Int.Cl. 7 identification symbol FI H01B 13/00 503 H01B 13/00 503B // H01B 5/14 5/14 A (58) Field surveyed (Int.Cl. 7 , DB name H01L 33/00 C23C 14/00-14/58 H01B 13/00 JICST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透明電極を形成する直前の化合物半導体
発光素子基板を準備する工程と、 前記化合物半導体発光素子基板を真空槽内に置く工程
と、 前記真空槽の中心に、透明導電膜電極の材料となるター
ゲットを置く工程と、 前記真空槽内に酸素を導入する工程と、成膜温度を室温〜300℃にして、 前記ターゲットにレ
ーザ光を照射し、アブレーションによって放出された原
子、分子イオンを前記化合物半導体発光素子基板の上に
堆積させ、酸化させながら、前記透明導電膜電極を結晶
成長させる工程と、を備えた化合物半導体発光素子の製
造方法。
And 1. A process of preparing a compound semiconductor light-emitting device substrate immediately before forming the transparent electrode, a step of placing said compound semiconductor light-emitting device substrate in a vacuum chamber, in the center of the vacuum chamber, the transparent conductive film electrode A step of placing a target to be a material; a step of introducing oxygen into the vacuum chamber; a film formation temperature of room temperature to 300 ° C . ; irradiating the target with laser light; and atoms and molecular ions emitted by ablation. Depositing the compound on the compound semiconductor light emitting device substrate, and crystallizing the transparent conductive film electrode while oxidizing the compound semiconductor light emitting device substrate.
【請求項2】 前記ターゲットは、In23−10wt
%ZnOを含む、請求項に記載の化合物半導体発光素
子の製造方法。
2. The method according to claim 1, wherein the target is In 2 O 3 -10 wt.
The method for manufacturing a compound semiconductor light-emitting device according to claim 1 , wherein the compound semiconductor light-emitting device contains% ZnO.
【請求項3】 成膜圧力を、0.3〜3×10-3Tor
rにして、前記結晶成長を行なう、請求項に記載の化
合物半導体発光素子の製造方法。
3. A film forming pressure of 0.3 to 3 × 10 −3 Torr.
in the r, performing said crystal growth method of manufacturing a compound semiconductor light-emitting device according to claim 1.
JP10758699A 1999-04-15 1999-04-15 Method for manufacturing compound semiconductor light emitting device Expired - Fee Related JP3141874B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP10758699A JP3141874B2 (en) 1999-04-15 1999-04-15 Method for manufacturing compound semiconductor light emitting device
US09/519,408 US6876003B1 (en) 1999-04-15 2000-03-03 Semiconductor light-emitting device, method of manufacturing transparent conductor film and method of manufacturing compound semiconductor light-emitting device
TW089103966A TW467874B (en) 1999-04-15 2000-03-06 Semiconductor light-emitting device, method of manufacturing transparent conductor film and method of manufacturing compound semiconductor light-emitting device
AT00105558T ATE517437T1 (en) 1999-04-15 2000-03-16 SEMICONDUCTOR LIGHT EMITTING DEVICE AND PRODUCTION METHOD FOR A COMPOUND SEMICONDUCTOR LIGHT EMITTING SEMICONDUCTOR DEVICE
EP08010616A EP1976033A2 (en) 1999-04-15 2000-03-16 Method of manufacturing transparent conductor film and method of manufacturing compound semiconductor light-emitting device
EP00105558A EP1045456B1 (en) 1999-04-15 2000-03-16 Semiconductor light-emitting device and method of manufacturing compound semiconductor light-emitting device
KR1020000019459A KR100721643B1 (en) 1999-04-15 2000-04-14 Semiconductor light emitting device
CNB001067583A CN1148811C (en) 1999-04-15 2000-04-14 Semiconductor luminous device and its making method and method for producing transparent conductor film
US10/224,930 US6872649B2 (en) 1999-04-15 2002-08-20 Method of manufacturing transparent conductor film and compound semiconductor light-emitting device with the film
KR1020060054408A KR100688006B1 (en) 1999-04-15 2006-06-16 Manufacturing method of transparent conductive film and manufacturing method of compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10758699A JP3141874B2 (en) 1999-04-15 1999-04-15 Method for manufacturing compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2000299028A JP2000299028A (en) 2000-10-24
JP3141874B2 true JP3141874B2 (en) 2001-03-07

Family

ID=14462924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10758699A Expired - Fee Related JP3141874B2 (en) 1999-04-15 1999-04-15 Method for manufacturing compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3141874B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876003B1 (en) 1999-04-15 2005-04-05 Sumitomo Electric Industries, Ltd. Semiconductor light-emitting device, method of manufacturing transparent conductor film and method of manufacturing compound semiconductor light-emitting device

Also Published As

Publication number Publication date
JP2000299028A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
Kim et al. Indium tin oxide thin films for organic light-emitting devices
JP3586906B2 (en) Method for manufacturing transparent conductive film
KR101064144B1 (en) A method of forming a conductive film, a thin film transistor, a panel having a thin film transistor, and a manufacturing method of a thin film transistor
KR100688006B1 (en) Manufacturing method of transparent conductive film and manufacturing method of compound semiconductor light emitting device
JP4787496B2 (en) Hybrid beam deposition system and method and semiconductor device made thereby
US20030132449A1 (en) Light emitting diode and semiconductor laser
KR101067364B1 (en) A method of forming a conductive film, a thin film transistor, a panel having a thin film transistor, and a manufacturing method of a thin film transistor
JP2524827B2 (en) Laminated thin film body and manufacturing method thereof
JP3141874B2 (en) Method for manufacturing compound semiconductor light emitting device
US7608853B2 (en) Semiconductor light emitting diode that uses silicon nano dot and method of manufacturing the same
Chen et al. Fabrication of ITO thin films by filtered cathodic vacuum arc deposition
Leonov et al. Unexpectedly large energy gap in ZnO nanoparticles on a fused quartz support
Kwon Effect of precursor-pulse on properties of Al-doped ZnO films grown by atomic layer deposition
Stognij et al. Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties
US5679625A (en) Method of making an oxide superconducting thin film
Hamzah et al. Effect of post-annealing in oxygen environment on ITO thin films deposited using RF magnetron sputtering
CN100379684C (en) Method for producing oxide superconducting thin film
JP3929964B2 (en) Method for manufacturing thin film laminated structure
JP2004091253A (en) Ultra-flat p-type oxide semiconductor NiO single crystal thin film
US20040164291A1 (en) Nanoelectrical compositions
KR102154899B1 (en) Microstructure control method of molybdenum thin film surface
JPH04182317A (en) Method for producing oxide superconducting thin film
JPH05263219A (en) Method for producing copper indium selenide thin film
Habis et al. Zinc Oxide Thin Film Morphology as Function of Substrate Position During Sputtering Process
KR20250055707A (en) Highly transparent and highly conductive semiconductor substrate, method for manufacturing the same, and method for improving conductivity of the semiconductor substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees