JP3359928B2 - Ammonia purification method - Google Patents
Ammonia purification methodInfo
- Publication number
- JP3359928B2 JP3359928B2 JP28986791A JP28986791A JP3359928B2 JP 3359928 B2 JP3359928 B2 JP 3359928B2 JP 28986791 A JP28986791 A JP 28986791A JP 28986791 A JP28986791 A JP 28986791A JP 3359928 B2 JP3359928 B2 JP 3359928B2
- Authority
- JP
- Japan
- Prior art keywords
- ammonia
- nickel
- oxygen
- purifying
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/024—Purification
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はアンモニアの精製方法に
関し、さらに詳細にはアンモニア中に不純物として含ま
れる酸素を極低濃度まで除去しうるアンモニアの精製方
法に関する。アンモニアは、シリコン半導体製造プロセ
スにおいて窒化珪素膜生成のためにシランとともに使用
され、また、トリエチルガリウムなどとともに窒化ガリ
ウムなどの化合物半導体製造に使用されており、成膜技
術の進歩とともに不純物の極めて少ないものが要求され
ている。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying ammonia, and more particularly to a method for purifying ammonia capable of removing oxygen contained as an impurity in ammonia to an extremely low concentration. Ammonia is used together with silane to form a silicon nitride film in the silicon semiconductor manufacturing process, and is also used in the manufacture of compound semiconductors such as gallium nitride together with triethylgallium. Is required.
【0002】[0002]
【従来の技術】半導体製造時に使用されるアンモニアは
一般的には純アンモニアの他、水素ガスまたは不活性ガ
スで希釈された形態で市販されており、通常はガスの状
態で半導体製造装置に供給される。これらのアンモニア
中には不純物として酸素および水分などが含有され、通
常は原料アンモニアの蒸留などによって精製される。ま
た、水分についてはこの他に合成ゼオライトなどの脱湿
剤により除去することが可能である。市販の精製アンモ
ニア中の酸素含有量は通常は10ppm以下であるが、
最近のボンベ入りのアンモニアでは、その酸素含有量
0.5〜1.0ppmと比較的低いものも市販されてい
る。2. Description of the Related Art In general, ammonia used in the production of semiconductors is commercially available in the form of diluted with hydrogen gas or inert gas in addition to pure ammonia, and usually supplied to semiconductor production equipment in a gaseous state. Is done. Such ammonia contains oxygen, moisture, and the like as impurities, and is usually purified by distillation of the raw material ammonia. In addition, moisture can be removed by a dehumidifier such as synthetic zeolite. The oxygen content in commercially available purified ammonia is usually 10 ppm or less,
In recent years, ammonia in cylinders is commercially available, which has a relatively low oxygen content of 0.5 to 1.0 ppm.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、酸素含
有量が1ppmを切る程度では最近の半導体製造プロセ
スにおける要求に充分に対応することはできず、0.1
ppm以下、さらには、0.01ppm以下とすること
が強く望まれている。また、最近、半導体製造時にアン
モニアと同時に使用されるシランなどは高純度に精製す
ることが可能となり、例えば不純物として含有する酸素
は0.01ppm以下まで除去することが可能となって
いる。このため、アンモニアについても酸素含有量の極
めて低いものが要望されつつある。また、これらアンモ
ニアはボンベの接続時や配管の切替時など半導体装置へ
の供給過程において空気など不純物の混入による汚染も
あるため、装置の直前で不純物を最終的に除去すること
が望ましい。しかしながら、このように高純度アンモニ
アに対する需要は年々増加しているが、アンモニア中に
含有される酸素を効率よく除去して高純度のアンモニア
系のガスを半導体製造プロセスなどに供給する方法につ
いての公知技術はほとんど見あたらない。However, if the oxygen content is less than 1 ppm, it is not possible to sufficiently cope with the demands in recent semiconductor manufacturing processes.
It is strongly desired that the content be less than or equal to 0.01 ppm, and more preferably less than or equal to 0.01 ppm. In addition, recently, silane and the like used together with ammonia in the production of semiconductors can be purified to high purity. For example, oxygen contained as impurities can be removed to 0.01 ppm or less. For this reason, ammonia having an extremely low oxygen content is being demanded. In addition, these ammonias may be contaminated by impurities such as air during the supply process to the semiconductor device such as when connecting the cylinder or switching the piping, so it is desirable to finally remove the impurities immediately before the device. However, although the demand for high-purity ammonia is increasing year by year, there is a known method for efficiently removing oxygen contained in ammonia and supplying high-purity ammonia-based gas to a semiconductor manufacturing process or the like. Technology is hardly found.
【0004】[0004]
【課題を解決するための手段】本発明者らは、アンモニ
ア中に含有される酸素を極低濃度まで効率よく除去する
べく鋭意研究を重ねた結果、アンモニアを還元処理した
ニッケルを主成分とする精製剤と接触させることによ
り、酸素濃度を0.1ppm以下、さらには0.01p
pm以下まで除去しうることを見いだし、本発明を完成
した。すなわち本発明は、粗アンモニアを、還元処理し
たニッケルを主成分とする精製剤と接触させて、該粗ア
ンモニアに含有される酸素を除去することを特徴とする
アンモニアの精製方法である。本発明はアンモニア単
独、水素(水素ガスベース)および窒素、アルゴンなど
の不活性ガス(不活性ガスベース)で希釈されたアンモ
ニア(以下総称して粗アンモニアと記す)中に含有され
る酸素の除去に適用される。The present inventors have SUMMARY OF THE INVENTION may, oxygen contained in the ammonia results to diligent research efficiently removed to an extremely low concentration, the <br/> nickel reduction treatment and ammonia by contact with purification agent mainly, the oxygen concentration 0.1ppm or less, more 0.01p
It has been found that it can be removed down to pm or less, and the present invention has been completed. That is, the present invention provides a process for reducing crude ammonia
And removing oxygen contained in the crude ammonia by contact with a purified agent containing nickel as a main component. The present invention is intended to remove oxygen contained in ammonia alone, hydrogen (based on hydrogen gas) and ammonia diluted with an inert gas (inert gas base) such as nitrogen or argon (hereinafter referred to as crude ammonia). Applied to
【0005】本発明において用いられる精製剤は金属ニ
ッケルまたはニッケルの酸化物など還元され易いニッケ
ル化合物を還元処理したものを主成分とするものであ
る。また、ニッケル以外の金属成分としてクロム、鉄、
コバルト、銅などの金属が少量含まれているものであっ
てもよい。これらのニッケルは単独で用いられてもよ
く、また、担体などに担持させた形体で用いてもよい
が、ニッケルの表面とガスとの接触効率を高める目的な
どから、通常は担体などに担持させた形態で使用するこ
とが好ましい。ニッケルを担体に担持させる方法として
は、例えば、ニッケル塩の水溶液中に珪藻土、アルミ
ナ、シリカアルミナ、アルミノシリケートおよびカルシ
ウムシリケートなどの担体粉末を分散させ、さらにアル
カリを添加して担体の粉末上にニッケル成分を沈澱さ
せ、次いで濾過し必要に応じて水洗して得たケーキを1
20〜150℃で乾燥後、300℃以上で焼成し、この
焼成物を粉砕する、あるいはNiCO3、Ni(OH)
2、Ni(NO3)2などの無機塩、NiC2O4、N
i(CH3COO)2などの有機塩を焼成し、粉砕した
後、これに耐熱性セメントを混合し、焼成するなどが挙
げられる。これらは、通常は、押出成型、打錠成型など
で成型体とされ、そのまま、あるいは必要に応じて適当
な大きさに破砕して使用される。成型方法としては乾式
法あるいは湿式法を用いることができ、その際、少量の
水、滑剤などを使用してもよい。また、ニッケル系触媒
として例えば水蒸気変成触媒、C11−2−03(Ni
O−セメント)、C11−2−06(NiO−耐火
物)、C11−2(Ni−カルシウムアルミネート)、
C11−9(Ni−アルミナ);水素化触媒、C46−
7(Ni−珪藻土)、C46−8(Ni−シリカ)、C
36(Ni−Co−Cr−アルミナ);ガス化触媒、X
C99(NiO);水素化変成触媒、C20−7(Ni
−Mo−アルミナ)〔以上、東洋CCI(株)製〕およ
び水素化触媒、N−111(Ni−珪藻土);ガス化変
成触媒、N−174(NiO);ガス化触媒、N−18
5(NiO)〔以上、日揮(株)製〕など種々なものが
あるのでそれらから選択したものを使用してもよい。要
は、還元ニッケル、酸化ニッケルなどが微細に分散され
て、その表面積が大きくガスとの接触効率の高い形態の
ものであればよい。[0005] The purifying agent used in the present invention is mainly composed of a nickel compound or a nickel compound which is easily reduced, such as nickel oxide, which has been subjected to a reduction treatment . In addition, chromium, iron,
It may contain a small amount of metal such as cobalt or copper. These nickels may be used alone or may be used in a form supported on a carrier or the like.However, for the purpose of increasing the contact efficiency between the nickel surface and gas, the nickel is usually supported on a carrier or the like. It is preferable to use it in the form. As a method of supporting nickel on a carrier, for example, a carrier powder such as diatomaceous earth, alumina, silica alumina, aluminosilicate and calcium silicate is dispersed in an aqueous solution of a nickel salt, and an alkali is added to the carrier powder to add nickel to the carrier powder. The ingredients were precipitated, then filtered and, if necessary, washed with water to give a cake of 1 part.
After drying at 20 to 150 ° C., firing is performed at 300 ° C. or higher, and the fired product is pulverized, or NiCO 3 , Ni (OH)
2 , an inorganic salt such as Ni (NO 3 ) 2 , NiC 2 O 4 , N
After baking and pulverizing an organic salt such as i (CH 3 COO) 2 , a heat-resistant cement is mixed with this, followed by baking. These are usually formed into a molded product by extrusion molding, tablet molding, or the like, and are used as they are, or crushed to an appropriate size as needed. As a molding method, a dry method or a wet method can be used, and in that case, a small amount of water, a lubricant, or the like may be used. Further, as a nickel-based catalyst, for example, a steam conversion catalyst, C11-2-03 (Ni
O-cement), C11-2-06 (NiO-refractory), C11-2 (Ni-calcium aluminate),
C11-9 (Ni-alumina); hydrogenation catalyst, C46-
7 (Ni-diatomaceous earth), C46-8 (Ni-silica), C
36 (Ni-Co-Cr-alumina); gasification catalyst, X
C99 (NiO); hydrotransformation catalyst, C20-7 (Ni
-Mo-alumina) [all manufactured by Toyo CCI Co., Ltd.] and a hydrogenation catalyst, N-111 (Ni-diatomaceous earth); a gasification shift catalyst, N-174 (NiO); a gasification catalyst, N-18
There are various types such as 5 (NiO) (both manufactured by JGC Corporation), and those selected from them may be used. In short, it is sufficient if reduced nickel, nickel oxide, and the like are finely dispersed and have a large surface area and a high contact efficiency with gas.
【0006】精製剤の比表面積としては通常は、BET
法で10〜300m2/gの範囲のもの、好ましくは3
0〜250m2/gの範囲のものである。また、ニッケ
ルの含有量は金属ニッケル換算で通常は、5〜95wt
%、好ましくは20〜95wt%である。ニッケルの含
有量が5wt%よりも少なくなると脱酸素能力が低くな
り、また95wt%よりも高くなると水素による還元の
際にシンタリングが生じて活性が低下する恐れがある。
精製剤を活性化するためには通常は水素還元を行う。水
素還元に際しては、例えば350℃以下程度で水素−窒
素の混合ガスを空筒線速度(LV)5cm/sec程度
で通すことによっておこなうことができるが、発熱反応
であるため温度が急上昇しないよう注意が必要である。[0006] The specific surface area of the purifying agent is usually BET.
In the range of 10 to 300 m 2 / g, preferably 3
It is in the range of 0 to 250 m 2 / g. The content of nickel is usually 5 to 95 wt% in terms of metallic nickel.
%, Preferably 20 to 95 wt%. If the content of nickel is less than 5 wt%, the deoxidizing ability is reduced. If the content is more than 95 wt%, sintering may occur during reduction with hydrogen, and the activity may be reduced.
In order to activate the purifying agent , hydrogen reduction is usually performed. Hydrogen reduction can be performed, for example, by passing a mixed gas of hydrogen and nitrogen at a cylinder linear velocity (LV) of about 5 cm / sec at a temperature of about 350 ° C. or less. is necessary.
【0007】アンモニアの精製は、通常は、還元処理し
たニッケルを主成分とする精製剤が充填された精製筒に
粗アンモニアを通すことによって行われ、粗アンモニア
が精製剤と接触することによって粗アンモニア中に不純
物として含有される酸素が除去される。本発明に適用さ
れる粗アンモニア中の酸素濃度は通常は100ppm以
下である。酸素濃度がこれよりも高くなると発熱量が増
加するため条件によっては除熱手段が必要となる。精製
筒に充填される精製剤の充填長は、実用上通常は50〜
1500mmとされる。充填長が50mmよりも短くな
ると酸素除去率が低下する恐れがあり、また、1500
mmよりも長くなると圧力損失が大きくなり過ぎる恐れ
が生ずる。精製時の粗アンモニアの空筒線速度(LV)
は供給されるアンモニア中の酸素濃度および操作条件な
どによって異なり一概に特定できないが、通常は100
cm/sec以下、好ましくは30cm/sec以下で
ある。アンモニアと精製剤の接触温度は精製筒の入口に
供給されるガスの温度で、200℃以下、好ましくは1
00℃以下であり、通常は常温でよく、特に加熱や冷却
を必要としない。精製剤との接触時の圧力にも特に制限
はなく常圧、減圧、加圧のいずれでも処理が可能である
が、通常は20kg/cm2abs以下、好ましくは
0.1〜10kg/cm2absである。また、アンモ
ニア中に少量の水分が含有されていても脱酸素能力には
特に悪影響を及ぼすことはなく、さらに精製剤に担体な
どを用いている場合には、その種類によっては水分も同
時に除去される。本発明において精製剤による酸素除去
工程に、必要に応じて合成ゼオライトなどの脱湿剤によ
る水分除去工程を適宜組み合わせることも可能であり、
これによって水分も完全に除去され、極めて高純度のア
ンモニアを得ることができる。[0007] Purification of ammonia is usually carried out by passing crude ammonia through a purification cylinder filled with a purifying agent mainly composed of reduced nickel, and the crude ammonia is brought into contact with the purifying agent. Oxygen contained therein as impurities is removed. The oxygen concentration in the crude ammonia applied to the present invention is usually 100 ppm or less. If the oxygen concentration is higher than this, the calorific value increases, so a heat removal means is required depending on the conditions. The filling length of the purifying agent filled in the purifying cylinder is usually 50 to
It is 1500 mm. If the filling length is shorter than 50 mm, the oxygen removal rate may decrease.
If it is longer than mm, the pressure loss may be too large. Cylinder linear velocity (LV) of crude ammonia during refining
Depends on the oxygen concentration in the supplied ammonia and operating conditions, etc., and cannot be specified unconditionally.
cm / sec or less, preferably 30 cm / sec or less. The contact temperature between ammonia and the purifying agent is the temperature of the gas supplied to the inlet of the purifying cylinder, and is 200 ° C. or less, preferably 1 ° C.
The temperature is not higher than 00 ° C., usually at room temperature, and does not particularly require heating or cooling. The pressure at the time of contact with the refining agent is not particularly limited, and the treatment can be carried out at normal pressure, reduced pressure, or increased pressure, but is usually 20 kg / cm 2 abs or less, preferably 0.1 to 10 kg / cm 2. abs. In addition, even if a small amount of water is contained in ammonia, there is no particular adverse effect on the deoxygenation ability, and when a carrier or the like is used as a refining agent , water is also removed depending on the type. You. In the present invention, it is also possible to appropriately combine a water removal step with a dehumidifier such as a synthetic zeolite as needed, in the oxygen removal step with a purifying agent ,
As a result, moisture is completely removed, and extremely high-purity ammonia can be obtained.
【0008】[0008]
実施例1 (ニッケルの還元処理)市販のニッケル触媒(日揮
(株)製、N−111)を用いた。このものの組成はN
i+NiOの形であり、Niとして45〜47wt%、
Cr2〜3wt%、Cu2〜3wt%、珪藻土27〜2
9wt%および黒鉛4〜5wt%、比表面積が150m
2 /gであり、直径5mm、高さ4.5mmの成型体で
ある。このニッケル触媒を8〜10meshに破砕した
もの63mlを内径16.4mm、長さ400mmのス
テンレス製の精製筒に充填長300mm(充填密度:
1.0g/ml)に充填した。これに水素を常圧で温度
150℃、流量595ml/min(LV=3.6cm
/sec)で3時間還元処理を行った後、常温に冷却し
た。 (アンモニアの精製)引き続き、この精製筒にアンモニ
ア10vol%および不純物として0.53ppmの酸
素を含有する水素ベースの粗アンモニアを、常温(20
℃)において633ml/min(LV=5cm/se
c)の速度で流して黄燐発光式酸素分析計(測定下限濃
度0.01ppm)を用いて出口ガス中の酸素濃度を測
定した結果、酸素は検出されず0.01ppm以下であ
った。また、ガスを流し始めてから100分後において
も出口ガス中の酸素濃度は、0.01ppm以下であっ
た。、Example 1 (Nickel reduction treatment) A commercially available nickel catalyst (N-111, manufactured by JGC Corporation) was used. Its composition is N
In the form of i + NiO, 45 to 47 wt% as Ni,
Cr 2-3 wt%, Cu 2-3 wt%, diatomaceous earth 27-2
9 wt% and graphite 4-5 wt%, specific surface area 150 m
2 / g, a molded body having a diameter of 5 mm and a height of 4.5 mm. 63 ml of this nickel catalyst crushed to 8 to 10 mesh was packed in a stainless steel purification cylinder having an inner diameter of 16.4 mm and a length of 400 mm, and a filling length of 300 mm (filling density:
1.0 g / ml). Hydrogen was added thereto at normal pressure at a temperature of 150 ° C. and a flow rate of 595 ml / min (LV = 3.6 cm).
/ Sec) for 3 hours, and then cooled to room temperature. (Purification of Ammonia) Subsequently, hydrogen-based crude ammonia containing 10 vol% of ammonia and 0.53 ppm of oxygen as an impurity was added to this purification column at room temperature (20 ° C.).
633 ml / min (LV = 5 cm / sec)
As a result of measuring the oxygen concentration in the outlet gas at a flow rate of c) using a yellow phosphorus emission type oxygen analyzer (measurement lower limit concentration: 0.01 ppm), no oxygen was detected and the concentration was 0.01 ppm or less. Also, even after 100 minutes from the start of the gas flow, the oxygen concentration in the outlet gas was 0.01 ppm or less. ,
【0009】実施例2 (ニッケル触媒の調製)3Lの水にAl(NO3 )3 9
H2 O、454gを溶解し、氷浴で5〜10℃に冷却し
た。激しくかき混ぜながら、これにNaOH、200g
を1Lの水に溶解して5〜10℃に冷却した溶液を2時
間かけて滴下し、アルミン酸ナトリウムとした。次に、
Ni(NO3 )2 ・6H2 O、101gを600mlの
水に溶解し、これに45mlの濃硝酸を加えて5〜10
℃に冷却したものを、アルミン酸ナトリウム溶液に激し
くかき混ぜながら1時間かけて加えた。生じた沈澱を濾
過し、得られた沈澱を2Lの水中で15分間かき混ぜて
洗う操作を6回繰り返して中性とした。得られた沈澱物
を細分して空気浴中で105℃で16時間乾燥してから
粉砕し、これをふるい分けて12〜24meshのもの
を集めた。このものは29.5wt%の酸化ニッケル
(NiO)を含有していた。 (ニッケルの還元処理)このものを、実施例1で使用し
たと同じ精製筒に63ml充填し(充填密度:0.77
g/ml)、これに水素を常圧で温度350℃、流量1
65cc/min(LV=1cm/sec)で16時間
流して還元処理をおこなった後、常温に冷却した。 (アンモニアの精製)引き続いて、アンモニアの精製を
おこなった。実施例1で使用した約0.53ppmの酸
素を含む10vol%のアンモニア(水素ベース)を、
常温(20℃)において精製筒に633ml/min
(LV=5cm/sec)の速度で流して出口ガス中の
酸素濃度を測定した結果、0.01ppm以下であっ
た。精製を始めてから100分後においても出口ガスの
酸素濃度は0.01ppm以下であった。[0009] Example 2 (Preparation of a nickel catalyst) of water 3L Al (NO 3) 3 9
454 g of H 2 O were dissolved and cooled to 5-10 ° C. in an ice bath. While stirring vigorously, add NaOH, 200g
Was dissolved in 1 L of water and a solution cooled to 5 to 10 ° C. was added dropwise over 2 hours to obtain sodium aluminate. next,
Ni (NO 3 ) 2 .6H 2 O, 101 g, was dissolved in 600 ml of water, and 45 ml of concentrated nitric acid was added thereto.
The solution cooled to ° C. was added to the sodium aluminate solution over 1 hour with vigorous stirring. The resulting precipitate was filtered, and the obtained precipitate was stirred six times in 2 L of water for 15 minutes and washed to make the precipitate neutral. The obtained precipitate was subdivided, dried in an air bath at 105 ° C. for 16 hours, and then pulverized, and sieved to collect 12 to 24 mesh. It contained 29.5 wt% nickel oxide (NiO). (Reduction treatment of nickel) 63 ml of this was packed in the same purification cylinder as used in Example 1 (packing density: 0.77
g / ml) and hydrogen at normal pressure at a temperature of 350 ° C. and a flow rate of 1
After performing reduction treatment by flowing at 65 cc / min (LV = 1 cm / sec) for 16 hours, the mixture was cooled to room temperature. (Purification of ammonia) Subsequently, the purification of ammonia was performed. 10 vol% ammonia (hydrogen base) containing about 0.53 ppm oxygen used in Example 1
At normal temperature (20 ° C), 633 ml / min
(LV = 5 cm / sec) The oxygen concentration in the outlet gas was measured by flowing at a speed of 5 cm / sec. Even after 100 minutes from the start of the purification, the oxygen concentration of the outlet gas was 0.01 ppm or less.
【0010】比較例 活性炭(椰子殻炭)を8〜24meshに破砕したもの
48gを実施例1に置けると同じ精製筒に300mm
(充填密度0.57g/ml)充填し、ヘリウム気流中
270〜290℃で時間加熱処理した後、室温に冷却し
た。この精製筒に実施例1で用いたと同じ約0.53p
pmの酸素を含む10vol%のアンモニア(水素ベー
ス)を精製筒に633ml/min(LV=5cm/s
ec)で流して出口ガス中の酸素濃度を測定した結果、
0.53ppmであり、この状態で2時間流し続けたが
酸素濃度の変化は見られなかった。Comparative Example When activated carbon (coconut shell charcoal) was crushed into 8 to 24 meshes and 48 g was placed in Example 1, 300 mm was placed in the same purification cylinder.
(Filling density: 0.57 g / ml), the mixture was heated in a helium stream at 270 to 290 ° C. for an hour, and then cooled to room temperature. About 0.53p which is the same as that used in Example 1
633 ml / min (LV = 5 cm / s) of 10 vol% ammonia (hydrogen base) containing pm oxygen
As a result of measuring the oxygen concentration in the outlet gas by flowing in ec),
It was 0.53 ppm, and the flow was continued for 2 hours in this state, but no change in oxygen concentration was observed.
【0011】[0011]
【発明の効果】本発明によって、従来除去が困難であっ
たアンモニア中の酸素を0.1ppm以下、さらには
0.01ppm以下のような極低濃度まで除去すること
ができ、超高純度のアンモニアを得ることが可能となっ
た。According to the present invention, it is possible to remove oxygen in ammonia which has been conventionally difficult to remove to an extremely low concentration of 0.1 ppm or less, and even to 0.01 ppm or less. It became possible to obtain.
フロントページの続き (56)参考文献 特開 平4−292413(JP,A) 特開 昭55−124538(JP,A) 特開 昭57−184435(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01C 1/02 B01J 20/02 Continuation of the front page (56) References JP-A-4-292413 (JP, A) JP-A-55-124538 (JP, A) JP-A-57-184435 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) C01C 1/02 B01J 20/02
Claims (3)
を主成分とする精製剤と接触させて、該粗アンモニアに
含有される酸素を除去することを特徴とするアンモニア
の精製方法。1. A method for purifying ammonia, comprising contacting crude ammonia with a purifying agent mainly composed of reduced nickel to remove oxygen contained in the crude ammonia.
ニッケルを含有し、かつ比表面積がBET法で10〜3
00m2/gである請求項1に記載のアンモニアの精製
方法。2. The refining agent contains nickel of 5 to 95% by weight in terms of metal and has a specific surface area of 10 to 3 by a BET method.
The method for purifying ammonia according to claim 1, wherein the amount is 00 m 2 / g.
0℃以下である請求項1に記載のアンモニアの精製方
法。3. The contact temperature between ammonia and a purifying agent is 20.
The method for purifying ammonia according to claim 1, wherein the temperature is 0 ° C or lower.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28986791A JP3359928B2 (en) | 1991-11-06 | 1991-11-06 | Ammonia purification method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28986791A JP3359928B2 (en) | 1991-11-06 | 1991-11-06 | Ammonia purification method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH05124813A JPH05124813A (en) | 1993-05-21 |
| JP3359928B2 true JP3359928B2 (en) | 2002-12-24 |
Family
ID=17748791
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP28986791A Expired - Fee Related JP3359928B2 (en) | 1991-11-06 | 1991-11-06 | Ammonia purification method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3359928B2 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002037623A (en) * | 2000-07-28 | 2002-02-06 | Japan Pionics Co Ltd | Ammonia purification method |
| JP4640882B2 (en) * | 2000-07-28 | 2011-03-02 | 日本パイオニクス株式会社 | Ammonia supply method and recycling method |
| JP5189342B2 (en) * | 2006-10-27 | 2013-04-24 | 日本パイオニクス株式会社 | Gas processing method |
| ITMI20120676A1 (en) * | 2012-04-24 | 2013-10-25 | Getters Spa | METHOD AND REGENERABLE PURIFICATION OF AMBIENT TEMPERATURE PURIFICATION FOR DIAZOTO MONOXIDE |
| JP2014047089A (en) * | 2012-08-30 | 2014-03-17 | Japan Pionics Co Ltd | Apparatus for feeding purified ammonia |
-
1991
- 1991-11-06 JP JP28986791A patent/JP3359928B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPH05124813A (en) | 1993-05-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3121137B2 (en) | Purification method of unsaturated hydrocarbon | |
| US4976942A (en) | Method for purifying gaseous hydrides | |
| JP3359928B2 (en) | Ammonia purification method | |
| JP2732262B2 (en) | How to purify arsine | |
| JP3410121B2 (en) | Ammonia purification method | |
| JP3154340B2 (en) | Method for purifying germanium hydride | |
| JP3522785B2 (en) | Purification method of carbon dioxide | |
| JP2640517B2 (en) | Purification method of hydrogen selenide | |
| JP3279608B2 (en) | Steam purification method | |
| JP2651611B2 (en) | Hydride gas purification method | |
| JP2700396B2 (en) | Purification method of diborane | |
| JP3217854B2 (en) | Organic metal purification method | |
| JP2640521B2 (en) | Hydrogen sulfide purification method | |
| JP2700412B2 (en) | Hydride gas purification method | |
| JP3150788B2 (en) | Purification method of halogenated hydrocarbon | |
| JP2627324B2 (en) | Silane purification method | |
| JP3154339B2 (en) | Method for purifying germanium hydride | |
| JP2592312B2 (en) | Phosphine purification method | |
| JP3260786B2 (en) | Steam purification method | |
| JP3260826B2 (en) | Purification method of nitrous oxide | |
| JP2700401B2 (en) | Hydride gas purification method | |
| JP2700399B2 (en) | Hydride gas purification method | |
| JP2700398B2 (en) | Hydride gas purification method | |
| JP2700400B2 (en) | Hydride gas purification method | |
| JP3292251B2 (en) | Steam purification method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081011 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091011 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101011 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111011 Year of fee payment: 9 |
|
| LAPS | Cancellation because of no payment of annual fees |