JP3145518B2 - Surface high-purity ceramics and manufacturing method thereof - Google Patents
Surface high-purity ceramics and manufacturing method thereofInfo
- Publication number
- JP3145518B2 JP3145518B2 JP33780992A JP33780992A JP3145518B2 JP 3145518 B2 JP3145518 B2 JP 3145518B2 JP 33780992 A JP33780992 A JP 33780992A JP 33780992 A JP33780992 A JP 33780992A JP 3145518 B2 JP3145518 B2 JP 3145518B2
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- ceramics
- impurities
- inorganic oxide
- firing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/53—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
- C04B41/5392—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete by burning
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00844—Uses not provided for elsewhere in C04B2111/00 for electronic applications
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は表面高純度セラミックス
及びその製造方法に関し、更に詳しくは、半導体製造工
程において汚染源となるアルカリ金属酸化物等の不純物
含有量をその外表面域で低減し、特に半導体製造装置用
部材に好適な表面高純度セラミックスとその製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-purity surface ceramic and a method for producing the same, and more particularly to a method for reducing the content of impurities such as alkali metal oxides, which are a source of contamination in a semiconductor production process, in the outer surface area thereof. The present invention relates to a high-purity surface ceramic suitable for a member for a semiconductor manufacturing apparatus and a method for manufacturing the same.
【0002】[0002]
【従来の技術】従来、半導体製造装置用の部材に使用す
るセラミックス材は、主に石英ガラスや炭化珪素であっ
た。半導体製造工程においては、雰囲気中の微量含有成
分による汚染防止が重要な課題であり、ウェーハを構成
するシリコンと同種の元素から形成される石英ガラスや
炭化珪素であれば、接触しても、また、それら部材から
気化する蒸気も同種元素であることから、シリコンウェ
ーハを汚染しないとされているためである。しかし、急
進展を続けている半導体製造工程においても、上記石英
ガラスや炭化珪素からなる部材についても種々の問題が
提起されている。例えば、最近の半導体製造工程におけ
るエッチング工程、CVD成膜工程、レジストを除去す
るアッシング工程では、フッ素系ガスやプラズマを用い
ることが多くなっている。この場合、石英ガラスや炭化
珪素の部材は、フッ素系ガスによる腐食が著しいことが
指摘されている。石英ガラスや炭化珪素のシリコンがフ
ッ素系ガスと反応してシリコン・フッ素化合物を形成
し、そのシリコン・フッ素化合物が蒸気圧が高く常温で
気化して発散するためである。2. Description of the Related Art Conventionally, a ceramic material used for a member for a semiconductor manufacturing apparatus is mainly quartz glass or silicon carbide. In the semiconductor manufacturing process, prevention of contamination by a trace amount of components in the atmosphere is an important issue, and any quartz glass or silicon carbide formed from the same element as silicon constituting the wafer, even if in contact, The reason is that the vaporized gas from these members is also the same kind of element, so that the silicon wafer is not contaminated. However, various problems have been raised with respect to members made of the above quartz glass and silicon carbide, even in the semiconductor manufacturing process that is rapidly progressing. For example, in an etching process, a CVD film forming process, and an ashing process for removing a resist in a recent semiconductor manufacturing process, a fluorine-based gas or plasma is often used. In this case, it has been pointed out that quartz glass and silicon carbide members are significantly corroded by fluorine-based gas. This is because silicon such as quartz glass or silicon carbide reacts with a fluorine-based gas to form a silicon-fluorine compound, and the silicon-fluorine compound has a high vapor pressure and is vaporized and diffused at room temperature.
【0003】上記のように半導体製造装置において、石
英ガラス、炭化珪素以外の代替無機材料の開発の要望、
必要性が高まり、従来無機材料の改善・改良、高純度化
について種々検討されている。従来の無機材料のうち、
石英ガラス及び炭化珪素を除く一般的な無機酸化物セラ
ミックス、例えば、アルミナ、ジルコニア、稀土類酸化
物等は、フッ素系ガスに対し比較的耐蝕性を有すること
が明らかにされた。例えば、アルミナとフッ素系ガス
は、反応して安定なフッ化アルミニウム(A1F3 )を
生成する。この化合物A1F3 は、700℃以下では蒸
気圧も低く、フッ素ガスに曝されているアルミナ表面の
保護層として働きアルミナセラミックスの腐食を防止す
るものと推定されている。As described above, in a semiconductor manufacturing apparatus, there has been a demand for the development of an alternative inorganic material other than quartz glass and silicon carbide.
The necessity has increased, and various studies have been made on improvement / improvement and high purification of inorganic materials. Among the conventional inorganic materials,
It has been revealed that common inorganic oxide ceramics other than quartz glass and silicon carbide, such as alumina, zirconia, and rare earth oxides, have relatively high corrosion resistance to fluorine-based gases. For example, alumina reacts with a fluorine-based gas to produce stable aluminum fluoride (A1F 3 ). It is presumed that the compound A1F 3 has a low vapor pressure at 700 ° C. or lower and functions as a protective layer on the alumina surface exposed to fluorine gas to prevent corrosion of alumina ceramics.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
無機酸化物セラミックスは、主に耐熱性や機械的特性等
が偏重され、その機械的強度、電気的絶縁性、耐熱性、
耐薬品性等の特性を構造部材として利用していたもので
あって、その含有不純物まで確認し、管理して使用する
例は少なく、特に純度について特別な注意が払われた例
は、セラミックスパッケージ用のアルミナセラミックス
や高圧ナトリウムランプ発光管の透過性アルミナセラミ
ックス等の数例を除き、殆どないと言っても過言ではな
い。しかも、いずれにしてもアルカリ及びアルカリ土類
等無機酸化物セラミックスの含有不純物飛散による汚染
問題等の半導体レベルでの高純度という視点で捉えられ
ているものはない。そのため、半導体製造装置用部材と
して用い、シリコンウェーハーを汚染しない材料として
の必要かつ十分条件は、現在、未だ明確にされていな
い。本発明は、上記現状において、従来からの機械的強
度、耐熱性等の特性に加え、半導体製造装置用部材とし
て用いても、汚染源を形成することなく、無機酸化物セ
ラミックスに含有される不純物を発散、放出することの
ない無機酸化物セラミックス及びその製造方法の提供を
目的とする。However, conventional inorganic oxide ceramics are mainly deviated in heat resistance and mechanical properties, and their mechanical strength, electrical insulation, heat resistance,
There are few cases where the characteristics such as chemical resistance are used as a structural member, and there are few examples of confirming, controlling, and using the contained impurities. It is not an exaggeration to say that there are few, except for a few examples, such as alumina ceramics for use and permeable alumina ceramics for high pressure sodium lamp arc tubes. In addition, in any case, there is nothing that is considered from the viewpoint of high purity at the semiconductor level, such as a problem of contamination due to scattering of impurities contained in inorganic oxide ceramics such as alkali and alkaline earth. Therefore, at present, the necessary and sufficient conditions for a material used for a semiconductor manufacturing apparatus and not contaminating a silicon wafer have not yet been clarified. The present invention, in the current state of the invention, in addition to the conventional properties such as mechanical strength and heat resistance, even when used as a member for semiconductor manufacturing equipment, without forming a contamination source, impurities contained in the inorganic oxide ceramics An object of the present invention is to provide an inorganic oxide ceramic that does not emit or emit and a method for producing the same.
【0005】[0005]
【課題を解決するための手段】本発明によれば、無機酸
化物セラミックスであって、該無機酸化物セラミックス
表面からの深さが数10μm〜数mmの範囲である外表
面域における不純物含有濃度がマグネシアおよびシリカ
を除き数ppm〜数10ppm、内部域における不純物
含有濃度がマグネシアおよびシリカを除き数10ppm
〜数100ppmであり、前記外表面域における不純物
含有濃度が、内部域における不純物含有濃度より低減し
ていることを特徴とする表面高純度セラミックスが提供
される。According to the present invention, an inorganic oxide ceramic is provided.
The impurity concentration in the outer surface region whose depth from the surface is in the range of several tens μm to several mm is magnesia and silica.
Several ppm to several tens ppm, except for impurities in the internal region
Content is several tens ppm except for magnesia and silica
To several hundred ppm, wherein the impurity concentration in the outer surface region is lower than the impurity concentration in the inner region.
【0006】更に、無機酸化物セラミックス原料粉末を
用いて成形し、得られた成形体を仮焼後、水素ガス雰囲
気下または真空下で、開気孔状態を保持しつつ焼成温度
より低温で加熱処理した後、焼成することを特徴とする
表面高純度セラミックスの製造方法が提供される。[0006] Furthermore, after molding using the raw material powder of inorganic oxide ceramics, the obtained molded body is calcined, and the firing temperature is maintained in an atmosphere of hydrogen gas or under vacuum while maintaining an open pore state.
There is provided a method for producing a high-purity surface ceramic, which is characterized by baking after heat treatment at a lower temperature .
【0007】[0007]
【作用】本発明の無機酸化物セラミックスは、上記のよ
うに構成されて、セラミックス表面域の純度がその内部
より高く、所定の高温下で用いても、不純物を発散しな
いため、例えば、半導体製造装置用部材としてもシリコ
ンウェーハを汚染することがない。また、本発明は、焼
成により無機酸化物成形体を焼結する前に、成形体を構
成する無機酸化物粒子間の気孔がそれぞれ連通する開気
孔状態を保持して、成形体を加熱処理することにより、
成形体表面域の含有不純物を蒸発飛散させることがで
き、更に、加熱処理後の焼成により焼結し無機酸化物粒
子間が閉気孔状態となるため、内部に残存する不純物は
表面域に拡散されない。そのため、外表面域の不純物濃
度が内部より低減された状態で焼結体、即ち、無機酸化
物セラミックスを得ることができる。The inorganic oxide ceramics of the present invention are constructed as described above, and the purity of the surface area of the ceramics is higher than that of the inside thereof. Even when the ceramics are used at a predetermined high temperature, they do not emit impurities. There is no contamination of the silicon wafer as a member for the apparatus. Further, the present invention heats the formed body before sintering the formed inorganic oxide body by sintering, while maintaining the open pore state in which the pores between the inorganic oxide particles constituting the formed body are communicated with each other. By doing
Impurities contained in the surface area of the molded body can be evaporated and scattered, and furthermore, sintering is performed by sintering after heat treatment to form a closed pore state between inorganic oxide particles, so that impurities remaining inside are not diffused to the surface area. . Therefore, a sintered body, that is, an inorganic oxide ceramic can be obtained in a state where the impurity concentration in the outer surface region is lower than that in the inside.
【0008】以下、本発明について詳細に説明する。本
発明における無機酸化物セラミックスは、基本的には従
来のアルミナ等公知の無機酸化物原料粉末に、要すれば
バインダー、成形助剤、焼成助剤等の添加剤を混合する
成形粉末の調製、成形、成形体加工、仮焼、焼成、焼成
体加工等の各工程からなる従来のセラミック製造方法を
適用して得ることができる焼結体である無機酸化物セラ
ミックスであって、不純物の含有濃度分布が所定態様に
調整、制御されてなるものである。即ち、不純物がセラ
ミックスの外表面域で希薄に、内部域では高濃度で含有
されるように調整し、内部から外表面に向かって低減す
る濃度勾配を有して含有分布するように、調整、制御さ
れた無機酸化物セラミックスである。この場合、外表面
域の不純物含有量及び内部域との濃度勾配は、特に制限
されるものでなく、例えば、半導体製造装置等使用の目
的及びその態様、無機酸化物セラミックス原料の種類、
原料粉末に含有される不純物及びセラミックス製造工程
で混入され得る不純物の種類等を勘案して適宜選択する
ことができる。通常、外表面域での不純物濃度が、マグ
ネシアを除き数ppm〜数10ppm、内部域でマグネ
シアを除き数10ppm〜数100ppmである。Hereinafter, the present invention will be described in detail. The inorganic oxide ceramics in the present invention is basically a known inorganic oxide raw material powder such as conventional alumina, if necessary, a binder, a molding aid, the preparation of a molding powder by mixing additives such as a firing aid, An inorganic oxide ceramic which is a sintered body that can be obtained by applying a conventional ceramic manufacturing method including each step of forming, forming body processing, calcining, firing, firing body processing, and the like. The distribution is adjusted and controlled in a predetermined manner. That is, the impurities are adjusted to be diluted in the outer surface area of the ceramics and to be contained at a high concentration in the inner area, and to be distributed with a concentration gradient decreasing from the inside toward the outer surface. It is a controlled inorganic oxide ceramic. In this case, the impurity content of the outer surface region and the concentration gradient between the inner region and the inner region are not particularly limited. For example, the purpose and the mode of use of the semiconductor manufacturing apparatus and the like, the type of the inorganic oxide ceramic raw material,
It can be appropriately selected in consideration of the type of impurities contained in the raw material powder and the impurities that can be mixed in the ceramics manufacturing process. Usually, the impurity concentration in the outer surface region is several ppm to several tens ppm except for magnesia, and several tens ppm to several hundred ppm in the inner region except for magnesia.
【0009】本発明において、不純物濃度の低減を図る
外表面域は、部材としての使用態様及びその肉厚により
異なり、一概には決められないが、一般には、無機酸化
物セラミックス、即ち、無機酸化物焼結体表面から、約
数10μm〜数mmの範囲の深さの領域を意味する。例
えば、半導体製造工程においては、約1200℃で使用
される拡散炉用部材は別として、エッチング装置やCV
D装置における約400〜500℃の温度で外部に飛散
することがないように設定すればよく、セラミックス内
部に存在する不純物の拡散は実質的に無視でき、単純な
表面のみを問題とすればよい。一方、プラズマ等の化学
的に活性なものと接触してセラミックスの損耗が大きい
場合や、電界等により不純物の移動が促進される場合、
また、シリコンウェーハと直接接触して加速度が加わる
ような使用条件で、相互の擦れによる摩耗も問題となる
場合には、単純な表面のみの不純物の単なる拡散速度だ
けを考慮するだけでは不十分で、外表面域範囲も深く設
定し、且つ不純物濃度をより厳格に管理する必要があ
る。In the present invention, the outer surface area for reducing the impurity concentration differs depending on the use mode as a member and its thickness, and cannot be unconditionally determined. In general, however, inorganic oxide ceramics, that is, inorganic oxide ceramics, Means a region having a depth in the range of about several tens μm to several mm from the surface of the sintered product. For example, in a semiconductor manufacturing process, apart from a diffusion furnace member used at about 1200 ° C., an etching apparatus or a CV
What is necessary is just to set so that it may not be scattered outside at a temperature of about 400 to 500 ° C. in the D apparatus, the diffusion of impurities existing inside the ceramics can be substantially ignored, and only the simple surface needs to be considered. . On the other hand, when the ceramic is greatly worn by contact with a chemically active substance such as plasma, or when the movement of impurities is promoted by an electric field or the like,
In addition, under conditions where acceleration is applied by direct contact with the silicon wafer, if wear due to mutual rubbing is also a problem, it is not enough to consider only the simple diffusion rate of impurities on the simple surface only. In addition, it is necessary to set the outer surface area range deep, and to more strictly control the impurity concentration.
【0010】本発明において、無機酸化物セラミックス
中に含有する不純物は、主に、セラミックス原料粉末に
由来するもの、セラミックス製造工程で添加剤や装置等
から混入されるものである。その種類は種々あるが、通
常、ナトリウム酸化物(Na2 O)、カリウム酸化物
(K2 O)等のアルカリ金属酸化物、マグネシア(Mg
O)、カルシア(CaO)等のアルカリ土類金属酸化
物、第二酸化鉄(Fe2 O3 )等の鉄族系金属酸化物、
シリカ(SiO2 )等が挙げられる。本発明のセラミッ
クス外表面域の不純物量は、上記各種不純物の総量を指
すものであるが、SiO2 は半導体ウェーハに対し汚染
物でなく、低減の対象に含めなくてもよい。上記不純物
のうち、特に、アルカリ金属酸化物は、蒸気圧が高く飛
散し易く、半導体製造工程において汚染源になるため、
セラミックス外表面域の含有量を極力低減するのが好ま
しい。In the present invention, the impurities contained in the inorganic oxide ceramics are mainly derived from the ceramic raw material powder, and are mixed in from the additives or equipment in the ceramics manufacturing process. Although there are various types, usually, alkali metal oxides such as sodium oxide (Na 2 O) and potassium oxide (K 2 O), magnesia (Mg
O), alkaline earth metal oxides such as calcia (CaO), iron group metal oxides such as ferric oxide (Fe 2 O 3 ),
Silica (SiO 2 ) and the like. Although the amount of impurities in the ceramic outer surface region of the present invention indicates the total amount of the above-mentioned various impurities, SiO 2 is not a contaminant to the semiconductor wafer and need not be included in the reduction target. Among the above impurities, in particular, alkali metal oxides have a high vapor pressure and are easily scattered, and become a source of contamination in a semiconductor manufacturing process.
It is preferable to reduce the content of the ceramic outer surface area as much as possible.
【0011】また、MgOは、セラミックス焼結時の結
晶粒子の異常成長抑制剤として、セラミック原料粉末に
添加するものであるが、発明者らによれば、セラミック
スの含有アルカリ金属量を所定量に制御することにより
添加量を低減することができることが確認されているの
で、アルカリ金属を制御して全体として不純物含有量を
低減させると共に、セラミック外表面域の不純物含有量
を低減するようにしてもよい。Further, MgO is added to ceramic raw material powder as an agent for suppressing abnormal growth of crystal particles during sintering of ceramics. According to the present inventors, the amount of alkali metal contained in ceramics is reduced to a predetermined amount. Since it has been confirmed that the amount of addition can be reduced by controlling the amount of impurities, the amount of impurities can be reduced as a whole by controlling the alkali metal, and the amount of impurities in the ceramic outer surface region can be reduced. Good.
【0012】次いで、本発明の製造方法について、本発
明の無機酸化物セラミックスのうち、アルミナセラミッ
クスを代表的に説明する。アルミナセラミックスは、上
記したように従来、主としてアルミナ質原料粉末の調
製、成形、成形体加工、焼成、焼成体加工の各工程から
製造され、アルミナ質原料粉末が焼成工程において焼結
して、粒子成長と緻密化が進行して形成される。発明者
らによれば、セラミックス中の不純物は、原料粉末の成
形体までは全体として実質的に均一であるが、焼成工程
中に濃度勾配が発生し、更に、焼成方法及び焼成条件に
よって不純物の濃度分布状態が異なることが知見され
た。例えば、ガス燃焼炉で焼成した場合は、得られたア
ルミナセラミックス表面に汚染が観察される。この汚染
原因を検討したところ、バーナーから吹き込まれる配管
内壁からの錆粉や、焼成治具材から蒸発して飛散される
アルカリ金属、アルカリ土類金属等の酸化物であること
が確認された。また、水素雰囲気炉または真空炉で焼成
した場合は、得られたアルミナセラミックス表面の純化
が観察された。これは、水素雰囲気下での焼成で、不純
物のアルカリ金属等の酸化物が低酸化物やアルカリ金属
単体等に還元され蒸気圧の高く気化し易くなったり、ま
たは、減圧下で気化し易くなり、セラミックス表面から
の蒸発が促進されるためと推定される。Next, regarding the production method of the present invention, alumina ceramics will be representatively described among the inorganic oxide ceramics of the present invention. As described above, alumina ceramics are conventionally produced mainly from the steps of preparation, molding, molding, firing, and firing of alumina-based raw material powder, and the alumina-based raw material powder is sintered in the firing step to obtain particles. It is formed as growth and densification progress. According to the inventors, the impurities in the ceramic are substantially uniform as a whole up to the compact of the raw material powder, but a concentration gradient occurs during the firing step, and furthermore, depending on the firing method and the firing conditions, the impurities are removed. It was found that the concentration distribution state was different. For example, when firing in a gas combustion furnace, contamination is observed on the surface of the obtained alumina ceramics. When the cause of this contamination was examined, it was confirmed that it was rust powder blown from the inner wall of the pipe blown from the burner, or an oxide of an alkali metal, an alkaline earth metal, or the like that was evaporated and scattered from the firing jig material. In the case of firing in a hydrogen atmosphere furnace or a vacuum furnace, purification of the surface of the obtained alumina ceramics was observed. This is because, in firing under a hydrogen atmosphere, impurities such as impurities such as alkali metals are reduced to low oxides or simple alkali metals, and are easily vaporized at a high vapor pressure, or easily vaporized under reduced pressure. It is estimated that evaporation from the ceramic surface is promoted.
【0013】上記の知見は発明者らにより初めて確認さ
れたものであり、本発明の表面高純度セラミックスの製
造方法は、これら知見に基づき完成したものである。即
ち、セラミックス外表面域を高純度化するには、原料粉
末を高純度とすることは勿論であるが、焼成工程におけ
る焼成治具を厳しく点検すると共に、焼成条件を選択す
ることにより不純物含有濃度分布を変化させることがで
き、特に、水素雰囲気下または真空下の焼成が極めて有
効であることが明らかとなった。従って、本発明の加熱
処理は、水素雰囲気下、好ましくは、水素ガスを流通さ
せながら、または、真空下で行うのがよい。水素ガスの
流通または真空状態は、焼成セラミック表面域に存在
し、還元または減圧下で気化され易くなった不純物を、
直ちに表面から除去されるため望ましい。The above findings have been confirmed for the first time by the present inventors, and the method for producing a high-purity surface ceramic according to the present invention has been completed based on these findings. In other words, in order to purify the ceramic outer surface area, the raw material powder must be of high purity, but the sintering jig in the sintering process must be strictly checked, and the sintering conditions must be selected to determine the impurity concentration. The distribution can be changed, and in particular, firing under a hydrogen atmosphere or under vacuum has been found to be extremely effective. Therefore, the heat treatment of the present invention is preferably performed in a hydrogen atmosphere, preferably while flowing hydrogen gas, or under vacuum. The flow of hydrogen gas or a vacuum state exists in the fired ceramic surface area and reduces impurities or impurities that are easily vaporized under reduced pressure.
Desirable because it is immediately removed from the surface.
【0014】本発明において、加熱処理の温度は、通常
の無機酸化物セラミックスの焼成温度より低温であっ
て、表面域の不純物を飛散除去するためには、できるだ
け高温にして不純物の蒸気圧を高くなるようにするのが
短時間で焼成セラミック表面域から不純物を飛散できる
ため好ましい。例えば、アルミナセラミックスにおいて
は、通常、約1100〜1450℃、好ましくは125
0〜1400℃で、約1〜3時間加熱処理することがで
きる。更に、本発明の加熱処理は、上記したように焼成
温度より低温で、でき得る限る高温であり、且つ、成形
体を構成する粒子間の気孔が連通する開気孔状態を維持
可能な温度で行うようにする。前記のように、セラミッ
クスの焼成工程において、成形体は、通常、開気孔状態
から各気孔が独立した閉気孔状態となり緻密化される。
一方、成形体内で気化した不純物の移動は、開気孔状態
では単に連通気孔中を移動し、また、閉気孔状態では成
形体中を拡散して移動して、それぞれ外表面域に達し、
その後、外部に飛散する。従って、閉気孔状態での加熱
処理では、不純物の蒸発速度は著しく低下し、外表面域
からの不純物の十分な発散ができないため、所定の不純
物含有量が低減された高純度表面域を有するセラミック
スを得ることができない。In the present invention, the temperature of the heat treatment is lower than the sintering temperature of ordinary inorganic oxide ceramics. In order to scatter and remove impurities on the surface area, the temperature is set as high as possible to increase the vapor pressure of the impurities. This is preferable because impurities can be scattered from the fired ceramic surface area in a short time. For example, in the case of alumina ceramics, usually about 1100 to 1450 ° C., preferably 125 ° C.
Heat treatment can be performed at 0 to 1400 ° C. for about 1 to 3 hours. Furthermore, the heat treatment of the present invention is performed at a temperature lower than the firing temperature, as high as possible as described above, and at a temperature capable of maintaining an open pore state in which pores between particles constituting the molded body communicate. To do. As described above, in the firing step of ceramics, the molded body is usually densified from an open pore state to an independent closed pore state.
On the other hand, the movement of impurities vaporized in the molded body simply moves through the continuous air holes in the open pore state, and diffuses and moves in the molded body in the closed pore state to reach the outer surface area, respectively.
Then, it scatters outside. Therefore, in the heat treatment in a closed pore state, the evaporation rate of impurities is remarkably reduced, and impurities cannot be sufficiently diffused from the outer surface area. Therefore, ceramics having a high-purity surface area in which a predetermined impurity content is reduced are included. Can not get.
【0015】また、肉厚成形体の開気孔状態の仮焼成形
体では、肉厚内部で蒸発した不純物は狭く長い気孔空間
を通過して外表面に到達し、加熱処理雰囲気中に飛散放
出されることになる。即ち、加熱処理時のセラミックス
仮焼成形体内部空間での不純物の移動駆動力は空間内の
不純物濃度勾配であり、濃度勾配が余り生じない肉厚成
形体の内部は純化されにくい。しかし、上記のように成
形体の外表面の所定領域で不純物を純化できればよく、
また、焼結後は内部に残存する不純物は閉気孔状態では
外表面域に移動されにくくなるため、不都合が生じるお
それはない。通常、不純物が蒸発し易い開気孔状態を蒸
気圧の高くなる高温まで維持することと、最終的に焼結
により真密度焼結体まで緻密化を進行させることとは相
反し、成形密度を高くすると緻密化は進行するが、より
低温で閉気孔状態となる。この場合、閉気孔状態となる
以前に長時間保持し、長時間かけて不純物の蒸発量を増
大させてもよい。しかし、工業的には実用性に乏しい。Further, in the calcined body in the open pore state of the thick molded body, the impurities evaporated inside the thickness pass through the narrow and long pore space to reach the outer surface, and are scattered and released into the heat treatment atmosphere. Will be. That is, the driving force for moving the impurities in the preliminarily fired ceramic body space during the heat treatment is the impurity concentration gradient in the space, and the inside of the thick molded body where the concentration gradient hardly occurs is hard to be purified. However, as long as impurities can be purified in a predetermined region on the outer surface of the molded body as described above,
In addition, impurities remaining inside after sintering are less likely to move to the outer surface area in the closed pore state, so that no inconvenience is caused. Normally, maintaining the open pore state where impurities easily evaporate to a high temperature at which the vapor pressure becomes high, and eventually proceeding to densification to a true density sintered body by sintering are contradictory, increasing the molding density Then, the densification proceeds, but it becomes a closed pore state at a lower temperature. In this case, it may be held for a long time before the closed pore state is established, and the evaporation amount of the impurities may be increased over a long time. However, it is not practically useful industrially.
【0016】上記したように本発明における水素雰囲気
下または真空下での加熱処理条件は、開気孔状態を保持
可能で、でき得るかぎり高温となるように、セラミック
原料無機酸化物の種類及びそれに含有される不純物の種
類と量、セラミックス原料の焼結活性、セラミック原料
粉末の粒度分布、成形体形状、成形密度、昇温加熱スケ
ジュール、雰囲気純度等により最適な条件を適宜選択す
る。なお、真空下加熱処理は、無機酸化物原料粉末成形
体から放出される不純物は、一般に直進し、障害物があ
ればいわゆるスパッターされる。真空中では、水素雰囲
気下での水素流量という条件は関係がなくなるが、炉内
での成形体の存在状態、充填状態が問題となる。As described above, the conditions of the heat treatment under a hydrogen atmosphere or a vacuum in the present invention are such that the type of ceramic raw material inorganic oxide and the content thereof may be such that the open pore state can be maintained and the temperature is as high as possible. Optimum conditions are appropriately selected according to the type and amount of impurities to be performed, the sintering activity of the ceramic raw material, the particle size distribution of the ceramic raw material powder, the shape of the formed body, the formed density, the heating schedule, the atmospheric purity, and the like. In the heat treatment under vacuum, impurities released from the inorganic oxide raw material powder compact generally proceed straight, and if there is an obstacle, so-called sputtering is performed. In vacuum, the condition of the flow rate of hydrogen in a hydrogen atmosphere is not relevant, but the existence state and the filling state of the molded body in the furnace are problematic.
【0017】上記のようにして加熱処理された半焼成体
は、最終的に焼成処理して焼結し、緻密、結晶化して目
的の表面高純度セラミックスを得ることができる。焼成
条件は、通常の公知の条件で行うことができ、例えば、
アルミナセラミックスであれば最高温度が約1800℃
で、約2時間処理して焼成される。この焼成段階の最高
温度で長時間保持することも不純物の除去に有効であ
る。しかし、焼成最高温度での長時間保持は、セラミッ
クスの結晶成長をも促進させるので、結晶粒径との兼ね
合いで制限する必要がある。また、本発明においては、
焼成後の加工等により純化したセラミックス表面が、再
び不純物で汚染されたり、または、研削等により不純物
が比較的高濃度で含有される内部域が表面部に出るおそ
れがあるため、高純度が要求される部材成形体の外表面
形状は、できるだけ焼成前に製品形状に近似させて加工
するようにし、焼成変形量、ロット間の焼成収縮率のば
らつきを少なくするのが望ましい。The semi-fired body that has been subjected to the heat treatment as described above is finally fired and sintered, densely and crystallized to obtain the desired surface-high-purity ceramic. The firing conditions can be performed under ordinary known conditions, for example,
The maximum temperature is about 1800 ° C for alumina ceramics
And fired for about 2 hours. Holding for a long time at the highest temperature in this firing step is also effective for removing impurities. However, holding for a long time at the maximum firing temperature also promotes the crystal growth of ceramics, so it is necessary to limit the temperature in consideration of the crystal grain size. In the present invention,
High purity is required because the ceramic surface purified by processing after firing may be contaminated again with impurities, or an internal region containing impurities at a relatively high concentration may appear on the surface by grinding or the like. It is desirable that the shape of the outer surface of the formed member be approximated to the shape of the product before firing as much as possible, and that the deformation of firing and the variation in firing shrinkage between lots be reduced.
【0018】[0018]
【実施例】以下、本発明について実施例及び比較例に基
づき詳細に説明する。但し、本発明は下記実施例により
制限されるものでない。 実施例1〜3 各不純物含有量がNa2 O:10ppm、K2 O:30
ppm、SiO2 :40ppm、Fe2 O3 :8pp
m、CaO:2ppmで、総不純物量90ppmで、比
表面積がそれぞれ25m2 /g、10m2 /g及び5m
2 /gの3種類のアルミナ原料粉に、マグネシア換算1
00ppmの硝酸マグネシウムを添加し,成形用混合粉
末を作製した。得られた混合粉末100重量部に、純水
150重量部及びアクリル系高純度バインダー2重量部
を添加混合してスラリー状とし、これをスプレードライ
ヤーで造粒した。得られた造粒粉を用い、1トン/cm
2 の圧力で65mm角のブロック状成形体を各原料に対
応してそれぞれ8個づつ作成し、1000℃で、2時間
仮焼処理してバインダーを焼散した。The present invention will be described below in detail based on examples and comparative examples. However, the present invention is not limited by the following examples. Examples 1-3 each impurity content Na 2 O: 10ppm, K 2 O: 30
ppm, SiO 2 : 40 ppm, Fe 2 O 3 : 8 pp
m, CaO: 2 ppm, total impurity amount 90 ppm, specific surface area 25 m 2 / g, 10 m 2 / g and 5 m
2 / g of 3 kinds of alumina raw material powder, magnesia conversion 1
A mixed powder for molding was prepared by adding 00 ppm of magnesium nitrate. To 100 parts by weight of the obtained mixed powder, 150 parts by weight of pure water and 2 parts by weight of an acrylic high-purity binder were added and mixed to form a slurry, which was granulated by a spray drier. Using the obtained granulated powder, 1 ton / cm
Eight pieces each of 65 mm square block-shaped compacts were prepared for each raw material under the pressure of 2 , and calcined at 1000 ° C. for 2 hours to burn off the binder.
【0019】これらの各原料粉末に対応する各仮焼体の
2個ずつを、水素雰囲気下で、それぞれ1200℃から
1500℃までの各100℃毎上昇させた温度で、それ
ぞれ2時間加熱処理した。得られた加熱処理各試料から
同一条件の試料を各1個ずつサンプリングし、BET法
を用いて比表面積を測定して、開気孔か閉気孔か判断し
た。その結果を表1に示した。残りの各試料1個ずつ
は、水素雰囲気下、1750℃で更に2時間焼成した。
得られた焼成体について、その外表面から約2mmまで
の領域の組成について、IPC発光分光分析及び原子吸
光分析を用い化学分析し、各不純物の含有量を測定し
た。その結果を表1に示した。Two pieces of each calcined body corresponding to each of the raw material powders were heat-treated in a hydrogen atmosphere at a temperature raised from 1200 ° C. to 1500 ° C. every 100 ° C. for 2 hours. . One sample of each of the obtained heat-treated samples under the same conditions was sampled one by one, and the specific surface area was measured by using the BET method to determine whether the pores were open pores or closed pores. The results are shown in Table 1. Each of the remaining samples was fired at 1750 ° C. for another 2 hours in a hydrogen atmosphere.
The obtained fired body was subjected to chemical analysis using IPC emission spectroscopy and atomic absorption spectroscopy for the composition in a region from the outer surface to about 2 mm, and the content of each impurity was measured. The results are shown in Table 1.
【0020】[0020]
【表1】 [Table 1]
【0021】以上の結果から、開気孔を維持している温
度範囲で水素雰囲気下で加熱処理することにより、アル
ミナセラミックス中の不純物を発散除去できることや、
これらの最適条件にはアルミナ原料粉体の性質も関係す
ることが分かる。上記の実施例は、異常粒子成長抑制剤
として添加されているMgOの量が比較的多く、総不純
物量としては大差ないように見えるが、誘電損率や透過
率に影響するアルカリ金属元素や鉄などの除去効果は大
きいことは明らかである。From the above results, it can be understood that impurities in alumina ceramics can be diverged and removed by performing a heat treatment in a hydrogen atmosphere in a temperature range in which open pores are maintained.
It can be seen that the properties of the alumina raw material powder are also related to these optimum conditions. In the above embodiment, the amount of MgO added as an abnormal particle growth inhibitor is relatively large, and it seems that there is not much difference in the total amount of impurities. However, alkali metal elements and iron which affect the dielectric loss factor and the transmittance are considered. It is clear that the effect of removing such as is large.
【0022】更に、実施例1で得られた1300℃で加
熱処理して得た肉厚ブロック焼成体を、ダイヤモンドカ
ッターで切断し、中心部と表面部との不純物濃度を同様
に測定したところ、Fe、Na、K、Ca、Si及びM
gの各不純物の全てについて中心部で高く、表面部で低
かった。 特に、NaとKについてその傾向が著しく、
表面部のNa及びKの濃度は中心部の1/3以下であ
り、他の不純物原子成分については10〜20%の濃度
低下が確認された。Further, the thick block fired body obtained by heat treatment at 1300 ° C. obtained in Example 1 was cut with a diamond cutter, and the impurity concentration in the center portion and the surface portion was measured in the same manner. Fe, Na, K, Ca, Si and M
g of each impurity was high at the center and low at the surface. In particular, the tendency is remarkable for Na and K,
The concentrations of Na and K in the surface portion were 1/3 or less of those in the central portion, and a decrease in the concentration of other impurity atomic components by 10 to 20% was confirmed.
【0023】次いで、実施例1で得られた各ブロック状
焼結体それぞれを、塩化水素ガスパージで1200℃で
2時間純化した石英ガラス質ルツボ中に入れ、それらの
ルツボ上にNa、K、Fe、Ca及びMgの含有量(×
1010原子数/cm2 )が、それぞれ2、1、1、1及
び1であるシリコンウェーハをセットして、1000℃
で2時間加熱した。加熱後、放冷した後、各シリコンウ
ェーハの各不純物含有量を分析して得た。その結果を、
表2に示した。Next, each of the block-shaped sintered bodies obtained in Example 1 was placed in a quartz glass crucible purified by a hydrogen chloride gas purge at 1200 ° C. for 2 hours, and Na, K, Fe was placed on the crucible. , Ca and Mg contents (×
10 10 atoms / cm 2 ) were set at 2 , 1, 1, 1 and 1, respectively, at 1000 ° C.
For 2 hours. After heating and cooling, the content of each impurity in each silicon wafer was analyzed and obtained. The result is
The results are shown in Table 2.
【0024】[0024]
【表2】 [Table 2]
【0025】上記結果からも、開気孔状態で水素雰囲気
下で加熱処理して得られる焼成体アルミナセラミックス
の表面が純化されたことが明らかである。即ち、各セラ
ミックスと共に加熱したシリコンウェーハの汚染はセラ
ミックスから放出される不純物によるものであり、開気
孔状態で加熱処理したセラミックスによる汚染が極めて
少なく、1400℃で加熱処理したセラミックスでは1
桁も低減することが分かる。このことは、前記の表面域
不純物の化学分析値の差より著しく、ミクロ的にもセラ
ミック表面の高純度化が進行していることが推察でき
る。From the above results, it is clear that the surface of the fired alumina ceramics obtained by performing the heat treatment in a hydrogen atmosphere in an open pore state is purified. That is, the contamination of the silicon wafer heated together with the ceramics is due to impurities released from the ceramics, and the contamination by the ceramics heat-treated in the open pore state is extremely small.
It can be seen that the digits are also reduced. This is more remarkable than the difference between the chemical analysis values of the surface region impurities, and it can be inferred that the purification of the ceramic surface is progressing microscopically.
【0026】比較例1〜7 実施例1で用いたアルミナ原料粉末に、マグネシア換算
500ppmの硝酸マグネシウムを添加した。この混合
物100重量部に、純水150重量部及びアクリル系高
純度バインダー2重量部を添加混合してスラリー状と
し、これをスプレードライヤーで造粒した。得られた造
粒粉を用い、1トン/cm2 の圧力で厚さ1.35mm
で65mm角の板状体を3個成形した。得られた各成形
体を空気中1000℃で、2時間仮焼処理してバインダ
ーを焼散した。また、上記と同様にして、造粒粉を1ト
ン/cm2 の圧力で65mm角のブロック状成形体を4
個形成し、同様に仮焼処理してバイダーを焼散した。Comparative Examples 1 to 7 To the alumina raw material powder used in Example 1, 500 ppm of magnesium nitrate in terms of magnesia was added. To 100 parts by weight of this mixture, 150 parts by weight of pure water and 2 parts by weight of an acrylic high-purity binder were added and mixed to form a slurry, which was granulated by a spray drier. Using the obtained granulated powder, a pressure of 1 ton / cm @ 2 and a thickness of 1.35 mm
Were used to form three 65 mm square plate-like bodies. Each of the obtained molded bodies was calcined at 1,000 ° C. for 2 hours in the air to evaporate the binder. In the same manner as described above, the granulated powder was pressed at a pressure of 1 ton / cm @ 2 to form a 65 mm square block-shaped compact.
Individual pieces were formed and calcined similarly to burn out the binder.
【0027】上記で得られた薄板状仮焼体の2個を、水
素雰囲気及び真空下でそれぞれ1850℃で2時間加熱
処理して、厚さ1mmで50mm角の正方板状体を得た
(比較例1〜2)。また、同様に製作した薄板状仮焼体
の残り1個を、空気中で1700℃で2時間焼成して比
較試料とした(比較例3)。一方、上記の肉厚の各ブロ
ック成形体を、それぞれ1750℃及び1800℃で5
時間水素雰囲気及び真空下で焼成し、50mm角のブロ
ック体の焼成体をそれぞれ得た(比較例4〜7)。上記
の各焼成体について、実施例1と同様にして化学分析
し、各不純物の含有量を測定した。結果を表3に示し
た。なお、板状焼成体はその全域組成について分析し、
ブロック焼成体はその中央部組成を分析した。Two of the thin calcined bodies obtained above were heated at 1850 ° C. for 2 hours in a hydrogen atmosphere and vacuum, respectively, to obtain a 1 mm thick square 50 mm square body ( Comparative Examples 1 and 2). Further, the other one of the sheet-like calcined bodies manufactured in the same manner was fired in air at 1700 ° C. for 2 hours to obtain a comparative sample (Comparative Example 3). On the other hand, each of the block molded bodies having the above-mentioned thickness was subjected to 5 minutes at 1750 ° C and 1800 ° C, respectively.
Firing was performed in a hydrogen atmosphere and vacuum for a time to obtain fired bodies of 50 mm square block bodies (Comparative Examples 4 to 7). Each of the above fired bodies was subjected to chemical analysis in the same manner as in Example 1, and the content of each impurity was measured. The results are shown in Table 3. In addition, the plate-like fired body was analyzed for its entire composition,
The composition of the central portion of the block fired body was analyzed.
【0028】[0028]
【表3】 [Table 3]
【0029】上記の実施例及び比較例の結果から、空気
中に比し、水素雰囲気または真空中で高温で加熱するこ
とにより、不純物含有量が著しく減少することが分か
る。肉厚の薄い板状のものは、加熱処理をしなくても水
素雰囲気または真空中で焼成するのみで不純物を減少さ
せることができる。一方、ブロック体等の肉厚のセラミ
ック成形体においては、特に、開気孔状態における高温
の加熱処理により、セラミック表面域の不純物濃度が著
しく減少することが分かる。また、肉厚セラミック成形
体の閉気孔状態での加熱処理で得られるセラミックス表
面域の不純物含有量は、単に水素雰囲気または真空中で
焼成して得られたセラミックの中心部の不純物含有量と
ほぼ同じであることも分かる。From the results of the above Examples and Comparative Examples, it can be seen that the content of impurities is significantly reduced by heating at a higher temperature in a hydrogen atmosphere or vacuum than in air. A thin plate can reduce impurities only by firing in a hydrogen atmosphere or vacuum without heat treatment. On the other hand, in the case of a thick ceramic molded body such as a block body, it can be seen that the impurity concentration in the ceramic surface region is significantly reduced by the high-temperature heat treatment in the open pore state. In addition, the impurity content of the ceramic surface region obtained by the heat treatment in the closed pore state of the thick ceramic molded body is substantially the same as the impurity content of the central portion of the ceramic obtained by simply firing in a hydrogen atmosphere or vacuum. You can see that they are the same.
【0030】実施例4及び比較例8 平均粒径0.5μmの合成ムライト原料粉100重量
部、純水20重量部、アクリル系バインダー10重量部
をアルミナ質ロールを用いて混練し、粘土状混練物とし
た。この粘土状混練物を押出機にて厚さ1mm、幅10
0mmの口金から押出し、乾燥して薄板状の成形体を作
製した。作製した板状成形体を所定の形に切り抜いた
後、加熱圧着し、肉厚中心部に流路を持った形状とし
た。その後、空気中で1000℃で2時間仮焼してバイ
ンダーを焼散させた。得られた仮焼体を、真空下で13
00℃、1500℃及び1600℃でそれぞれ加熱処理
した。各加熱処理条件からそれぞれ気孔状態観察用の加
熱処理資料を抜き取りし、その後、更に、空気中で18
00℃で2時間焼成し、焼成体のムライトセラミックス
を作製した(実施例4)。また、同時に、真空加熱処理
しない仮焼体を同様に焼成して、比較用焼成体を作製し
た(比較例8)。Example 4 and Comparative Example 8 100 parts by weight of synthetic mullite raw material powder having an average particle size of 0.5 μm, 20 parts by weight of pure water, and 10 parts by weight of an acrylic binder were kneaded using an alumina roll, and kneaded in a clay state. Things. This clay-like kneaded material was extruded to a thickness of 1 mm and a width of 10 mm.
It was extruded from a 0 mm die and dried to produce a thin plate-shaped molded body. After cutting out the produced plate-like molded body into a predetermined shape, it was heated and pressed to form a shape having a flow path at the center of the thickness. Thereafter, the binder was calcined by calcination in air at 1000 ° C. for 2 hours. The obtained calcined body is 13
Heat treatment was performed at 00 ° C, 1500 ° C, and 1600 ° C, respectively. From each of the heat treatment conditions, heat treatment materials for observing the pore state were extracted, and then, furthermore, 18 hours in air.
It was fired at 00 ° C. for 2 hours to produce a fired mullite ceramic (Example 4). At the same time, the calcined body without the vacuum heat treatment was similarly calcined to produce a calcined body for comparison (Comparative Example 8).
【0031】上記のようにして作製した各ムライトセラ
ミックスをダイヤモンドグラインダーを使用して、所定
のシリコンウェーハ搬送用真空チャック形状に加工し
た。その後、洗浄乾燥し、シリコンウェーハ搬送処理試
験に供した。各真空チャックについて、それぞれ各シリ
コンウェーハを100回繰り返し使用して搬送処理した
後、各ウェーハの汚染度を実施例1と同様に分析測定し
た。その結果を表4に示した。Each of the mullite ceramics produced as described above was processed into a predetermined vacuum chuck shape for carrying a silicon wafer using a diamond grinder. Thereafter, it was washed, dried, and subjected to a silicon wafer transfer treatment test. For each vacuum chuck, each silicon wafer was repeatedly used and transported 100 times, and then the contamination degree of each wafer was analyzed and measured in the same manner as in Example 1. Table 4 shows the results.
【0032】[0032]
【表4】 [Table 4]
【0033】以上の結果から、仮焼体を真空中で加熱処
理して得たムライトセラミックスにより作製したウェー
ハ搬送用真空チャックは、シリコンウェーハ汚染が少な
いことが明らかである。特に、開気孔状態において高温
加熱処理して得たムライトセラミックスの真空チャック
による汚染が極めて少ないことが分かる。From the above results, it is clear that the wafer transfer vacuum chuck made of mullite ceramic obtained by heat-treating the calcined body in a vacuum has little silicon wafer contamination. In particular, it is understood that contamination of the mullite ceramic obtained by the high-temperature heat treatment in the open pore state by the vacuum chuck is extremely small.
【0034】[0034]
【発明の効果】本発明は、仮焼成形体を水素雰囲気また
は真空下、開気孔状態を維持する所定温度で加熱処理す
ることにより、最終的に得られる無機酸化物セラミック
スの外表面域を高純度化することができ、半導体製造装
置用部材としての使用条件に合致する表面高純度セラミ
ックスの供給が可能となった。According to the present invention, the outer surface area of the finally obtained inorganic oxide ceramics is obtained by subjecting the calcined form to heat treatment under a hydrogen atmosphere or vacuum at a predetermined temperature which maintains an open pore state. It has become possible to supply high-purity surface ceramics that meet the conditions for use as members for semiconductor manufacturing equipment.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 晴司 千葉県東金市小沼田字戌開1573−8 東 芝セラミックス株式会社 東金工場内 (72)発明者 永坂 幸行 千葉県東金市小沼田字戌開1573−8 東 芝セラミックス株式会社 東金工場内 (72)発明者 安藤 和 千葉県東金市小沼田字戌開1573−8 東 芝セラミックス株式会社 東金工場内 (56)参考文献 特開 昭62−91462(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/10 C04B 35/64 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Haruji Harada, Inuma, Togane, Chiba Pref. 1573-8 Inside Togane Plant, Toshiba Ceramics Co., Ltd. 1573-8 Toshiba Ceramics Co., Ltd. Togane Plant (72) Inventor Kazuto Ando Kazuma Onuma, Togane-shi, Chiba Pref. 1573-8 Toshiba Ceramics Co., Ltd. Togane Plant (56) References (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/10 C04B 35/64
Claims (4)
機酸化物セラミックス表面からの深さが数10μm〜数
mmの範囲である外表面域における不純物含有濃度がマ
グネシアおよびシリカを除き数ppm〜数10ppm、
内部域における不純物含有濃度がマグネシアおよびシリ
カを除き数10ppm〜数100ppmであり、前記外
表面域における不純物含有濃度が、内部域における不純
物含有濃度より低減していることを特徴とする表面高純
度セラミックス。1. A inorganic oxide ceramics, inorganic
The depth from the surface of the oxide ceramic is several tens μm to several
mm in the range of impurity content level in the outer surface area Ma
Several ppm to several tens ppm, excluding gnesia and silica,
The impurity concentration in the internal region is
A 10ppm~ number 100ppm number except mosquitoes, impurity content level in the outer surface region is impure in inner zone
Surface high-purity ceramics characterized in that the concentration is lower than the content concentration of substances .
質セラミックスである請求項1記載の表面高純度セラミ
ックス。2. The high-purity surface ceramic according to claim 1, wherein said inorganic oxide ceramic is an alumina ceramic.
て成形し、得られた成形体を仮焼後、水素ガス雰囲気下
または真空下で、開気孔状態を保持しつつ焼成温度より
低温で加熱処理した後、焼成することを特徴とする表面
高純度セラミックスの製造方法。3. A molded using an inorganic oxide ceramic material powder, and the obtained molded body calcined, in or under a vacuum atmosphere of hydrogen gas than the firing temperature while maintaining the open pores state
A method for producing high-purity surface ceramics, which comprises performing heat treatment at a low temperature and then firing.
質セラミックスである請求項3記載の表面高純度セラミ
ックスの製造方法。4. The method according to claim 3, wherein the inorganic oxide ceramic is an alumina ceramic.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP33780992A JP3145518B2 (en) | 1992-11-26 | 1992-11-26 | Surface high-purity ceramics and manufacturing method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP33780992A JP3145518B2 (en) | 1992-11-26 | 1992-11-26 | Surface high-purity ceramics and manufacturing method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH06166563A JPH06166563A (en) | 1994-06-14 |
| JP3145518B2 true JP3145518B2 (en) | 2001-03-12 |
Family
ID=18312178
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP33780992A Expired - Lifetime JP3145518B2 (en) | 1992-11-26 | 1992-11-26 | Surface high-purity ceramics and manufacturing method thereof |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3145518B2 (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6447937B1 (en) | 1997-02-26 | 2002-09-10 | Kyocera Corporation | Ceramic materials resistant to halogen plasma and components using the same |
| JP2006315955A (en) * | 2000-07-10 | 2006-11-24 | Toshiba Ceramics Co Ltd | Ceramic material |
| JP2003042498A (en) * | 2001-07-31 | 2003-02-13 | Sony Corp | System, device, and method for manufacturing semiconductor and semiconductor device |
| JP4683783B2 (en) * | 2001-08-02 | 2011-05-18 | コバレントマテリアル株式会社 | Method for manufacturing plasma-resistant member for semiconductor manufacturing apparatus |
| EP3375767B1 (en) * | 2017-03-16 | 2020-05-13 | Infineon Technologies AG | Electrochemically robust ceramic substrates |
| JP2024066076A (en) * | 2022-11-01 | 2024-05-15 | クアーズテック合同会社 | Alumina sintered body |
-
1992
- 1992-11-26 JP JP33780992A patent/JP3145518B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH06166563A (en) | 1994-06-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Bennison et al. | Grain‐growth kinetics for alumina in the absence of a liquid phase | |
| KR100321284B1 (en) | Shaped body having high silicon dioxide content and manufacturing method of the shaped body | |
| US7932202B2 (en) | Y2O3 sintered body and corrosion resistant member for semiconductor/liquid crystal producing apparatus | |
| JP2012508684A (en) | Protective coating resistant to reactive plasma treatment | |
| JP2000001362A (en) | Corrosion resistant ceramic material | |
| JP4683783B2 (en) | Method for manufacturing plasma-resistant member for semiconductor manufacturing apparatus | |
| JP2002255647A (en) | Yttrium oxide sintered body and wafer holding tool | |
| JP3145518B2 (en) | Surface high-purity ceramics and manufacturing method thereof | |
| US6699401B1 (en) | Method for manufacturing Si-SiC member for semiconductor heat treatment | |
| JPS584451B2 (en) | Lindopingyou Kotai Kakusangen | |
| JP3093897B2 (en) | High purity alumina ceramics and method for producing the same | |
| Brittain et al. | High‐Temperature Chemical Phenomena Affecting Silicon Nitride Joints | |
| JP2000314034A (en) | High-purity crystalline inorganic fiber, molded product thereof, and method for producing the same | |
| JP3077877B2 (en) | Method for producing alumina sintered body | |
| Costello et al. | Oxygen penetration into silicon carbide ceramics during oxidation | |
| Zhang et al. | Bulk ytterbium aluminosilicate glass with excellent mechanical properties and plasma etching resistance | |
| JP2000281430A (en) | Black SiO2 corrosion-resistant member and method of manufacturing the same | |
| JP2002037660A (en) | Plasma resistant alumina ceramics and method for producing the same | |
| Wang et al. | Thermal stability of Al2O3-5 vol% SiC nanocomposite | |
| US20020041062A1 (en) | Low-firing temperature method for producing Al2O3 bodies having enhanced chemical resistance | |
| Lee et al. | Dependence of crystallization behavior and microstructural change in cordierite-based glass-ceramics upon acid-etching on glass frit | |
| JP7639127B2 (en) | Zirconia-reinforced alumina ceramic sintered body | |
| JP3362062B2 (en) | Ceramic member for semiconductor manufacturing apparatus and method of manufacturing the same | |
| JPH0577627B2 (en) | ||
| JPS61286264A (en) | Furnace center pipe for heating furnace and manufacture |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080105 Year of fee payment: 7 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080105 Year of fee payment: 7 |
|
| R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080105 Year of fee payment: 7 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080105 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090105 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090105 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100105 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110105 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110105 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120105 Year of fee payment: 11 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120105 Year of fee payment: 11 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130105 Year of fee payment: 12 |
|
| EXPY | Cancellation because of completion of term |