JP3290474B2 - Optical isolator for semiconductor laser array - Google Patents
Optical isolator for semiconductor laser arrayInfo
- Publication number
- JP3290474B2 JP3290474B2 JP27502192A JP27502192A JP3290474B2 JP 3290474 B2 JP3290474 B2 JP 3290474B2 JP 27502192 A JP27502192 A JP 27502192A JP 27502192 A JP27502192 A JP 27502192A JP 3290474 B2 JP3290474 B2 JP 3290474B2
- Authority
- JP
- Japan
- Prior art keywords
- polarizer
- rectangular
- analyzer
- optical isolator
- optical element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Polarising Elements (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、光ファイバ通信等に用
いられる光伝送用モジュールの構成部品に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a component of an optical transmission module used for optical fiber communication or the like.
【0002】[0002]
【従来の技術および課題】半導体レーザを信号光源とす
る光通信の進歩に伴い、これまでは不可能であった数百
メガヘルツを越える高速高密度な信号伝送が実用化さ
れ、かつ最近の光増幅技術の目ざましい進展によって、
光電変換の必要なく膨大な情報伝達が光ファイバを経路
として可能になり、今後は技術的高度化と平行して、構
成システムの経済的低価格化の要求が高まっている。高
密度伝送用光通信において高速伝送に関し、実際の野外
敷設システムで2.4GBit/sまで実施され、実験室段階で
は10GBit/sも確認されデジタル信号の高速化が促進され
ている。今後はさらに伝送密度の高度化が要求され、コ
ンピュータとの整合も含めた並列伝送が期待されてい
る。2. Description of the Related Art With the advance of optical communication using a semiconductor laser as a signal light source, high-speed and high-density signal transmission exceeding several hundred megahertz, which was impossible until now, has been put to practical use, and recent optical amplification has been realized. With the remarkable progress of technology,
A huge amount of information can be transmitted via an optical fiber without the need for photoelectric conversion, and in parallel with the technological advancement, there is an increasing demand for economical and low-cost construction systems. For high-speed optical communication for high-density transmission, up to 2.4 GBit / s has been implemented in an actual outdoor laying system, and 10 GBit / s has been confirmed at the laboratory stage, and the speeding up of digital signals has been promoted. In the future, higher transmission density is required, and parallel transmission including matching with a computer is expected.
【0003】高速信号に用いられている半導体レーザ
(LD)は極めて発振波長幅の狭い単一モード光源とし
て分布帰還型レーザ(DFB−LD)や分布ブラッグ反
射型レーザ(DBR−LD)などが用いられる。また最
近はこれらの狭帯域LDを複数個横並びに構築したアレ
イLDも試みられ、並列通信が実験段階で確認されるよ
うになった。これによって並列光通信が可能になると同
時に、同じ基板上にアレイ構造を形成するため1チップ
で複数個のLD機能が実現化するので光源パッケージを
1個のモジュールに組み込めるので光通信システムの価
格低減化に寄与するものと期待されている。As a semiconductor laser (LD) used for a high-speed signal, a distributed feedback laser (DFB-LD) or a distributed Bragg reflection laser (DBR-LD) is used as a single mode light source having an extremely narrow oscillation wavelength width. Can be Recently, an array LD in which a plurality of these narrow band LDs are constructed side by side has also been tried, and parallel communication has been confirmed at an experimental stage. This enables parallel optical communication, and at the same time, realizes a plurality of LD functions on one chip to form an array structure on the same substrate, so that the light source package can be incorporated into one module, thereby reducing the price of the optical communication system. It is expected to contribute to the development.
【0004】一方これらの狭帯域LDは発振信号の安定
化をはかるため反射光遮断用光アイソレータを連結しな
ければならない。光アイソレータ自体は、互いに45度回
転配置された偏光子,検光子間に光の偏波面を45度回転
させるファラデー回転子が組み込まれている。ファラデ
ー回転子は一般に高いファラデー効果を示す希土類鉄系
ガーネット結晶から構成され、結晶の育成,回転角度調
整,反射防止膜形成等の煩雑な製造過程を経て生成さ
れ、光アイソレータの価格低減を妨げる要因になってい
る。従って、光アイソレータも1個に複数の光線を透過
させた利用方法が望まれ、アレイLDと連結して採用す
る試みが期待されている。On the other hand, these narrow band LDs must be connected to an optical isolator for blocking reflected light in order to stabilize an oscillation signal. The optical isolator itself incorporates a Faraday rotator that rotates the plane of polarization of light by 45 degrees between a polarizer and an analyzer that are arranged to be rotated by 45 degrees with respect to each other. Faraday rotators are generally composed of rare-earth iron-based garnet crystals that exhibit a high Faraday effect, and are generated through complicated manufacturing processes such as crystal growth, rotation angle adjustment, and formation of an anti-reflection film, and other factors that hinder the cost reduction of optical isolators. It has become. Therefore, it is desired to use an optical isolator that allows a plurality of light beams to pass through each other, and an attempt to adopt an optical isolator in connection with an array LD is expected.
【0005】たとえば、関根らは1990年電子情報通信学
会春期全国大会C-275講演発表において、通常の市販光
アイソレータ1を用いて4ch−アレイLD2を2個の共
焦点系光学レンズ3,4で結合した結果を報告しており
(図2)、また佐藤らによる1992年電子情報通信学会春
期全国大会大会C-268講演発表では、4個のLDが並列
構築されたアレイLDと同数のアレイファイバを1対の
マイクロ平板レンズアレイでモジュール化した結合を報
告している。ただし使用した光アイソレータに関する提
案はなく、さらに並列数が増加すると光アイソレータの
開口径を大きくしなければならず、必然的に光アイソレ
ータ直径が大きくなり、従来の様な円筒形状で回転対象
型光アイソレータを使用する限り光アイソレータ部分の
占める空間が並列化を妨げる要因となる。For example, Sekine et al., In the presentation of the C-275 lecture of the 1990 Spring Meeting of the Institute of Electronics, Information and Communication Engineers, used an ordinary commercially available optical isolator 1 to connect a 4-ch array LD2 to two confocal optical lenses 3, 4. The results of the coupling are reported (Fig. 2), and Sato et al. Presented the C-268 lecture at the 1992 IEICE Spring Conference, and the same number of array fibers as arrayed LDs with four LDs constructed in parallel. Are modularized with a pair of micro-flat lens arrays. However, there is no proposal for the optical isolator used, and when the number of parallel is further increased, the aperture diameter of the optical isolator must be increased, which inevitably increases the optical isolator diameter. As long as the isolator is used, the space occupied by the optical isolator portion is a factor that hinders parallelization.
【0006】[0006]
【課題を解決するための手段】本発明は、かかるアレイ
LDとアレイファイバ間に適用する小形でモジュールパ
ッケージ厚みを大きくする必要のない光アイソレータを
提供するものであり、すなわちLDもしくファイバ束の
並列方向に偏平化した矩形断面構造を有することが特徴
で、図1は本発明の光アイソレータの一例の概略構造を
示す。光線透過断面形状が長方形である偏光子5と、偏
光子と同等形状であり、偏光方向が偏光子に対して45度
回転した方位を有する長方形の検光子6を配し、その間
に永久磁石7に内挿された偏光子,検光子と同等形状の
長方形ファラデー回転子8から構成されることを特徴と
した半導体レーザアレイ用光アイソレータである。SUMMARY OF THE INVENTION The present invention provides a small-sized optical isolator which is applied between such an array LD and an array fiber and does not require an increase in the thickness of a module package. It has a rectangular cross-sectional structure flattened in the parallel direction. FIG. 1 shows a schematic structure of an example of the optical isolator of the present invention. A polarizer 5 having a rectangular light transmission cross-sectional shape and a rectangular analyzer 6 having the same shape as the polarizer and having a polarization direction rotated by 45 degrees with respect to the polarizer are arranged. This is an optical isolator for a semiconductor laser array comprising a rectangular Faraday rotator 8 having the same shape as a polarizer and an analyzer interpolated in the semiconductor laser array.
【0007】この構造の光アイソレータにおける技術的
課題は、偏光子と検光子の偏波方向の調整、ファラデー
回転子を磁気飽和させるに足る永久磁石の構造、ファラ
デー回転子の研磨精度等に存する。第一の偏光子と検光
子の偏波方向の調整は、光アイソレータを組み立てる工
程において、矩形状の開口断面が互いに回転ずれを生じ
るため実施できないので、予め矩形辺片を重ね合わせた
とき概ね45度偏光方向が回転した状態になるように母材
から切り出す。製造方法は、例えば偏光子と検光子を直
交ニコル位置に調整し、一方を正確に45度回転し、接着
剤等で互いに固定した後、ダイシィングカッター等にて
重ね合わせたまま所望の短冊状矩形切片に切り出すこと
から形成できる。The technical problems of the optical isolator having this structure include adjustment of the polarization directions of the polarizer and the analyzer, the structure of a permanent magnet sufficient to magnetically saturate the Faraday rotator, and the polishing accuracy of the Faraday rotator. Adjustment of the polarization directions of the first polarizer and the analyzer cannot be performed in the process of assembling the optical isolator because the rectangular cross sections of the openings are rotationally displaced from each other. The base material is cut out so that the polarization direction is rotated. The manufacturing method is, for example, to adjust the polarizer and the analyzer to the orthogonal Nicol position, rotate one of them exactly 45 degrees, fix them to each other with an adhesive, etc. It can be formed by cutting into rectangular sections.
【0008】もちろん、その他の方法でも本発明に採用
できる精度で、互いに45度回転した偏光子と検光子の対
を形成することは可能であるが、その方法は本発明に包
含される手段にすぎない。すなわち本発明では偏光子,
検光子矩形切片を重ね合わせ、その1辺を平面上で揃え
れば自動的に45度の偏光方向差がとれる形状の偏光子検
光子対を適用することに意味がある。このような調整の
必要がなく、しかも光路厚みを薄くし光アイソレータ全
体の小形構造に寄与するためにも吸収型偏光素子が有効
である。もちろんその他の種類の偏光子でも上述の設計
上の要点を克服すれば、遜色なく本発明の意図する構成
が確立できる。[0008] Of course, it is possible to form a pair of a polarizer and an analyzer rotated by 45 degrees with respect to each other with accuracy that can be adopted in the present invention by other methods. Only. That is, in the present invention, the polarizer,
It is meaningful to apply a polarizer-analyzer pair having such a shape that a 45-degree polarization direction difference can be automatically obtained by superimposing rectangular sections of the analyzer and aligning one side on a plane. Absorption-type polarizing elements are also effective in eliminating such adjustments and also in reducing the thickness of the optical path and contributing to the compact structure of the entire optical isolator. Of course, if the above-mentioned design points are overcome with other types of polarizers, the structure intended by the present invention can be established without inconvenience.
【0009】第二は上述の短冊状矩形切片を磁気飽和す
るための永久磁石に関する検討が必要である。図3は矩
形状切片ファラデー回転子を挿入する永久磁石7の内面
中心であるP面における内部磁界分布を示した図であ
り、横幅5.6mm、高さ方向3mm、長さ1.6mmおよび磁石肉
厚0.8mmでかつ、Br=9KG、エネルギー積約20MGOeのサマ
リウムコバルト(Sm-Co)磁石を例にとって解析した結
果であり、ほとんど均一磁界が形成されている。この場
合、磁束密度が全断面にわたって2KG以上に保持され、
何等支障なくファラデー回転子を磁化できる。Second, it is necessary to study a permanent magnet for magnetically saturating the above-mentioned rectangular strip. FIG. 3 is a diagram showing the internal magnetic field distribution on the P plane which is the center of the inner surface of the permanent magnet 7 into which the rectangular section Faraday rotator is inserted, and has a width of 5.6 mm, a height direction of 3 mm, a length of 1.6 mm, and a magnet thickness. This is a result of analyzing a samarium-cobalt (Sm-Co) magnet of 0.8 mm, Br = 9KG, and an energy product of about 20MGOe as an example, and an almost uniform magnetic field is formed. In this case, the magnetic flux density is kept at 2KG or more over the entire cross section,
The Faraday rotator can be magnetized without any trouble.
【0010】第三の課題は、ファラデー回転子の研磨精
度であるが、すでに詳記したように本発明において、偏
光子検光子対自体はほとんど無調整で組み立てるため偏
光回転角度の精度が光アイソレータの消光特性を決定す
る。消光特性の簡単な判定はファラデー回転子を透過す
る際に生じる偏光楕円成分を無視すれば、45度に対する
ズレ角△θから規定され、消光比ERは、 ER=−10・log10[sin2(△θ)] となる。もし、ER値を40dB以上とすればからズレ角△
θは、約0.6度未満に制限しなければならない。本発明
に用いるような高いファラデー回転角を有するファラデ
ー回転子の場合、素子自体を薄片化するためには極めて
有効だが、回転角を研磨によって制御する難しさがあ
る。The third problem is the polishing accuracy of the Faraday rotator. As already described in detail, in the present invention, since the polarizer analyzer pair itself is assembled with almost no adjustment, the accuracy of the polarization rotation angle is reduced. The extinction characteristic of is determined. A simple determination of the extinction characteristic is defined by the deviation angle △ θ with respect to 45 degrees, ignoring the polarization ellipse component generated when the light passes through the Faraday rotator. The extinction ratio ER is ER = −10 · log 10 [sin 2 (△ θ)]. If the ER value is 40 dB or more, the deviation angle △
θ must be limited to less than about 0.6 degrees. In the case of a Faraday rotator having a high Faraday rotation angle as used in the present invention, it is extremely effective for thinning the element itself, but there is a difficulty in controlling the rotation angle by polishing.
【0011】実際には光通信に利用される1.31μm帯域
用ファラデー回転子の場合、45度回転に必要な膜厚は構
成組成によっても異なるが、大体200〜300μmであり、
0.6度以下に維持するには、研磨精度がおおよそ±3μm
の公差に調整しなければならない。実際の研磨公差は±
1μm以下に制御する技術は可能であり、研磨条件を設定
すれば十分に再現性のとれる公差領域である。以上の技
術集積から開口部が矩形状の光アイソレータが製作でき
る。LDアレイに相対する幅と高さの比率を矩形度合い
と規定するとき、1.5以上あれば複数のLDアレイと結
合できるが、上限は特に規定しない。ファイバアレイの
ピッチを250μmとすれば、前述矩形貫通口を持つアイソ
レータにおいて開口部を3mm利用すれば12芯のファイバ
アレイと連結できる。Actually, in the case of a Faraday rotator for a 1.31 μm band used for optical communication, the film thickness required for 45 ° rotation varies depending on the composition, but is approximately 200 to 300 μm.
Polishing accuracy is approximately ± 3μm to maintain below 0.6 degrees
Must be adjusted to the tolerance of Actual polishing tolerance is ±
A technique of controlling the thickness to 1 μm or less is possible, and if the polishing conditions are set, the reproducibility is sufficiently high. An optical isolator having a rectangular opening can be manufactured from the above technology integration. When defining the ratio of the width and height relative to the LD array to the degree of rectangle, if the ratio is 1.5 or more, it can be combined with a plurality of LD arrays, but the upper limit is not particularly defined. If the pitch of the fiber array is 250 μm, it can be connected to a 12-core fiber array by using an opening of 3 mm in the isolator having the rectangular through hole.
【0012】[0012]
【実施例】短冊状矩形偏光子検光子対を形成するため、
2枚の偏光ガラスをそれぞれ円盤状ガラス基板(直径2イ
ンチ)に接着し、別に用意した参照用偏光ガラスに重
ね、一方は直交ニコル位置に調整後、基板ガラスに方位
付けし、他方は一端直交ニコル位置に設定後回転ステー
ジを基準に45度回転させてから方位付けをする。次に方
位に沿って所望の矩形比にダイシングする。ダイシング
ブレードをぶれの無い位置に調整し、ブレードの種類を
整合させることから切断面が光学研磨に匹敵する精度で
仕上がる。当然偏光ガラスとファラデー回転子を切断す
る条件は異なる。EXAMPLE In order to form a rectangular rectangular polarizer analyzer pair,
Two pieces of polarizing glass are adhered to a disc-shaped glass substrate (diameter 2 inches), respectively, and placed on a separately prepared reference polarizing glass. One is adjusted to the orthogonal Nicol position, and the other is oriented to the substrate glass. After setting to the Nicol position, the head is rotated 45 degrees with reference to the rotary stage before orientation. Next, dicing is performed along the direction to a desired rectangular ratio. Since the dicing blade is adjusted to a position where there is no blur and the type of the blade is matched, the cut surface is finished with an accuracy comparable to optical polishing. Naturally, the conditions for cutting the polarizing glass and the Faraday rotator are different.
【0013】本実施例では、開口部の形状として幅6m
m、高さ1.4mmと設定し、偏光子,検光子,ファラデー回
転子を製作した。この大きさにおけるファラデー回転子
の厚さ精度は、同一膜面では±1.2μmの公差内に研磨さ
れていたが、同時に研磨された別の矩形状ファラデー回
転子間では±3μmの精度に仕上がっていた。もちろんこ
のような精度は研磨装置とその条件出しによって格段改
善されるべき種類の技術であって本発明の要旨を実現不
可能にするような要素たり得ないことは自明である。本
実施例に用いたファラデー回転子はLPE法によるBiLu
DyGaFeO系ガーネット膜で1.31μm帯域で45度に必要な
膜厚は280μmであり、±3μmの精度は±0.5度以下のズ
レ角に相当する。In this embodiment, the shape of the opening is 6 m wide.
m, the height was set to 1.4 mm, and a polarizer, analyzer and Faraday rotator were manufactured. The thickness accuracy of the Faraday rotator at this size was polished to within a tolerance of ± 1.2 μm on the same film surface, but was finished to ± 3 μm between other polished rectangular Faraday rotators at the same time. Was. Of course, it is obvious that such accuracy is a kind of technology that should be significantly improved by the polishing apparatus and its conditions, and that there is no factor that makes the gist of the present invention unrealizable. The Faraday rotator used in this embodiment is BiLu by the LPE method.
The film thickness required at 45 degrees in the 1.31 μm band of the DyGaFeO-based garnet film is 280 μm, and the accuracy of ± 3 μm corresponds to a deviation angle of ± 0.5 degrees or less.
【0014】永久磁石は図4に示すように寸法が、長さ
8mm、厚み0.7mm、磁界方向長さ2mmの板状磁石2枚9を
磁石間隙間1.4mmとなるように金属治具10に接着固定し
た。もちろん一体成形して矩形状磁石を作製する構造で
も問題ない。図5は磁石中央部の横幅方向に沿った磁界
分布を示した図である。約1.9KGの平坦部が中央部分約6
mmは保持されており、分割構造で十分な磁界強度が達成
できることが確認できる。本実施例では残留磁束密度Br
=11KG,最大エネルギー積28MGOeのSmCo焼結磁石を適用
した。As shown in FIG. 4, the size of the permanent magnet is
Two plate-shaped magnets 9 having a thickness of 8 mm, a thickness of 0.7 mm, and a length of 2 mm in the magnetic field direction were bonded and fixed to a metal jig 10 so that a gap between the magnets was 1.4 mm. Of course, there is no problem with a structure in which a rectangular magnet is formed by integral molding. FIG. 5 is a diagram showing a magnetic field distribution along the width direction of the center of the magnet. The flat part of about 1.9KG is about 6 in the center
mm is maintained, and it can be confirmed that a sufficient magnetic field strength can be achieved with the divided structure. In this embodiment, the residual magnetic flux density Br
= 11KG, SmCo sintered magnet with a maximum energy product of 28MGOe was applied.
【0015】以上の構成部品を矩形枡型磁石内部に挿
入,固定した。偏光ガラス等は厚みが約0.5mmであり、
全部品が磁石内部に納まり、結局光アイソレータとして
高さ2.9mm、横幅9mm、光線透過方向の長さ2mmの偏平構
造に仕上がった。これらを保護するためホルダに実装し
ても大差なく形成できる。光学特性は、互いに対向する
2本のファイバ間に、レンズを介してビームウェイスト
径が約0.6mmのコリメータ光線を結合させ、その間に矩
形形状光アイソレータを挿入し横幅方向に1mmづつ移動
させて分布を計測した。図6は挿入損失(LF)と逆挿入
損失(LB)の測定結果である。順方向損失は0.5dB以下、
逆方向損失も40dB以上を維持しており、本発明の構成が
開口部横幅方向に6mm以上の有効範囲がとれる光アイソ
レータとして役立つことが確認できた。The above components were inserted and fixed inside the rectangular box-shaped magnet. Polarized glass etc. is about 0.5 mm thick,
All parts were housed inside the magnet, and as a result, the optical isolator was finished in a flat structure with a height of 2.9 mm, a width of 9 mm, and a length of 2 mm in the light transmission direction. Even if they are mounted on a holder to protect them, they can be formed without much difference. Optical characteristics are distributed by coupling a collimator beam with a beam waste diameter of about 0.6 mm between two opposing fibers via a lens, inserting a rectangular optical isolator between them, and moving it by 1 mm in the width direction. Was measured. FIG. 6 shows the measurement results of the insertion loss (LF) and the reverse insertion loss (LB). Forward loss is less than 0.5dB,
The reverse loss is also maintained at 40 dB or more, confirming that the configuration of the present invention is useful as an optical isolator having an effective range of 6 mm or more in the width direction of the opening.
【0016】[0016]
【発明の効果】本発明はLDモジュールの低価格化が図
れると共に、光ファイバとコンピュータとの連結を想定
した超並列伝送に利用できる光アイソレータを提供する
ものであり、将来の光伝送に多大な貢献が期待できる。The present invention provides an optical isolator which can be used for super-parallel transmission assuming the connection between an optical fiber and a computer while reducing the cost of an LD module. We can expect contribution.
【図1】本発明の光アイソレータ分解構成例の斜視図で
ある。FIG. 1 is a perspective view of an optical isolator decomposition example of the present invention.
【図2】従来のアレイLDモジュールの概略図である。FIG. 2 is a schematic diagram of a conventional array LD module.
【図3】本発明に搭載する永久磁石の磁界強度解析図で
ある。FIG. 3 is a diagram illustrating a magnetic field strength analysis of a permanent magnet mounted on the present invention.
【図4】本発明に搭載した永久磁石の構造例の斜視図で
ある。FIG. 4 is a perspective view of a structural example of a permanent magnet mounted on the present invention.
【図5】永久磁石内部の横幅方向磁界強度の分布図を示
す。FIG. 5 shows a distribution diagram of a magnetic field intensity in the width direction inside the permanent magnet.
【図6】本発明による光アイソレータの横方向光学特性
の分布図を示す。FIG. 6 shows a distribution diagram of the lateral optical characteristics of the optical isolator according to the present invention.
1 光アイソレータ 2 4ch−アレイLD 3 共焦点系光学レンズ 4 共焦点系光学レンズ 5 偏光子 6 検光子 7 永久磁石 8 ファラデー回転子 9 板状磁石 10 金属治具 DESCRIPTION OF SYMBOLS 1 Optical isolator 2 4ch-array LD 3 Confocal system optical lens 4 Confocal system optical lens 5 Polarizer 6 Analyzer 7 Permanent magnet 8 Faraday rotator 9 Plate magnet 10 Metal jig
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 27/28 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G02B 27/28
Claims (2)
と、前記偏光子と同等形状であり、偏光方向が偏光子に
対して45度回転した方位を有する長方形の検光子を配
し、その間に前記偏光子,検光子と同等形状の長方形フ
ァラデー回転子から構成される光学素子を配置し、それ
ら光学素子が内挿できる長方形貫通部を有する永久磁石
であって、着磁方向が光線透過軸方向と平行である箱形
中空磁石体で構成されていることを特徴とした半導体レ
ーザアレイ用光アイソレータ。A polarizer 1. A light transmittance sectional shape is rectangular, the a polarizer equal shape, arranged analyzer rectangular having a direction of polarization direction is rotated 45 degrees with respect to the polarizer, during which A rectangular filter of the same shape as the polarizer and analyzer.
An optical element composed of an Faraday rotator is
Magnet with a rectangular through-hole into which an optical element can be inserted
Wherein the magnetization direction is parallel to the light transmission axis direction.
An optical isolator for a semiconductor laser array , comprising a hollow magnet body .
と、前記偏光子と同等形状であり、偏光方向が偏光子にAnd the same shape as the polarizer, and the polarization direction is
対して45度回転した方位を有する長方形の検光子を配A rectangular analyzer with an azimuth rotated by 45 degrees
し、その間に前記偏光子,検光子と同等形状の長方形フIn the meantime, a rectangular filter having the same shape as the polarizer and analyzer
ァラデー回転子から構成される光学素子を配置し、それAn optical element composed of an Faraday rotator is
ら光学素子を内挿する永久磁石であって、長手方向の上A permanent magnet that interpolates the optical element from the
下部に1対の短冊状平板磁石、及び前記磁石を支持するA pair of strip-shaped plate magnets at the lower part, and supporting the magnets
一対の金属金具により構成され、前記光学素子が内挿でThe optical element is constituted by a pair of metal fittings,
きる磁石体であって、着磁方向が光線透過軸方向と平行Magnet body, the magnetization direction is parallel to the light transmission axis direction
である箱形中空磁石体で構成されていることを特徴としCharacterized by being composed of a box-shaped hollow magnet body
た半導体レーザアレイ用アイソレータ。For semiconductor laser arrays.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27502192A JP3290474B2 (en) | 1992-09-17 | 1992-09-17 | Optical isolator for semiconductor laser array |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27502192A JP3290474B2 (en) | 1992-09-17 | 1992-09-17 | Optical isolator for semiconductor laser array |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0695034A JPH0695034A (en) | 1994-04-08 |
| JP3290474B2 true JP3290474B2 (en) | 2002-06-10 |
Family
ID=17549775
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP27502192A Expired - Fee Related JP3290474B2 (en) | 1992-09-17 | 1992-09-17 | Optical isolator for semiconductor laser array |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3290474B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4884836B2 (en) * | 2006-05-23 | 2012-02-29 | 浜松ホトニクス株式会社 | Faraday rotator and laser system using the same |
| JP5457977B2 (en) * | 2010-08-03 | 2014-04-02 | 浜松ホトニクス株式会社 | Faraday isolator and laser device including the same |
| JP5659280B1 (en) * | 2013-09-24 | 2015-01-28 | 株式会社フジクラ | Optical device, optical device manufacturing method, and optical isolator |
-
1992
- 1992-09-17 JP JP27502192A patent/JP3290474B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0695034A (en) | 1994-04-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH02123321A (en) | A method for manufacturing an optical isolator, a polarizing element array used in the manufacturing method, and an optical module that integrates the optical isolator obtained by the manufacturing method | |
| JPH02126219A (en) | Optical isolator | |
| CN1184507C (en) | Optical isolator | |
| US5757538A (en) | Optical isolator | |
| JP2007256616A (en) | Polarization-independent optical isolator for high-power lasers | |
| JP3290474B2 (en) | Optical isolator for semiconductor laser array | |
| JP2542532B2 (en) | Method for manufacturing polarization-independent optical isolator | |
| JP2003075679A (en) | Receptacle with optical isolator and method of assembling the same | |
| JPS6170516A (en) | Semiconductor laser module with optical isolator | |
| JP3075435B2 (en) | Optical isolator | |
| JP4540155B2 (en) | Optical isolator | |
| JPH03164706A (en) | Optical module manufacturing method | |
| JP3260159B2 (en) | Manufacturing method of magneto-optical component | |
| US20030002128A1 (en) | Optical isolator | |
| JPH09292543A (en) | Variable polarization lens holder | |
| JP3990088B2 (en) | Optical isolator | |
| JPH03248117A (en) | Optical isolator | |
| JP2570830B2 (en) | Method of forming optical isolator | |
| JPS6136725A (en) | Optical isolator and its manufacturing method | |
| JPH04264515A (en) | Optical isolator | |
| JPH03137615A (en) | Manufacture of optical isolator | |
| JPH03171029A (en) | Production of optical isolator | |
| JP2003066372A (en) | Optical isolator | |
| JP2916995B2 (en) | Magnetic garnet for optical devices | |
| JPH11183841A (en) | Optical isolator element, method of manufacturing the same, and optical module |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020301 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |