[go: up one dir, main page]

JP3303857B2 - Charging method for sealed nickel-metal hydride battery - Google Patents

Charging method for sealed nickel-metal hydride battery

Info

Publication number
JP3303857B2
JP3303857B2 JP29332099A JP29332099A JP3303857B2 JP 3303857 B2 JP3303857 B2 JP 3303857B2 JP 29332099 A JP29332099 A JP 29332099A JP 29332099 A JP29332099 A JP 29332099A JP 3303857 B2 JP3303857 B2 JP 3303857B2
Authority
JP
Japan
Prior art keywords
charging
battery
temperature
metal hydride
sealed nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29332099A
Other languages
Japanese (ja)
Other versions
JP2000116021A (en
Inventor
英治 門内
伸行 柳原
功 松本
寛治 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP4279908A priority Critical patent/JPH06133468A/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP29332099A priority patent/JP3303857B2/en
Publication of JP2000116021A publication Critical patent/JP2000116021A/en
Application granted granted Critical
Publication of JP3303857B2 publication Critical patent/JP3303857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、密閉式ニッケル水素蓄
電池の充電方式、特に積層構造の電極群を有する複数の
電池の急速充電、およびトリクル充電に好適な充電方式
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging system for a sealed nickel-metal hydride battery, and more particularly to a charging system suitable for rapid charging of a plurality of batteries having a stacked electrode group and trickle charging.

【0002】[0002]

【従来の技術】近年、高容量の点やCdを使用していな
い点より密閉式ニッケル水素蓄電池が脚光を浴びてい
る。しかし、密閉式ニッケル水素蓄電池の充電方式とし
て密閉式ニッケルカドミウム蓄電池と同等の充電方式が
用いられることが多い。これは、密閉式ニッケル水素蓄
電池と密閉式アルカリ蓄電池の充電電圧挙動が似ている
ためである。しかしこれらの電池の充電特性には大きな
2つの異なる点がある。まず、第1の異なる点を以下に
示す。密閉式ニッケルカドミウム蓄電池の場合、過充電
時電池内圧が上昇する。これは主に過充電時に正極から
発生する酸素によるものである。酸素は負極により吸収
され電池内圧の上昇が抑制されるが、この反応は電池温
度が高いほど促進される。したがって密閉式ニッケルカ
ドミウム畜電池は、過充電時、電池温度の上昇とともに
電池内圧が低下する。一方、密閉式ニッケル水素蓄電池
は、低温では同様の理由より電池内圧が上昇するが高温
でも負極に使用している水素吸蔵合金の水素解離平衡圧
が上昇して電池内圧が上昇する。
2. Description of the Related Art In recent years, sealed nickel-metal hydride storage batteries have been in the spotlight because of their high capacity and elimination of Cd. However, a charging method equivalent to a sealed nickel-cadmium storage battery is often used as a charging method for the sealed nickel-metal hydride storage battery. This is because the charging voltage behaviors of the sealed nickel-metal hydride storage battery and the sealed alkaline storage battery are similar. However, there are two major differences in the charging characteristics of these batteries. First, the first different point will be described below. In the case of a sealed nickel cadmium storage battery, the battery internal pressure increases during overcharge. This is mainly due to oxygen generated from the positive electrode during overcharge. Oxygen is absorbed by the negative electrode and the increase in battery internal pressure is suppressed, but this reaction is accelerated as the battery temperature increases. Therefore, in the sealed nickel cadmium storage battery, when overcharged, the battery internal pressure decreases as the battery temperature increases. On the other hand, in a sealed nickel-metal hydride storage battery, the battery internal pressure increases at a low temperature for the same reason, but even at a high temperature, the hydrogen dissociation equilibrium pressure of the hydrogen storage alloy used for the negative electrode increases and the battery internal pressure increases.

【0003】第2の異なる点としては、トリクル充電を
低温で長期間行った場合、Cd極は変化しないが水素吸
蔵電極は不活性化を起こすことが挙げられる。したがっ
て密閉式ニッケルカドミウム蓄電池と同じようにしてト
リクル充電を行った場合密閉式ニッケル水素蓄電池は放
電不能となる。
A second difference is that when trickle charging is performed at a low temperature for a long time, the Cd electrode does not change but the hydrogen storage electrode is inactivated. Therefore, when trickle charging is performed in the same manner as in the sealed nickel-cadmium storage battery, the sealed nickel-metal hydride storage battery cannot be discharged.

【0004】[0004]

【発明が解決しようとする課題】以上のような充電時の
挙動の違いにより同じ充電方式を適用した場合以下に示
した1〜4の問題点を生じる。
When the same charging method is applied due to the difference in behavior at the time of charging as described above, the following problems 1 to 4 occur.

【0005】第1の問題点としては負極に水素吸蔵合金
を用いた密閉式ニッケル水素蓄電池は高温になると合金
の水素吸蔵平衡圧が上昇する。そのため急速充電での過
充電時、電池温度の上昇にともない電池内圧が上昇す
る。そのため過充電において高温ほど電池内圧が低下す
る密閉式ニッケルカドミウム蓄電池と同一の充電方式を
用いると電池内圧が上昇し、密閉系が破壊され寿命が短
くなる問題がある。たとえば、密閉式ニッケルカドミウ
ム蓄電池の充電方式で電池温度の上昇速度を検出して充
電電流を減衰するものがあるが、特徴としては低温から
高温まで一定の充電電気量が得られる。そのため密閉式
ニッケル水素蓄電池に用いると高温で内圧が高くなる。
また、他の方式として雰囲気温度と電池温度差を用いた
充電方式、充電電圧の極大値検知(以後「Vピーク検
知」と呼ぶ)や充電電圧の減少(以後「マイナスデルタ
V検知」と呼ぶ)などがあるが同様の結果を示す。ま
た、一方電池温度検出器を付加した物もあるが、充電制
御がうまく作動しなかった場合の安全装置として働き、
電池の異常昇温による電池構成部品の熱劣化を防ぐのが
目的である。そのため60℃〜80℃で作動するものが
多く、検出器に温度ヒューズやバイメタル方式を用いて
いるため制御精度も不十分である。この様に、従来の密
閉式ニッケルカドミウム蓄電池の充電方式を密閉式ニッ
ケル水素蓄電池に用いた場合、密閉式ニッケルカドミウ
ム蓄電池の昇温による電池内圧上昇の防止が充分出来な
い。以上が第1の問題点である。
The first problem is that in a sealed nickel-metal hydride storage battery using a hydrogen storage alloy for the negative electrode, the hydrogen storage equilibrium pressure of the alloy increases at high temperatures. Therefore, at the time of overcharging in rapid charging, the battery internal pressure increases as the battery temperature increases. Therefore, if the same charging method as that of a sealed nickel cadmium storage battery in which the battery internal pressure decreases as the temperature increases during overcharging is used, the battery internal pressure increases, and the closed system is broken, resulting in a problem of shortening the service life. For example, there is a method of charging a sealed nickel cadmium storage battery that detects a rising speed of a battery temperature and attenuates a charging current. As a feature, a constant amount of charged electricity is obtained from a low temperature to a high temperature. Therefore, when used in a sealed nickel-metal hydride battery, the internal pressure increases at high temperatures.
As other methods, a charging method using a difference between the ambient temperature and the battery temperature, detection of a maximum value of a charging voltage (hereinafter referred to as "V peak detection"), and reduction of a charging voltage (hereinafter referred to as "minus delta V detection"). There are similar results. On the other hand, there is a battery temperature detector, but it works as a safety device when charging control does not work well.
The purpose is to prevent the battery components from being thermally degraded due to abnormal temperature rise of the battery. Therefore, many of them operate at 60 ° C. to 80 ° C., and control accuracy is insufficient because a thermal fuse or a bimetal method is used for the detector. As described above, when the conventional charging method of the sealed nickel-cadmium storage battery is used for the sealed nickel-metal hydride storage battery, the internal pressure of the sealed nickel cadmium storage battery cannot be sufficiently prevented from increasing due to a rise in temperature. The above is the first problem.

【0006】つぎに、第2の問題点としては、これら従
来の充電方式に基ずく充電器で急速充電完了直後に再び
充電を入れた場合、密閉式ニッケルカドミウム蓄電池の
場合は既に温度が上昇しているため電池内圧は余り上昇
しないが、密閉式ニッケル水素蓄電池の場合は逆に内圧
が上昇することが上げられる。
[0006] The second problem is that when charging is started again immediately after rapid charging is completed with a charger based on these conventional charging methods, the temperature of the sealed nickel cadmium storage battery has already risen. Therefore, the internal pressure of the battery does not increase so much, but in the case of a sealed nickel-metal hydride storage battery, the internal pressure increases.

【0007】第3の問題点は従来複数の電池を充電する
場合、電池の充電電圧を検出するのに電池群全体の電圧
を検出しているが充電状態にバラツキの有る場合一部の
電池が充電制御が作動するまでに大電流で過充電される
問題である。密閉式ニッケルカドミウム蓄電池の場合深
い過充電に入っても電池の発熱により酸素ガス吸収が促
進され電池内圧の上昇は余り起きないが、密閉式ニッケ
ル水素蓄電池の場合は発熱とともに電池内圧が上昇す
る。
A third problem is that, when a plurality of batteries are conventionally charged, the voltage of the entire battery group is detected to detect the charging voltage of the batteries. This is a problem that the battery is overcharged with a large current before the charge control is activated. In the case of a sealed nickel-cadmium storage battery, even when deep overcharging is started, the absorption of oxygen gas is promoted by the heat generated by the battery, and the internal pressure of the battery does not increase much. However, in the case of the sealed nickel-metal hydride storage battery, the internal pressure of the battery increases with the heat generation.

【0008】第4の問題点は低温過充電後の放電電圧低
下である。従来急速充電を行った後に自己放電分を補う
ために1/30C〜0.2C相当の充電電流を通電し続
ける方式がよく採られる。密閉式ニッケル水素蓄電池の
場合、密閉式ニッケルカドミウム蓄電池と異なり低温で
の過充電電気量が多いと例えば0℃の雰囲気温度中電池
の標準容量に対して500%以上の過充電を行うと電極
が不活性化し放電電圧が低下する。
A fourth problem is a decrease in discharge voltage after low-temperature overcharge. Conventionally, a method of continuously supplying a charging current corresponding to 1 / 30C to 0.2C in order to compensate for self-discharge after rapid charging is often employed. In the case of a sealed nickel-metal hydride storage battery, unlike a sealed nickel cadmium storage battery, if the amount of overcharged electricity at a low temperature is large, for example, if the battery is overcharged by 500% or more with respect to the standard capacity of the battery in an ambient temperature of 0 ° C. It is inactivated and the discharge voltage drops.

【0009】したがって本発明の目的は、密閉式ニッケ
ル水素蓄電池、特に積層構造の極板群を有する電池を複
数充電するに当たり充電末期における密閉式ニッケル水
素蓄電池内圧の上昇を抑えるとともに、そのあとに最適
なトリクル充電を行うことにより4つの問題点を解決し
電池の容量を充分に発揮させ、長寿命を達成する充電方
式を提供することである。
Accordingly, an object of the present invention is to suppress the rise in internal pressure of a sealed nickel-metal hydride battery at the end of charging when charging a plurality of sealed nickel-metal hydride batteries, particularly batteries having a stacked electrode group, and to optimize the battery pressure thereafter. It is an object of the present invention to provide a charging method that solves the four problems by performing a trickle charge, makes full use of the battery capacity, and achieves a long life.

【0010】[0010]

【課題を解決するための手段】本発明の密閉式ニッケル
水素蓄電池の充電方式は前記目的を達成すべく、ニッケ
ル酸化物を主材料とする正極と、水素吸蔵合金を主材料
とする負極と、セパレータおよびアルカリ電解液を発電
要素とする密閉式ニッケル水素蓄電池の充電方式であっ
て、電池の特定の部位の温度および昇温速度を計測し、
いずれか一方もしくは両方があらかじめ設けた設定値を
越えることにより、初期充電電流10C〜0.1Cを停
止もしくは前者より低くかつ0.2C以下の範囲の電流
に1回以上移行させる事を特徴とする。
In order to achieve the above object, a charging method for a sealed nickel-metal hydride battery according to the present invention comprises: a positive electrode mainly composed of nickel oxide; a negative electrode mainly composed of a hydrogen storage alloy; A charging method for a sealed nickel-metal hydride storage battery using a separator and an alkaline electrolyte as a power generation element, and measures a temperature and a temperature rising rate of a specific portion of the battery,
When one or both of them exceeds a preset value, the initial charging current 10C to 0.1C is stopped or shifted to a current lower than the former and within a range of 0.2C or less once or more. .

【0011】前記設定値としての温度は45℃〜60℃
の範囲、昇温速度は0.05〜2deg/minの範囲
であるのが好ましい。
The temperature as the set value is 45 ° C. to 60 ° C.
And the rate of temperature rise is preferably in the range of 0.05 to 2 deg / min.

【0012】また、電池の特定の部位の温度を検知する
温度センサーは電池の電極端子に埋設したり、電池の電
極端子表面に設置しその上を覆うように断熱層を設けた
り、或いは電池の電槽内に配置したポリプロピレンチュ
ーブ内に設けたりするのが好ましい。
A temperature sensor for detecting the temperature of a specific part of the battery is embedded in the electrode terminal of the battery, installed on the surface of the electrode terminal of the battery and provided with a heat insulating layer so as to cover the electrode terminal, or It is preferably provided in a polypropylene tube placed in a battery case.

【0013】また、充電電流の低減は不連続変化でも連
続的変化でも構わない。また、充電電流滅衰後の充電領
域の充電電気量は電池温度10℃〜20℃においては6
00%以下、0℃〜10℃においては500%以下、0
℃以下では400%以下に規制するのが好ましい。
The reduction of the charging current may be a discontinuous change or a continuous change. In addition, the amount of charge in the charging area after the decay of the charging current is 6 at a battery temperature of 10 ° C to 20 ° C.
00% or less, 500% or less at 0 ° C to 10 ° C, 0%
When the temperature is lower than 400 ° C., it is preferable to regulate the temperature to 400% or lower.

【0014】また、充電電気量規制の方法として、充電
時間を規制するタイマーを用いるのが好ましい。
[0014] As a method of regulating the amount of charged electricity, it is preferable to use a timer for regulating the charging time.

【0015】また、電池容量が10Ah以上の密閉式ニ
ッケル水素畜電池を充電する場合、全充電電気量を15
0%以下に規制するのが好ましい。この場合も充電電気
量規制の方法として、充電時間を規制するタイマーを用
いるのが好ましい。
When charging a sealed nickel-metal hydride storage battery having a battery capacity of 10 Ah or more, the total charged amount of electricity is 15
It is preferable to regulate it to 0% or less. Also in this case, it is preferable to use a timer for regulating the charging time as a method of regulating the amount of charged electricity.

【0016】また、直列配線された複数の密閉式ニッケ
ル水素蓄電池を充電する場合は、電池群を直列配線した
1つ以上のグループにわけ、各グループごとに温度セン
サーを1つ以上配し、いずれかの検出値が1つでも設定
値を越えることにより、初期充電電流10C〜0.1C
を停止もしくは前者より低くかつ0.2C以下の範囲の
電流に1回以上移行させるのが好ましい。
When charging a plurality of sealed nickel-metal hydride batteries connected in series, the batteries are divided into one or more groups connected in series, and one or more temperature sensors are arranged for each group. If one of the detected values exceeds the set value, the initial charging current 10C to 0.1C
Is preferably stopped or shifted once or more to a current lower than the former and in the range of 0.2 C or less.

【0017】また、前記温度検知以外に、電池充電電圧
が電池の特定の部位の温度に対応してあらかじめ設定さ
れた電圧を越えることにより充電を停止するようにする
のが好ましい。この場合、電圧設定値は単電池当たり0
℃以下で1.7V〜1.9V、0℃以上で1.6V〜
1.8Vの範囲であることが好ましい。
In addition to the temperature detection, it is preferable that charging is stopped when the battery charging voltage exceeds a voltage set in advance corresponding to the temperature of a specific part of the battery. In this case, the voltage setting value is 0 per cell.
1.7V to 1.9V below 0 ° C, 1.6V to above 0 ° C
It is preferably in the range of 1.8V.

【0018】また、本発明の密閉式ニッケル水素蓄電池
の充電方式は、ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、充電中の電池の特定の部位の
温度と、電池のおかれている環境温度を計測し、両者の
温度差もしくは電池の特定の部位の温度のいずれか一方
もしくは両方があらかじめ設けた設定値を越えることに
より、初期充電電流10C〜0.1Cを停止もしくは前
者より低くかつ0.2C以下の範囲の電流に1回以上移
行させる事を特徴とする。
Further, the charging method of the sealed nickel-metal hydride storage battery of the present invention comprises a positive electrode mainly composed of nickel oxide;
This is a charging method for a sealed nickel-metal hydride storage battery using a negative electrode having a hydrogen storage alloy as a main material, a separator and an alkaline electrolyte as a power generation element. The ambient temperature is measured, and either or both of the temperature difference between the two or the temperature of a specific part of the battery exceeds a preset value, so that the initial charging current 10C to 0.1C is stopped or lower than the former. In addition, the current is shifted at least once to a current in a range of 0.2 C or less.

【0019】前記設定値としての温度は45℃〜60℃
の範囲、環境温度との温度差が10℃〜30℃の範囲で
あることが好ましい。
The temperature as the set value is 45 ° C. to 60 ° C.
Is preferably in the range of 10 ° C. to 30 ° C.

【0020】また、環境温度の測定については、測定部
位と電池との間に断熱層を設け、測定部位と外気との間
に通風口や薄肉部を設けた容器に電池を収納して環境温
度を測定するのが好ましい。
In the measurement of the environmental temperature, a heat insulating layer is provided between the measurement site and the battery, and the battery is housed in a container having a ventilation port and a thin portion between the measurement site and the outside air. Is preferably measured.

【0021】また、電池の特定の部位の温度を検知する
温度センサーは電池の電極端子表面に設置され、その上
を覆うように断熱層を設けるのが好ましい。
A temperature sensor for detecting the temperature of a specific portion of the battery is preferably provided on the surface of the electrode terminal of the battery, and a heat insulating layer is preferably provided so as to cover the electrode terminal.

【0022】また、充電電流の低減は不連続変化でも連
続的変化でも構わない。また、充電電流減衰後の充電領
域の充電電気量は電池温度10℃〜20℃においては6
00%以下、0℃〜10℃においては500%以下、0
℃以下では400%以下に規制するのが好ましい。
The reduction of the charging current may be a discontinuous change or a continuous change. Further, the amount of charge in the charge area after the charge current decay is 6 at a battery temperature of 10 ° C to 20 ° C.
00% or less, 500% or less at 0 ° C to 10 ° C, 0%
When the temperature is lower than 400 ° C., it is preferable to regulate the temperature to 400% or lower.

【0023】また、充電電気量規制の方法として、充電
時間を規制するタイマーを用いるのが好ましい。
As a method of regulating the amount of charged electricity, it is preferable to use a timer for regulating the charging time.

【0024】また、電池容量が10Ah以上の密閉式ニ
ッケル水素蓄電池を充電する場合、全充電電気量を15
0%以下に規制するのが好ましい。この場合も充電電気
量規制の方法として、充電時間を規制するタイマーを用
いるのが好ましい。
Further, when charging a sealed nickel-metal hydride storage battery having a battery capacity of 10 Ah or more, the total charged amount of electricity is 15
It is preferable to regulate it to 0% or less. Also in this case, it is preferable to use a timer for regulating the charging time as a method of regulating the amount of charged electricity.

【0025】また、直列配線された複数の密閉式ニッケ
ル水素蓄電池を充電する場合、電池群を直列配線した1
つ以上のグループにわけ、各グループごとに温度センサ
ーを1つ以上配し、いずれかの検出値が1つでも設定値
を越えることにより、初期充電電流10C〜0.1Cを
停止もしくは前者より低くかつ0.2C以下の範囲の電
流に1回以上移行させるのが好ましい。
When charging a plurality of sealed nickel-metal hydride batteries connected in series, a battery group is connected in series.
One or more temperature sensors are arranged for each group, and if any one of the detected values exceeds the set value, the initial charging current 10C to 0.1C is stopped or lower than the former. In addition, it is preferable to shift the current to a current in the range of 0.2 C or less once or more.

【0026】また、前記温度検知以外に、電池充電電圧
が電池の特定の部位の温度に対応してあらかじめ設定さ
れた電圧を越えることにより充電を停止するようにする
のが好ましい。この場合、電圧設定値は単電池当たり0
℃以下で1.7V〜1.9V、0℃以上で1.6V〜
1.8Vの範囲であるのが好ましい。
In addition to the temperature detection, it is preferable that charging is stopped when the battery charging voltage exceeds a voltage set in advance corresponding to the temperature of a specific portion of the battery. In this case, the voltage setting value is 0 per cell.
1.7V to 1.9V below 0 ° C, 1.6V to above 0 ° C
It is preferably in the range of 1.8V.

【0027】また本発明の密閉式ニッケル水素蓄電池の
充電方式はニッケル酸化物を主材料とする正極と、水素
吸蔵合金を主材料とする負極と、セパレータおよびアル
カリ電解液を発電要素とする密閉式ニッケル水素蓄電池
の充電方式であって、充電開始前および充電中の電池の
特定の部位の温度を測定し、各々に対しあらかじめ設け
られた設定値を電池充電前温度と充電中温度の差、電池
温度のいずれか一方もしくは両方が越えることにより、
初期充電電流10C〜0.1Cを停止もしくは前者より
低くかつ0.2C以下の範囲の電流に1回以上移行させ
る事を特徴とする。
The charging method of the sealed nickel-metal hydride storage battery according to the present invention comprises a positive electrode mainly made of nickel oxide, a negative electrode mainly made of a hydrogen storage alloy, and a sealed type using a separator and an alkaline electrolyte as power generating elements. A method of charging a nickel-metal hydride storage battery, in which the temperature of a specific portion of the battery before the start of charging and during charging is measured, and a preset value is set for each of them. When one or both of the temperatures exceed
It is characterized in that the initial charging current 10C to 0.1C is stopped or shifted to a current lower than the former and 0.2C or less once or more.

【0028】前記電池充電前と充電中の温度差の設定値
が10〜30℃の範囲、充電中の電池温度の設定値が4
5〜60℃の範囲であるのが好ましい。
The set value of the temperature difference between before and after charging the battery is in the range of 10 to 30 ° C., and the set value of the battery temperature during charging is 4
Preferably it is in the range of 5-60 ° C.

【0029】また、電池の特定の部位の温度を検知する
温度センサーは電池の電極端子に埋設したり、電池の電
極端子表面に設置しその上を覆うように断熱層を設けた
り、或いは電池の電槽内に配置したポリプロピレンチュ
ーブ内に設けたりするのが好ましい。
A temperature sensor for detecting the temperature of a specific part of the battery is embedded in the electrode terminal of the battery, installed on the surface of the electrode terminal of the battery and provided with a heat insulating layer so as to cover the electrode terminal, or It is preferably provided in a polypropylene tube placed in a battery case.

【0030】また、充電電流の低減は不連続変化でも連
続的変化でも構わない。また、充電電流減衰後の充電領
域の充電電気量は電池温度10℃〜20℃においては6
00%以下、0℃〜10℃においては500%以下、0
℃以下では400%以下に規制するのが好ましい。
The reduction of the charging current may be a discontinuous change or a continuous change. Further, the amount of charge in the charge area after the charge current decay is 6 at a battery temperature of 10 ° C to 20 ° C.
00% or less, 500% or less at 0 ° C to 10 ° C, 0%
When the temperature is lower than 400 ° C., it is preferable to regulate the temperature to 400% or lower.

【0031】また、充電電気量規制の方法として、充電
時間を規制するタイマーを用いるのが好ましい。
As a method of regulating the amount of charged electricity, it is preferable to use a timer for regulating the charging time.

【0032】また、電池容量が10Ah以上の密閉式ニ
ッケル水素蓄電池を充電する場合、全充電電気量を15
0%以下に規制するのが好ましい。この場合も充電電気
量規制の方法として、充電時間を規制するタイマーを用
いるのが好ましい。
When charging a sealed nickel-metal hydride battery having a battery capacity of 10 Ah or more, the total amount of charge
It is preferable to regulate it to 0% or less. Also in this case, it is preferable to use a timer for regulating the charging time as a method of regulating the amount of charged electricity.

【0033】また、直列配線された複数の密閉式ニッケ
ル水素畜電池を充電するに場合は、電池群を直列配線し
た1つ以上のグループにわけ、各グループごとに温度セ
ンサーを1つ以上配し、いずれかの検出値が1つでも設
定値を越えることにより、初期充電電流10C〜0.1
Cを停止もしくは前者より低くかつ0.2C以下の範囲
の電流に1回以上移行させるのが好ましい。
When charging a plurality of sealed nickel-metal hydride batteries connected in series, the battery group is divided into one or more groups connected in series, and one or more temperature sensors are arranged for each group. If any one of the detected values exceeds the set value, the initial charging current 10C to 0.1
It is preferable that C is stopped or shifted at least once to a current lower than the former and in the range of 0.2 C or less.

【0034】また、前記温度検知以外に、電池充電電圧
が電池の特定の部位の温度に対応してあらかじめ設定さ
れた電圧を越えることにより充電を停止するようにする
のが好ましい。この場合、電圧設定値は単電池当たり0
℃以下で1.7V〜1.9V、0℃以上で1.6V〜
1.8Vの範囲であることが好ましい。
In addition to the temperature detection, it is preferable to stop charging when the battery charging voltage exceeds a voltage set in advance corresponding to the temperature of a specific part of the battery. In this case, the voltage setting value is 0 per cell.
1.7V to 1.9V below 0 ° C, 1.6V to above 0 ° C
It is preferably in the range of 1.8V.

【0035】また本発明の密閉式ニッケル水素蓄電池の
充電方式は、ニッケル酸化物を主材料とする正極と、水
素吸蔵合金を主材料とする負極と、セパレータおよびア
ルカリ電解液を発電要素とする密閉式ニッケル水素蓄電
池の充電方式であって、充電中の電池の特定の部位の温
度と、その最低温度を測定し、電池充電中の最低温度と
充電中温度の差、電池温度のいずれか一方もしくは両方
が各々に対しあらかじめ設けられた設定値を越えること
により、初期充電電流10C〜0.1Cを停止もしくは
前者より低くかつ0.2C以下の範囲の電流に1回以上
移行させる事を特徴とする。
The charging method of the sealed nickel-metal hydride storage battery according to the present invention comprises a positive electrode mainly composed of nickel oxide, a negative electrode mainly composed of a hydrogen storage alloy, and a sealed element using a separator and an alkaline electrolyte as power generating elements. A method of charging a nickel-metal hydride storage battery, in which the temperature of a specific part of the battery being charged and the minimum temperature thereof are measured, and the difference between the minimum temperature and the temperature during charging of the battery, one of the battery temperatures or When both of them exceed a preset value for each, the initial charging current 10C to 0.1C is stopped or shifted to a current lower than the former and within a range of 0.2C or less once or more. .

【0036】前記電池最低温度と充電中温度の差の設定
値は10〜30℃の範囲であり充電中の電池温度の設定
値が45〜60℃の範囲であるのが好ましい。
The set value of the difference between the battery minimum temperature and the temperature during charging is preferably in the range of 10 to 30 ° C., and the set value of the battery temperature during charging is preferably in the range of 45 to 60 ° C.

【0037】また、電池の特定の部位の温度を検知する
温度センサーは電池の電極端子に埋設したり、電池の電
極端子表面に設置しその上を覆うように断熱層を設けた
り、或いは電池の電槽内に配置したポリプロピレンチュ
ーブ内に設けたりするのが好ましい。
A temperature sensor for detecting the temperature of a specific part of the battery is embedded in the electrode terminal of the battery, installed on the surface of the electrode terminal of the battery and provided with a heat insulating layer so as to cover the electrode terminal, or It is preferably provided in a polypropylene tube placed in a battery case.

【0038】また、充電電流の低減は不連続変化でも連
続的変化でも構わない。また、充電電流減衰後の充電領
域の充電電気量は電池温度10℃〜20℃においては6
00%以下、0℃〜10℃においては500%以下、0
℃以下では400%以下に規制するのが好ましい。
The reduction of the charging current may be a discontinuous change or a continuous change. Further, the amount of charge in the charge area after the charge current decay is 6 at a battery temperature of 10 ° C to 20 ° C.
00% or less, 500% or less at 0 ° C to 10 ° C, 0%
When the temperature is lower than 400 ° C., it is preferable to regulate the temperature to 400% or lower.

【0039】また、充電電気量規制の方法として、充電
時間を規制するタイマーを用いるのが好ましい。
As a method of regulating the amount of charged electricity, it is preferable to use a timer for regulating the charging time.

【0040】また、電池容量が10Ah以上の密閉式ニ
ッケル水素蓄電池を充電する場合、全充電電気量を15
0%以下に規制するのが好ましい。この場合も充電電気
量規制の方法として、充電時間を規制するタイマーを用
いるのが好ましい。
When charging a sealed nickel-metal hydride storage battery having a battery capacity of 10 Ah or more, the total amount of charge is 15
It is preferable to regulate it to 0% or less. Also in this case, it is preferable to use a timer for regulating the charging time as a method of regulating the amount of charged electricity.

【0041】また、直列配線された複数の密閉式ニッケ
ル水素蓄電池を充電するに場合は、電池群を直列配線し
た1つ以上のグループにわけ、各グループごとに温度セ
ンサーを1つ以上配し、いずれかの検出値が1つでも設
定値を越えることにより、初期充電電流10C〜0.1
Cを停止もしくは前者より低くかつ0.2C以下の範囲
の電流に1回以上移行させるのが好ましい。
In order to charge a plurality of sealed nickel-metal hydride storage batteries connected in series, the battery group is divided into one or more groups connected in series, and one or more temperature sensors are arranged for each group. If any one of the detected values exceeds the set value, the initial charging current 10C to 0.1C
It is preferable that C is stopped or shifted at least once to a current lower than the former and in the range of 0.2 C or less.

【0042】また、前記温度検知以外に、電池充電電圧
が電池の特定の部位の温度に対応してあらかじめ設定さ
れた電圧を越えることにより充電を停止するようにする
のが好ましい。この場合、電圧設定値は単電池当たり0
℃以下で1.7V〜1.9V、0℃以上で1.6V〜
1.8Vの範囲であることが好ましい。
In addition to the temperature detection, it is preferable to stop charging when the battery charging voltage exceeds a voltage set in advance corresponding to the temperature of a specific part of the battery. In this case, the voltage setting value is 0 per cell.
1.7V to 1.9V below 0 ° C, 1.6V to above 0 ° C
It is preferably in the range of 1.8V.

【0043】また、本発明の密閉式ニッケル水素蓄電池
の充電方式は、ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、電池の特定の部位の温度と充
電電圧を測定し、あらかじめ設けられた設定値を電池温
度が越えることを第1の判定条件とし、充電電圧の時間
の微分値が正から0もしくは負に転ずること、あるいは
正から負のあらかじめ設定された値以下になること、充
電電圧の最大値からあらかじめ設定された値以上に充電
電圧が減少することのいずれか1つ以上を組み合わせて
第2の判定条件とし、2つの判定条件のいずれか一方も
しくは両者により、初期充電電流10C〜0.1Cを停
止もしくは前者より低くかつ0.2C以下の範囲の電流
に1回以上移行させる事を特徴とする。
Further, the charging method of the sealed nickel-metal hydride storage battery of the present invention comprises a positive electrode mainly composed of nickel oxide,
This is a charging method for a sealed nickel-metal hydride storage battery that uses a hydrogen storage alloy as a main material, a separator and an alkaline electrolyte as a power generation element, and measures the temperature and charging voltage of a specific part of the battery, and is provided in advance. The first determination condition is that the battery temperature exceeds the set value, and that the time derivative of the charging voltage changes from positive to 0 or negative, or that the value falls below a predetermined value from positive to negative, A second determination condition is obtained by combining at least one of a decrease in the charging voltage from a maximum value of the voltage to a value equal to or more than a preset value, and the initial charging current 10C is set according to one or both of the two determination conditions.停止 0.1 C is stopped or the current is shifted at least once to a current lower than the former and 0.2 C or less.

【0044】前記温度の設定値は45℃〜60℃の範囲
であるのが好ましい。また、電池の特定の部位の温度を
検知する温度センサーは電池の電極端子に埋設したり、
電池の電極端子表面に設置しその上を覆うように断熱層
を設けたり、或いは電池の電槽内に配置したポリプロピ
レンチューブ内に設けたりするのが好ましい。
The set value of the temperature is preferably in the range of 45 ° C. to 60 ° C. In addition, a temperature sensor that detects the temperature of a specific part of the battery is embedded in the electrode terminal of the battery,
It is preferable to provide a heat insulating layer so as to cover the electrode terminal surface of the battery and cover it, or to provide it in a polypropylene tube arranged in a battery case of the battery.

【0045】また、充電電流の低減は不連続変化でも連
続的変化でも構わない。また、充電電流減衰後の充電領
域の充電電気量は電池温度10℃〜20℃においては6
00%以下、0℃〜10℃においては500%以下、0
℃以下では400%以下に規制するのが好ましい。
The reduction of the charging current may be a discontinuous change or a continuous change. Further, the amount of charge in the charge area after the charge current decay is 6 at a battery temperature of 10 ° C to 20 ° C.
00% or less, 500% or less at 0 ° C to 10 ° C, 0%
When the temperature is lower than 400 ° C., it is preferable to regulate the temperature to 400% or lower.

【0046】また、充電電気量規制の方法として、充電
時間を規制するタイマーを用いるのが好ましい。
As a method of regulating the amount of charged electricity, it is preferable to use a timer for regulating the charging time.

【0047】また、電池容量が10Ah以上の密閉式ニ
ッケル水素畜電池を充電する場合、全充電電気量を15
0%以下に規制するのが好ましい。この場合も充電電気
量規制の方法として、充電時間を規制するタイマーを用
いるのが好ましい。
When charging a sealed nickel-metal hydride storage battery having a battery capacity of 10 Ah or more, the total charged amount of electricity is 15
It is preferable to regulate it to 0% or less. Also in this case, it is preferable to use a timer for regulating the charging time as a method of regulating the amount of charged electricity.

【0048】また、直列配線された複数の密閉式ニッケ
ル水素蓄電池を充電するに場合は、電池群を直列配線し
た1つ以上のグループにわけ、各グループごとに温度セ
ンサーを1つ以上配し、いずれかの検出値が設定値を越
えることにより、初期充電電流10C〜0.1Cを停止
もしくは前者より低くかつ0.2C以下の範囲の電流に
1回以上移行させるのが好ましい。
In order to charge a plurality of sealed nickel-metal hydride storage batteries connected in series, the battery group is divided into one or more groups connected in series, and one or more temperature sensors are arranged for each group. When one of the detected values exceeds the set value, it is preferable to stop the initial charging current 10C to 0.1C or shift it to a current lower than the former and 0.2C or less once or more.

【0049】また、前記充電制御に加え、電池充電電圧
が電池の特定の部位の温度に対応してあらかじめ設定さ
れた電圧を越えることにより充電を停止するようにする
のが好ましい。この場合、電圧設定値は単電池当たり0
℃以下で1.7V〜1.9V、0℃以上で1.6V〜
1.8Vの範囲であるのが好ましい。
In addition to the above-mentioned charge control, it is preferable to stop charging when the battery charging voltage exceeds a voltage set in advance corresponding to the temperature of a specific part of the battery. In this case, the voltage setting value is 0 per cell.
1.7V to 1.9V below 0 ° C, 1.6V to above 0 ° C
It is preferably in the range of 1.8V.

【0050】また、本発明の密閉式ニッケル水素蓄電池
の充電方式は、ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、充電初期に充電電流10C〜
0.1Cで数秒間〜数分間充電して充電電圧が所定の値
より高い場合、初期充電電流10C〜0.1Cを停止も
しくは前者より低くかつ0.2C以下の範囲の電流に1
回以上移行させる事を特徴とする。
Further, the charging method of the sealed nickel-metal hydride storage battery of the present invention comprises a positive electrode mainly composed of nickel oxide,
This is a charging method for a sealed nickel-metal hydride storage battery using a negative electrode mainly composed of a hydrogen storage alloy as a main material, a separator and an alkaline electrolyte as a power generation element, and has a charging current of 10 C.
When charging is performed at 0.1 C for several seconds to several minutes and the charging voltage is higher than a predetermined value, the initial charging current 10 C to 0.1 C is stopped or reduced to a current lower than the former and 0.2 C or less.
The feature is to shift more than once.

【0051】前記充電電圧の測定に当たって充電電流を
遮断して数μsec〜数10msec後の電池電圧を測
定するのが好ましい。
In measuring the charging voltage, it is preferable that the charging current is cut off and the battery voltage after several μsec to several tens of msec is measured.

【0052】また、複数の密閉式ニッケル水素蓄電池を
直列に結線した電池群の充電の場合、複数の電源を用い
て電源台数に相当するブロックに電池群を分割して充電
するとともに分割した電池群より同じかさらに小さい電
池数ごとに充電電圧を検出するのが好ましい。
In the case of charging a battery group in which a plurality of sealed nickel-metal hydride batteries are connected in series, the battery group is divided into blocks corresponding to the number of power supplies by using a plurality of power supplies, and the divided battery groups are charged. It is preferable to detect the charging voltage for each of the same or smaller number of batteries.

【0053】また、本発明の密閉式ニッケル水素蓄電池
の充電方式は、複数の密閉式ニッケル水素蓄電池を直列
に結線した電池群の充電の場合、1台もしくは複数の電
源を用いて電源台数に相当するブロックに電池群を分割
して充電するとともに分割した電池群と同じかさらに小
さい電池数ごとに小ブロックに分割して充電電圧を検出
し、充電初期に10C〜0.1Cで充電し、各小ブロッ
クの充電電圧の分布の広がりを検出して所定の値より大
きい場合、充電電流を0.2C以下で先の充電電流より
低い電流値に変更することを特徴とする。
The charging method of the sealed nickel-metal hydride storage battery of the present invention is equivalent to the number of power supplies using one or a plurality of power supplies when charging a battery group in which a plurality of sealed nickel-metal hydride storage batteries are connected in series. The battery group is divided into blocks to be charged and charged, and the divided battery group is divided into small blocks for each number of batteries equal to or smaller than the divided battery group, and the charge voltage is detected. When the spread of the charging voltage distribution of the small block is detected and is larger than a predetermined value, the charging current is changed to a current value of 0.2 C or less and lower than the previous charging current.

【0054】また、本発明の密閉式ニッケル水素蓄電池
の充電方式は、複数の積層構造の電極群を有する密閉式
ニッケル水素蓄電池を直列に結線した電池群を充電する
に当たり、個々の電池の間で極板群積層方向に熱伝導性
の良好な板をはさみ複数の電池群を構成しその両側より
加圧しながら充電を行うことを特徴とする。
The charging method of the sealed nickel-metal hydride storage battery according to the present invention, when charging a battery group in which a sealed nickel-metal hydride storage battery having a plurality of stacked electrode groups is connected in series, requires charging between the individual batteries. A plurality of battery groups are sandwiched between plates having good thermal conductivity in the electrode plate stacking direction, and charging is performed while applying pressure from both sides.

【0055】前記熱伝導性の板は加圧方向に直角にかつ
重力方向に平行に貫通する穴を有するのが好ましい。
The heat conductive plate preferably has a hole penetrating at right angles to the pressing direction and parallel to the direction of gravity.

【0056】また、前記熱伝導性の板が加圧方向に直角
に貫通する穴を有しその内部に充電時に冷媒を流すのが
好ましい。
Further, it is preferable that the heat conductive plate has a hole penetrating at right angles to the pressurizing direction, and a refrigerant is allowed to flow therein during charging.

【0057】前記熱伝導性の板の材質としてAl,M
g,Cu,Ag,Tiのいずれかもしくはこれら2〜5
種の混合物を主成分とする金属板単体もしくはこれらの
材料からなる部材を組合せ板状にしたものを用いるのが
好ましい。
As the material of the heat conductive plate, Al, M
g, Cu, Ag, Ti or any of these 2-5
It is preferable to use a single metal plate mainly composed of a mixture of species or a plate made by combining members made of these materials.

【0058】また、本発明の密閉式ニッケル水素蓄電池
の充電方式は、公称容量10Ah以上の、ニッケル酸化
物を主材料とする正極と、水素吸蔵合金を主材料とする
負極と、セパレータおよびアルカリ電解液を発電要素と
する密閉式ニッケル水素蓄電池の充電方式であって、充
電電圧の時間の微分値が正から0もしくは負に転ずるこ
と、もしくは正から負のあらかじめ設定された値以下に
なることにより充電を停止すことを特徴とする。
The charging method of the sealed nickel-metal hydride storage battery according to the present invention includes a positive electrode having a nominal capacity of 10 Ah or more and mainly composed of nickel oxide, a negative electrode mainly composed of a hydrogen storage alloy, a separator and an alkaline electrolyte. A method of charging a sealed nickel-metal hydride storage battery using liquid as a power generation element, wherein the time derivative of the charging voltage changes from positive to 0 or negative, or falls below a predetermined positive to negative value. It is characterized by stopping charging.

【0059】前記電池は複数直列に結線されたものであ
っても構わない。また、本発明の密閉式ニッケル水素蓄
電池の充電方式は、ニッケル酸化物を主材料とする正極
と、水素吸蔵合金を主材料とする負極と、セパレータお
よびアルカリ電解液を発電要素とする密閉式ニッケル水
素蓄電池の充電方式であって、初期充電電流10C〜
0.1Cを、停止するかもしくは前者より低くかつ0.
2C以下の範囲の電流に移行するに当たり電池の公称容
量の5%以下の電気量を放電することを特徴とする。
The batteries may be a plurality of batteries connected in series. Further, the charging method of the sealed nickel-metal hydride storage battery of the present invention includes a positive electrode mainly composed of nickel oxide, a negative electrode mainly composed of a hydrogen storage alloy, and a sealed nickel nickel battery having a separator and an alkaline electrolyte as power generating elements. A method for charging a hydrogen storage battery, wherein an initial charging current is 10 C
0.1C is stopped or lower than the former and 0.1C.
In transitioning to a current in the range of 2C or less, an amount of electricity of 5% or less of the nominal capacity of the battery is discharged.

【0060】[0060]

【作用】本発明の密閉式ニッケル水素蓄電池の充電方式
は、前記発明が解決しようとする課題において述べた第
1の問題点に対しては、従来の電池内圧の上昇を検知す
る方法、電池昇温速度検知、電池昇温検知、充電電圧の
平坦部の検知もしくは充電電圧の減衰の検知などと、電
池温度検知を組み合わせる。前者等により充電末期の正
極から発生した酸素による内圧上昇を検知し、後者によ
り、温度上昇による水素吸収平衡圧の上昇とそれに伴う
電池内圧の上昇を検知し電池内圧の上昇を抑制する。そ
のために、より正確に電池の温度を測定するため、電池
の端子表面に温度センサーを取りつけその上に断熱層を
設けて雰囲気温度の影響を受けにくくしたり、温度セン
サーを電池端子内部に埋め込んだり、電槽内に配置した
ポリプロピレンチューブ内に設ける等の構造を取る。ま
た、電池端子とリード線の結線をねじ止めしている場
合、ねじ部に導電性の粉体もしくは液体を塗布し接触抵
抗を低下させ充電時のジュール熱の発生を抑制し、電池
温度の測定精度を向上させる。また、充電中の電池を冷
却して電池内圧の上昇を抑制する。電極を多数積層して
構成した電池を複数充電する場合、極群の積層方向への
膨脹を防ぐため、板で加圧しながら充電を行うことは従
来行われてきたが、この加圧に用いる板を熱伝導性の物
質で製作し、板の内部に穴を貫通させ冷却用の空気もし
くは冷媒を流すことにより効率のよい冷却ができる。ま
た、公称容量10Ah以上の電池の場合、電池内部の温
度を検出するのが困難な場合がある。こうした場合は充
電電圧の最大値や減少を検出するのが有効である。ま
た、こうした検知が発生するとき電池内圧は上昇してい
るが、ごく少ない電気量の放電を行うと負極表面の水素
濃度が低下し水素吸収反応が加速され電池内圧が低減さ
れる。
According to the charging method of the sealed nickel-metal hydride storage battery of the present invention, the first problem described in the above-mentioned problem to be solved is solved by a conventional method for detecting an increase in the internal pressure of the battery, The battery temperature detection is combined with the temperature speed detection, the battery temperature rise detection, the detection of the flat portion of the charging voltage or the detection of the decay of the charging voltage. The former detects an increase in internal pressure due to oxygen generated from the positive electrode at the end of charging, and the latter detects an increase in hydrogen absorption equilibrium pressure due to a temperature increase and a corresponding increase in battery internal pressure, thereby suppressing an increase in battery internal pressure. Therefore, in order to more accurately measure the temperature of the battery, a temperature sensor is attached to the surface of the battery terminal and a heat insulating layer is provided on it to make it less affected by the ambient temperature, and the temperature sensor is embedded inside the battery terminal. , For example, in a polypropylene tube placed in a battery case. In addition, when the connection between the battery terminal and the lead wire is screwed, conductive powder or liquid is applied to the screw part to reduce the contact resistance, suppress the generation of Joule heat during charging, and measure the battery temperature. Improve accuracy. In addition, the battery being charged is cooled to suppress an increase in battery internal pressure. When charging a plurality of batteries formed by laminating a large number of electrodes, charging has been conventionally performed while pressing with a plate in order to prevent the electrode group from expanding in the stacking direction. Is made of a heat conductive material, and efficient cooling can be performed by passing a hole or a cooling air or cooling medium through the inside of the plate. In the case of a battery having a nominal capacity of 10 Ah or more, it may be difficult to detect the temperature inside the battery. In such a case, it is effective to detect the maximum value or decrease of the charging voltage. When such a detection occurs, the internal pressure of the battery is increased. However, if a very small amount of electricity is discharged, the hydrogen concentration on the negative electrode surface decreases, the hydrogen absorption reaction is accelerated, and the internal pressure of the battery is reduced.

【0061】さて、こうした熱に変換されるエネルギー
は充電により供給されるが放電に寄与しない。こうした
内圧の上昇を抑制するには過剰の充電エネルギーを供給
しないことでも達成できる。特に公称容量が10Ahを
越えるような電池は150%以上の過充電はエネルギー
の効率面でも好ましくない。
The energy converted into heat is supplied by charging but does not contribute to discharging. Such an increase in internal pressure can also be achieved by not supplying excessive charging energy. In particular, in a battery having a nominal capacity exceeding 10 Ah, overcharging of 150% or more is not preferable in terms of energy efficiency.

【0062】第2の問題に対しては充電開始時の充電電
圧で電池の充電状態を判定して充電電流を減少させ電池
内圧の上昇を抑制する。このとき電池の内部抵抗により
電池の充電電圧が変動するので充電電流を遮断して数μ
scc〜数10mscc後の電池電圧を測定するほうが
精度よく行える。
For the second problem, the state of charge of the battery is determined based on the charging voltage at the start of charging, the charging current is reduced, and the rise in battery internal pressure is suppressed. At this time, the charging voltage of the battery fluctuates due to the internal resistance of the battery.
It is more accurate to measure the battery voltage after scc to several tens of mscc.

【0063】第3の問題に対しては、充電される電池群
を分割して個々の電池群の充電電圧の内最も電圧の高い
電池群に合わせて充電電流を制御したり、個々の電池群
の充電電圧を比較し、充電電圧のバラツキ幅が大きい場
合、充電状態の異なる電池が混合されていると判断し充
電電流を制御して充電電気量の多い電池の電池内圧の上
昇を抑制する。
For the third problem, the battery group to be charged is divided and the charging current is controlled in accordance with the battery group having the highest charging voltage among the individual battery groups. When the variation width of the charging voltage is large, it is determined that batteries having different charging states are mixed, and the charging current is controlled to suppress an increase in battery internal pressure of a battery having a large amount of charged electricity.

【0064】第4の問題に対しては、トリクル充電時に
電池の温度を測定して低温ほど過充電電気量を少なく、
また20℃以上では充電電気量規制を行わないことによ
り、高温での自己放電を補い、低温での負極の不活性化
を抑制する。
For the fourth problem, the temperature of the battery is measured at the time of trickle charging, and the lower the temperature, the smaller the amount of overcharged electricity.
At 20 ° C. or higher, by not regulating the amount of charge, self-discharge at a high temperature is compensated, and inactivation of the negative electrode at a low temperature is suppressed.

【0065】[0065]

【実施例】以下、本発明の実施例を説明する。 (実施例1)まず、図1(A)に示すような密閉式ニッ
ケル水素蓄電池と、図1(B)に示すような密閉式ニッ
ケルカドミウム蓄電池を以下のようにして作成した。
Embodiments of the present invention will be described below. (Example 1) First, a sealed nickel-metal hydride storage battery as shown in FIG. 1A and a sealed nickel cadmium storage battery as shown in FIG. 1B were prepared as follows.

【0066】負極として公知の、LaNi5 系水素吸蔵
合金(45℃H/M=1/0での水素解離圧;約6×1
4 Pa)を不活性中で粉砕し粒度300メッシュ以下
の粉末とした。この合金粉末に高分子結着材を加え、電
極支持体の発泡状金属多孔体に充填・加圧して水素吸蔵
電極1とした。同様にして、市販の酸素カドミ粉末を用
いて酸化カドミ極2を作成した。一方正極には公知のニ
ッケル極3を用い、これらの電極1,2,3にニッケル
のリード板4を溶接し、各々を袋状にしたセパレータ5
の中に挿入した。密閉式ニッケル水素蓄電池は、正極の
ニッケル極3を2枚ずつ、負極の水素吸蔵電極1を3枚
ずつ、交互に重ね集電用の極柱6に溶接し、ポリプロピ
レン製の電槽7に挿入しその上からポリプロピレン製の
蓋板8を溶着した。また、密閉式ニッケルカドミウム蓄
電池は、正極のニッケル極3を2枚ずつ、負極の酸化カ
ドミ極2を3枚ずつ、交互に重ね集電用の極柱6に溶接
し、ポリプロピレン製の電槽7に挿入しその上からポリ
プロピレン製の蓋板8を溶着した。ついで、両電池とも
極柱6に図2に示すように封止用のOリング11とワッ
シャー12をセットしその上からナット9で固定した。
さらにKOH水溶液を約100cc注液し安全弁10を
取りつけて公称容量40Ahの密閉式ニッケル水素蓄電
池と公称容量30Ahの密閉式ニッケルカドミウム蓄電
池とを作成した。
A LaNi 5 hydrogen storage alloy known as a negative electrode (hydrogen dissociation pressure at 45 ° C. H / M = 1/0; about 6 × 1
0 4 Pa) in an inert gas to obtain a powder having a particle size of 300 mesh or less. A polymer binder was added to the alloy powder, and the foamed metal porous body of the electrode support was filled and pressed to obtain a hydrogen storage electrode 1. Similarly, oxidized cadmium electrode 2 was prepared using commercially available oxygen cadmium powder. On the other hand, a known nickel electrode 3 is used as a positive electrode, and a nickel lead plate 4 is welded to these electrodes 1, 2, 3 to form a bag-shaped separator 5.
Inserted inside. In the sealed nickel-metal hydride battery, two nickel electrodes 3 as a positive electrode and three hydrogen storage electrodes 1 as a negative electrode are alternately stacked and welded to a pole 6 for current collection, and inserted into a battery case 7 made of polypropylene. Then, a cover plate 8 made of polypropylene was welded from above. In the sealed nickel cadmium storage battery, two nickel electrodes 3 each as a positive electrode and three cadmium oxide electrodes 2 each as a negative electrode are alternately stacked and welded to a pole 6 for current collection. And a lid plate 8 made of polypropylene was welded from above. Then, in both batteries, a sealing O-ring 11 and a washer 12 were set on the pole 6 as shown in FIG.
Further, about 100 cc of a KOH aqueous solution was injected, and a safety valve 10 was attached to produce a sealed nickel-metal hydride storage battery having a nominal capacity of 40 Ah and a sealed nickel cadmium storage battery having a nominal capacity of 30 Ah.

【0067】次に、市販の定電流充電装置と温度測定
器、電圧測定器、制御装置を組み合わせて(表1)に示
す充電器A〜Lを作成した。
Next, chargers A to L shown in Table 1 were prepared by combining a commercially available constant current charger, a temperature measuring device, a voltage measuring device, and a control device.

【0068】[0068]

【表1】 [Table 1]

【0069】各々の充電端子および電圧検知端子は電池
の極柱にケーブルで接続しナットで固定した。また温度
センサーは極柱に深さ20mm、直径2φの穴を開けその
中に挿入した。充電器A〜Hは密閉式ニッケル水素蓄電
池をつなぎ充電器I〜Lには密閉式ニッケルカドミウム
蓄電池をつないだ。以上の構成で環境温度0℃と35℃
で寿命試験を行った。その結果を図5A,Bに示す。寿
命試験を行うに当たり、充電は5時間、放電は公称容量
の5時間率の定電流で行い電池電圧が1Vを切ったとこ
ろで終止とした。図示した通り本発明による充電器A〜
Dは0℃,35℃ともに良好な結果を示したが従来例E
〜Hは35℃で劣化を生じた。これは、初期充電電気量
が多すぎたため密閉系が破壊された為と思われる。しか
し密閉式ニッケルカドミウム蓄電池は従来の充電器I〜
Lを用いても劣化は生じなかった。この様に特に高温に
おいて、本発明による充電方式を用いると密閉式ニッケ
ル水素蓄電池の内圧上昇を抑制し寿命特性が改善され
た。充電器B,Fの場合、環境温度差を測定する温度セ
ンサーの設置位置により、充電完了検知精度に影響を及
ぼす。今回の検討では充分に電池より離して測定を行っ
たがこうした構成が取れない場合は、電池との間に断熱
層を設ける等工夫が必要となる。また、充電器Dと同じ
構成で、Vピーク検知後に0.5Ah放電を行う充電器
を用いたらより良好な結果が得られた。 (実施例2)実施例1で作成した密閉式ニッケル水素蓄
電池および、充電器Aと同じ仕様の充電器を用いて本発
明に基ずいて温度センサーを設置してもの2種類、従来
例1種類を構成した。まず図2(A)に示すように、極
柱6のリード13を固定するに当たり極柱6、リード1
3、ナット9の接する面に市販の銀ペースト14を塗布
した。しかる後極柱6の中央に深さ20mm、直径3φの
穴15を開け、温度センサーとして太さ1mmの市販の熱
電対16にシリコーングリスを塗布して挿入し固定し
た。この充電器をMとする。次に、図2(B)に示すよ
うに、同様にリード13をナット9で固定した極柱6の
上部に熱電対16を接着剤17で固定し、さらにその上
に断熱材18を接着した。この充電器をNとする。ま
た、従来例として、図2(C)に示すように、銀ペース
トを用いずにリード11を固定した極柱6の上部に、同
様にして熱電対14を接着剤17で固定した。この充電
器をOとする。以上M〜Oの充電器を用いて電池の寿命
試験を室温(20℃±5で変動する環境)で行った。寿
命試験を行うに当たり、充電は5時間、放電は公称容量
の5時間率の定電流で行い1Vを切ったところで終止と
した。結果を図6に示す。図示した通り本発明による充
電器M,Nは安定した放電容量を確保しているが、従来
例Oは充電が早く切れたり、切れなかったりして容量が
安定しない。約200サイクル充放電が完了した時点で
Oの密閉式ニッケル水素蓄電池は安全弁付近にソルティ
ングが見られた。この様に、温度の変動する環境では、
温度センサーを電池の表面に接着しただけでは環境温度
の変動により制御の誤作動が起きることがわかる。本発
明に基ずいて、温度センサーを極柱に埋め込んだり、極
柱表面に接着し断熱材で覆うことによりそうした影響が
防げる。また、銀ペーストを塗布したものは放電電圧の
向上にも効果が見られた。 (実施例3)実施例1で作成した密閉式ニッケル水素蓄
電池および密閉式ニッケルカドミウム蓄電池を同じく実
施例1で用いた設備で構成した(表2)に示した仕様の
充電器P〜Rで放電寿命試験を行った。
Each charging terminal and voltage detecting terminal were connected to the pole of the battery with a cable and fixed with a nut. In addition, a hole having a depth of 20 mm and a diameter of 2φ was formed in the pole and the temperature sensor was inserted therein. The chargers A to H were connected to sealed nickel-metal hydride batteries, and the chargers I to L were connected to sealed nickel cadmium storage batteries. Environmental temperature 0 ℃ and 35 ℃ with the above configuration
A life test was performed. The results are shown in FIGS. 5A and 5B. In conducting the life test, charging was performed for 5 hours, and discharging was performed at a constant current of 5 hours of the nominal capacity, and the battery was stopped when the battery voltage fell below 1V. As shown, the chargers A to A according to the present invention.
D showed good results at both 0 ° C. and 35 ° C.
~ H deteriorated at 35 ° C. This is presumably because the initial charge amount was too large, and the closed system was destroyed. However, the sealed nickel cadmium storage battery is a conventional charger I ~
No deterioration occurred even when L was used. As described above, particularly at high temperatures, when the charging method according to the present invention is used, the internal pressure rise of the sealed nickel-metal hydride storage battery is suppressed, and the life characteristics are improved. In the case of the chargers B and F, the installation position of the temperature sensor that measures the environmental temperature difference affects the accuracy of detecting the completion of charging. In this study, measurements were taken sufficiently away from the battery, but if such a configuration could not be obtained, some measures such as providing a heat insulating layer between the battery and the battery would be necessary. Further, better results were obtained by using a charger having the same configuration as that of the charger D and discharging 0.5 Ah after detecting the V peak. (Embodiment 2) Two types of a sealed nickel-metal hydride storage battery prepared in Embodiment 1 and a temperature sensor installed using a charger having the same specifications as the charger A based on the present invention, and one type of a conventional example Was configured. First, as shown in FIG. 2A, when fixing the lead 13 of the pole 6, the pole 6 and the lead 1 are fixed.
3. A commercially available silver paste 14 was applied to the surface in contact with the nut 9. Thereafter, a hole 15 having a depth of 20 mm and a diameter of 3φ was formed in the center of the pole 6, and silicone grease was applied to a commercially available thermocouple 16 having a thickness of 1 mm as a temperature sensor, and inserted and fixed. This charger is designated as M. Next, as shown in FIG. 2 (B), a thermocouple 16 was fixed with an adhesive 17 on the upper part of the pole 6 to which the lead 13 was similarly fixed with the nut 9, and a heat insulating material 18 was further bonded thereon. . This charger is designated as N. Further, as a conventional example, as shown in FIG. 2C, a thermocouple 14 was similarly fixed with an adhesive 17 on the upper part of the pole 6 to which the lead 11 was fixed without using a silver paste. This charger is designated as O. The battery life test was performed at room temperature (in an environment fluctuating at 20 ° C. ± 5) using the chargers M to O described above. In conducting the life test, charging was performed for 5 hours, and discharging was performed at a constant current of 5 hours of the nominal capacity. FIG. 6 shows the results. As shown in the figure, the chargers M and N according to the present invention secure a stable discharge capacity, but in the conventional example O, the charge is quickly cut off or not cut off and the capacity is not stable. When charging / discharging of about 200 cycles was completed, salting was observed in the O sealed nickel-metal hydride battery near the safety valve. Thus, in an environment where the temperature fluctuates,
It can be seen that if the temperature sensor is simply adhered to the surface of the battery, a control malfunction may occur due to a change in environmental temperature. According to the present invention, such effects can be prevented by embedding the temperature sensor in the pole or bonding the temperature sensor to the pole surface and covering with a heat insulating material. Further, the one coated with silver paste was also effective in improving the discharge voltage. (Embodiment 3) The sealed nickel-metal hydride storage battery and the sealed nickel cadmium storage battery prepared in Example 1 were discharged by the chargers P to R having the specifications shown in (Table 2) which were also configured with the equipment used in Example 1. A life test was performed.

【0070】[0070]

【表2】 [Table 2]

【0071】なお雰囲気温度は20℃とした試験条件
は、充電5時間−休止10分−充電5時間−放電の順で
行いこれを1サイクルとして約200サイクルくり返し
た。充電器P,Qには密閉式ニッケル水素蓄電池を、充
電器Rには密閉式ニッケルカドミウム蓄電池を組み合わ
せた。寿命試験結果を図7に示す。充電器Pを用いたも
のは初期から200サイクルまで安定した放電容量を示
した。充電器Rについてもほぼ同様の結果となったが充
電器Qを用いたものは、急激な容量の低下が見られた。
この様に、密閉式ニッケル水素蓄電池の場合、密閉式ニ
ッケルカドミウム蓄電池に比べて過充電に弱い。充電初
期に再充電か否かを充電電圧で調べることにより再充電
による劣化が防げる。 (実施例4)図4(A)に示すように、実施例1で作成
した密閉式ニッケル水素蓄電池20を5セルずつ重ね、
セル間および両端に厚さ1cmで上下に直径8mmの穴21
を9個あけたアルミ製の板22を当てボルト23,ナッ
ト24で締めつけて電池郡AAを作成する。これと同じ
電池郡AAを合計24個作成し、(表3)に仕様を示し
た充電器S,T,と図3(A)に示したように、また充
電器Uと図3(B)に示したように配線する。尚、図3
中30は電流線、31は電圧線、32は電源制御線、3
3は電源、
The test was conducted at an ambient temperature of 20 ° C. in the order of 5 hours of charging, 10 minutes of rest, 5 hours of charging, and discharging, and this cycle was repeated for about 200 cycles. The chargers P and Q were combined with a sealed nickel-metal hydride storage battery, and the charger R was combined with a sealed nickel-cadmium storage battery. FIG. 7 shows the life test results. Those using the charger P exhibited a stable discharge capacity from the initial stage to 200 cycles. Almost the same results were obtained for the charger R, but the one using the charger Q showed a sharp decrease in capacity.
Thus, the sealed nickel-metal hydride storage battery is more vulnerable to overcharge than the sealed nickel cadmium storage battery. The deterioration due to recharging can be prevented by examining whether or not recharging is performed at the beginning of charging with the charging voltage. (Embodiment 4) As shown in FIG. 4 (A), five sealed nickel-metal hydride storage batteries 20 prepared in Embodiment 1
Holes 1cm thick and 8mm in diameter at the top and bottom between cells and at both ends
9 are opened, and an aluminum plate 22 is tightened with a contact bolt 23 and a nut 24 to form a battery group AA. A total of 24 same battery groups AA are created, and the chargers S and T whose specifications are shown in (Table 3) and the charger U and FIG. 3 (B) as shown in FIG. Wiring as shown in (1). Note that FIG.
Medium 30 is a current line, 31 is a voltage line, 32 is a power control line, 3
3 is power supply,

【0072】[0072]

【表3】 [Table 3]

【0073】そして34は電源制御装置を示す。これら
の充電器を用いて室温で寿命試験を行った。評価条件は
室温で2日充電し休止を2日放電をD.O.C.50%
行いこれを1サイクルとした。10サイクルおきに2日
充電後完全放電を行い容量を確認した。その結果を図8
に示す。容量劣化が少ないのはTであり、S,Uの順に
劣化している。これは充電完了後の休止時間が各セルが
自己放電して残容量バラツキを生じたのに、Uはその差
を検出できず一部のセルが過充電になり容量低下を起こ
したからである。電池の残容量バラツキの検出精度は
U,S,Tの順で良くなりそれに従い容量低下も少なく
なっている。 (実施例5)実施例1で作成した密閉式ニッケル水素蓄
電池を用いて(表4)に示す充電器V,W,Xの各充電
制御により雰囲気温度0℃、35℃で容量試験を行っ
た。
Reference numeral 34 denotes a power supply control device. A life test was performed at room temperature using these chargers. The evaluation conditions were as follows: charging at room temperature for 2 days; O. C. 50%
This was performed as one cycle. The battery was completely discharged after charging for 2 days every 10 cycles, and the capacity was confirmed. The result is shown in FIG.
Shown in T has the least capacity deterioration, and the capacity deteriorates in the order of S and U. This is because each cell self-discharges after the completion of charging and the remaining capacity varies, but U cannot detect the difference and some cells are overcharged and the capacity is reduced. The detection accuracy of the variation in the remaining capacity of the battery is improved in the order of U, S, and T, and accordingly, the decrease in capacity is reduced. (Example 5) Using the sealed nickel-metal hydride battery prepared in Example 1, a capacity test was performed at ambient temperatures of 0 ° C and 35 ° C by controlling the charging of the chargers V, W and X shown in (Table 4). .

【0074】[0074]

【表4】 [Table 4]

【0075】充電は1週間としその後に0.2C放電容
量を確認した。その結果を(表5)に示す。
The charging was performed for one week, and thereafter, the discharge capacity at 0.2 C was confirmed. The results are shown in (Table 5).

【0076】[0076]

【表5】 [Table 5]

【0077】0℃、35℃どちらの条件でも放電電気量
が40Ahを越えたのは本発明による充電器Xのみであ
る。トリクル充電の制御のない充電器Vは低温トリクル
充電時に負極の不活性を生じていることがわかった。ま
た、トリクル充電時にタイマーが作動するWは低温での
不活性化が生じなかったものの高温でトリクル充電が切
れたため自己放電による容量低下を生じた。また、こう
した深い過充電を行う場合電池の発熱が著しい。本実施
例では電池温度が環境温度プラス5℃以下になるように
送風によりる放熱を行ったが、放熱を充分行えない条件
では過充電電気量を150%以下に押さえる必要があっ
た。本実施例と同じ条件でかつ放熱が不充分な条件では
充電電気量を150%以下に押さえないと電池に弁作動
が見られた。 (実施例6)実施例1で作成した密閉式ニッケル水素蓄
電池を用いて図4(A),(B),(C)に示した構成
の密閉式ニッケル水素蓄電池群AA,AB,ACを作成
する。図4(B)のものは.図4(A)の穴開きアルミ
製の板22に代え、締め付け方向に直角に貫通する穴を
有し、該穴に冷媒パイプ25を挿通させ、該冷媒パイプ
25内に冷媒供給パイプ26から冷媒を供給させるよう
にしたアルミ板27を用い、図4(C)のものは図4
(A)の穴開きアルミ製の板21に代えベークライト板
28を用いた。
Only in the charger X according to the present invention, the amount of discharged electricity exceeded 40 Ah under both the conditions of 0 ° C. and 35 ° C. It was found that the charger V without the trickle charge control caused inactivation of the negative electrode during low-temperature trickle charge. In addition, although the timer operated at the time of trickle charge did not inactivate at a low temperature, the trickle charge was cut off at a high temperature, and the capacity was reduced by self-discharge. Also, when such deep overcharging is performed, the battery generates significant heat. In the present embodiment, the heat is released by blowing air so that the battery temperature becomes equal to or lower than the environmental temperature plus 5 ° C. However, under the condition that the heat can not be sufficiently released, it is necessary to suppress the amount of overcharge electricity to 150% or less. Under the same conditions as in the present example and under the condition of insufficient heat radiation, valve operation was observed in the battery unless the charged amount of electricity was suppressed to 150% or less. (Embodiment 6) The sealed nickel-metal hydride storage batteries AA, AB, and AC having the configurations shown in FIGS. 4A, 4B, and 4C are created using the sealed nickel-metal hydride storage battery prepared in Example 1. I do. FIG. Instead of the perforated aluminum plate 22 shown in FIG. 4A, a hole is provided that penetrates at right angles to the tightening direction, and a refrigerant pipe 25 is inserted through the hole. 4C is used, and FIG.
A bakelite plate 28 was used in place of the perforated aluminum plate 21 in (A).

【0078】これらの電池群を充電電流40A,45℃
温度制御+Vピーク制御の充電器を用い雰囲気温度35
℃で寿命試験を行った。充電時間を4時間とし放電は8
Aで1V/セルまで行った。充電中に、電池群ABには
冷却供給パイプより20℃の水を毎分1リットル供給し
て冷却した。結果を図9に示す。この様に放熱を行った
ものは初期より高い容量を示すとともに寿命性能も良好
であることがわかる。
These battery groups were charged at a charging current of 40 A and 45 ° C.
Ambient temperature 35 using a temperature control + V peak control charger
A life test was performed at ℃. Charge time is 4 hours and discharge is 8
A was performed up to 1 V / cell. During charging, the battery group AB was cooled by supplying 1 liter of water at 20 ° C. per minute from a cooling supply pipe. FIG. 9 shows the results. It can be seen that the heat dissipated in this manner shows a higher capacity than the initial one and also has a good life performance.

【0079】以上のように、本発明によれば電池特に積
層構造の極板群を有するものを複数充電するに当たり十
分な充電電気量と電池寿命が得られる。
As described above, according to the present invention, it is possible to obtain a sufficient amount of charged electricity and a sufficient battery life for charging a plurality of batteries, particularly those having an electrode group having a laminated structure.

【0080】[0080]

【発明の効果】このように、本発明の密閉式ニッケル水
素蓄電池の充電方式によれば、従来の電池内圧の上昇を
検知する方法、電池昇温速度検知、電池昇温検知、充電
電圧の平坦部の検知もしくは充電電圧の減衰の検知など
と、電池温度検知を組み合わせることにより、正確な充
電制御を行え、しかも最適なトリクル充電方式との組み
合わせにより高い放電容量を確保することができる。
As described above, according to the charging method of the sealed nickel-metal hydride storage battery of the present invention, the conventional method for detecting an increase in the internal pressure of the battery, detecting the rate of temperature rise of the battery, detecting the temperature rise of the battery, and flattening the charging voltage. Accurate charge control can be performed by combining the detection of the unit or the detection of the decrease in the charging voltage with the battery temperature detection, and a high discharge capacity can be secured by combination with the optimal trickle charging method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は、本発明に基づく充電器の評価に用い
た密閉式ニッケル水素蓄電池の単電池部分断面図 (B)は、同密閉式ニッケルカドミウム蓄電池の単電池
部分断面図
FIG. 1A is a partial cross-sectional view of a unit cell of a sealed nickel-metal hydride battery used for evaluation of a charger based on the present invention. FIG. 1B is a partial cross-sectional view of a unit cell of the sealed nickel-cadmium storage battery.

【図2】(A)、(B)はそれぞれ本発明による温度セ
ンサーの取付け状態を示す説明図 (C)は従来例による温度センサーの取付け状態を示す
説明図
FIGS. 2A and 2B are explanatory diagrams each showing a mounting state of a temperature sensor according to the present invention; and FIG. 2C is an explanatory diagram showing a mounting state of a conventional temperature sensor.

【図3】(A)は本発明による電池充電回路図 (B)は従来法による電池充電回路図FIG. 3 (A) is a battery charging circuit diagram according to the present invention, and (B) is a battery charging circuit diagram according to a conventional method.

【図4】(A)、(B)は本発明による電池群の斜視図 (C)は従来法による電池群の斜視図4A and 4B are perspective views of a battery group according to the present invention, and FIG. 4C is a perspective view of a battery group according to a conventional method.

【図5】(A)、(B)はそれぞれ環境温度0℃と35
℃における電池の寿命試験の結果を示す特性図
FIGS. 5 (A) and (B) show environmental temperatures of 0 ° C. and 35 ° C., respectively.
Characteristic diagram showing the result of battery life test at ℃

【図6】電池の寿命試験の結果を示す特性図FIG. 6 is a characteristic diagram showing the results of a battery life test.

【図7】電池の寿命試験の結果を示す特性図FIG. 7 is a characteristic diagram showing a result of a battery life test.

【図8】電池の寿命試験の結果を示す特性図FIG. 8 is a characteristic diagram showing a result of a battery life test.

【図9】電池の寿命試験の結果を示す特性図FIG. 9 is a characteristic diagram showing a result of a battery life test.

【符号の説明】[Explanation of symbols]

1 水素吸蔵電極 2 酸化カドミ極 3 ニッケル極 4 リード板 5 セパレータ 6 極柱 7 電槽 8 蓋板 9 ナット 10 安全弁 11 Oリング 12 ワッシャー 13 リード 14 ペースト 15 穴 16 熱電対 17 接着剤 18 断熱材 21 穴 22 アルミ板 23 ボルト 24 ナット 25 冷媒パイプ 26 冷媒供給パイプ 27 アルミ板 28 ベークライト板 30 電流線 31 電圧線 32 電源制御線 33 電源 34 電流制御線 REFERENCE SIGNS LIST 1 hydrogen storage electrode 2 cadmium oxide electrode 3 nickel electrode 4 lead plate 5 separator 6 pole 7 battery case 8 lid plate 9 nut 10 safety valve 11 O-ring 12 washer 13 lead 14 paste 15 hole 16 thermocouple 17 adhesive 18 heat insulating material 21 Hole 22 Aluminum plate 23 Bolt 24 Nut 25 Refrigerant pipe 26 Refrigerant supply pipe 27 Aluminum plate 28 Bakelite plate 30 Current line 31 Voltage line 32 Power control line 33 Power supply 34 Current control line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 寛治 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−109828(JP,A) 特開 昭63−157623(JP,A) 特開 平4−208033(JP,A) 特開 平4−217826(JP,A) 特開 昭47−40134(JP,A) 実開 平3−54333(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02J 7/00 - 7/12 H02J 7/34 - 7/36 H01M 10/42 - 10/48 301 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroharu Takada 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-4-109828 (JP, A) JP-A-63- 157623 (JP, A) JP-A-4-208033 (JP, A) JP-A-4-217826 (JP, A) JP-A-47-40134 (JP, A) JP-A-3-54333 (JP, U) (58) Field surveyed (Int.Cl. 7 , DB name) H02J 7/ 00-7/12 H02J 7 /34-7/36 H01M 10/42-10/48 301

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の密閉式ニッケル水素蓄電池を直列
に結線した電池群の充電にあたり1台もしくは複数の電
源を用いて電源台数に相当するブロックに電池群を分割
して充電するとともに分割した電池群と同じかさらに小
さい電池数ごと小ブロックに分割して充電電圧を検出
し、充電初期に10C〜0.1Cで充電し、各小ブロッ
クの充電電圧の分布の広がりを検出して所定の値より大
きい場合、充電電流を0.2C以下で先の充電電流より
低い電流値に変更することを特徴とする密閉式ニッケル
水素蓄電池の充電方式。
1. A divided with charges by dividing the cell group to the block corresponding to the power supply quantity using one or more of power per multiple sealed nickel-metal hydride storage battery to charge the battery group that has been connected in series is divided into small blocks every the same or even smaller cell number and cell group detects the charging voltage to charge at 10C~0.1C the initial charging, predetermined detect the spread of the distribution of the charging voltage of each small block Wherein the charging current is changed to a current value of 0.2 C or less and lower than the previous charging current when the value is larger than the value of the charging current.
【請求項2】 複数の積層構造の電極群を有する密閉式
ニッケル水素蓄電池を直列に結線した電池群を充電する
あたり、個々の電池の間で極板群積層方向に熱伝導性
の良好な板をはさみ複数の電池群を構成しその両側より
加圧しながら充電を行うことを特徴とする密閉式ニッケ
ル水素蓄電池の充電方式。
2. A per a sealed nickel-metal hydride storage battery having an electrode group of the plurality of laminated structures <br/> to charge the cell group which is connected in series, the thermal conductivity in the electrode plate group laminating direction between the individual cells A method for charging a sealed nickel-metal hydride storage battery, comprising a plurality of battery groups sandwiched between plates having good properties and charging while applying pressure from both sides.
【請求項3】 熱伝導性の板が加圧方向に直角にかつ重
力方向に平行に貫通する穴を有する請求項記載の充電
方式。
3. The charging method according to claim 2, wherein the heat conductive plate has a hole penetrating at right angles to the pressing direction and parallel to the direction of gravity.
【請求項4】 熱伝導性の板が加圧方向に直角に貫通す
る穴を有しその内部に充電時に冷媒を流す請求項記載
の充電方式。
4. The charging method according to claim 2 , wherein the heat conductive plate has a hole penetrating at right angles to the pressurizing direction, and the refrigerant flows into the inside of the hole during charging.
【請求項5】 熱伝導性の板の材質としてAl,Mg,
Cu,Ag,Tiのいずれかもしくはこれら2〜5種の
混合物を主成分とする金属板単体もしくはこれらの材料
からなる部材を組合せ板状にしたものを用いた請求項
記載の充電方式。
5. A heat conductive plate made of Al, Mg,
3. A metal plate containing one of Cu, Ag, and Ti or a mixture of 2 to 5 of them as a main component, or a plate formed by combining members made of these materials.
The charging method described.
【請求項6】 ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、初期充電電流10C〜0.1
Cを停止するか、もしくは前者より低くかつ0.2C以
下の範囲の電流に移行するにあたり電池の公称容量の
%より大きく5%以下の電気量を放電することを特徴と
する密閉式ニッケル水素蓄電池の充電方式。
6. A positive electrode mainly composed of nickel oxide,
This is a charging method for a sealed nickel-metal hydride storage battery using a negative electrode having a hydrogen storage alloy as a main material, a separator and an alkaline electrolyte as a power generating element, and has an initial charging current of 10 C to 0.1 C.
0 of nominal capacity per cell to migrate either stop C, or to the current in the low and 0.2C the range from former
Charging method of the sealed type nickel hydrogen storage battery, characterized in that the discharge% than the size rather than 5% of the quantity of electricity.
JP29332099A 1992-10-19 1999-10-15 Charging method for sealed nickel-metal hydride battery Expired - Lifetime JP3303857B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4279908A JPH06133468A (en) 1992-10-19 1992-10-19 Charging method for sealed nickel-hydrogen storage battery
JP29332099A JP3303857B2 (en) 1992-10-19 1999-10-15 Charging method for sealed nickel-metal hydride battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4279908A JPH06133468A (en) 1992-10-19 1992-10-19 Charging method for sealed nickel-hydrogen storage battery
JP29332099A JP3303857B2 (en) 1992-10-19 1999-10-15 Charging method for sealed nickel-metal hydride battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4279908A Division JPH06133468A (en) 1992-10-19 1992-10-19 Charging method for sealed nickel-hydrogen storage battery

Publications (2)

Publication Number Publication Date
JP2000116021A JP2000116021A (en) 2000-04-21
JP3303857B2 true JP3303857B2 (en) 2002-07-22

Family

ID=59380814

Family Applications (2)

Application Number Title Priority Date Filing Date
JP4279908A Pending JPH06133468A (en) 1992-10-19 1992-10-19 Charging method for sealed nickel-hydrogen storage battery
JP29332099A Expired - Lifetime JP3303857B2 (en) 1992-10-19 1999-10-15 Charging method for sealed nickel-metal hydride battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP4279908A Pending JPH06133468A (en) 1992-10-19 1992-10-19 Charging method for sealed nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (2) JPH06133468A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3175558B2 (en) * 1995-10-24 2001-06-11 松下電器産業株式会社 Sealed storage battery
FR2770035B1 (en) 1997-10-20 1999-12-10 Alsthom Cge Alcatel MONOBLOCK BATTERY CONTAINING AN INTERNAL TEMPERATURE MEASURING DEVICE
US6459238B2 (en) * 2000-04-28 2002-10-01 Matsushita Electric Industrial Co., Ltd. Method for charging a battery pack including a plurality of battery units
JP2002044879A (en) * 2000-07-21 2002-02-08 Honda Motor Co Ltd Method and apparatus for charging secondary battery
US7301308B2 (en) 2001-11-02 2007-11-27 Aker Wade Power Technologies, Llc Fast charger for high capacity batteries
JP2007089363A (en) * 2005-09-26 2007-04-05 Sanoh Industrial Co Ltd Secondary battery charging method and apparatus
JP2009247195A (en) * 2008-03-31 2009-10-22 O2 Micro Inc Battery management system with adjustable charging current
JP2010040324A (en) * 2008-08-05 2010-02-18 Kawasaki Heavy Ind Ltd Estimation method of state of charge of battery module, and charging method using this
JP2010205479A (en) * 2009-03-02 2010-09-16 Toyota Motor Corp All-solid battery employing power compact
JP4696291B2 (en) 2009-06-04 2011-06-08 三菱自動車工業株式会社 Secondary battery abnormality detection device
KR101183642B1 (en) 2011-04-20 2012-09-17 주식회사 프로파워 Charging method for nickel metal hydryde secondary battery pack
JP6089952B2 (en) * 2013-05-17 2017-03-08 株式会社豊田自動織機 Battery module
JP6864536B2 (en) 2017-04-25 2021-04-28 株式会社東芝 Rechargeable battery system, charging method, program, and vehicle
JP7060383B2 (en) * 2018-01-12 2022-04-26 Fdk株式会社 Alkaline storage battery charge control method and alkaline storage battery charger

Also Published As

Publication number Publication date
JP2000116021A (en) 2000-04-21
JPH06133468A (en) 1994-05-13

Similar Documents

Publication Publication Date Title
JP3303857B2 (en) Charging method for sealed nickel-metal hydride battery
Hung et al. Extension of battery life via charge equalization control
JP3725105B2 (en) Overdischarge prevention circuit for secondary battery and overdischarge prevention method for secondary battery
US8541122B2 (en) Lithium rechargeable cell with reference electrode for state of health monitoring
JP3586195B2 (en) Composite electrode containing PTC polymer
US7135839B2 (en) Battery pack and method of charging and discharging the same
CA2157930C (en) Sealed rechargeable battery
CN101529692A (en) Charging methods for nickel-zinc battery packs
JPH0793152B2 (en) Controlling charging of pressurized gas / metal storage batteries
US5830599A (en) Sealed rechargeable battery
EP1249885B1 (en) Nickel-metal hydride rechargeable battery
Geng et al. Charging/discharging stability of a metal hydride battery electrode
Geng et al. Characteristics of the High‐Rate Discharge Capability of a Nickel/Metal Hydride Battery Electrode
US6097176A (en) Method for managing back-up power source
JPH05326024A (en) Laminated closed metal oxide-hydrogen storage battery and group battery system and charging method thereof
US6275005B1 (en) Low-voltage-drop bypass of failed battery cell
JP2000150000A (en) How to manage backup power
Passerini et al. Lithium-ion batteries for hearing aid applications: II. Pulse discharge and safety tests
JP2020198187A (en) Secondary battery manufacturing method, and nickel hydrogen secondary battery
EP2720308A1 (en) Alkaline storage cell and method for manufacturing alkaline storage cell
JP2007289023A (en) Electric mosquito-trapping apparatus
EP0926758B1 (en) Nickel-metal hydride storage battery for back-up power source
Amusan et al. Experimental study of Optimum Working Temperature Range of Deep Cycled Lead Acid Solar Battery
Barsukov Battery selection, safety, and monitoring in mobile applications
JP2013120680A (en) Water electrolysis hybrid storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11